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The propagation of the gravity current generated from a moving source of buoyancy is of
interest in deep-sea mining and related technologies. The study by Ouillon et al. (J. Fluid
Mech., vol. 924, 2021, A43) elucidated some salient patterns of the flow concerning a
source close to the bottom on the basis of direct numerical simulation on a supercomputer.
Here, we present a simple box model that provides further insights and useful analytical
approximations for this gravity-current flow system. We show that this flow is very
different from that produced by a moving source at the top, studied by Hogg et al.
(J. Fluid Mech., vol. 539, 2005, pp. 349–385). The model confirms that the main governing
parameter is the ratio a of speed of source to that of buoyancy propagation. The model
points out dependency also on the front-jump Froude number (which implies dependency
on the height of the ambient fluid). For a sufficiently large a > acrit, a supercritical regime
appears in which the gravity current forms a wedge behind the moving source; in the
subcritical regime, the upstream propagation attains a maximum xm at time tm. The model
predicts the value acrit, the distance and time xm and tm in the subcritical case, and the
shape of the wedge in the supercritical case, without any adjustable constant. Comparisons
with the numerical data show fair agreement.

Key words: gravity currents

1. Introduction

A gravity current (GC) is a generic name for the flow of a body of fluid of density ρ0 +�ρ

embedded in a large domain of ambient fluid of density ρ0, over a horizontal bottom.
The flow is driven by the buoyancy �ρg counteracted by inertial or viscous effects,
where g is the gravity acceleration. The density excess �ρ is due to the composition
(e.g. salinity or temperature difference) with the ambient or the presence of small dispersed
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Figure 1. Sketch of moving source at top flow field of HHH: (a) side view, and (b) front view. The velocities
u1, u2 of the dense-fluid currents and Us of the ambient fluid are in the system attached to the source. The
heights of the currents are h1 and h2. The ±x domain is unbounded.

particles (particle-driven GC). In the classical problem, �ρ is prescribed explicitly
in an initial reservoir (the lock-release problem) or by a supplying source. Various
geometries and ranges of parameters have been investigated by experiments, simulations
and approximate models (see Ungarish (2020) and the references therein). GCs sustained
by a constant source are of great relevance to environmental and geophysical application
(see Chowdhury & Testik 2014; Zhang & Hu 2022), and a particular problem is the
effect of a moving source. The moving source introduces a competition between the
buoyancy-induced motion and that of the homogeneous ambient; the most obvious effect
of a moving source is the emergence of a non-symmetric behaviour of the front of the
buoyant fluid, which may be either co- or anti-flowing with respect to the ambient, and
even fully arrested. This effect is well demonstrated, both experimentally and analytically,
by Hogg, Hallworth & Huppert (2005) (referred to as HHH) in a configuration with a
source at the top; see figure 1. The concept of a moving source also covers the situation of
a fixed source in a moving ambient, which is relevant to discharge of pollutants within a
river, and advection of downdraughts of cold air by the background wind.

Ouillon et al. (2021) (hereafter OKMP) introduced a novel GC configuration (see
figure 2): in a large ambient fluid of density ρ0 over a horizontal bottom, there is a ‘source
of buoyancy’ that moves with constant speed Us parallel to the bottom in direction −x;
the source effect is distributed in a virtual (non-disturbing) sphere of diameter D whose
centre is at height D/2 above the bottom. This is an idealization of the discharge unit of
a sea-mining collector vehicle that travels along the seabed, resuspending the first few
centimetres of the bed and continuously releasing a buoyant flux (see OKMP); constant
Us and rate of discharge are plausible operational conditions that we carry over to the
model. The fluid in the locus affected by the source gains density excess �ρ, and spreads
over the bottom, with typical speed Ub. As usual, there is a vertical front yf (x, t) between
the dense fluid (the GC) and the ambient. The objective is to predict the behaviour of the
dense fluid, in particular the position and speed of the front, and the thickness h. The flow
is very different from that studied by HHH, and a separate investigation is needed. The
evident difficulties are as follows. (i) The evaluation of the density excess near the source
�ρ is a part of the problem (in contrast to the classical compositional GC; the resemblance
with the particle-driven GC is slightly relevant). (ii) The spread of the current is coupled
with the motion of the source, hence the front interface between current, yf (x, t), lacks
a predetermined shape – in contrast to two-dimensional (2-D) or axisymmetric classical
currents.
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Figure 2. Sketch of the moving source at bottom flow of OKMP in the xyz system attached to the centre of
the source. Upper diagram: side view of y = 0 plane. Lower diagrams: top view of front at some t for cases
(a) a = 0, (b) subcritical a < acrit, (c) supercritical wedge a > acrit. The red circle represents the source
influence sphere of diameter D. The xy domain is unbounded.

OKMP used a Boussinesq code with high resolution for direct numerical simulations
(DNS) of the flow in a Cartesian box domain. The bottom and the top (at height
H = 1.5D) were solid no-slip boundaries, while the vertical boundaries were practically
non-restrictive. The domain is initially (at time t = 0) filled with stationary fluid (the
ambient) of density ρ0. The source of buoyancy is envisaged as a virtual sphere of diameter
D tangent to the bottom, whose centre moves with constant speed Us in the horizontal
direction −x; see figure 2. The source increases the density (and hence the mass) of the
system according to

�ρ × Vc = (π/6)ρ0SD3t, (1.1)

where S is a given time constant, called ‘the intensity of the source’, and t is the time.
Equation (1.1) is a global mass-increase balance. The left-hand side of (1.1) represents
the product of density excess and volume of larger density Vc(t) of the GC; g�ρVc is
the buoyancy addition to the system during time t. The distribution (propagation) of the
dense fluid is the challenge of the study. By scaling analysis, OKMP concluded that the
typical speed of propagation of the current is Ub = (SgD2)1/3, and that when the pertinent
Reynolds (Reb = UbD/ν) and Péclet (Peb = Reb Sc) numbers are large, the only governing
dimensionless parameter of the flow is a = Us/Ub. Here, ν is the coefficient of viscosity,
and Sc is the Schmidt number. Ten simulations, for 0 � a � 2.52 (at large Reb and Peb,
with Sc = 1), were performed for long times (t ≈ 60D/Ub) during which some clear-cut
statistically averaged patterns of the GCs developed, as sketched in figures 2(a)–2(c). In
particular, for a > ccrit = 0.63, the flow is in a ‘supercritical’ regime: the GC forms a
wedge behind the source, and the lateral velocity Vf of the front, upon some rescaling,
tends to collapse on a universal steady-state dependency on x. OKMP present some
experimental support to these novel simulation results, and discuss the possible practical
use in deep-sea mining applications. Our concern here is the theoretical side of the
flow field. The numerical simulation is an expensive and time-consuming tool; even a
simple question like ‘what will change if the position of the top H increases to 3D?’
cannot be answered without weeks of work on a supercomputer. The novel problem
is still intriguing. We must keep in mind that the driving source is an idealization of
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some unspecified mechanical device that adds mass with zero volume; e.g. this density
increase can be achieved by release of very small solid particles, or by strong cooling
(see Zhang & Hu 2022). The precise physical behaviour of the flow in the vicinity of the
source is not specified, hence OKMP could report only qualitative agreement between
their simulations and laboratory experiments. In this intriguing state of the problem,
the effective investigation of various scenarios for the flow is of both academic and
practical relevance. We argue that approximate analytical models are needed as an essential
supporting tool for the progress of knowledge.

The need for an approximate model motivated the present work. The first attempt,
reported here, is the adaptation of existing inertial–buoyancy models (see Huppert &
Simpson 1980; Ungarish 2020) to the present system. Two convenient well-tested tools
are: (i) the front-jump Froude formula Fr(hf /H), where hf is the thickness of the front; and
(ii) the box model. The extension to the present problem is not straightforward because,
in contrast with the classical cases, the source does not supply the dense current, it just
increases the density of the existing fluid; see (1.1). However, in the framework of some
plausible assumptions, the combination of these tools is able to predict many of the
salient patterns discerned by the more accurate simulations of OKMP, in particular the
appearance of the supercritical regime and shape of the wedge. The model supports the
scaling considerations and major dependency on the parameter a elucidated by OKMP,
and also points out the additional (albeit mild) dependency on H that enters the process
via the Fr correlation. Box models should be used with care, and here we can benefit from
the reliable support provided by the data of OKMP.

The structure of the paper is as follows. The formulation is given in § 2, and applied
to Us = 0 as a starting case of reference. Predictions of the model and comparisons with
OKMP for Us > 0 follow. The flow regimes and discriminator acrit are discussed in § 3.1.
The subcritical regime is considered in § 3.2. Section 3.3 presents the solution of the
supercritical wedge domain, and comparisons with OKMP. For contrast, the GC with
source at top is considered briefly in § 4. Concluding remarks are given in § 5.

2. Formulation

For assembling a simplified model several assumptions and clarifications must
be introduced. We employ the usual assumptions for the inertial–buoyancy GC:
incompressible fluid, thin layer, sharp interface, negligible viscous forces, and Boussinesq.
These are consistent with the study of OKMP. Our notation is consistent, but not
identical, with OKMP; in particular, here (�ρ/ρ0)g is called the reduced gravity g′, while
OKMP define this variable as the buoyancy b.

The first key point is the behaviour of �ρ (which is tantamount to that of �ρ/ρ0 and
reduced gravity g′). The source generates an increase of global density according to (1.1).
However, the local effect of the source is limited to the sphere x2 + y2 + z2 < D2/4. In this
domain, there are large gradients that homogenize the local density; it is plausible that the
initial formation is, roughly, a cylinder of height D/2 on the bottom, with dimensions D/2
in the x and y directions. We therefore assume that the outflux from that sphere is a constant
�ρ (to be determined). Next, we assume that the dense fluid propagates as a distinct
volume Vc, enclosed by a sharp interface, with negligible mixing and entrainment. Thus
after determining �ρ, we can calculate Vc from (1.1). Furthermore, the mass-continuity
equation now reads

∂(�ρ)

∂t
+ u · ∇(�ρ) = 0 (x2 + y2 + z2 � D2/4), (2.1)

952 A24-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

92
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.924


On simple models for gravity currents from moving sources

where u is the velocity of the dense fluid in the xyz system attached to the source. Since the
initial condition is the constant �ρ on the boundary of the source-sphere, the solution of
this equation by the method of characteristics is �ρ = const. in the propagating GC. This
also predicts a constant g′ for the GC. (Note that (2.9) of OKMP reduces to the present
(2.1) outside the sphere of the source when Peb → ∞.) We keep in mind that the value
of g′ of the current (outside the source) is constant, but the value is not given. This is a
difficulty of the problem.

The initially unknown g′ prevents the simple determination of the appropriate scaling
speed for the propagation of the current (e.g. (g′D)1/2). Several candidates are available.
First, and most certain, is the imposed Us of the source. Next, the length D combined
with (i) the gravity g produces the wave-speed Uw = (gD)1/2; and D combined with (ii)
source-intensity time S yields the outflux speed Uout = SD. For scaling, OKMP introduced
the ‘buoyancy speed’ defined by

Ub = (U2
wUout)

1/3 = (gSD2)1/3. (2.2)

The speed of the current needs a more complex estimate. The starting point (see
Ungarish 2020) is the jump condition formula for a front of height hf between the fluid of
density ρ0 +�ρ and the ambient of density ρ0, expressed as

uf = Fr
(

hf

H

) (
�ρ

ρ0
ghf

)1/2

= Fr
(

hf

H

) (
g′hf

)1/2
, (2.3)

where, again, g′ = (�ρ/ρ0)g is the reduced gravity. The essential point is that the jump
of the front is relative to the embedding ambient fluid, as demonstrated by Shringarpure
et al. (2013), Chowdhury & Testik (2014) and Hogg et al. (2016). The Fr coefficient
for a Boussinesq system, as discussed here, is given conveniently by the semi-empirical
Huppert–Simpson formula, as follows:

Fr = Fr(φ) =
⎧⎨
⎩

1
2
φ−1/3, φ > 0.075, first branch,

1.19, φ � 0.075, second branch,
(2.4)

where φ = hf /H. Equation (2.3) predicts the speed of the front relative to the ambient in
the direction normal to the front. This is a ‘local’ result that uses the properties of the
flow in the vicinity of the jump. In practical systems, φ = hf /H varies from 0 (a very deep
current) to 0.5, approximately (the half-depth energy restriction elucidated by Benjamin
1968). We therefore keep in mind that Fr (see (2.4)) is expected to increase with H, but in
general varies in the quite restricted range 0.63–1.19. In the system of OKMP, H = 1.5D;
we expect that the typical value for the GC is hf = D/2, thus we obtain by (2.4) the typical
Fr = 0.72.

We estimate uf at early time, when the current is still close to the source, and the
influence of Us is mild. We expect that the dense fluid first settles in a cylinder of height
h = D/2 and diameter D about the source (approximately), and spreads out for a while
with constant hf = h = D/2 and uf . We argued above that �ρ is constant in this process.
Using (1.1) we obtain the balance for the added mass rate of influx

π�ρ D2uf /2 = (π/6)ρ0SD3. (2.5)

We multiply by Fr2 g/ρ0, use (2.3), and rearrange as

uf = 1
61/3 Fr2/3 (gSD2)1/3 = 1

61/3 Fr2/3 Ub. (2.6)
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This result indicates that Fr, i.e. the height ratio of current to ambient, enters into the
behaviour of the flow field. Since we assume in this estimate hf = D/2, the coefficient
(Fr2/6)1/3 varies from 0.40 for H/D = 1 to 0.62 for H/D � 6.7. This implies that Ub is
a fair scale for the typical speed of propagation of the current created by the source. This
justifies the scaling introduced by OKMP, and we will use it also here: in dimensionless
variables, lengths are scaled with D, speed with Ub, and time with D/Ub.

For a given Ub, we estimate the values of reduced density difference and reduced gravity
by combining (2.3) for hf = D/2 with (2.6), and obtain

g′ = �ρ

ρ0
g =

(
2
9

)1/3 1
Fr2/3

U2
b

D
=

(
2
9

)1/3 1
Fr2/3

(
S2D

g

)1/3

g. (2.7)

The Boussinesq approximation imposes the restriction �ρ � ρ0 (or g′ � g), which
implies that the source acceleration S2D is much smaller than g. In this estimate, we
neglected the influence of Us, and this will be reconsidered in § 3.3.

Following OKMP, we also introduce the dimensionless parameter

a = Us/Ub. (2.8)

Since our former estimates of flow-field variables depend of Fr, we expect that the flow
is governed by two parameters, a and Fr. The range of a is large, while that of Fr is quite
restricted to the range 0.63–1.19 (approximately), as explained above.

2.1. The Us = 0 case
This simple case (see figure 2a) is a convenient starting point for the box-model analysis.
The flow is expected to be axisymmetric, hence we use a cylindrical coordinate system.
We use dimensional variables unless stated otherwise.

We assume that the GC is a box of radius rf (t) and height h(t) = hf (t), and constant
�ρ. Conservation of mass (1.1) gives

�ρ

ρ0
πr2

f h = π

6
SD3t, (2.9)

and the front condition (2.3) yields

uf = drf

dt
= Fr

(
g
�ρ

ρ0
h
)1/2

. (2.10)

For simplicity, we also assume a constant Fr. In this case, the propagation (after some
initial adjustment that is not of interest here) is of the form

rf (t) = Ktβ, uf = βKtβ−1, (2.11a,b)

where K, β are constants. Substitution into (2.9)–(2.10) provides the result:

β = 3
4 , (2.12a)

K =
(

8 Fr2

27
gSD3

)1/4

(dimensional), K =
(

8 Fr2

27

)1/4

(dimensionless). (2.12b)

For Fr = 0.72, the dimensionless variable is K = 0.63. We can compare the model
prediction rf = 0.63t3/4 with the simulation data. OKMP report that the DNS results
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for a = 0 scale as rf ∼ t3/4. By least-squares curve fit, they obtained rf ≈ 0.44t3/4
(dimensionless). This gives credence to the present model. Note that both the power 3/4
and the prefactor K were derived here analytically. The larger K of the model can be
attributed to the fact that the simulations use a no-slip bottom boundary, which is expected
to reduce the speed of propagation.

Assume that at some t1, rf = D/2 and hf = D/2. Combining (2.10)–(2.12), we obtain

g′ = �ρ

ρ0
g = 1

21/3
1

Fr2/3

U2
b

D
= 1

21/3
1

Fr2/3

(
S2D

g

)1/3

g. (2.13)

The present GC is like a constant-density compositional current of fixed ρc driven by a
constant source (see Ungarish 2020, § 8.2). Here, the density excess has been estimated,
which introduces some uncertainty. The volume of the GC increases like t, while the
thickness h = hf (t) decreases like t−1/2 in the box-model approximation. In particular, we
find that the effective Reynolds number Ree = uf h(h/rf )/ν decreases like t−2 or r−8/3

f .
In the OKMP simulation ‘Sim. 1’ (a = 0), Reb = 7937, which can be considered as Ree

at rf = 1/2. An increase of rf to 5 thus yields Ree ≈ Reb × 10−8/3 = 17. This indicates
that a significant part of the propagation xf (t) reported in figure 5 of OKMP is affected by
viscous effects; this explains the smaller value of the fitted K.

3. Predictions and comparisons for Us > 0

3.1. Flow regimes and acrit

The patterns of figures 2(b) and 2(c) are elucidated by a simple superposition of the
cylindrical solution (2.11a,b)–(2.12) with a stream Us = aUb towards the source. Using
rf = Kt3/4 and t = (rf /K)4/3, we estimate the radius of maximum upstream spread rm at
which an equilibrium of speeds appears, as follows:

(3/4)Kt−1/4
m = (3/4)K4/3r−1/3

m = Us = aUb. (3.1)

The result, in dimensionless form, is

rm = 1

a3

(
3
4

)3

K4 = 1

a3

(
3
4

)3 8 Fr2

27
= 1

a3
Fr2

8
(3.2)

(see (2.12)), and the time for achieving this situation is

tm = 1
a

3
4

rm = 1

a4
3 Fr2

32
. (3.3)

The major insight is that the upstream influence of the source is limited. The governing
parameter is a, while Fr (i.e. the depth ratio H/D) plays a smaller role. We distinguish
between two cases.

(i) The dense fluid spreads upstream for a while, then the foremost point of the front
stops at a fixed distance from the source. This type is defined as the subcritical
regime; see figure 2(b).

(ii) The domain of dense fluid is downstream. This type is defined as the supercritical
regime; see figure 2(c).
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Figure 3. Subcritical case: predicted (a) maximum upstream propagation distance xm and (b) time tm, as
functions of a for various Fr, in log–log plots.

The critical condition is attained when there is practically no upstream propagation from
the source, i.e. rm ≈ 1/2. From (3.2), we obtain

acrit = Fr2/3/22/3. (3.4)

In general, this predicts a quite robust acrit in the range 0.45–0.71 (because Fr is in the
range 0.63–1.19). For Fr = 0.72 (relevant to OKMP), we obtain acrit = 0.51. This is
in fair agreement with the OKMP simulation result 0.63. There are several reasons for
the discrepancy. First, the present estimate is based on a crude superposition between
two unperturbed flows (cylindrical outflow and constant opposing Us stream). In the real
system, there is some interaction. The stopped current is expected to develop a thicker and
more effective buoyancy front that is able to arrest a stronger stream (i.e. larger a). Second,
viscous effects are expected to develop about the arrested front, reducing the impact of the
opposing stream.

Our model predicts that acrit increases with Fr, i.e. with H; see (2.4). This prediction
cannot be compared with OKMP because no data for H /= 1.5D have been presented.

3.2. Subcritical regime
For small a (slow Us), the leading point of the dense fluid may propagate a significant
distance ahead of the source, and a long time is required until the maximum gap xm is
attained. The prediction of (3.2) and (3.3) is displayed in figure 3. Here, rm is an estimate
of the upstream distance (−xm in the attached xyz system) of penetration of the effect of
the moving source in the subcritical regime, and tm estimates the time of formation of the
quasi-steady blunt head that embeds the moving subcritical source; see figure 2(b).

The prediction is that −xm increases like a−3. Comparisons of (3.2) with figure 6 of
OKMP (taking Fr = 0.72) show consistency of −xm, as follows: for a = 0.38 and 0.25, the
DNS values are 2.1 and 4.2, while the model gives 1.2 and 4.2, respectively. (The difference
between 2.1 and 1.1 seems large, but we must keep in mind that when the arrested domain is
close to the source, some local interactions may reduce the impact of Us and thus increase
xm. This has been discussed in the context of the DNS acrit, which is larger than the
prediction of the model. Taking this effect into consideration, we argue that when |xm| ≈ 1,
an exaggeration of one unit is not so bad.) For the smaller a = 0.126 shown in that figure
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of OKMP, the comparison is irrelevant. Since tm increases like a−4 (see figure 3), the
needed simulation time exceeds the range of the available data. For a = 0.126 and using
Fr = 0.72, we obtain tm = 194, while figure 6 of OKMP displays t = 60. Moreover, the
influence of viscous effects may become dominant for the spreadout to xm expected for
small a. These predictions are consistent with the observation of OKMP (p. 11) that it is
‘particularly challenging’ to simulate the asymptotic behaviour of the subcritical regime
for small values of a.

The model predicts that xm and tm increase with Fr (i.e. with the height of the ambient,
H). There are no data for testing this prediction.

A more detailed prediction of the subcritical regime turns out to be a difficult task even
in the framework of the box model. We leave this for future work and proceed to the other
regime.

3.3. Supercritical regime
In this case (see figure 2c), the source propagates so fast that all the dense fluid is left
behind, i.e. in x > 0. The current is expected to form a wedge whose boundaries are y =
yf (x, t). The objective is to calculate this domain. We use dimensional variables unless
stated otherwise.

A new calculation of g′ is needed, because the evaluation (2.13) has been obtained under
the assumption that the density excess of the source spreads out quite freely ahead, behind
and to the sides, and this cannot be valid for large a.

For the supercritical regime we calculate g′ as follows. We argue that the rapidly moving
source, during a time interval�t, leaves behind a cylinder of diameter D, length Us�t, and
density excess �ρ. The balance (1.1) is expressed as

�ρ
π

4
D2Us�t = π

6
ρ0SD3�t. (3.5)

Multiplication with g and arrangement give

g′ = g
�ρ

ρ0
= 2

3
SD
Us

g = 2
3

1
a

(
S2D

g

)1/3

g. (3.6)

We argue that the dense fluid cylinder quickly collapses to a quasi-rectangular box
on the bottom. Due to symmetry about y = 0, we consider only the y > 0 half. The
yz cross-section has area A0 = (π/8)D2, initial width y0 = D/2, and initial height h0 =
(π/4)D. Following OKMP, we assume that this rectangle generates a classical lock-release
GC in the y direction. The justification is that the ∂(g′h)/∂x gradient is expected to
be small, hence the dominant propagation effect is in the lateral y direction. A simple
analytical solution can be obtained by the box-model approximation (Huppert & Simpson
1980; Ungarish 2020); see figure 4. For simplicity of notation, we define Y = Y(x, τ ) =
yf (x, τ ), where τ is the time from the instantaneous local lock-release.

The box model assumes a homogeneous thickness hf = h(τ ) = A0/Y; we substitute this
into the front condition (2.3). We obtain the speed of lateral propagation, in dimensional
form:

Vf = Fr
(

h
H

) √
h
√

g′ =

⎧⎪⎨
⎪⎩

1
2

H1/3A1/6
0

√
g′ Y−1/6, φ > 0.075, first branch,

1.19A1/2
0

√
g′ Y−1/2, φ � 0.075, second branch,

(3.7)

952 A24-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

92
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.924


M. Ungarish

z

H

ρ0

g

Current

Vf

y

y0 yf = Y

ρ0 + �ρD/2 hf

Figure 4. Sketch of the box-model lateral propagation at fixed xG = x − Usτ , blue lines (the dashed line
indicates initial τ = 0).

where φ = A0/(YH), and we used the Fr formula (2.4). The lateral propagation is
calculated in a ground system xG, yG, zG attached to the bottom (see figure 2); the
transformation to the x, y, z attached to the source is xG = x − USτ while yG = y, zG = z.
For the fixed xG = 0, we integrate dY/dτ = Vf subject to the initial condition y0 at τ = 0
and continuity at change of Fr branches. During τ , while the lateral front propagates to
Y(τ ), the plane xG = 0 becomes x = Usτ in the source-attached system. This allows, at
the end of integration, the substitution τ = x/Us = x/(aUb).

Finally, we switch to dimensionless variables: x, y, h,H scaled with D, A0 scaled with
D2, Vf scaled with Ub, and g′ scaled with U2

b/D = gSD/Ub. We obtain, in the system
attached to the source, the following curve. For the first branch (if relevant),

Y =
(

C1
x

a3/2 + 2−7/6
)6/7

, C1 = 7
63/2

(π

8

)1/6
H1/3. (3.8a,b)

For the second branch,

Y =
(

C2
x − x2

a3/2 + Y3/2
2

)2/3

, C2 = 1.19
(

3π

16

)1/2

. (3.9a,b)

Here, x2, Y2 are the values at the transition between the Fr branches. If the initial GC is
deep, φ = π/(4H) < 0.075, then the motion is given by only the second branch with initial
conditions x2 = 0, Y2 = 1/2. When the first branch is relevant, the transition is given by
(π/8)/(Y2H) = 0.075 or Y2 = 5.24/H, and the corresponding x2 follows from (3.8a,b):

x2 = (Y7/6
2 − 2−7/6)a3/2/C1. (3.10)

We obtained a closed prediction of the wedged-shaped GC. In the xyz system attached to
the source, yf = Y is a steady function of x, in accord with OKMP. The slope dyf /dx is
almost constant ∝ x−1/7 in the first branch, ∝ x−1/3 in the second branch. The thickness
of the current h = A0/Y (see figure 6) decreases with x.

With the known Y(x), we then calculate the lateral velocity of the front according to
(3.7). In dimensionless form, this is expressed as

Vf
√

a =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2
3

1
2

H1/3
(π

8

)1/6
Y−1/6 = 0.35H1/3Y−1/6, first branch,√

2
3

1.19
(π

8

)1/2
Y−1/2 = 0.61Y−1/2, second branch.

(3.11)

In view of (3.8a,b)–(3.9a,b), Y1/6 and Y1/2 change little with x. Therefore, the model
predicts that the scaled Vf

√
a is fairly constant (in particular on the first branch) for a

fairly large range x/a3/2 > 1. This is in accord with the observations of OKMP.
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a = 0.63

50 201510 25

10

8

6

4

2 2.52

1.89

1.26

0.945

x

yf

Figure 5. Front position yf in the frame attached to the source for various a. Model prediction (solid lines)
and OKMP simulations (dash-dot lines).

Figures 5 and 7 compare the predictions of the present model for the supercritical regime
with the more rigorous results of OKMP, in dimensionless form. The model predicts
correctly the shape of the wedge and the influence of the parameter a. Quantitatively,
the agreement for the small a = 0.63 is not so good. This could be expected, because this
case is on the border between subcritical and supercritical behaviours. There is also some
discrepancy for small x. This can be attributed to the influence of the source: in the realistic
system, there is an adjustment stage (with some oscillation) from the vertical collapse of
the dense fluid (Vf = 0) to the dominant lateral propagation. The approximate solution
assumes an instantaneous dam-break motion.

The lateral speed is also predicted fairly well by the model. The simulation results Vf
√

a
versus x/a3/2 tend to collapse to a curve close to the theoretical blue line of figure 7. The
discrepancy is larger for the small a = 0.63, and in general for x < 3, approximately. The
reason is the influence of the source: the lateral motion is still in the phase of development
from zero (as explained above), hence the model values for x/a3/2 < 1 are not displayed.
This feature is quite well indicated by figure 6 (dimensionless). For small a and x < 3,
there is a strong ∂h/∂x gradient, which means that the lateral motion is not dominant yet.
This gradient also explains why the Vf of the model (blue line) is below the results of the
simulation in figure 7. In the realistic system, ∂h/∂x provides an addition to the driving
force that carries the current away from the source.

The RLR line in figure 7 is a DNS result of a rectangular lock-release with y0 = πD/12,
h0 = D and g′ = U2

b/(aD). This GC contains the same mass of buoyant fluid g′h0y0 as
our box model. However, the initial speed is proportional to g′h0, therefore the RLR line
is above the blue line. Although the equations of motion of RLR are more accurate than
the box model, the RLR results are not necessarily a more reliable physical description of
the moving-source flow field. The initial and boundary conditions are certainly not fully
compatible; it is difficult to justify how the source produces the initial column h0 = D,
y0 = (π/12)D, that has been used as the initial condition in the RLR results. There are no
data for comparison with the thickness predictions of figure 6. The thickness of a GC is
not a clear-cut result in numerical simulation, because in realistic systems, the interface
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Figure 6. Thickness of current h in frame attached to the source for various a – model prediction.

0
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0.63

RLR

a = 2.52
Model

Figure 7. Lateral front speed Vf
√

a in the frame attached to the source. Model prediction (solid line) and
OKMP simulations (dash-dot lines).

is not sharp and contaminated by small instabilities oscillations. This renders a pointwise
comparison of thickness quite inconclusive.

Finally, we note that the Boussinesq restriction g′/g � 1 provided by (3.6) for the
supercritical motion can be expressed as SD � Us or S2D � g. The latter coincides with
the restriction derived for the subcritical cases.

4. Two-dimensional current by source at top

Hogg et al. (2005) (referred to as HHH) investigated the GC generated by a source of
dense fluid moving at the top of the ambient fluid. We think that by briefly contrasting this
case with the previous model, we can enhance our understanding of both problems.

The configuration of HHH is, essentially, as follows (see figure 1). A long rectangular
tank of width W = 26 cm and height 50 cm is filled with water (the ambient fluid of

952 A24-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

92
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.924
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density ρ0) to height H = 30 cm. The source is a small nozzle (8 mm diameter) aligned
vertically with the medial plane of the channel, with its end just below the free top water
surface. The source (nozzle) moves with constant velocity Us with respect to the ground
and the stagnant large body of water. The source releases a constant volume flux Q of
saline of known density ρs (> ρ0). The dense fluid, while sinking to the bottom, spreads
out and entrains water. Upon reaching the bottom, two bottom GCs are formed: number 1
in the upstream direction, and number 2 in the downstream direction.

HHH performed 29 experiments with various Q, ρs, Us = 0 and Us = 2.9 cm s−1.
The GCs were in the Boussinesq buoyancy–inertial (large Reynolds number) regime. (For
experimental convenience, the source was in a fixed position with respect to the tank, while
the ambient fluid was set in motion relative to the source.) The propagation of the fronts
was measured. The objective is a simple model for this propagation. Most of the analysis
has been presented in HHH, and some of it will be repeated briefly here, with some small
modifications and additions.

We define the source-flux per unit width qs = Q/W, the initial reduced gravity at the
source g′

s = (ρs/ρ0 − 1)g, the buoyancy flux B = qsg′
s, and the dilution coefficient ψ =

g′
c/g

′
s. Here, g is the gravitational acceleration, and g′

c is the reduced density of the current.
The analysis is performed in the system of coordinates xyz moving with the source; see

figure 1. The fixed (ground) system is xG, yG, zG such that xG = x − Ust, while yG = y,
zG = z. The bottom and top of the ambient are at z = 0 and z = H, respectively; the
sidewalls are at y = ±W/2. The velocity of interest is u = uG + Us in the direction x.
In the fixed system, the ambient fluid is motionless (uaG = 0), while in the source-system,
the ambient moves with ua = Us.

Since W/2 < H, the dense plume from the source spreads out over the entire width
of the tank before reaching the bottom. The modelling is facilitated by the expectation
(supported by the experiments) that the GCs are 2-D (independent of the lateral coordinate
y). The flux that hits the bottom splits into γ qs to the upstream and (1 − γ )qs to
downstream, where γ is expected to be a constant close to 0.5. This produces two
separated GCs, each one supplied by a constant source. The problem of a 2-D inertial
GC sustained by a constant source is amenable to both the shallow-water and box-model
solutions (see Ungarish (2020) and the references therein), and both methods yield the
same results for the developed flow (at some distance from the source). In the present case,
the theory predicts the formation of two currents, of constant height and speed h1, u1 and
h2, u2, that carry the volume fluxes h1|u1| and h2u2. The separated-currents assumption
implies u1 < 0, u2 > 0. The theory also indicates that for this problem, the appropriate
scaling length is hb = (q2

s/g
′
s)

1/3 and the scaling speed is Ub = B1/3. We introduce the
dimensionless

a = Us/Ub, H̃ = H/hb. (4.1a,b)

We recall that in the OKMP problem, the scaling Ub was more ambiguous. The reason for
the evident Ub is that here the value of g′

s, and hence of the buoyancy flux g′
sqs, is given.

The dilution is ψ in both currents. It is important to keep in mind that the dilution
increases the volume of the initial flux, but does not affect the amount of dense material;
in other words, the initial flux of buoyancy, B, is conserved.

We write the balance for the buoyancy fluxes (dimensional) as

|u1| (h1ψ)g′
s = γ qsg′

s = γB, (4.2)

u2(h2ψ)g′
s = (1 − γ )qsg′

s = (1 − γ )B. (4.3)
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Figure 8. Speed of currents created by a moving top source, model (lines) and data (symbols), in the
source-system, scaled with Ub = B1/3, versus a = Us/Ub. (This is a modified version of figure 9 of HHH.)

We recall that the reduced gravity of the currents is g′
c = ψg′

s. The front-jump conditions
(2.3) yields

u1 = −Fr1 (h1ψg′
s)

1/2 + Us, u2 = Fr2 (h2ψg′
s)

1/2 + Us. (4.4a,b)

To obtain a useful solution, some closures are needed. First, we argue that for a fairly
wide range of Us (to be specified later), the flux that hits the bottom divides into equal
parts, γ = 1/2, because the division region is fairly stagnant and governed by the local
pressure. Second, we employ an empirical observation, taken from the analysis of HHH:
assume Fr1 = Fr2 = Fr = 0.81. Considering each current separately, we eliminate the
ψhi (i = 1, 2) between the flux and the jump condition equations (4.2)–(4.4a,b).

We obtain, in dimensionless form, simple equations for the propagation of the currents:

|u1| (|u1| + a)2 = Fr2/2, u2(u2 − a)2 = Fr2/2. (4.5a,b)

For a = 0, this reduces to −u1 = u2 = Fr2/3/2.
The prediction (4.5a,b) is compared in figure 8 with the data of HHH. There is

good qualitative agreement, and fair quantitative agreement. Interestingly, in spite of the
significant entrainment during the descent of the plume from the top to bottom, the speeds
of the dense GCs remain a robust function of the initial B. Scaled with Ub = B1/3, u1 and
u2 depend only on the parameter a = Us/Ub.

In this context, we mention the investigation of Zhang & Hu (2022) for a 2-D GC
sustained by a source of buoyancy due to cooling in a semi-ellipse domain at x = 0. In
this study, the source is not moving; the current at the bottom resembles the a = 0 flow
of HHH. Broadly, the scaling speed is also B1/3 (with g′

s due to cooling, not salinity),
and the scaled velocity of the front is ∼ Fr2/3. The flow field has been simulated by a
2-D Boussinesq code. The moving-source extension is an interesting problem for future
research.

Interestingly, in the model (4.5a,b), the propagation velocities are independent
of the dilution. This makes the model relevant to a wide range of geometries and
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12010080
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a ψ

ψ

604020
0 0

0.5 0.05

1.0 0.10

1.5 0.15

2.0 0.20

Exp. 26

acrit

Figure 9. Variation with height of ambient fluid, H̃ = H/hb. The points show the value of a in the
experiments of HHH, and acrit is the estimate (4.7). Here, ψ is the dilution correlation (4.6).

supply parameters. However, for further details, the value of ψ is needed, and this
introduces a serious difficulty because the available model does not predict the
dilution. HHH performed some relevant measurements that can be used for progress in
understanding and method, but the quantitative results cannot be generalized.

The dilution measurements were performed by HHH for Us = 0, and summarized in the
curve-fit formula (recall that H̃ = (H/hb))

ψ = [0.048H̃ + 6.8]−1. (4.6)

The dilution occurs because of entrainment in the downward-plume motion. As long
as the horizontal deviation of the plume due to Us is small compared to H, the effect
of Us is expected to be insignificant; this is the situation in the available experiments.
Consequently, we assume that (4.6) is valid also for Us > 0. The correlation (4.6) is shown
in figure 9.

The Reynolds numbers of the currents reflect the friction with the bottom of velocity
uB and are therefore estimated as (ui − uB)hi/ν (i = 1, 2), where ν is the viscosity
coefficient. In the experiments of HHH, there was no relative motion between the source
and the bottom, i.e. uB = 0. Since uihi = 0.5qs/ψ (see (4.2)), we obtain Re1 = Re2 =
0.5qs/(νψ). The experimental values are in the range 600–2000. The dilution increases
the thickness and thus reduces the shear in the current.

The foregoing results for the moving top-source have been reported by HHH. Here,
we develop a criterion for the range of validity. We argue that when Re1,Re2 are large,
the validity of the model (4.5a,b) is bounded by classical energy restriction derived by
Benjamin (1968) applied to the thicker GC: h1 is at most the half-height of the ambient
fluid. Consider the behaviour of the upstream GC. For a fixed geometry and source, the
increase of Us tends to reduce |u1|, and is expected to be counteracted by an increase of h1
(in order to accommodate the flux |u1| h1). Suppose that h1 (dimensionless) has reached
the maximum H̃/2; further increase of Us will change the sign of u1 in (4.4a,b), and
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invalidate the two-currents assumption. This yields, in dimensionless form,

a � acrit = Fr
[

1
2
ψH̃

]1/2

= Fr

[
H̃

2(0.048H̃ + 6.8)

]1/2

, (4.7)

where (4.6) was used. In the experiments of HHH, the values of H̃ were in the range
20–125, hence acrit according to (4.7) was in the range 1.0–1.7. Figure 9 shows the estimate
(4.7) and the values of a of the experimental data. (Recall that in the experiments, Us

was fixed and Ub = (qsg′
s)

1/3 varied.) The experiments, with one exception, were in the
range a < acrit. The exception is Exp. 26, for which H̃ = 60.3 and a = acrit = 1.43. We
conclude that only Exp. 26 was critical with respect to a, while for the other experiments,
the model of two opposed currents is valid. Indeed, HHH do not display the value of u1
for the critical Exp. 26, and we infer that it was close to zero or even slightly positive.

The theoretical justification for Fr = 0.81 reported by HHH for both currents is lacking.
We expect that the Huppert–Simpson correlation (2.4) is relevant. In all tested cases
h1 > h2, which suggests Fr1 < Fr2. Some currents were deep, which suggests for Fr2 a
value close to 1.19. Our explanation of this discrepancy between theory and observations
is as follows. First, there are uncertainties concerning the thickness of the nose of the
currents that enters the Fr formula. The source at x = 0 deviates from the idealized
conditions of the inertial GC. Our model assumes x-independent h1 and h2, starting
from x = 0; therefore h1 and h2 must be regarded as some x-average in a more realistic
system, not the exact values at the nose of the currents. Second, in general the downstream
current 2 is longer than the counterpart 1. Therefore, current 2 is more influenced by the
shear with the bottom and ambient, and by interfacial entrainment, and this reduces the
speed of propagation. The measured value of Fr2 contains the viscous influence, and is
therefore smaller than expected. Due to the constant Fr assumption, the model predicts
that propagation of the currents is independent of the height of the ambient fluid. This
conclusion must be used with care, because, as mentioned above, the constant Fr = 0.81
lacks justification in general.

Figures 8 and 9 confirm the relevance of the scaling used by this analysis and the fair
accuracy of the simple two-currents model. The major deficiency is the restriction of the
speed of the source to the subcritical a = Us/Ub � acrit. Moreover, the calculation of acrit
uses an empirical correlation for the dilution ψ . To our knowledge, the supercritical case,
a > acrit, has not been investigated. HHH have also considered the sustained flow of a
particle-laden suspensions, which is outside the scope of the present discussion.

The comparison of the moving-source GCs configurations of HHH and OKMP reveals
some similarities, but mostly very significant differences. Formally, both problems are
governed by the parameter a = Us/Ub, but the reference speed Ub is determined by
different formulas. This is reflected by the very different values of acrit (about 1.5 and
0.5 for HHH and OKMP, respectively). Evidently, the model of HHH cannot be used for
the flow studied by OKMP.

5. Concluding remarks

The GC created by a moving source of buoyancy close to the bottom is a novel problem that
poses various difficulties of formulation and interpretation. The major available knowledge
is provided by the analysis of heavy numerical simulation of a Boussinesq system on a
supercomputer by OKMP. Here, we presented a simple box-model approximation that is
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expected to assist in the understanding and early design of various applications related to
this flow.

We contrasted the flow field of OKMP with that of a moving source at the top of a
tank studied by HHH. In the latter case, the density (and hence the reduced gravity) of
the supplied fluid is known, and the resulting GC is two-dimensional; this simplifies the
analysis significantly. Nevertheless, we show that the simple model developed by HHH
(and confirmed by comparison with experimental data) is valid only for subcritical speed
of the source, a < acrit. Although the mechanism that governs acrit in this flow is quite well
understood, the calculation of the value uses empirical information. (A possible remedy is
the incorporation of a governing equation for the dilution in the plume from the source to
the bottom, but this requires a separate investigation.) In contrast, the problem of OKMP is
three-dimensional, and the density at the source is not specified. However, it turns out that
the more complicated case is amenable to a model that is more effective, more explicit,
covers mostly the more intriguing supercritical source speed (while also providing useful
insights into the subcritical case), and does not rely on empirical data.

The model is self-contained: the predictions are not reliant on adjustable parameters.
The results are expressed in explicit formulas. Our model confirms the scalings introduced
by OKMP. The scaling speed Ub is a strange average of [(

√
gD)2SD]1/3 that turns out to

be a fair estimate of the initial speed of propagation of the front, uf . Our analysis provided
a sharp estimate for the Boussinesq limitation: the internal acceleration in the source
domain, S2D, should be much smaller than g; in the supercritical case, this also implies
that the speed in the source domain, SD, is much smaller than Us. If these conditions are
violated (which must be taken into account with realistic mechanical pumps), then the
resulting GC may be non-Boussinesq and incompatible with the present model.

OKMP detected the dependency on one parameter, the speed ratio a = Us/Ub. The
model confirms this dependency, but also indicates dependency on the value of the
front-jump Froude number Fr. The convenient Huppert–Simpson formula translates this
into a dependency on the height of the ambient fluid. The model predicts fairly well
(compared with OKMP) the axisymmetric propagation for a = 0, and that, upon increase
of a, the upstream propagation is arrested at a distance xm ∝ a−3 after a time period
tm ∝ a−4; for a > acrit (the supercritical regime), the entire GC propagates downstream
as a wedge.

The model detected dependency also on the height of the ambient, H/D, via the
correlation for Fr. The model predicts that an increase of the height of the ambient, H, will
cause an increase of Fr, and this is expected to cause an increase of acrit, xm, tm and Vf . In
the subcritical regime, the increase of Fr causes a decrease of g′, but in the supercritical
regime, g′ is independent of Fr. The practical range of Fr is 0.63–1.19, hence the influence
of this parameter is not dramatic, but still sufficiently significant for experiments and
applications. For example, acrit is expected to change (increase) by 53 % with Fr in that
range. The simulations of OKMP were mostly for one height of the ambient, H/D = 1.5,
hence the variation of Fr among the tested cases was small, and cannot be assessed from
the available data.

Our model lacks rigour and an estimate of the error. However, this model certainly
provides useful insights and simple approximations for the propagation for the novel
moving-buoyancy-source GC system that is still in early stages of investigation. The box
model is in general an unreliable tool, unless supported by a more accurate solution.
In the present case, we benefit largely from support of the detailed simulations and
data processing of OKMP. First, we note that our predictions concerning the influence
of the parameter a are in full qualitative agreement with the results of OKMP, in
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particular the separation between subcritical and supercritical regimes at some value
acrit; in the supercritical regime, the buoyancy reduced gravity g′ ∝ 1/a, and the lateral
speed Vf ∝ 1/

√
a. Second, we found fair quantitative agreement concerning acrit, the

Kt3/4 propagation for a = 0, the steady shape yf (x) of the wedge (in the attached xyz
system), and the lateral speed Vf . Such agreement for a wide range of parameters is, in
our opinion, an indication that the model captures well the governing mechanism of the
flow. Considering the complexity of the full system (a simulation required ∼48 h on a 384
cores supercomputer), the performance of the analytical box model (without use of any
adjustable parameter) is amazing. We expect that the use of the shallow-water equations
can provide a more accurate formulation; however, the accuracy of the prediction depends
on the precision of the initial conditions, and in this respect the uncertainties about the
source of the present model remain.

In practical deep-sea mining collectors, the flow of the GC is prone to significant
influence from effects that were not included in the present model, such as particle-driven
buoyancy, non-quiescent ambient and a non-constant rate of supply. Such effects can
be incorporated essentially in the box-model simplification (see Ungarish (2020, §§ 5.2,
10.2.3), and the references therein), but the details require a separate analysis. The present
analysis can be used for providing some estimates about the importance of such effects,
for example as follows.

The importance of particle sedimentation (typical speed Wp) is represented by βp =
Wp/Us, where Wp = (2/9)(ρp/ρ0 − 1)gr2

p/ν, ρp and rp are the density and radius of the
particles. When βp is small, the flow of the particle-driven GC is well approximated by the
homogeneous GC with a corresponding fixed initial buoyancy (i.e. the dispersed particle
are essential to the buoyancy, but the settling is negligible during the major propagation).
In this case, the present model can be used. In practical cases, ρp/ρ0 − 1 ≈ 1.5, hence
the dominant variable is the particle size squared, r2

p. For sufficiently small particles (rp �
0.1 mm, say) in water, and a typical Us = 1 m s−1, we have βp < 3 × 10−2.

Also, the non-quiescent ambient may be considered a perturbation of Us (speed of the
source with respect to the ambient) and hence a variation of the parameter a. The changing
rate of supply may be interpreted as a change of the source intensity S. The solutions of the
present model with appropriate changes of a and S are expected to provide some insights
into the trends and magnitudes of these effects. The rapid results of the present model
are beneficial in these estimates. Extensions of the present box model for these and other
effects must be left for the future. We must keep in mind that the reliability of box-model
solutions depends on the availability of a solid body of data for comparisons. We hope
that future work on this problem will provide more data and insights that will enable the
production and validation of improved models.
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