CORRESPONDENCE

DISTRIBUTION OF DEATHS IN THE FIRST YEAR OF LIFE

(To the Editors of the Journal of the Institute of Actuaries)

SIRS,

The information collected for the E.L.T. No. 10 regarding the distribution of deaths in the first year of life fills a gap in the statistics required for the calculation of monetary and other functions.

The distribution of deaths for each 3 months in the first year of life is as follows:

Months	Males	Females
0-3	66 %	65 %
3-6	14 %	14 %
6-9	11 %	11 %
9-12	9 %	10 %

These results confirm the figures given by Blossom in $\mathcal{J}.S.S.$ Vol. III, Pt. 4, p. 241.

From the above figures curves may be drawn roughly to represent the distribution of deaths in the first year of life. On this estimate it appears some $48\frac{1}{2}$ % of the deaths among males in the year occur in the first 4 weeks of life, and 66 % in the first 3 months. Adjusted values of \overline{C}_o may then be calculated by approximate evaluation of $\int_{0}^{t} v^{x} d_{x} dx$. The application of these results to the No. 9 (Males) Table with $3\frac{1}{2}$ % interest gives $\overline{C}_{o} = 8923$.

Comparison with other values is of interest:

d_{o}	8996
\overline{C}_{o} —see J.I.A. Vol. LIX, p. 172	10066
$\overline{\mathbf{C}}_{\mathbf{o}} = v_{\overline{2}}^{1} d$	8843
Adjusted value as above	8923

The exaggerated effect on \overline{C}_{o} of the special value of μ_{x} at age o is clearly illustrated in the second value. The value of \overline{a}_{o} becomes 21.756 instead of 21.424. Other functions involving the mortality of the first year of life would be modified similarly.

The value of \hat{e}_0 by E.L.T. (9) Males No. 9 is given as 55.62 in App. IV of the Report on the 1921 Census.

If the years of life lived by those who die age o-1 is denoted by X then $\dot{e}_{o} = \frac{\dot{e}_{I} \times l_{I} + l_{I} + X}{l_{o}}$ and from the E.L.T. No. 9 (Males) $\dot{e}_{o} = 55 \cdot 58 + X/l_{o}$. In order to produce the value quoted, X must be 4000 years for the 8996 who die.

Actually on the basis of distribution of deaths in the No. 10 Census X would be about 2000 and \mathring{e}_{c} becomes 55.60 instead of 55.62.

I am, Sirs, etc.

D. HAMILTON SHAW

Council House, Birmingham 7 July 1936