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Abstract
One of the crucial properties of a quantum system is the existence of bound states. While the existence of eigenvalues
below zero, that is, below the essential spectrum, is well understood, the situation of zero energy bound states at
the edge of the essential spectrum is far less understood. We present complementary sharp criteria for the existence
and nonexistence of zero energy ground states. Our criteria give a straightforward explanation for the folklore that
there is a spectral phase transition with critical dimension four, concerning the existence versus nonexistence of
zero energy ground states.
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1. Introduction

The existence of bound states plays a crucial role for the properties of quantum systems. Of special
importance is the ground state, that is, the eigenfunction corresponding to the lowest eigenvalue of the
Hamiltonian describing the system. In this paper, we consider a Schrödinger operator of the form

𝐻 = −Δ +𝑉 (1.1)

on 𝐿2 (R𝑑), where𝑉 ∈ 𝐿1
loc(R

𝑑) is a real-valued potential, such that the operator H is a well-defined self-
adjoint realization of the formal differential operator −Δ + 𝑉 which is bounded from below. Moreover,
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we need that eigenfunctions of H are continuous. The precise conditions are given in Assumption 1.1
below.

We are particularly interested in the special case when the ground state energy of the Schrödinger
operator H is at the threshold of the essential spectrum. By shifting the potential by a constant, one
can assume that the essential spectrum of H starts at zero. One also often assumes that the potential
V decays to zero at infinity, such that the essential spectrum 𝜎ess(𝐻) = [0,∞) (see the discussion just
before Theorem 1.7). Under these conditions, the zero-energy level is at the edge of two regions with
very distinct behavior: the point and the continuous spectrum. It is well-known that positive eigenvalues
embedded in the continuum appear only due to a special combination of oscillations and slow decay of
the potential. This goes back to [75], see also [16, 21, 30, 68] and the references therein. Criteria for the
absence of positive eigenvalues were developed in [1, 22, 30, 36, 43, 68].

Thanks to the min-max theorem, see, for example [64], and the Birman–Schwinger principle [11,
66], the existence and nonexistence of eigenvalues below zero is well understood. Birman’s monumental
work provides not only a quadratic form approach for the study of the discrete spectrum of Schrödinger
operators below zero, it is also the first paper where the spectral stability/instability of the point zero,
that is, the lower edge of the essential spectrum, is investigated. It is well-known in physics, see [44,
Problems 1 and 2 in Chapter 45], that one- and two-dimensional Schrödinger operators have weakly
coupled bound states, that is, discrete spectrum below zero appears for arbitrarily weak attractive
potentials V. On the other hand, Schrödinger operators in dimension 𝑑 ≥ 3 do not have negative discrete
spectrum below zero for weak potentials V. This follows immediately from Hardy’s inequality or from
the famous Cwikel–Lieb–Rozenblum bound [13, 47, 65] (see also [20, 28]). In fact, in dimensions 𝑑 ≥ 3,
the Iorio–O’Carroll theorem shows that Schrödinger operators with a weak potentials V are unitarily
equivalent to the free Schrödinger operator (see [64, Theorem XIII.27]).

The emergence of weakly coupled bound states is due to virtual levels, that is, zero energy “eigen-
functions” of the unperturbed Schrödinger operator which have finite kinetic energy but are not square
integrable. The necessary tools, homogeneous Sobolev spaces, for studying such eigenfunctions were
already developed in [11, Section 2, in particular, Section 2.4]. It was rigorously shown in [69] that dis-
crete spectrum appears below zero for arbitrary weak attractive potentials for one- and two-dimensional
Schrödinger operators. This was extended to general second order elliptic operators in [56, 57] (see [61]
for a review). In [25], a purely variational approach is developed, which gives necessary and sufficient
conditions for the existence, respectively nonexistence, of weakly coupled bound states for a large class
of generalized Schrödinger operators.

The question whether a zero energy eigenfunction is normalizable or not is of great importance for
the time decay of solutions of the time-dependent Schrödinger equation (see, e.g. [31, 80]).

While the discrete spectrum below zero is well-understood, the question whether zero is actually a
threshold eigenvalue, that is, an eigenvalue at the edge of the continuum is a very difficult problem, in
general. Early results on existence or nonexistence of zero-energy eigenvalues go back to [1, 31, 32, 33,
37, 41, 42, 48, 52, 62, 63, 70, 80].

In [31], the authors studied the behavior of resonances and eigenstates at the zero-energy threshold
in 𝑑 = 3. Furthermore, based on a remark by the referee, the authors of [31] note that using properties
of Riesz potentials, one can show that zero energy resonances cannot exist in dimensions 𝑑 > 4, they
become true zero energy eigenvalues (see [32]). The case 𝑑 = 4 was considered in [33].

For radial potentials 𝑉 ∈ C∞
0 (R𝑑), it was shown in [80] that zero energy bound states cannot exist

in dimensions 𝑑 ≤ 4. For slowly decaying negative potentials which, amongst other conditions, obey
𝑉 (𝑥) ∼ −𝑐 |𝑥 |−𝛾 for some 𝑐 > 0 and 0 < 𝛾 < 2 in the limit |𝑥 | → ∞, the nonexistence of zero energy
eigenstates was shown in [17, 19], while it was noted in [12] that a long-range Coulomb part can create
zero energy eigenstates (see also [51, 79]). An analysis of eigenstates and resonances at the threshold
for the case of certain nonlocal operators appeared in [35].

A condition for nonintegrability of zero-energy ground states of Schrödinger operators in three
dimensions was given in [48, Lemma 7.18], by reducing it to an effective one-dimensional problem
with the help of spherical averaging. This work inspired the results of [10], where it was shown that
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for Schrödinger operators on 𝐿2 (R3) with spherical symmetric potentials 𝑉 ∈ 𝐿𝑝 (R3) with 𝑝 >
3/2, whose positive part satisfies 𝑉+(𝑥) ≤ 3/(4|𝑥 |2) for |𝑥 | large enough, zero is not an eigenvalue
corresponding to a positive square integrable ground state eigenfunction. This extends to potentials with
𝑉+ ≤ |𝑥 |−2

(
3/4 + ln−1(|𝑥 |)

)
near infinity in R3, the constants 3/4 and 1 are optimal. For similar results,

see [24], which reproved a slightly weaker nonexistence result compared to [10] and additionally showed
that if 𝑉 (𝑥) ≥ 𝐶 |𝑥 |−2 for some constant 𝐶 > 3/4 and |𝑥 | large enough, then zero is an eigenvalue for
critical potentials. Thus, a repulsive part can stabilize zero energy bound states of quantum systems (see
Definition 1.5 for the precise notion of critical potentials). Informally, a potential V is critical, if the
Schrödinger operator 𝐻 = −Δ + 𝑉 is bounded from below by zero, but for any nontrivial perturbation
𝑊 ≥ 0, the operator 𝐻 −𝑊 is not bounded from below by zero anymore. In this case, one also says that
H has a virtual level (at zero). The study of critical potentials and, moreover, general critical operators,
has been put to a high art (see the review [61] and the references therein).

While the paper [10] considers only continuous potentials on R3, they note that the condition
𝑉 ∈ 𝐿𝑝 (R3) with 𝑝 > 3/2 is enough to guarantee continuity of ground states, due to a Harnack
inequality for positive eigenfunctions, which is all they need. We also note that compactly supported
zero-energy eigenfunctions were constructed in [38, 43] for potential 𝑉 ∈ 𝐿 𝑝 (R𝑑) with 𝑝 < 𝑑/2 and
compact support. For these potentials, a Harnack inequality for the ground state cannot hold.

In this paper, we extend all previous results, in particular, the ones of [10] and [24], by proving a
family of sharp criteria for the existence and nonexistence of zero energy ground states at the edge
of the essential spectrum for Schrödinger operators in arbitrary dimensions. In particular, our results
apply to Schrödinger operators with a so-called virtual level at zero energy, and they explain when such
a virtual level is a true ground state, that is, square integrable, or when it is not a ground state, that is,
not square integrable.

Our results, summarized in Theorems 1.3 and 1.7 below, clearly explain why increasing the dimension
makes it easier for a virtual level to be a true ground state. In particular, our work gives a straightforward
explanation for the folklore wisdom that dimension 4 is critical. We also would like to emphasize that
while dimension four shares some similarity with the case of lower dimensions, second order terms
from our criteria are needed to settle the case of four-dimensional Schrödinger operators.

Our main assumption on the potential V are given by
Assumption 1.1. The potential V is in the local Kato-class 𝐾𝑑,loc(R𝑑) and the negative part
𝑉− = sup(−𝑉, 0) is relatively form small w.r.t. −Δ + 𝑉+, that is, there exist 0 ≤ 𝑎 < 1 and 𝑏 ≥ 0,
such that

〈𝜓,𝑉−𝜓〉 = ‖
√
𝑉−𝜓‖2 ≤ 𝑎(‖∇𝜓‖2 + ‖

√
𝑉+𝜓‖2) + 𝑏‖𝜓‖2 (1.2)

for all 𝜓 ∈ 𝐻1 (R𝑑) ∩ D(
√
𝑉+). Here, D(

√
𝑉+) is the domain of the multiplication operator

√
𝑉+ on

𝐿2 (R𝑑), also called the form domain of 𝑉+ and often written as Q(𝑉+).
Note that what we call relatively form small is usually called relatively form-bounded with relative

bound 𝑎 < 1. We will call a potential W infinitesimally form bounded (w.r.t. −Δ + 𝑉+) if, for all
𝑎 > 0, there exist 𝑏 ≥ 0, such that the positive and negative parts 𝑊± satisfy (1.2) (with 𝑉− replaced
by 𝑊±).
Remark 1.2. The (local) Kato-class 𝐾𝑑,loc(R𝑑) ⊂ 𝐿1

loc(R
𝑑), whose definition is recalled below, see

(1.14), contains most, if not all physically relevant potentials. This assumption is only made to guarantee
that all weak local eigenfunctions of H are continuous (see [3, 67, 71]).

One could relax the assumption that 𝑉 ∈ 𝐾𝑑,loc(R𝑑) to 𝑉 ∈ 𝐿1
loc (R

𝑑), if some other con-
dition guaranteed that weak local eigenfunctions of H are continuous. In fact, it would be suf-
ficient to have that eigenfunctions are locally bounded and that a ground state of H is bounded
away from zero on compact sets. As will become clear from the proofs, we can allow for severe
local singularities. It is enough to assume that V is in the local Kato-class outside some compact
set 𝐾 ⊂ R𝑑 .
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If𝑉± ∈ 𝐿1
loc (R

𝑑) and (1.2) holds, the Kato-Lions-Lax-Milgram-Nelson (KLMN) theorem shows that
there exists a unique self-adjoint operator H, informally given by the differential operator −Δ +𝑉 , such
that its quadratic form, which with a slight abuse of notation, we write as

〈𝜓, 𝐻𝜓〉 � 〈∇𝜓,∇𝜓〉 + 〈
√
𝑉+𝜓,

√
𝑉+𝜓〉 − 〈

√
𝑉−𝜓,

√
𝑉−𝜓〉 (1.3)

is well-defined for 𝜓 ∈ Q(𝐻) � 𝐻1(R𝑑) ∩Q(𝑉+). Moreover, it is closed and bounded from below on
the quadratic form domain Q(𝐻) (see also the discussion at the beginning of the next section).

To formulate our main results, we recall the definition of the iterated logarithms ln𝑛 defined, for natural
numbers 𝑛 ∈ N, by ln1(𝑟) � ln(𝑟) for 𝑟 > 0 and inductively for 𝑟 > 𝑒𝑛 by ln𝑛+1 (𝑟) � ln(ln𝑛 (𝑟)). Here,
𝑒0 = 0 and 𝑒𝑛 = 𝑒𝑒𝑛−1 for 𝑛 ∈ N. Our first main result can be summarized as follows
Theorem 1.3 (Absence of a zero energy ground state). Assume that the potential V satisfies Assumption
1.1 and 𝜎(𝐻) = [0,∞). If for some 𝑚 ∈ N0 and 𝑅 > 𝑒𝑚

𝑉 (𝑥) ≤ 𝑑 (4 − 𝑑)
4|𝑥 |2

+ 1
|𝑥 |2

𝑚∑
𝑗=1

𝑗∏
𝑘=1

ln−1
𝑘 (|𝑥 |) (1.4)

for all |𝑥 | ≥ 𝑅, then zero is not a ground state eigenvalue of the Schrödinger operator H.
As usual, the empty product is 1 and the empty sum equals 0. The condition 𝑅 > 𝑒𝑚 guarantees that

the second term in the right-hand side of (1.4), involving (iterated) logarithms, is positive. So the only
sign changing term in the right-hand side of (1.4) is the first summand, which is positive for 1 ≤ 𝑑 ≤ 3,
zero for 𝑑 = 4, and negative for 𝑑 ≥ 5.
Remark 1.4. Note that the right-hand side of (1.4) has a long-range positive tail proportional to |𝑥 |−2 in
dimensions 𝑑 ≤ 3, respectively |𝑥 |−2 ln−1(|𝑥 |) in dimension 𝑑 = 4. So compactly supported potentials
V, or even short-range potentials for which 𝑉 (𝑥) = 𝑂 (|𝑥 |−2−𝛿) for some 𝛿 > 0 near infinity, cannot
create zero energy eigenstates of Schrödinger operators in dimension 𝑑 ≤ 4. This is well-known folklore
for compactly supported potentials, see, for example [80], but seems less well-known for short-range
potentials.

More importantly, Theorem 1.3 gives a sufficient criterion for the absence of zero energy ground
states at the edge of the essential spectrum for Schrödinger operators in any dimension 𝑑 ≥ 1 and
Theorem 1.7 below shows the sharpness of condition (1.4) on the potential V for the absence of such
embedded ground states.

Our second main result shows that critical potentials create zero energy ground states if they are not
too small at infinity. We call a potential 𝑊 ≥ 0 nontrivial, if it is strictly positive on a set of positive
Lebesgue measure.
Definition 1.5 (Critical and subcritical potentials). A potential V is critical if the Schrödinger operator
H has spectrum 𝜎(𝐻) = 𝜎ess(𝐻) = [0,∞) and for all nontrivial compactly supported potentials 𝑊 ≥ 0,
which are infinitesimally form bounded with respect to −Δ +𝑉+, the family of operators 𝐻𝜆 = 𝐻 − 𝜆𝑊
has essential spectrum 𝜎ess(𝐻𝜆) = [0,∞) and a negative energy bound state for all 𝜆 > 0. The potential
V is called subcritical if the Schrödinger operator H has spectrum 𝜎(𝐻) = 𝜎ess(𝐻) = [0,∞) and there
exists a nontrivial potential 𝑊 ≥ 0, which is infinitesimally form bounded with respect to −Δ +𝑉+, such
that 𝐻 − 𝜆𝑊 ≥ 0 for some 𝜆 > 0.
Remark 1.6. Alternatively, one often says that −Δ + 𝑉 has a virtual level (at zero) if the potential is
critical. The notion of critical and subcritical potentials has been extended to a much broader class of
second order partial differential operators (see the review [61]).

The operator 𝐻𝜆 = 𝐻 − 𝜆𝑊 in Definition 1.5 is well-defined with quadratic form methods for all
𝜆 (see Remark 2.1). In order to guarantee that 𝜎ess(𝐻𝜆) = [0,∞), some decay of the potential V is
required. A well-known sufficient criterion for this is that V is relatively form compact with respect to
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the kinetic energy 𝑃2 = −Δ (see [74]). This also implies that V is infinitesimally form bounded, that is,
relatively form small with relative bound zero, w.r.t. 𝑃2 = −Δ , which excludes Hardy type potentials. A
much less restrictive criterion for 𝜎ess(𝐻) = [0,∞) only assumes that V vanishes asymptotically with
respect to the kinetic energy. More precisely, if

|〈𝜑,𝑉𝜑〉| ≤ 𝑎𝑛‖∇𝜑‖2 + 𝑏𝑛‖𝜑‖2 (1.5)

for all 𝜑 ∈ 𝐻1 (R𝑑) with support supp(𝜑) ⊂ {|𝑥 | ≥ 𝑅𝑛} for some sequences 0 ≤ 𝑎𝑛, 𝑏𝑛 → 0 and
𝑅𝑛 → ∞ as 𝑛 → ∞, then 𝜎ess(𝐻) = [0,∞) (see [4, 34]).

This criterion is clearly in line with the physical heuristic that only the asymptotic behavior of the
potential near infinity determines the essential spectrum, and it allows for strongly singular potentials
which are not infinitesimally form bounded. It also shows that 𝜎ess (𝐻𝜆) = 𝜎ess (𝐻) = [0,∞) for all
𝜆 > 0 when W has compact support and is infinitesimally form bounded w.r.t. −Δ and V is form small
w.r.t. −Δ and satisfies (1.5).

Theorem 1.7 (Existence of a zero energy ground state for critical potentials). Assume that the potential
V satisfies Assumption 1.1 and that it is critical. If for some 𝑚 ∈ N0, 𝜖 > 0, and 𝑅 > 𝑒𝑚

𝑉 (𝑥) ≥ 𝑑 (4 − 𝑑)
4|𝑥 |2

+ 1
|𝑥 |2

𝑚∑
𝑗=1

𝑗∏
𝑘=1

ln−1
𝑘 (|𝑥 |) + 𝜖

|𝑥 |2
𝑚∏
𝑘=1

ln−1
𝑘 (|𝑥 |) (1.6)

for all |𝑥 | ≥ 𝑅, then zero is an eigenvalue of H.

Remark 1.8. Clearly, the right-hand sides of (1.4) and (1.6) are, for each fixed 𝑚 ∈ N, complementary.
Thus, our criteria for existence and nonexistence of zero energy ground states at the edge of the essential
spectrum are sharp! Considering the simplest case 𝑚 = 0, we have

𝑉 (𝑥) ≤ 𝑑 (4 − 𝑑)
4|𝑥 |2

(1.7)

for the absence and

𝑉 (𝑥) ≥ 𝑑 (4 − 𝑑) + 𝜖

4|𝑥 |2
(1.8)

for the existence with 𝜖 > 0 and all |𝑥 | large enough. For 𝑑 = 3, this recovers the results proved in [24]
for the special case of three dimensions.

Using the higher-order corrections from Equations (1.4) and (1.6), we obtain a sharp distinction
between existence and nonexistence in the case of a critical potential. For example, the cases 𝑚 = 1, 2
show that if

𝑉 (𝑥) ≤ 𝑑 (4 − 𝑑)
4|𝑥 |2

+ 1
|𝑥 |2 ln(|𝑥 |)

or (1.9)

𝑉 (𝑥) ≤ 𝑑 (4 − 𝑑)
4|𝑥 |2

+ 1
|𝑥 |2 ln(|𝑥 |)

+ 1
|𝑥 |2 ln(|𝑥 |) ln2(|𝑥 |)

(1.10)

for all large enough |𝑥 |, then zero will not be a ground state eigenvalue. Conversely, for critical potentials,
the bound

𝑉 (𝑥) ≥ 𝑑 (4 − 𝑑)
4|𝑥 |2

+ 1 + 𝜖

|𝑥 |2 ln(|𝑥 |)
or (1.11)

𝑉 (𝑥) ≥ 𝑑 (4 − 𝑑)
4|𝑥 |2

+ 1
|𝑥 |2 ln(|𝑥 |)

+ 1 + 𝜖

|𝑥 |2 ln(|𝑥 |) ln2(|𝑥 |)
(1.12)
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for all large enough |𝑥 | and some 𝜖 > 0 implies that zero is a ground state eigenvalue. Using 𝑑 = 3
in (1.9) recovers the nonexistence result of [10]. The 𝑑 = 3 case in (1.11) provides a complementary
existence result, which was missing in [10].

More importantly, our results provide, to arbitrary order, a whole family of complementary sharp
criteria which are not restricted to three dimensions and our proofs are considerably simpler than the
approaches based on delicate estimates for Green’s functions.

Remark 1.9. In Appendix A, we construct a family of potentials 𝑉𝛼,𝑑 on R𝑑 for 𝛼 ∈ R and 𝑑 ∈ N, such
that the Schrödinger operator 𝐻𝛼,𝑑 = −Δ + 𝑉𝛼,𝑑 has spectrum 𝜎(𝐻𝛼,𝑑) = [0,∞). Moreover, 𝑉𝛼,𝑑 is
subcritical for 𝛼 < 0 and critical for 𝛼 ≥ 0. The Schrödinger operator 𝐻𝛼,𝑑 has a zero energy resonance
for 0 ≤ 𝛼 ≤ 1 and a zero energy bound state for 𝛼 > 1 in any dimension.

Remark 1.10. The bounds on the potential in Theorems 1.3 and 1.7 are similar in spirit to logarithmic
corrections to the Hardy inequality. For 𝜓 ∈ C∞

0
(
R
𝑑 \ {|𝑥 | ≤ 𝑒𝑚}

)
and 𝑚 ∈ N0, one has

〈∇𝜓,∇𝜓〉 ≥
〈
𝜓,

( (𝑑 − 2)2

4|𝑥 |2
+ 1

4|𝑥 |2
𝑚∑
𝑗=1

𝑗∏
𝑘=1

ln−2
𝑘 (|𝑥 |)

)
𝜓
〉
, (1.13)

see [54], which also discusses conditions on the potential, such that −Δ + 𝑉 has infinitely many,
respectively finitely many, negative eigenvalues. Bounds on the number of negative eigenvalues are
given in [49, 50]. Certain logarithmic refinements of Hardy’s inequality have been used to study the
existence of resonances of Schrödinger operators and the Efimov effect in low dimensions (see [9]).
Similar logarithmic corrections were also derived for 𝐿 𝑝 Hardy inequalities in [5].

Remark 1.11. Theorems 1.3 and 1.7 show a spectral phase transition concerning the existence of zero
energy ground states for Schrödinger operators with critical dimension 𝑑 = 4: The sign of the leading
order term in (1.4) and (1.6) strongly depends on the dimension d being positive if 𝑑 ≤ 3, zero in
dimension 𝑑 = 4, and negative if 𝑑 ≥ 5.

The four-dimensional case is critical, since the leading order term vanishes in dimension 𝑑 = 4. The
next order correction, the term with 𝑚 = 1 from Theorems 1.3 and 1.7, becomes dominant. This shows
that zero energy bound states of Schrödinger operators −Δ + 𝑉 do not exist in dimension 𝑑 = 4, unless
the potential has a positive tail, which is larger than |𝑥 |2 ln−1 (|𝑥 |) near infinity. So a slightly faster decay
of the potential near infinity is allowed in dimension 𝑑 = 4 compared to dimensions 𝑑 ≤ 3.

Since the new leading order term for 𝑑 = 4 is also positive, the four-dimensional case is similar to
the case of lower dimensions. In particular, in dimension 𝑑 ≤ 4, only potentials with a “long-range”
positive tail can create zero energy ground states (see also Remark 1.4). While in dimension 𝑑 ≥ 5,
critical potentials which are nonpositive or short-range have zero energy ground states (see also the
discussion in Section 2 of [27]).

Other indications that dimension 𝑑 = 4 is critical for spectral properties of Schrödinger operators
appeared in the literature in various contexts, that is, the so-called localization of binding for Schrödinger
operators (see [39, 58, 59]). In particular, the reason why the famous Efimov effect exists for a system
of three particles interacting with short-range pair potentials in R3 is related to the fact that the two
particle subsystems, which are equivalent to effective one particle Schrödinger operators in R3, can only
have zero energy virtual levels, or resonances, but no zero energy ground state [77, 78] (see also [53,
72, 73]). In dimension 𝑑 ≥ 5, virtual levels of Schrödinger operators with short-range potential become
true zero energy ground states (see, e.g., Theorem 1.7). The arguments of [76] can then be used to prove
that no Efimov effect can exist for three particles in R𝑑 when 𝑑 ≥ 5. In [6] it was shown that the Efimov
effect for three particles also ceases to exist in dimension 𝑑 = 4. Systems of N particles with 𝑁 ≥ 4
were studied in [8, 9], the existence and decay of zero energy bound states for multiparticle systems
with short-range interactions was also studied in [7]. The reason that the Efimov effect depends highly
on the absence of zero energy ground states is one of the motivations for our work.

Another motivation is as follows. Assume that the potential V is infinitesimally form bounded w.r.t.
−Δ and has compact support. Then 𝜎ess (−Δ + 𝛽𝑉) = [0,∞) for all 𝛽 ≥ 0, see [4, 74], and a simple
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application of the min–max principle shows that as soon as negative eigenvalues of −Δ + 𝛽𝑉 exist, they
are decreasing in 𝛽 > 0 (see [64, Proposition after Theorem XIII.2, page 79]). Let 𝛽0 > 0 be the value
of the coupling constant when the ground energy of −Δ + 𝛽𝑉 hits zero. The asymptotic behavior of this
ground state energy in 𝛽− 𝛽0 > 0 depends not only on the dimension, but also strongly on the existence
of the ground state at 𝛽 = 𝛽0 (see [40]). Theorem 1.3 shows that for short-range potentials, −Δ + 𝛽0𝑉
has no zero energy ground state when 𝑑 ≤ 4, and Theorem 1.7 shows that it has a zero energy ground
state in dimension 𝑑 ≥ 5.

Lastly, recall that the Kato-class 𝐾𝑑 is given by all real-valued potentials V, such that in dimension
𝑑 ≥ 2

lim
𝛼↓0

sup
|𝑥 | ∈R𝑑

∫
|𝑥−𝑦 | ≤𝛼

𝑔𝑑 (𝑥 − 𝑦) |𝑉 (𝑦) |𝑑𝑦 = 0, (1.14)

where

𝑔𝑑 (𝑥) �
{

|𝑥 |2−𝑑 if 𝑑 ≥ 3
| ln(|𝑥 |) | if 𝑑 = 2 . (1.15)

The Kato class in one dimension is given by 𝐾1 � 𝐿1
loc,unif (R), the space of uniformly locally integrable

functions on R. We say that the potential V is in the local Kato-class 𝐾𝑑,loc if 𝑉1𝐾 ∈ 𝐾𝑑 for all compact
sets 𝐾 ⊂ R𝑑 . It is clear that 𝐾𝑑 ⊂ 𝐿1

loc,unif (R
𝑑) and 𝐾𝑑,loc ⊂ 𝐿1

loc(R
𝑑). Moreover, it is well-known that

any potential 𝑉 ∈ 𝐾𝑑 is infinitesimally form small with respect to −Δ (see [14]).
Thus, if𝑉 = 𝑉+ −𝑉− with𝑉± ≥ 0,𝑉+ ∈ 𝐾𝑑,loc, and𝑉− ∈ 𝐾𝑑 , then all of the claims of Assumption 1.1

hold. This class of potentials is large enough to include most, if not all, physically relevant potentials,
except maybe for some highly oscillatory potentials.

The structure of our paper is as follows: In Section 2, we present all the necessary technical tools to
precisely formulate our main results. Theorem 1.3 is proven in Section 3. The proof is by contradiction,
assuming that a zero energy ground state exists, and then deriving a lower bound which shows that it
cannot be square integrable. To construct such a lower bound, one only needs to know that a ground
state, if it exists, can be chosen to be positive and that it is locally bounded away from zero. It is well-
known that ground states of a Schrödinger operator H in 𝐿2 (R𝑑) are unique, up to global phase, and
can be chosen to be strictly positive as soon as they exist (see [18, 23] or [64, Section XIII.12]). Thus,
if one knows that the ground state is bounded away from zero, one can relax the condition on V to
𝑉 ∈ 𝐿1

loc (R
𝑑) and 𝑉− satisfies (1.2). The assumption that V is in the local Kato-class is only needed

to guarantee that eigenfunctions of H are continuous (see [3, 71] and also [67]). This continuity then
guarantees that the positive ground state is bounded away from zero on compact sets.

The proof of Theorem 1.7 is given in Section 4. The main tool is an upper bound for the spacial decay
of ground states of the approximating Schrödinger operators 𝐻𝜆, see Definition 1.5, which is uniform
in 𝜆 > 0.

Since it will be necessary to have a positive ground state for the nonexistence proof, we cannot
prove the absence of ground state under symmetry constraints which destroy the positivity of ground
states, such as fermionic particle statistics. However, the existence proof still works under symmetry
restrictions (see Remark 4.10).

In Appendix A, we construct an explicit example of a family of potentials which exhibits all possible
different scenarios.

2. Definitions and preparations

Assume that 𝑉± ∈ 𝐿1
loc (R

𝑑) and (1.2) holds for 𝑉−. The KLMN theorem [64, 74] then shows that there
exists a unique self-adjoint operator H corresponding to a quadratic form

〈𝜓, 𝐻𝜓〉 � 〈∇𝜓,∇𝜓〉 + 〈
√
𝑉+𝜓,

√
𝑉+𝜓〉 − 〈

√
𝑉−𝜓,

√
𝑉−𝜓〉 (2.1)
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with the usual slight abuse of notation. Here, 𝜓 ∈ Q(𝐻) � 𝐻1 (R𝑑) ∩Q(𝑉+), the form domain of H,
where 𝐻1 (R𝑑) is the usual 𝐿2-based Sobolev space of functions𝜓 ∈ 𝐿2 (R𝑑) whose weak (distributional)
gradient ∇𝜓 ∈ 𝐿2 (R𝑑) and

Q(𝑉+) � D(
√
𝑉+) =

{
𝜓 ∈ 𝐿2 (R𝑑) :

√
𝑉+𝜓 ∈ 𝐿2 (R𝑑)

}
(2.2)

is the quadratic form domain of the multiplication operator 𝑉+.
Since

√
𝑉+ ∈ 𝐿2

loc, we clearly have C∞
0 (R𝑑) ⊂ Q(𝐻). Note that C∞

0 (R𝑑) is a form core, that is, dense
in 𝐻1 (R𝑑) ∩D(

√
𝑉+) with respect to the norm

‖𝜓‖1 � (‖𝜓‖2
𝐻 1 + ‖

√
𝑉+𝜓‖2)1/2 (2.3)

(see [14, 45]). In addition, Friedrich’s extension theorem, see, for example [74, Theorem 2.13], implies
that the operator H and its domain D(𝐻) are given by

D(𝐻) =
{
𝜓 ∈ 𝐻1(R𝑑) ∩Q(𝑉+) : (−Δ +𝑉)distr 𝜓 ∈ 𝐿2 (R𝑑)

}
𝐻𝜓 = (−Δ +𝑉)distr 𝜓

, (2.4)

where (−Δ +𝑉)distr𝜓 is in the sense of distributions when acting on 𝜓 ∈ 𝐿2 (R𝑑).

Remark 2.1. If 𝑉,𝑊 ∈ 𝐿1
loc and 𝑉− is form small and |𝑊 | is form bounded with respect to −Δ +𝑉+, that

is, (1.2) holds for 𝑉− for some 0 ≤ 𝑎1 < 1, 𝑏 ≥ 0 and it also holds with 𝑉− replaced by |𝑊 | for some
𝑎2, 𝑏2 ≥ 0, then

‖
√
𝑉−𝜓‖2 + 𝜆‖

√
|𝑊 |𝜓‖2 ≤ (𝑎1 + 𝜆𝑎2)

(
‖∇𝜓‖2 + ‖

√
𝑉+𝜓‖2) + (𝑏1 + 𝜆𝑏2)‖𝜓‖2 (2.5)

for all 𝜓 ∈ 𝐻1 ∩Q(𝑉+). So for any 0 < 𝜆0 < (1 − 𝑎1)/𝑎2, we can construct the family of Schrödinger
operators 𝐻𝜆 as the unique self-adjoint operator given by the quadratic forms

〈𝜓, 𝐻𝜆𝜓〉 � 〈∇𝜓,∇𝜓〉 + 〈𝜓,𝑉+𝜓〉 − 〈𝜓,𝑉−𝜓〉 − 𝜆〈𝜓,𝑊𝜓〉, (2.6)

with quadratic form domain Q(𝐻𝜆) = 𝐻1(R𝑑) ∩ Q(𝑉+) = Q(𝐻) for all 0 ≤ 𝜆 ≤ 𝜆0. For 𝜆 = 0, one
recovers H. If W is infinitesimally form bounded w.r.t. −Δ +𝑉+, then 𝜆0 = ∞.

One can relax the conditions on V to hold only on a connected, open set 𝑈 ⊂ R𝑑 , which contains
infinity. In this case, one assumes 𝑉+ ∈ 𝐿1

loc(𝑈), and (1.2) holds for all 𝜓 ∈ 𝐻1
0 (𝑈) ∩Q𝑈 (𝑉+), where

𝐻1
0 (𝑈) is the usual Sobolev space with Dirichlet boundary conditions on the boundary 𝜕𝑈 andQ𝑈 (𝑉+) =

{𝜓 ∈ 𝐿2 (𝑈) :
√
𝑉+𝜓 ∈ 𝐿2 (𝑈)}. In this case, H is the Schrödinger operator (with Dirichlet boundary

conditions) defined by the quadratic form (2.1) which is restricted to 𝜓 ∈ Q𝑈 (𝐻) = 𝐻1
0 (𝑈) ∩Q𝑈 (𝑉+).

Again, it is well known that C∞
0 (𝑈) is dense in Q𝑈 (𝐻) w.r.t. the norm given in (2.3). The same holds

for 𝐻𝛿 and any 𝛿 > 0 small enough.
Now assume that the real-valued potential 𝑉 ∈ 𝐿1

loc(R
𝑑), that its negative part 𝑉− is form small w.r.t.

−Δ +𝑉+, that is, (1.2) holds, and let H be the associated Schrödinger operator defined by quadratic form
methods as above. For an open set 𝑈 ⊂ R𝑑 , we consider weak (local) eigenfunctions of H at energy E,
that is, (weak local) solutions of the Schrödinger equation

𝐻𝜓 = 𝐸𝜓 in 𝑈. (2.7)

We are mainly interested in the case that 𝐸 = 0.
With a slight abuse of notation, we denote by 〈𝜑, 𝐻𝜓〉 the sesquilinear form given by

〈𝜑, 𝐻𝜓〉 � 〈∇𝜑,∇𝜓〉 + 〈𝜑,𝑉𝜓〉 =
∫

(∇𝜑 · ∇𝜓 + 𝜑𝑉𝜓) 𝑑𝑥 (2.8)

https://doi.org/10.1017/fms.2023.39 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.39


Forum of Mathematics, Sigma 9

whenever the right-hand side makes sense. This is the case, if 𝜑, 𝜓 ∈ Q(𝐻) = 𝐻1 (R𝑑) ∩Q(𝑉+) but also
if 𝜑 ∈ Q𝑈

𝑐 (𝐻) and 𝜓 ∈ Q𝑈
loc(𝐻), where for some open set 𝑈 ⊂ R𝑑 , the local quadratic form domain

Q𝑈
loc(𝐻) �

{
𝜓 ∈ 𝐿2

loc (𝑈) : 𝜒𝜓 ∈ Q(𝐻) for all 𝜒 ∈ C∞
0 (𝑈)

}
(2.9)

is the vector space of functions which are locally (in U) in the quadratic form domain of H and

Q𝑈
𝑐 (𝐻) �

{
𝜓 ∈ Q(𝐻) : supp(𝜓) ⊂ 𝑈 is compact

}
(2.10)

is the set of functions in Q(𝐻) with compact support inside U. If 𝜑 ∈ Q𝑈
𝑐 (𝐻) and 𝜓 ∈ Q𝑈

loc(𝐻), then
the integral on the right-hand side of (2.8) can be restricted to the set U. Clearly, Q𝑈

loc(𝐻) = {𝜓 ∈
𝐻1

loc(𝑈) :
√
𝑉+𝜓 ∈ 𝐿2

loc (𝑈)} = 𝐻1
loc(𝑈) ∩Q𝑈

loc(𝑉+).
Similarly, one can define the local domain of H, relative to some open set 𝑈 ⊂ R𝑑 , by

D𝑈
loc(𝐻) �

{
𝜓 ∈ 𝐿2

loc(𝑈) : 𝜒𝜓 ∈ D(𝐻) for all 𝜒 ∈ C∞
0 (𝑈)

}
. (2.11)

Remark 2.2. Note that the definitions of Q𝑈
loc(𝐻) and D𝑈

loc(𝐻) are consistent in the sense that for any
𝜒 ∈ C∞

0 (𝑈), one has 𝜒𝜓 ∈ Q(𝐻) (even 𝜒𝜑 ∈ Q𝑈
𝑐 (𝐻)) for any 𝜓 ∈ Q(𝐻) and 𝜒𝜓 ∈ D(𝐻) for any

𝜓 ∈ D(𝐻). This is clear when, 𝜓 ∈ Q𝑈
loc(𝐻) = 𝐻1

loc(𝑈) ∩ Q𝑈
loc(𝑉+) since for 𝜒 ∈ C∞

0 (𝑈), we have
𝜒𝜓 ∈ 𝐻1 (R𝑑) for any 𝜓 ∈ 𝐻1

loc(𝑈) and 𝜒𝜓 ∈ Q(𝑉+) for any 𝜓 ∈ Q𝑈
loc(𝑉+). In addition, if 𝜓 ∈ D(𝐻),

then

(−Δ +𝑉)distr 𝜒𝜓 = 𝜒(−Δ +𝑉)distr 𝜓 − 2∇𝜒∇𝜓 − (Δ𝜒)𝜓 ∈ 𝐿2 (R𝑑),

so 𝜒𝜓 ∈ D(𝐻). Moreover, with C∞(𝑈), the infinitely differentiable functions on U, it is easy to see that

C∞(𝑈) ⊂ Q𝑈
loc(𝐻), (2.12)

since C∞
0 (𝑈) ⊂ Q𝑈 (𝐻). However, the inclusion C∞(𝑈) ⊂ D𝑈

loc(𝐻) is wrong in general, since the
construction of the Schrödinger operator H with the help of quadratic forms allows for rather singular
potentials V.

Thus, we define weak solutions, supersolutions, and subsolutions of (2.7) in the following quadratic
form sense.

Definition 2.3. a) u is a (weak) eigenfunction of the Schrödinger operator H with energy E if 𝑢 ∈ Q(𝐻)
and

〈𝜑, (𝐻 − 𝐸)𝑢〉 = 0 (2.13)

for every 𝜑 ∈ 𝐶∞
0 (R𝑑).

b) u is a (weak) local eigenfunction of the Schrödinger operator H with energy E in 𝑈 ⊂ R𝑑 if
𝑢 ∈ Q𝑈

loc(𝐻) and

〈𝜑, (𝐻 − 𝐸)𝑢〉 = 0 (2.14)

for every 𝜑 ∈ 𝐶∞
0 (𝑈).

c) u is a supersolution of the Schrödinger operator H with energy E in 𝑈 ⊂ R𝑑 if 𝑢 ∈ Q𝑈
loc(𝐻) and

〈𝜑, (𝐻 − 𝐸)𝑢〉 ≥ 0 (2.15)

for every nonnegative 𝜑 ∈ 𝐶∞
0 (𝑈).
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d) u is a subsolution of the Schrödinger operator H with energy E in 𝑈 ⊂ R𝑑 if 𝑢 ∈ Q𝑈
loc(𝐻) and

〈𝜑, (𝐻 − 𝐸)𝑢〉 ≤ 0 (2.16)

for every nonnegative 𝜑 ∈ 𝐶∞
0 (𝑈).

Remark 2.4. Using the density of C∞
0 in Q(𝐻), it is easy to see that once (2.13) holds for all 𝜑 ∈ C∞

0 ,
it holds for all 𝜑 ∈ Q(𝐻). Similarly, (2.14) holds for all 𝜑 ∈ Q𝑈

𝑐 (𝐻), and (2.15), respectively (2.16),
hold for all 0 ≤ 𝜑 ∈ Q𝑈

𝑐 (𝐻).

One should note that one does not have to distinguish between weak eigenfunctions and eigenfunc-
tions, and similarly for local eigenfunctions.

Lemma 2.5. Every weak eigenfunction 𝑢 ∈ Q(𝐻) of H is in D(𝐻) given by (2.4). Similarly, if 𝑢 ∈
Q𝑈

loc(𝐻) is a weak local eigenfunction of H in an open domain 𝑈 ⊂ R𝑑 , then u is locally in the domain
of H, that is, 𝑢 ∈ D𝑈

loc(𝐻) given by (2.11).

Proof. This is probably a standard argument for weak eigenfunctions but not standard for weak local
eigenfunctions. Let 𝑓 ∈ 𝐿2 (R𝑑) and 𝜓 be a weak solution of the equation 𝐻𝜓 = 𝑓 , that is,

〈𝜑, 𝐻𝜓〉 = 〈𝜑, 𝑓 〉 (2.17)

for all 𝜑 ∈ Q(𝐻). Recall that 〈𝜑, 𝐻𝜓〉 denotes the quadratic form given by (2.8). Then for any 𝜆 ∈ R,
we have

〈𝜑, (𝐻 + 𝜆)𝜓〉 = 〈𝜑, 𝜆𝜓 + 𝑓 〉 (2.18)

for all 𝜑 ∈ Q(𝐻). Since H is bounded from below, −𝜆 will be in the resolvent set of H for all large 𝜆.
So for all large enough 𝜆, we can choose 𝜑 = (𝐻 + 𝜆)−1𝜉, with 𝜉 ∈ 𝐿2 (R𝑑) in (2.18) to get

〈𝜉, 𝜓〉 = 〈(𝐻 + 𝜆)−1𝜉, (𝐻 + 𝜆)𝜓〉 = 〈(𝐻 + 𝜆)−1𝜉, 𝜆𝜓 + 𝑓 〉 = 〈𝜉, (𝐻 + 𝜆)−1(𝜆𝜓 + 𝑓 )〉. (2.19)

This holds for all 𝜉 ∈ 𝐿2 (R𝑑), so

𝜓 = (𝐻 + 𝜆)−1(𝜆𝜓 + 𝑓 ) ∈ D(𝐻), (2.20)

since 𝜓, 𝑓 ∈ 𝐿2 (R𝑑) and the resolvent (𝐻 + 𝜆)−1 maps 𝐿2 (R𝑑) onto D(𝐻).
Note that if 𝜓 is a weak eigenfunction of H, at energy E, then we can use 𝑓 = 𝐸𝜓. Thus, weak

eigenfunctions are eigenfunctions in the domain of H.
Now assume that 𝑓 ∈ 𝐿2

loc(𝑈) and 𝜓 ∈ Q𝑈
loc(𝐻) is a weak local solution of

〈𝜑, 𝐻𝜓〉 = 〈𝜑, 𝑓 〉 (2.21)

for all 𝜑 ∈ Q𝑈
𝑐 (𝐻). Take any 𝜒 ∈ C∞

0 (𝑈). Replacing 𝜑 by 𝜒𝜑 in (2.21), one sees that

〈𝜒𝜑, 𝐻𝜓〉 = 〈𝜑, 𝜒 𝑓 〉 (2.22)

for all 𝜑 ∈ Q(𝐻). Using that 𝜒,∇𝜒, and Δ𝜒 have compact supports, a straightforward calculation shows

〈∇(𝜒𝜑),∇𝜓〉 = 〈∇𝜑,∇(𝜒𝜓)〉 + 〈𝜑, (Δ𝜒 + 2∇𝜒∇)𝜓〉.

Using this and the definition (2.1) of the quadratic form in (2.22) yield

〈𝜑, 𝐻𝜒𝜓〉 = 〈𝜑, 𝜒 𝑓 − (Δ𝜒 + 2∇𝜒∇)𝜓〉 (2.23)
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for all 𝜑 ∈ Q(𝐻). Adding again 〈𝜑, 𝜆𝜒𝜓〉 on both sides and choosing 𝜑 = (𝐻 + 𝜆)−1𝜉 with 𝜆 large
enough, one sees that

〈𝜉, 𝜒𝜓〉 = 〈𝜉, (𝐻 + 𝜆)−1 (𝜒(𝜆𝜓 + 𝑓 ) − (Δ𝜒)𝜓 + 2∇𝜒∇𝜓
)
〉 (2.24)

for all 𝜉 ∈ 𝐿2 (R𝑑). Hence

𝜒𝜓 = (𝐻 + 𝜆)−1 (𝜒(𝜆𝜓 + 𝑓 ) − (Δ𝜒)𝜓 + 2∇𝜒∇𝜓
)
∈ D(𝐻), (2.25)

for any 𝜒 ∈ C∞
0 (𝑈). Thus, 𝜓 ∈ D𝑈

loc(𝐻). Again, choosing 𝑓 = 𝐸𝜓 shows that any weak local eigenfunc-
tions of H at energy E is locally in the domain of H. �

Finally, let us note that the definition of critical potential and virtual levels is rather natural. It is easy
to see that any potential which creates a zero energy ground state is critical.

Lemma 2.6. Assume that 𝑉 ∈ 𝐿1
loc(R

𝑑) and that 𝑉− is form small and 0 ≤ 𝑊 is infinitesimally form
small w.r.t. −Δ +𝑉+. Furthermore, let H and 𝐻𝜆 = 𝐻 − 𝜆𝑊 , 0 < 𝜆 ≤ 𝜆0, be the associated Schrödinger
operators (see Remark 2.1). Assume also that 𝜎(𝐻) = 𝜎ess(𝐻𝜆) = [0,∞) and that H has a zero energy
ground state. Then the potential V is critical.

Proof. This is probably well-known. We provide the short proof for the convenience of the reader. Let
𝜓 be a zero energy normalized ground state of H. Then for any small enough 𝜆 > 0

〈𝜓, 𝐻𝜆𝜓〉 = 〈𝜓, 𝐻𝜓〉 − 𝜆〈𝜓,𝑊𝜓〉 = −𝜆〈𝜓,𝑊𝜓〉 < 0

since |𝜓 |2 > 0 almost everywhere. Thus, as soon as 𝜎ess (𝐻𝜆) = [0,∞), the min–max principle shows
that 𝐻𝜆 has eigenvalues below zero. �

The converse to Lemma 2.6 does not hold (see the example from Appendix A).
Our proofs of Theorems 1.3 and 1.7 rely on the so-called subharmonic comparison lemma, which has

already seen wide use in the study of the asymptotic decay of eigenfunctions of Schrödinger operators
(see, e.g. [15, 26]). We use the version of [2, Theorem 2.7] since it allows for a quadratic form version
which needs only minimal regularity assumptions.

Theorem 2.7 (Agmon’s version of the comparison principle). Let w be a positive supersolution of the
Schrödinger operator H at energy E in a neighborhood of infinity 𝑈𝑅 � {𝑥 ∈ R𝑑 : |𝑥 | > 𝑅}. Let v be
a subsolution of H at energy E in 𝑈𝑅. Suppose that

lim inf
𝑁→∞

(
1
𝑁2

∫
𝑁 ≤ |𝑥 | ≤𝛼𝑁

|𝑣 |2d𝑥
)
= 0 (2.26)

for some 𝛼 > 1. If for some 𝛿 > 0 and 0 ≤ 𝐶 < ∞, one has

𝑣(𝑥) ≤ 𝐶𝑤(𝑥) on the annulus 𝑅 < |𝑥 | ≤ 𝑅 + 𝛿, (2.27)

then

𝑣(𝑥) ≤ 𝐶𝑤(𝑥) for all 𝑥 ∈ 𝑈𝑅 . (2.28)

Remark 2.8. We note that the condition (2.26) is trivially satisfied as soon as 𝑣 ∈ 𝐿2 (R𝑑), but it also
allows for subsolutions v which are not square integrable at infinity. This is crucial for the proof of
our nonexistence result. A slight extension of Agmon’s comparison principle, which allows to relax the
continuity assumptions and works for domains U which are not necessarily neighborhoods of infinity,
is derived in [27].
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Remark 2.9. Agmon also assumes that the supersolution w and the subsolution v are continuous in
𝑈𝑅 = {|𝑥 | ≥ 𝑅} in [2]. However, the form of Theorem 2.7 is what is really proven in [2] (see also
[27]). The additional assumption that the supersolution 𝑤 > 0 and the subsolution v are continuous
in {|𝑥 | ≥ 𝑅} are only made in [2] to guarantee that (2.27) holds with constant 𝐶 = 𝑐2/𝑐1, where
𝑐1 � inf𝑅≤ |𝑥 | ≤𝑅+𝛿 𝑤(𝑥) > 0 and 𝑐2 � sup𝑅≤ |𝑥 | ≤𝑅+𝛿 |𝑣(𝑥) | < ∞, by continuity, for arbitrary 𝛿 > 0.

Before we give the proofs of Theorems 1.3 and 1.7, we sketch the simple proof of the 𝑚 = 0 version
of Theorem 1.3 using the comparison theorem:

For 𝛾 > 0, set 𝜓𝛾 (𝑥) = |𝑥 |−𝛾 , so 𝜓𝛾 ∈ C∞(𝑈𝑅) and all 𝑅 > 0. A short calculation shows
Δ𝜓𝛾 (𝑥) = 𝛾(𝛾 + 2 − 𝑑) |𝑥 |−𝛾−2 for 𝑥 ≠ 0. Hence, with

𝑊𝛾 (𝑥) =
Δ𝜓𝛾 (𝑥)
𝜓𝛾 (𝑥)

= 𝛾(𝛾 + 2 − 𝑑) |𝑥 |−2, (2.29)

one sees that (−Δ +𝑊𝛾 (𝑥))𝜓𝛾 (𝑥) = 0 for 𝑥 ≠ 0. Since 𝜓𝛾 ∈ C∞(R𝑑 \ {0}), integration by parts shows
that 𝜓𝛾 is a weak local eigenfunction of −Δ +𝑊𝛾 in the sense of Definition 2.3 in the open sets 𝑈𝑅 for
any 𝑅 > 0.

Moreover, Remark 2.2 shows that 𝜓𝛾 ∈ Q𝑈𝑅

loc (𝐻) for any 𝑅 > 0 and any Schrödinger operator H with
potential 𝑉 ∈ 𝐿1

loc(R
𝑑) for which 𝑉− is form small w.r.t. −Δ +𝑉+. Thus, if

𝑉 (𝑥) ≤ 𝑊𝛾 (𝑥) (2.30)

for some 𝛾 > 0 and all large enough |𝑥 | > 𝑅, then

〈𝜑, 𝐻𝜓𝛾〉 ≤ 〈𝜑, (−Δ +𝑊𝛾)𝜓𝛾〉 = 0 (2.31)

for all 0 ≤ 𝜑 ∈ C∞
0 (𝑈𝑅), that is, 𝜓𝛾 is a zero energy subsolution of H. One easily checks that

a) 𝜓𝛾 ∉ 𝐿2 (𝑈𝑅) if and only if 0 < 𝛾 ≤ 𝑑/2.
b) 𝜓𝛾 satisfies (2.26) if and only if 𝛾 > (𝑑 − 2)/2.
c) 0 < 𝛾 ↦→ 𝑊𝛾 is increasing if and only if 𝛾 > (𝑑 − 2)/2.

The last part shows that one should choose 𝛾 as large as possible in order to guarantee that (2.31) holds.
Now assume that 𝐻 ≥ 0 has zero as an eigenvalue with corresponding unique ground state 𝜓, which

can be chosen to be positive [18, 23]. Since V is locally in the Kato class, one also knows that 𝜓 is
continuous, [71]. If

𝑉 (𝑥) ≤ 𝑑 (4 − 𝑑)
4|𝑥 |2

= 𝑊𝑑/2 (𝑥), (2.32)

then the above discussion shows that𝜓𝑑/2 is a zero energy subsolution of H which is not square integrable
at infinity but for which (2.26) holds. Using 𝑐1

𝑅 = inf𝑅≤ |𝑥 | ≤𝑅+1 𝜓(𝑥) > 0, 𝑐2
𝑅 = sup𝑅≤ |𝑥 | ≤𝑅+1 𝜓𝑑/2 (𝑥),

and 𝐶 = 𝑐2
𝑅/𝑐

1
𝑅 ensures 𝜓𝑑/2 (𝑥) ≤ 𝐶𝜓(𝑥) for all 𝑅 ≤ |𝑥 | ≤ 𝑅 + 1. Then Theorem 2.7 shows that

𝜓𝑑/2 (𝑥) ≤ 𝐶𝜓(𝑥) (2.33)

for all |𝑥 | > 𝑅, in particular, 𝜓 ∉ 𝐿2 (R𝑑), hence, 𝜓 is not an eigenfunction. Thus, zero is not an
eigenvalue of the Schrödinger operator H, which proves the 𝑚 = 0 version of Theorem 1.3.

Remark 2.10. Note that for 𝛾 > 𝑑/2, the function 𝜓𝛾 is in 𝐿2 (𝑈𝑅) for any 𝑅 > 0, so 𝛾 = 𝑑/2
is the largest possible choice in order to get the nonexistence result. The higher-order condition for
nonexistence uses logarithmic corrections to 𝜓𝑑/2.
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Remark 2.11. Choosing 𝛾 = (𝑑 − 2)/2 yields the Hardy potential 𝑊(𝑑−2)/2 (𝑥) = − (𝑑−2)2

4 |𝑥 |2 . It is well
known that a Schrödinger operator with a Hardy potential is nonnegative. It is curious that for the
absence of zero energy eigenfunctions, the choice 𝛾 = 𝑑/2 becomes relevant.

For the existence result, we want to reverse the roles of the eigenfunction 𝜓 and 𝜓𝛾 . If

𝑉 (𝑥) ≥ 𝑑 (4 − 𝑑) + 𝜀

4|𝑥 |2
(2.34)

for all |𝑥 | > 𝑅 and some 𝜀 > 0, then 𝜓𝛾 is a zero energy supersolution of H in 𝑈𝑅, where 𝛾 > 𝑑/2 is
the unique solution of 𝛾(𝛾 + 2 − 𝑑) = (𝑑 (4 − 𝑑) + 𝜀)/4. Arguing as above, one sees that any positive
zero energy ground state 𝜓 of H satisfies the upper bound

𝜓(𝑥) ≤ 𝐶𝜓𝛾 (𝑥) (2.35)

for all |𝑥 | > 𝑅, hence, it is square integrable at infinity since 𝜓𝛾 ∈ 𝐿2 (𝑈𝑅) as soon as 𝛾 > 𝑑/2. Of
course, this is a circular reasoning, since we need the existence of a square integrable bound state, or at
least the existence of a local zero energy bound state which satisfies (2.26). The rigorous argument uses
the fact that 𝐻 ≥ 0 is assumed to have a virtual level at zero. From Definition 1.5, we see that for any
nontrivial infinitesimally form bounded potential 𝑊 ≥ 0, this implies that the operators 𝐻𝜆 = 𝐻 − 𝜆𝑊
have negative energy ground states for arbitrary small 𝜆 > 0. These ground states will converge to a
zero energy ground state of H in the limit 𝜆 → 0 (see Section 4).

3. Proof of the nonexistence result

Recall the iterated logarithms ln𝑛 defined by ln1 (𝑟) � ln(𝑟) for 𝑟 > 0 and, for 𝑟 > 𝑒𝑛, inductively by
ln𝑛+1(𝑟) � ln(ln𝑛 (𝑟)) when 𝑛 ∈ N. Here, 𝑒0 = 0 and 𝑒𝑛 = 𝑒𝑒𝑛−1 for 𝑛 ∈ N.

A convenient sequence of functions at the edge of 𝐿2-integrability near infinity is given by

𝜓ℓ,𝑚 (𝑥) � |𝑥 |−𝑑/2
𝑚∏
𝑗=1

ln−1/2
𝑗 (|𝑥 |) for |𝑥 | > 𝑒𝑚. (3.1)

As usual, the empty product is one, so 𝜓ℓ,0 (𝑥) = |𝑥 |−𝑑/2 = 𝜓𝑑/2 (𝑥). We note that the condition |𝑥 | > 𝑒𝑚
guarantees the positivity of ln 𝑗 (𝑥) for 1 ≤ 𝑗 ≤ 𝑚.

We still have 𝜓ℓ,𝑚 ∈ C∞({|𝑥 | > 𝑒𝑚}), in particular, 𝜓ℓ,𝑚 ∈ Q𝑈𝑅

loc (𝐻), for 𝑅 ≥ 𝑒𝑚 and any
Schrödinger operator constructed via quadratic form methods as in Section 2. In order to mimic the
proof sketched at the end of Section 2, we need to know the potential 𝑊𝑚 for which (−Δ +𝑊𝑚)𝜓ℓ,𝑚 = 0
in 𝑈𝑒𝑚 = {|𝑥 | > 𝑒𝑚}. This is a bit more complicated than the previous calculation for 𝜓𝛾 .

Lemma 3.1. For any 𝑚 ∈ N0, we have (−Δ +𝑊𝑚)𝜓ℓ,𝑚 = 0 in 𝑈𝑅 = {𝑥 ∈ R𝑑 : |𝑥 | > 𝑅}, for all large
enough 𝑅 ≥ 𝑒𝑚, where

𝑊𝑚(𝑥) �
𝑑 (4 − 𝑑)

4|𝑥 |2
+ 1
|𝑥 |2

𝑚∑
𝑗=1

𝑗∏
𝑘=1

ln−1
𝑘 (|𝑥 |) + 1

4|𝑥 |2
���
𝑚∑
𝑗=1

𝑗∏
𝑘=1

ln−1
𝑘 (|𝑥 |)���

2

+ 1
2|𝑥 |2

𝑚∑
𝑗=1

𝑗∑
𝑙=1

𝑙∏
𝑠=1

𝑗∏
𝑡=1

ln−1
𝑠 (|𝑥 |) ln−1

𝑡 (|𝑥 |)

(3.2)

is well-defined for |𝑥 | > 𝑒𝑚.
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Proof. Clearly, if 𝑊𝑚 = Δ𝜓ℓ,𝑚
𝜓ℓ,𝑚

, then (−Δ +𝑊𝑚)𝜓ℓ,𝑚 = 0 in 𝑈𝑅, for all large enough 𝑅 > 0. For any
radial function depending only on the radius 𝑟 = |𝑥 |, we have

Δ𝜓(𝑥) = 𝜕2
𝑟 𝜓(𝑥) +

𝑑 − 1
|𝑥 | 𝜕𝑟𝜓(𝑥). (3.3)

By a straightforward but slightly tedious calculation, one sees that

𝜕𝑟𝜓ℓ,𝑚 (𝑥) = −𝜓ℓ,𝑚 (𝑥)
��� 𝑑

2|𝑥 | +
1

2|𝑥 |

𝑚∑
𝑗=1

𝑗∏
𝑘=1

ln−1
𝑘 (|𝑥 |)���,

𝜕2
𝑟 𝜓ℓ,𝑚 (𝑥) = 𝜓ℓ,𝑚 (𝑥)

��� 𝑑

2|𝑥 | +
1

2|𝑥 |

𝑚∑
𝑗=1

𝑗∏
𝑘=1

ln−1
𝑘 (|𝑥 |)���

2

+ 𝜓ℓ,𝑚 (𝑥)
𝑑

2|𝑥 |2

+ 𝜓ℓ,𝑚 (𝑥)
��� 1

2|𝑥 |2
𝑚∑
𝑗=1

𝑗∏
𝑘=1

ln−1
𝑘 (|𝑥 |) + 1

2|𝑥 |2
𝑚∑
𝑗=1

𝑗∑
𝑙=1

𝑙∏
𝑠=1

𝑗∏
𝑡=1

ln−1
𝑠 (|𝑥 |) ln−1

𝑡 (|𝑥 |)���,
where we used

𝜕𝑟 ln1(𝑟) =
1
𝑟

and 𝜕𝑟 ln 𝑗 (𝑟) =
1

ln 𝑗−1 (𝑟)
1

ln 𝑗−2 (𝑟)
. . .

1
ln1(𝑟)

1
𝑟
.

Thus

𝑊𝑚(𝑥) =
Δ𝜓ℓ,𝑚 (𝑥)
𝜓ℓ,𝑚 (𝑥)

=
𝑑 (4 − 𝑑)

4|𝑥 |2
+ 1
|𝑥 |2

𝑚∑
𝑗=1

𝑗∏
𝑘=1

ln−1
𝑘 (|𝑥 |) + 1

4|𝑥 |2
���
𝑚∑
𝑗=1

𝑗∏
𝑘=1

ln−1
𝑘 (|𝑥 |)���

2

+ 1
2|𝑥 |2

𝑚∑
𝑗=1

𝑗∑
𝑙=1

𝑙∏
𝑠=1

𝑗∏
𝑡=1

ln−1
𝑠 (|𝑥 |) ln−1

𝑡 (|𝑥 |),

and we have (−Δ +𝑊𝑚)𝜓ℓ,𝑚 = 0 in 𝑈𝑅 as long as 𝑅 > 0 is large enough, so that the iterated logarithms
are well-defined. �

Remark 3.2. Alternatively, one can compute 𝑊𝑚 = Δ𝜓ℓ,𝑚
𝜓ℓ,𝑚

inductively. For radial functions 𝑓 , 𝑔, that is,
with the usual abuse of notation 𝑓 (𝑥) = 𝑓 (𝑟) and 𝑔(𝑥) = 𝑔(𝑟) for 𝑟 = |𝑥 |, we have

Δ (𝑔 𝑓 ) = 𝑓Δ𝑔 + 2𝜕𝑟 𝑓 𝜕𝑟𝑔 + (Δ 𝑓 )𝑔. (3.4)

Using (3.4) and 𝜓ℓ,𝑚+1(𝑥) = 𝜓ℓ,𝑚 (𝑥) ln−
1
2

𝑚+1(|𝑥 |), we obtain

𝑊𝑚+1(𝑥) =
Δ𝜓ℓ,𝑚+1 (𝑥)
𝜓ℓ,𝑚+1 (𝑥)

= 𝑊𝑚 +
Δ ln−

1
2

𝑚+1(|𝑥 |)

ln−
1
2

𝑚+1(|𝑥 |)
+ 2

𝜕𝑟𝜓ℓ,𝑚 (𝑥)
𝜓ℓ,𝑚 (𝑥)

𝜕𝑟 ln−
1
2

𝑚+1(|𝑥 |)

ln−
1
2

𝑚+1(|𝑥 |)
.
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A straightforward calculation yields

Δ ln−
1
2

𝑚+1(|𝑥 |)

ln−
1
2

𝑚+1(|𝑥 |)
=

1
4|𝑥 |2

𝑚+1∏
𝑘=1

ln−2
𝑘 (|𝑥 |) + 2 − 𝑑

2|𝑥 |2
𝑚+1∏
𝑘=1

ln−1
𝑘 (|𝑥 |)

+ 1
2|𝑥 |2

𝑚+1∑
𝑗=1

𝑚+1∏
𝑠=1

𝑗∏
𝑡=1

ln−1
𝑠 (|𝑥 |) ln−1

𝑡 (|𝑥 |),

2
𝜕𝑟𝜓ℓ,𝑚 (𝑥)
𝜓ℓ,𝑚 (𝑥)

𝜕𝑟 ln−
1
2

𝑚+1(|𝑥 |)

ln−
1
2

𝑚+1(|𝑥 |)
=

��� 𝑑

|𝑥 | +
1
|𝑥 |

𝑚∑
𝑗=1

𝑗∏
𝑘=1

ln−1
𝑘 (|𝑥 |)���

(
1

2|𝑥 |

𝑚+1∏
𝑠=1

ln−1
𝑠 (|𝑥 |)

)
,

𝑊𝑚+1(𝑥) = 𝑊𝑚 (𝑥) +
3

4|𝑥 |2
𝑚+1∏
𝑘=1

ln−2
𝑘 (|𝑥 |) + 1

|𝑥 |2
𝑚+1∏
𝑘=1

ln−1
𝑘 (|𝑥 |)

+ 1
|𝑥 |2

𝑚∑
𝑗=1

𝑚+1∏
𝑠=1

𝑗∏
𝑡=1

ln−1
𝑠 (|𝑥 |) ln−1

𝑡 (|𝑥 |).

Since 𝑊0(𝑥) = 𝑑 (4−𝑑)
4 |𝑥 |2 , this yields 𝑊𝑚 via induction.

Now we come to the

Proof of Theorem 1.3. Using Lemma 3.1 and 𝜓ℓ,𝑚 ∈ Q𝑈𝑅

loc (𝐻), one sees that

〈𝜑, 𝐻𝜓ℓ,𝑚〉 = 〈∇𝜑,∇𝜓ℓ,𝑚〉 + 〈𝜑,𝑉𝜓ℓ,𝑚〉 ≤ 〈∇𝜑,∇𝜓ℓ,𝑚〉 + 〈𝜑,𝑊𝑚𝜓ℓ,𝑚〉
= 〈𝜑, (−Δ +𝑊𝑚)𝜓ℓ,𝑚〉 = 0

(3.5)

for all 0 ≤ 𝜑 ∈ C∞
0 (𝑈𝑅) as soon as 𝑉 ≤ 𝑊𝑚 in 𝑈𝑅. So 𝜓ℓ,𝑚 is a zero energy subsolution of H in

𝑈𝑅 as soon as 𝑉 ≤ 𝑊𝑚 in 𝑈𝑅. Since V is in the local Kato class, we know from [3, 67, 71] that any
eigenfunction of H is continuous. Moreover, it is well-known that the ground state eigenfunction can be
chosen to be strictly positive [18, 23, 64].

So if 𝜓 > 0 is a zero energy ground state of H, then, with 𝑐1
𝑅 = inf𝑅≤ |𝑥 | ≤𝑅+1 𝜓(𝑥) > 0 and 𝑐2

𝑅 =
sup𝑅≤ |𝑥 | ≤𝑅+1 𝜓ℓ,𝑚 (𝑥) < ∞, we can set 𝐶 � 𝑐2

𝑅/𝑐
1
𝑅 to see that 𝜓ℓ,𝑚 (𝑥) ≤ 𝐶𝜓(𝑥) for 𝑅 ≤ |𝑥 | ≤ 𝑅 + 1.

Moreover, 𝜓 being a zero energy solution is also a zero energy supersolution, so Theorem 2.7 shows that

𝜓ℓ,𝑚 (𝑥) ≤ 𝐶𝜓(𝑥) (3.6)

for all |𝑥 | > 𝑅. In particular, 𝜓 cannot be square integrable as soon as 𝑉 ≤ 𝑊𝑚 on 𝑈𝑅 for some large
enough 𝑅 > 0, since 𝜓ℓ,𝑚 is positive and not in 𝐿2 (𝑈𝑅).

Finally, setting 𝑉𝑚(𝑥) = 𝑑 (4−𝑑)
4 |𝑥 |2 + 1

|𝑥 |2
∑𝑚
𝑗=1

∏ 𝑗
𝑘=1 ln−1

𝑘 (|𝑥 |), we note that 𝑊𝑚(𝑥) ≥ 𝑉𝑚(𝑥) for all large
enough |𝑥 |. This proves Theorem 1.3. �

Remark 3.3. Of course, the proof of Theorem 1.3 given above shows that if

𝑉 (𝑥) ≤ 𝑊𝑚 (𝑥) for all |𝑥 | > 𝑅 (3.7)

for large enough 𝑅 > 0 and some 𝑚 ∈ N0, then the Schrödinger operator H cannot have any zero energy
ground state.
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4. Proof of the existence result

For the existence result, we need to modify our comparison functions 𝜓ℓ,𝑚 to make them barely square
integrable near infinity. Given an arbitrary 𝜀 > 0, we set

𝜓𝑢,𝑚,𝜖 (𝑥) � 𝜓ℓ,𝑚 (𝑥) ln−𝜀/2
𝑚 (|𝑥 |), (4.1)

where 𝜓ℓ,𝑚 is defined in (3.1). For each 𝑚 ∈ N0 and 𝜀 > 0, we have 𝜓𝑢,𝑚,𝜖 ∈ C∞({|𝑥 | > 𝑒𝑚}), and it is
not hard to see that for any 𝜀 > 0 and any large enough 𝑅 > 0, the function 𝜓𝑢,𝑚,𝜖 is barely in 𝐿2 (𝑈𝑅).
The potential 𝑌𝑚,𝜖 for which (−Δ + 𝑌𝑚,𝜖 )𝜓𝑢,𝑚,𝜖 = 0 in 𝑈𝑅 = {𝑥 ∈ R𝑑 : |𝑥 | > 𝑅} is given by

Lemma 4.1. For any 𝑚 ∈ N0, we have (−Δ + 𝑌𝑚,𝜖 )𝜓𝑢,𝑚,𝜖 = 0 in 𝑈𝑒𝑚 = {𝑥 ∈ R𝑑 : |𝑥 | > 𝑒𝑚}, where
the potential 𝑌𝑚,𝜖 is given by

𝑌𝑚,𝜖 (𝑥) = 𝑊𝑚 (𝑥) +
𝜖2

4|𝑥 |2
𝑛∏
𝑘=1

ln−2
𝑘 (|𝑥 |) + 𝜖

|𝑥 |2
𝑛∏
𝑘=1

ln−1
𝑘 (|𝑥 |)

+ 𝜖

|𝑥 |2
𝑛∑
𝑗=1

𝑛∏
𝑘=1

𝑗∏
𝑚=1

ln−1
𝑘 (|𝑥 |) ln−1

𝑚 (|𝑥 |),
(4.2)

with 𝑊𝑚 given in (3.2).

Proof. As in the proof of Lemma 3.1, we have to calculate 𝑌𝑚,𝜖 �
Δ𝜓𝑢,𝑚,𝜖

𝜓𝑢,𝑚,𝜖
. We use (3.4) to see that

𝑌𝑚,𝜖 (𝑥) =
Δ𝜓ℓ,𝑚 (𝑥)
𝜓ℓ,𝑚 (𝑥)

+
Δ ln−

𝜖
2

𝑚+1(|𝑥 |)

ln−
𝜖
2

𝑚+1(|𝑥 |)
+ 2

𝜕𝑟 ln−
𝜖
2

𝑚+1(|𝑥 |)

ln−
𝜖
2

𝑚+1(|𝑥 |)

𝜕𝑟𝜓ℓ,𝑚 (|𝑥 |)
𝜓ℓ,𝑚 (|𝑥 |)

= 𝑊𝑚(𝑥) +
𝜖2

4|𝑥 |2
𝑚∏
𝑘=1

ln−2
𝑘 (|𝑥 |) + 𝜖

|𝑥 |2
𝑚∏
𝑘=1

ln−1
𝑘 (|𝑥 |)

+ 𝜖

|𝑥 |2
𝑚∑
𝑗=1

𝑚∏
𝑠=1

𝑗∏
𝑡=1

ln−1
𝑠 (|𝑥 |) ln−1

𝑡 (|𝑥 |),

which is (4.2). �

We want to show that ground states of Schrödinger operators H with critical potentials V exist using
suitable eigenfunctions of 𝐻𝜆. For this, the following is convenient.

Lemma 4.2. Assume that the potential V satisfies Assumption 1.1 and W is a nonnegative potential
which is form bounded w.r.t. −Δ + 𝑉+. Let (𝐻𝜆)𝜆≥0 be the family of Schrödinger operators constructed
in Remark 2.1 (for small enough 𝜆 > 0). Moreover, assume that there exists a sequence 0 < 𝜆𝑛 → 0 as
𝑛 → ∞, such that the operators 𝐻𝑛 = 𝐻𝜆𝑛 have eigenvalues 𝐸𝑛 = 𝐸𝜆𝑛 with corresponding normalized
weak eigenfunctions 𝜓𝑛 = 𝜓𝜆𝑛 . If

a) the sequence of eigenvalues (𝐸𝑛)𝑛 of 𝐻𝑛 is bounded from above and
b) the sequence 𝜓𝑛 is a Cauchy sequence in 𝐿2,

then the sequence 𝜓𝑛 is Cauchy w.r.t. the quadratic form norm ‖ · ‖1 given in (2.3), hence, its limit
𝜓 = lim𝑛→∞ 𝜓𝑛 ∈ Q(𝐻). Moreover, 𝐸 = lim𝑛→∞ 𝐸𝑛 exists and 𝜓 is a normalized weak eigenfunction
of H with eigenvalue E.

Remark 4.3. Lemma 2.5 shows even that 𝜓 ∈ D(𝐻). Moreover, we do not need that V is in the local
Kato-class, only that 𝑉− is relatively form small w.r.t. −Δ +𝑉+.
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Remark 4.4. We apply Lemma 4.2 when 𝜆𝑛 converges monotonically to zero and 𝐸𝑛 is a ground state
of 𝐻𝑛, in which case, one can simplify the proof. For example, if 𝐸𝑛 are ground state energies of 𝐻𝑛,
then since as quadratic forms 𝐻𝜆 ≤ 𝐻𝜆′ for all 0 < 𝜆′ ≤ 𝜆 ≤ 𝜆0, the limit lim𝑛→∞ 𝐸𝑛 exists, by
monotonicity. However, the result of Lemma 4.2 is needed when one considers not only ground states,
but also excited states which hit the bottom of the essential spectrum.

Remark 4.5. Clearly, any eigenvalue of 𝐻𝑛 is bounded from below uniformly in 𝑛 ∈ N since 𝐻𝑛 ≥ 𝐻𝜆max

with 𝜆max = max𝑛 𝜆𝑛 as quadratic forms for all 𝑛 ∈ N. In particular, all the eigenvalues 𝐸𝑛 are bounded
uniformly in 𝑛 ∈ N once they are bounded from above.

Moreover, if the essential spectrum of H is not empty and 𝐸𝑛 is an eigenvalue of 𝐻𝑛 below the
essential spectrum of 𝐻𝑛, then 𝐸𝑛 is bounded from above, since as quadratic forms 𝐻𝑛 ≤ 𝐻 and by
Persson’s theorem [46, 55]

inf𝜎ess (𝐻𝑛) = lim
𝑅→∞

inf
{
〈𝜑, 𝐻𝑛𝜑〉 : 𝜑 ∈ Q(𝐻), ‖𝜑‖ = 1, supp(𝜑) ⊂ {|𝑥 | > 𝑅}

}
≤ lim
𝑅→∞

inf
{
〈𝜑, 𝐻𝜑〉 : 𝜑 ∈ Q(𝐻), ‖𝜑‖ = 1, supp(𝜑) ⊂ {|𝑥 | > 𝑅}

}
= inf 𝜎ess (𝐻).

(4.3)

Thus

−∞ < inf 𝜎(𝐻𝜆max) ≤ inf 𝜎(𝐻𝑛) ≤ 𝐸𝑛 ≤ inf 𝜎ess(𝐻𝑛) ≤ inf 𝜎ess (𝐻)

for all 𝑛 ∈ N, which shows that sup𝑛 |𝐸𝑛 | < ∞ as soon as 𝜎ess(𝐻) is not empty.

Proof of Lemma 4.2. Let 𝜓𝑛 be a normalized sequence of eigenfunctions of 𝐻𝑛 with eigenvalue 𝐸𝑛,
which is also a Cauchy sequence in 𝐿2. In particular,

〈𝜓𝑛, 𝐻𝑛𝜓𝑛〉 = 𝐸𝑛〈𝜓𝑛, 𝜓𝑛〉 = 𝐸𝑛. (4.4)

Let 0 < 𝑎1 < 1 and 𝑏1 ≥ 0 be, such that (1.2) holds and 𝑎2, 𝑏2 ≥ 0, such that (1.2) with 𝑉− replaced by
W holds. Then

〈𝜓𝑛, 𝐻𝑛𝜓𝑛〉 = ‖∇𝜓𝑛‖2 + ‖
√
𝑉+𝜓𝑛‖2 − ‖

√
𝑉−𝜓𝑛‖2 − 𝜆𝑛‖

√
𝑊𝜓𝑛‖2

≥ ‖∇𝜓𝑛‖2 + ‖
√
𝑉+𝜓𝑛‖2 − (𝑎1 + 𝜆𝑛𝑎2)‖∇𝜓𝑛‖2 − (𝑏1 + 𝜆𝑛𝑏2)‖𝜓𝑛‖2

≥ (1 − 𝑎1 − 𝜆𝑛𝑎2)‖𝜓𝑛‖2
1 − (𝑏1 + 𝜆𝑛𝑏2),

since 𝜓𝑛 is normalized. We also used the quadratic form norm ‖ · ‖1 given by (2.3). Using (4.4), this
implies

(1 − 𝑎1 − 𝜆𝑛𝑎2)‖𝜓𝑛‖2
1 ≤ 𝑏1 + 𝜆𝑛𝑏2 + 𝐸𝑛, (4.5)

which shows that we have lim sup𝑛→∞ ‖𝜓𝑛‖1 < ∞, since 𝑎1 < 1, 𝜆𝑛 → 0 for 𝑛 → ∞, and 𝐸𝑛 is bounded
from above uniformly in 𝑛 ∈ N. Thus, both the Sobolev norm ‖𝜓𝑛‖2

𝐻 1 = ‖𝜓𝑛‖2 + ‖∇𝜓𝑛‖2 and ‖
√
𝑉+𝜓𝑛‖

are bounded in n.
Now consider

〈𝜑, 𝐻 (𝜓𝑛 − 𝜓𝑚)〉 = 〈𝜑, 𝐻𝑛𝜓𝑛〉 + 𝜆𝑛〈𝜑,𝑊𝜓𝑛〉 − 〈𝜑, 𝐻𝑚𝜓𝑚〉 − 𝜆𝑚〈𝜑,𝑊𝜓𝑚〉
= 𝐸𝑛〈𝜑, 𝜓𝑛〉 + 𝜆𝑛〈𝜑,𝑊𝜓𝑛〉 − 𝐸𝑚〈𝜑, 𝜓𝑚〉 − 𝜆𝑚〈𝜑,𝑊𝜓𝑚〉

(4.6)
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for 𝜑 ∈ Q(𝐻). The choice 𝜑 = 𝜓𝑛 − 𝜓𝑚 and the Cauchy–Schwarz inequality yields

〈𝜓𝑛 − 𝜓𝑚, 𝐻 (𝜓𝑛 − 𝜓𝑚)〉

≤ |𝐸𝑛 |‖𝜑‖‖𝜓𝑛‖ + 𝜆𝑛‖
√
𝑊𝜑‖‖

√
𝑊𝜓𝑛‖ + |𝐸𝑚 |‖𝜑‖‖𝜓𝑚‖ + 𝜆𝑚‖

√
𝑊𝜑‖‖

√
𝑊𝜓𝑚‖

≤
(
|𝐸𝑛 |‖𝜓𝑛‖ + |𝐸𝑚 |‖𝜓𝑚‖

)
‖𝜑‖ + 𝜆𝑛

2
(
‖
√
𝑊𝜑‖2 + ‖

√
𝑊𝜓𝑛‖2)

+ 𝜆𝑚
2

(
‖
√
𝑊𝜑‖2 + ‖

√
𝑊𝜓𝑚‖2)

≤
(
|𝐸𝑛 |‖𝜓𝑛‖ + |𝐸𝑚 |‖𝜓𝑚‖

)
‖𝜑‖ + 𝜆𝑛 + 𝜆𝑚

2
(
𝑎2‖∇𝜑‖2 + 𝑏2‖𝜑‖2)

+ 𝜆𝑛
2

(
𝑎2‖∇𝜓𝑛‖2 + 𝑏2‖𝜓𝑛‖2) + 𝜆𝑚

2
(
𝑎2‖∇𝜓𝑚‖2 + 𝑏2‖𝜓𝑚‖2) .

(4.7)

On the other hand,

〈𝜓𝑛 − 𝜓𝑚, 𝐻 (𝜓𝑛 − 𝜓𝑚)〉 = ‖∇(𝜓𝑛 − 𝜓𝑚)‖2 + ‖
√
𝑉+(𝜓𝑛 − 𝜓𝑚)‖2 − ‖

√
𝑉−(𝜓𝑛 − 𝜓𝑚)‖2

≥ (1 − 𝑎1)‖∇(𝜓𝑛 − 𝜓𝑚)‖2 + ‖
√
𝑉+(𝜓𝑛 − 𝜓𝑚)‖2 − 𝑏1‖𝜓𝑛 − 𝜓𝑚‖2.

Plugging this lower bound into (4.7) and using that 𝜓𝑛 is normalized, we arrive at(
1 − 𝑎1 −

𝜆𝑛 + 𝜆𝑚
2

𝑎2
)
‖∇(𝜓𝑛 − 𝜓𝑚)‖2 + ‖

√
𝑉+(𝜓𝑛 − 𝜓𝑚)‖2

≤
(
|𝐸𝑛 | + |𝐸𝑚 | +

𝜆𝑛 + 𝜆𝑚
2

𝑏2
)
‖𝜓𝑛 − 𝜓𝑚‖ + 𝑏1‖𝜓𝑛 − 𝜓𝑚‖2

+ 𝜆𝑛
2

(
𝑎2‖∇𝜓𝑛‖2 + 𝑏2

)
+ 𝜆𝑚

2
(
𝑎2‖∇𝜓𝑚‖2 + 𝑏2

)
.

(4.8)

By assumption and Remark 4.5, the sequence of eigenvalues 𝐸𝑛 is bounded and, because of (4.5), we
also have that ‖∇𝜓𝑛‖ is bounded uniformly in 𝑛 ∈ N. Since 𝜆𝑛 → 0 and ‖𝜓𝑛 −𝜓𝑚‖ → 0 as 𝑛, 𝑚 → ∞,
(4.8) implies

lim sup
𝑛,𝑚→∞

(
(1 − 𝑎1)‖∇(𝜓𝑛 − 𝜓𝑚)‖2 + ‖

√
𝑉+(𝜓𝑛 − 𝜓𝑚)‖2

)
≤ 0.

That is, the sequence of normalized weak eigenfunctions 𝜓𝑛 of 𝐻𝑛 is Cauchy in Q(𝐻) with respect to
the form norm ‖ · ‖1 as soon as it is Cauchy in 𝐿2 and the sequence of eigenvalues (𝐸𝑛)𝑛∈N is bounded.
In particular, the limit 𝜓 = lim𝑛→∞ 𝜓𝑛 exists in Q(𝐻). Thus, ‖∇𝜓‖ = lim𝑛→∞ ‖∇𝜓𝑛‖, ‖

√
𝑉+𝜓‖ =

lim𝑛→∞ ‖
√
𝑉+𝜓𝑛‖, and, since 𝑊 ≥ 0 is form bounded w.r.t. −Δ +𝑉+ also ‖

√
𝑊𝜓‖ = lim𝑛→∞ ‖

√
𝑊𝜓𝑛‖.

Hence, sup𝑛 ‖
√
𝑊𝜓𝑛‖ < ∞.

Now assume additionally that 𝐸𝑛 converges to some E as 𝑛 → ∞. In this case, using that 𝜓𝑛 converges
to 𝜓 in Q(𝐻), we get

〈𝜑, 𝐻𝜓〉 = lim
𝑛→∞

〈𝜑, 𝐻𝜓𝑛〉 = lim
𝑛→∞

(
〈𝜑, 𝐻𝑛𝜓𝑛〉 + 𝜆𝑛〈

√
𝑊𝜑,

√
𝑊𝜓𝑛〉

)
= lim
𝑛→∞

(
𝐸𝑛〈𝜑, 𝜓𝑛〉 + 𝜆𝑛〈

√
𝑊𝜑,

√
𝑊𝜓𝑛〉

)
= 𝐸 〈𝜑, 𝜓〉

(4.9)

for all 𝜑 ∈ Q(𝐻) since 𝜆𝑛 → 0 and sup𝑛 |〈
√
𝑊𝜑,

√
𝑊𝜓𝑛〉| ≤ ‖

√
𝑊𝜑‖ sup𝑛 ‖

√
𝑊𝜓𝑛‖ < ∞. Thus, we

proved that the limit 𝜓 = lim𝑛→∞ 𝜓𝑛 ∈ Q(𝐻) exists, ‖𝜓‖ = 1, and 𝜓 is a weak eigenfunction of H with
eigenvalue 𝐸 = lim𝑛→∞ 𝐸𝑛 under the additional assumption that the limit 𝐸 = lim𝑛→∞ 𝐸𝑛 exists.

Finally, it is easy to see that the sequence of eigenvalues 𝐸𝑛 must converge. Assume that 𝐸𝑛 does not
converge as 𝑛 → ∞. Since 𝐸𝑛 is bounded in 𝑛 ∈ N, there exist two different limit points 𝐸1 ≠ 𝐸2 of 𝐸𝑛
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corresponding to two subsequences 𝐸𝜎1 (𝑛) → 𝐸1 and 𝐸𝜎2 (𝑛) → 𝐸2, where 𝜎1, 𝜎2 : N→ N are strictly
increasing functions.

Clearly, 𝜓 = lim𝑛→∞ 𝜓𝜎1 (𝑛) = lim𝑛→∞ 𝜓𝜎2 (𝑛) since 𝜓𝑛 converges to 𝜓 in Q(𝐻). So (4.9) shows
that 𝜓 is a weak eigenfunction of H corresponding to the two different eigenvalues 𝐸1 and 𝐸2, which is
impossible. Hence, the eigenvalues 𝐸𝑛 converges. This finishes the proof of Lemma 4.2. �

Lemma 4.6. Assume that the potentials V and W satisfy Assumption 1.1, except that the relative bound
of W does not have to be less than one. Let (𝐻𝜆)0≤𝜆≤𝜆0 be the family of perturbed Schrödinger operators
constructed in Remark 2.1 for some small enough 0 < 𝜆0. Moreover, assume that for some sequence
0 < 𝜆𝑛 ≤ 𝜆0, the operators 𝐻𝑛 = 𝐻𝜆𝑛 have eigenvalues 𝐸𝑛 with corresponding weak eigenfunctions 𝜓𝑛.

If ‖𝜓𝑛‖ = 1 for all 𝑛 ∈ N and sup𝑛 𝐸𝑛 < ∞, then the weak eigenfunctions 𝜓𝑛 are pointwise locally
bounded uniformly in 𝑛 ∈ N, that is,

sup
𝑛∈N

sup
𝑥∈𝑆

|𝜓𝑛 (𝑥) | < ∞ (4.10)

for any bounded set 𝑆 ⊂ R𝑑 .

Remark 4.7. Since eigenfunctions are continuous if the potential is locally in the Kato-class, 𝜓𝑛 (𝑥)
makes sense for all 𝑥 ∈ R𝑑 and 𝑛 ∈ N.

Proof. Note that 𝜓𝑛 is a zero energy weak eigenfunction of the Schrödinger operator 𝐻𝑛 with potential
𝑉𝑛 given by 𝑉𝑛 = 𝑉 − 𝜆𝑛𝑊 − 𝐸𝑛. If V and W are in the local Kato class, so is 𝑉𝑛. Hence, for any 𝑥 ∈ R𝑑
the subsolution estimate

|𝜓𝑛 (𝑥) | ≤ 𝐶𝑥,𝑛

∫
|𝑥−𝑦 |<1

|𝜓𝑛 (𝑦) | 𝑑𝑦 (4.11)

holds (see [71, Theorem C.1.2] and also [3, 67]). Moreover, it is shown in [71] that the constants 𝐶𝑥,𝑛
depend only on

‖1𝐵1 (𝑥) (𝑉𝑛)−‖𝐾 𝑑

with (𝑉𝑛)− being the negative part of 𝑉𝑛 and the Kato norm ‖ · ‖𝐾 𝑑 given by

‖𝑉 ‖𝐾 𝑑 � sup
𝑥∈R𝑑

∫
|𝑥−𝑦 | ≤1

�̃�𝑑 (𝑥 − 𝑦) |𝑉 (𝑦) |𝑑𝑦 (4.12)

with �̃�𝑑 = 𝑔𝑑 when 𝑑 ≥ 3, �̃�2 = 1 + 𝑔2, and �̃�1 = 1, where 𝑔𝑑 is defined in (1.15). Adding 1 to 𝑔2 is
necessary since 𝑔2(𝑥) = 0 when |𝑥 | = 1.

For any set 𝑆 ⊂ R𝑑 and any potential V, we have

sup
𝑥∈𝑆

‖1𝐵1 (𝑥)𝑉 ‖𝐾 𝑑 ≤ ‖ sup
𝑥∈𝑆

1𝐵1 (𝑥)𝑉 ‖𝐾 𝑑 = ‖1𝑆1𝑉 ‖𝐾 𝑑 , (4.13)

where 𝑆1 = {𝑦 ∈ R𝑑 : dist(𝑦, 𝑆) < 1}.
Now let 𝑆 ⊂ R𝑑 be bounded. Then 𝑆1 is bounded and, since the Kato norm of a constant function is

finite and (𝑉𝑛)− = (𝑉 − 𝜆𝑛𝑊 − 𝐸𝑛)− ≤ 𝑉− + 𝜆𝑛𝑊+ + (𝐸𝑛)+, we have

sup
𝑛

‖1𝑆1 (𝑉𝑛)−‖𝐾 𝑑 ≤
(
‖1𝑆1𝑉−‖𝐾 𝑑 + sup

𝑛
𝜆𝑛‖1𝑆1𝑊+‖𝐾 𝑑 + sup

𝑛
(𝐸𝑛)+‖1‖𝐾 𝑑

)
< ∞

for any bounded set S, using that sup𝑛 𝐸𝑛 < ∞ and sup𝑛 𝜆𝑛 < ∞, by assumption, and ‖1𝑆1𝑉−‖𝐾 𝑑 < ∞
and ‖1𝑆1𝑊+‖𝐾 𝑑 < ∞, since 𝑆1 is bounded and V and W are locally in the Kato class.
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Thus, for any bounded set 𝑆 ⊂ R𝑑 , there exists a constant 𝐶 < ∞, such that

|𝜓𝑛 (𝑥) | ≤ 𝐶

∫
|𝑥−𝑦 |<1

|𝜓𝑛 (𝑦) | 𝑑𝑦 (4.14)

for all 𝑥 ∈ 𝑆 and 𝑛 ∈ N. Using the normalization ‖𝜓𝑛‖ = 1, we have∫
|𝑥−𝑦 |<1

|𝜓𝑛 (𝑦) | 𝑑𝑦 ≤ |𝐵𝑑1 |
1/2‖𝜓𝑛‖ = |𝐵𝑑1 |

1/2 (4.15)

for all 𝑥 ∈ 𝑆 and 𝑛 ∈ N. Hence, (4.10) follows immediately from (4.14). �

The last result which we need is

Lemma 4.8. Assume that 𝑉 ∈ 𝐿1
loc(R

𝑑) and 𝑉− is form small w.r.t. −Δ +𝑉+ and 𝜓 is a real-valued weak
eigenfunction of H at energy E. Then |𝜓 | is a subsolution of H at energy E.

Proof. If 𝜓 is a real-valued eigenfunction of H at energy E, then it is also a subsolution, hence, [2,
Lemma 2.9] shows that its positive part 𝜓+ = sup(𝜓, 0) is a subsolution. The same argument applied to
−𝜓, which is also a weak solution, shows that its negative part 𝜓− = sup(−𝜓, 0) is a subsolution. Hence,
|𝜓 | = 𝜓+ + 𝜓− is a subsolution of H at energy E. �

Remark 4.9. It is well-known that for the type of Schrödinger operator H we consider here, the
eigenfunctions can be chosen to be real-valued. Since H is self-adjoint, all eigenvalues are real. Moreover,
H commutes with complex conjugation, so for any complex-valued eigenfunction 𝜓 of H, also the real
and imaginary parts Re(𝜓) = 1

2 (𝜓 + 𝜓) and Im(𝜓) = 1
2𝑖 (𝜓 − 𝜓) are eigenfunction of H at energy E.

This is not true anymore if one considers Schrödinger operators with magnetic fields, since they do not
commute with complex conjugation, in general.

Now we are ready to give the

Proof of Theorem 1.7. By assumption, the potential V is critical. Thus, 𝜎(𝐻) = 𝜎ess (𝐻) = [0,∞).
Moreover, for any nontrivial potential 𝑊 ≥ 0 which is infinitesimally form small w.r.t. −Δ +𝑉+ and has
compact support, the Schrödinger operators 𝐻𝜆 = 𝐻 − 𝜆𝑊 , constructed in Remark 2.1, have nontrivial
discrete spectrum below zero. That is, 𝜎ess(𝐻𝜆) = [0,∞), and there exist eigenvalues 𝐸𝜆 < 0 of 𝐻𝜆
with associated normalized weak eigenfunctions 𝜓𝜆 for all 𝜆 > 0. We take any sequence (𝜆𝑛)𝑛∈N which
is monotonically decreasing to zero and abbreviate 𝐻𝑛 = 𝐻𝜆𝑛 , 𝐸𝑛 = 𝐸𝜆𝑛 , and 𝜓𝑛 = 𝜓𝜆𝑛 .

Recall that we also assume that the potential V satisfies the lower bound

𝑉 (𝑥) ≥ 𝑑 (4 − 𝑑)
4|𝑥 |2

+ 1
|𝑥 |2

𝑚∑
𝑗=1

𝑗∏
𝑘=1

ln−1
𝑘 (|𝑥 |) + 2𝜖

|𝑥 |2
𝑚∏
𝑘=1

ln−1
𝑘 (|𝑥 |)

for |𝑥 | > 𝑅, some 𝑚 ∈ N0, 𝜖 > 0, and all large enough 𝑅 > 0. We replaced 𝜖 by 2𝜖 in (1.6). Increasing
R, if necessary, it is easy to see that this implies

𝑉 (𝑥) ≥ 𝑌𝑚,𝜖 (𝑥) for all |𝑥 | ≥ 𝑅, (4.16)

where the family of comparison functions 𝑌𝑚,𝜖 is defined in (4.2).
Since W has compact support, we can also assume that R is so large that its support supp(𝑊) ⊂ 𝐵𝑅 (𝑥).

Thus, with 𝑈𝑅 = {|𝑥 | > 𝑅}, we have 𝑊𝜑 = 0 for all 𝜑 ∈ C∞
0 (𝑈𝑅). Lemma 4.1 and (4.16) imply

〈𝜑,(𝐻𝑛 − 𝐸𝑛)𝜓𝑢,𝑚,𝜖 〉 = 〈𝜑, (𝐻 − 𝐸𝑛)𝜓𝑢,𝑚,𝜖 〉
= 〈𝜑, (−Δ + 𝑌𝑚,𝜖 − 𝐸𝑛)𝜓𝑢,𝑚,𝜖 〉 + 〈𝜑, (𝑉 − 𝑌𝑚,𝜖 )𝜓𝑢,𝑚,𝜖 〉 ≥ −𝐸𝑛〈𝜑, 𝜓𝑢,𝑚,𝜖 〉 ≥ 0

(4.17)

for all 0 ≤ 𝜑 ∈ C∞
0 (𝑈𝑅). Here, 𝜓𝑢,𝑚,𝜖 > 0 is defined in (4.1), and we used that 𝐸𝑛 ≤ 0.
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So for fixed 𝑚 ∈ N, large enough 𝑅 > 0, and small enough 𝜖 > 0, the function 𝜓𝑢,𝑚,𝜖 is a
supersolution of 𝐻𝑛 at energy 𝐸𝑛 in 𝑈𝑅 for all 𝑛 ∈ N. Moreover, since ‖𝜓𝑛‖ = 1, we have

𝑐1
𝑅 � sup

𝑛∈N
sup

𝑅≤ |𝑥 | ≤𝑅+1
|𝜓𝑛 (𝑥) | < ∞

by Lemma 4.6. Since 𝜓𝑢,𝑚,𝜖 > 0 is continuous away from zero, we also have

𝑐2
𝑅 = inf

𝑅≤ |𝑥 | ≤𝑅+1
𝜓𝑢,𝑚,𝜖 (𝑥) > 0

and using 𝐶𝑅 = 𝑐1
𝑅/𝑐

2
𝑅, one gets |𝜓𝑛 (𝑥) | ≤ 𝐶𝑅𝜓𝑢,𝑚,𝜖 (𝑥), hence, also

𝜓𝑛 (𝑥) � |Re(𝜓𝑛 (𝑥)) | + |Im(𝜓𝑛 (𝑥)) | ≤
√

2|𝜓𝑛 (𝑥) | ≤
√

2𝐶𝑅𝜓𝑢,𝑚,𝜖 (𝑥) (4.18)

for all 𝑅 ≤ |𝑥 | ≤ 𝑅 +1 and all 𝑛 ∈ N. Clearly, |𝜓𝑛 | ≤ 𝜓𝑛. Since 𝜓𝑛 is a nonnegative subsolution of 𝐻𝑛 at
energy 𝐸𝑛 by Lemma 4.8 and Remark 4.9, we can use 𝑤 = 𝜓𝑢,𝑚,𝜖 and 𝑣 = 𝜓𝑛 in Theorem 2.7 to see that

|𝜓𝑛 (𝑥) | ≤ 𝜓𝑛 (𝑥) ≤
√

2𝐶𝑅𝜓𝑢,𝑚,𝜖 (𝑥) for all |𝑥 | ≥ 𝑅 (4.19)

uniformly in 𝑛 ∈ N. Since 𝜓𝑢,𝑚,𝜖 is square integrable at infinity for any fixed 𝑚 ∈ N and 𝜖 > 0, the
bound (4.19) yields tightness in x-space, that is,

lim
𝑅→∞

sup
𝑛∈N

∫
|𝑥 |>𝑅

|𝜓𝑛 (𝑥) |2d𝑥 = 0. (4.20)

From (4.5), one gets sup𝑛∈N ‖𝜓𝑛‖𝐻 1 < ∞. In particular, we have

lim
𝐿→∞

sup
𝑛∈N

∫
|𝜂 |>𝐿

|𝜓𝑛 (𝜂) |2d𝜂 = 0, (4.21)

which is tightness in momentum space. Here, 𝜓𝑛 is the Fourier transform of 𝜓𝑛.
Moreover, since 𝜓𝑛 is bounded in 𝐻1 (R𝑑), there exists a subsequence which converges weakly in

𝐻1 and 𝐿2. By a slight abuse of notation, we also write 𝜓𝑛 for this subsequence. Let 𝜓 ∈ 𝐿2 (R𝑑) be the
weak limit of 𝜓𝑛. Tightness and weak convergence then imply that 𝜓𝑛 converges to 𝜓 in 𝐿2 (see, e.g.
[29, Appendix A]). Hence, ‖𝜓‖ = lim𝑛→∞ ‖𝜓𝑛‖ = 1.

Lemma 4.2 shows that 𝐸 = lim𝑛→∞ 𝐸𝑛 ≤ 0 exists and that 𝜓 is a normalized weak eigenfunction of
H with eigenvalue E. Clearly, 𝐸 = 0 since 𝜎(𝐻) = [0,∞). So zero is the ground state eigenvalue of H,
which is at the edge of the essential spectrum of H. This finishes the proof of Theorem 1.7. �

Remark 4.10. Note that we could have simplified some parts of the proof by using that ground states
can be chosen to be strictly positive. We intentionally avoided the use of strict positivity of ground
state eigenfunctions. This allows to use Theorem 1.7 also for systems with symmetry restrictions, or for
the existence of higher eigenstates with energies above the ground state energy, provided one suitably
modifies the assumption of a virtual level for such systems. These modifications are straightforward.

A. An example in search of a theorem

It is well-known that the zero potential is critical in dimensions one and two (see [69] and also [44,
Problems 1 and 2 in Chapter 45]). This phenomenon can be explained by the nonintegrability of
𝜂 ↦→ |𝜂 |−2 near 𝜂 = 0 in R𝑑 (see [25]). The Iorio-O’Carroll theorem [64, Theorem XII.27] shows
that shallow potential wells cannot create ground states in dimension 𝑑 ≥ 3 and that the corresponding
Schrödinger operators are even unitarily equivalent to the free Laplacian. Of course, in order to construct
zero energy resonances or zero energy ground states, one can take any Schrödinger operator H which
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has essential spectrum [0,∞) and finitely many negative eigenvalues. Adding a suitable local positive
perturbation then moves the ground state energy to zero, creating a zero energy resonance, or zero
energy ground state, depending, for example, on which a priori bound from Theorem 1.3 or Theorem
1.7 holds. Specific examples of critical potentials in dimension one and two which are different from
the zero potential seem to be rare. In the following, we construct a family of potentials 𝑉𝛼,𝑑 in any
dimension which are critical for 𝛼 ≥ 0, having a zero energy resonance when 0 ≤ 𝛼 ≤ 1 and a zero
energy ground state when 𝛼 > 1, and which are not critical when 𝛼 < 0. To the best of our knowledge,
our example is new.

Remark A.1. There are different definitions for a zero energy resonance available in the literature. One
often calls 𝜓 a zero energy resonance if it is a local positive eigenfunction of a Schrödinger operator
H which is not square integrable on R𝑑 , but its gradient ∇𝜓 is square integrable. We will follow this
convention, except that we also allow that the 𝐿2-norm of ∇𝜓 is logarithmically divergent at infinity.

For 𝛼 ∈ R and 𝑑 ∈ N, define the potential 𝑉𝛼,𝑑 on R𝑑 by

𝑉𝛼,𝑑 (𝑥) �
4𝛼2 − (𝑑 − 2)2

4
(
1 + |𝑥 |2

) + 1 − (𝛼 + 𝑑/2)2(
1 + |𝑥 |2

)2 . (A.1)

Clearly, 𝑉𝛼,𝑑 is bounded, continuous, and goes to zero at infinity. In particular, for all 𝑑 ≥ 1 and 𝛼 ∈ R,
the potentials 𝑉𝛼,𝑑 are both infinitesimally operator bounded and infinitesimally form bounded, w.r.t.
−Δ and in the Kato-class 𝐾𝑑 . Therefore, the Schrödinger operator 𝐻𝛼,𝑑 = −Δ + 𝑉𝛼,𝑑 is a well-defined
self-adjoint operator on the domain 𝐻2 (R𝑑) with form domain 𝐻1(R𝑑).

The key to understanding why the potentials 𝑉𝛼,𝑑 are critical for all 𝛼 ≥ 0 and 𝑑 ≥ 1, not critical for
𝛼 < 0, and switch from having zero energy resonances to having zero energy ground states at 𝛼 = 1 is

Lemma A.2 (Ground state representation of 𝐻𝛼,𝑑). Let 𝛼 ∈ R, 𝑑 ≥ 1, and define

𝜓𝛼,𝑑 (𝑥) = (1 + |𝑥 |2) (2−𝑑)/4−𝛼/2 (A.2)

for 𝑥 ∈ R𝑑 and the measure

𝜇𝛼,𝑑 (𝐵) =
∫
𝐵
𝜓2
𝛼,𝑑 𝑑𝑥 (A.3)

on the Borel sets B in R𝑑 . Then the map 𝑈𝛼,𝑑 : 𝐿2 (R𝑑 , 𝑑𝜇𝛼,𝑑) → 𝐿2 (R𝑑) given by

(𝑈𝛼,𝑑𝜑) = 𝜓𝛼,𝑑 𝜑 (A.4)

is unitary with

𝑈−1
𝛼,𝑑 (𝐻

1 (R𝑑)) = {𝜑 ∈ 𝐿2 (R𝑑 , 𝑑𝜇𝛼,𝑑) : ∇𝜑 ∈ 𝐿2 (R𝑑 , 𝑑𝜇𝛼,𝑑)}. (A.5)

Moreover, 𝑈𝛼,𝑑𝐻𝛼,𝑑𝑈
−1
𝛼,𝑑 = −Δ in the sense that for all 𝜓 ∈ 𝐻1(R𝑑), the form domain of 𝐻𝛼,𝑑 ,

〈𝜓, 𝐻𝛼,𝑑𝜓〉 = 〈∇𝜓,∇𝜓〉 − 〈𝜓,𝑉𝛼,𝑑𝜓〉 =
∫
R𝑑

|∇𝜑|2 𝜓2
𝛼,𝑑 𝑑𝑥, (A.6)

where 𝜑 = 𝑈−1
𝛼,𝑑𝜓.

Remark A.3. Lemma A.2 shows that the Schrödinger operator 𝐻𝛼,𝑑 is equivalent to the nonnega-
tive Dirichlet form 𝑞(𝜑) = 〈∇𝜑,∇𝜑〉𝐿2 (R𝑑 ,𝑑𝜇𝛼,𝑑) on the weighted 𝐿2-space with measure 𝑑𝜇𝛼,𝑑 =

(1 + |𝑥 |2)−(𝑑−2)/2−𝛼𝑑𝑥. Note that this measure is finite if and only if 𝛼 > 1.

We give the proof of the lemma at the end of the Appendix.
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Theorem A.4. Let 𝑑 ∈ N, 𝛼 ∈ R, and 𝐻𝛼,𝑑 = −Δ +𝑉𝛼,𝑑 be the self-adjoint Schrödinger operator with
potential 𝑉𝛼,𝑑 given by (A.1). Then

a) 𝜎(𝐻𝛼,𝑑) = 𝜎ess(𝐻𝛼,𝑑) = [0,∞).
b) For all 𝛼 ≥ 0, the potential𝑉𝛼,𝑑 is critical, that is, the Schrödinger operator 𝐻𝛼,𝑑 has a virtual level.
c) Zero is not an eigenvalue of 𝐻𝛼,𝑑 when 0 ≤ 𝛼 ≤ 1. For 𝛼 > 1, zero is an eigenvalue. The local zero

energy ground state, when 0 ≤ 𝛼 ≤ 1, respectively ground state, when 𝛼 > 1, is given by (A.2).
d) For 𝛼 < 0, the potential 𝑉𝛼,𝑑 is subcritical, hence zero is neither an eigenvalue nor a virtual level.

Remark A.5. Using the early result of Kato, [36], see also [1, 68], the operator 𝐻𝛼,𝑑 has no strictly
positive embedded eigenvalues. Since the potential 𝑉𝛼,𝑑 is short-range, the spectrum of 𝐻𝛼,𝑑 is even
purely absolutely continuous inside (0,∞) (see [14, Theorem 5.10]).

Proof. Using standard methods, [74], one sees that 𝜎ess(𝐻𝛼,𝑑) = 𝜎ess(−Δ) = [0,∞) since 𝑉𝛼,𝑑 is
bounded and goes to zero at infinity. Moreover, the ground state representation (A.6) implies 𝜎(𝐻𝛼,𝑑) ⊂
[0,∞). Hence, 𝜎(𝐻𝑎,𝑑) = 𝜎ess(𝐻𝑎,𝑑) = [0,∞). This proves claim a).

Given 𝜑 ∈ 𝐿2 (R𝑑 , 𝑑𝜇𝛼,𝑑), let 𝜓 � 𝑈𝛼,𝑑𝜑. Taking 𝜑 = 1 gives 𝜓 = 𝜓𝛼,𝑑 > 0 which is in 𝐻1(R𝑑)
if and only if 𝛼 > 1. In this case, (A.6) and standard arguments show that 𝜓𝛼,𝑑 is the ground state of
𝐻𝛼,𝑑 corresponding to the eigenvalue zero. This proves the second claim in c). Lemma 2.6 also shows
that the potential 𝑉𝛼,𝑑 is critical when 𝛼 > 1.

In addition, note that the right-hand side of (A.6) is strictly positive unless 𝜑 is constant. When
0 ≤ 𝛼 ≤ 1, 𝜓𝛼,𝑑 is not square integrable anymore. Nevertheless, one can bilinearize the ground state
representation (A.6) to see that

〈𝜓1, 𝐻𝛼,𝑑𝜓2〉 = 〈∇𝜑1, 𝜓
2
𝛼,𝑑∇𝜑2〉,

where 𝜑 𝑗 = 𝜓−1
𝛼,𝑑𝜓 𝑗 , for 𝑗 = 1, 2. Since for all 𝜓 ∈ C∞

0 (R𝑑) also 𝜑 = 𝜓−1
𝛼,𝑑𝜓 ∈ C∞

0 (R𝑑), we have

〈𝜓, 𝐻𝛼,𝑑𝜓𝛼,𝑑〉 = 〈∇𝜑, 𝜓2
𝛼,𝑑∇1〉 = 0, (A.7)

so 𝜓𝛼,𝑑 is a local ground state of 𝐻𝛼,𝑑 when 0 ≤ 𝛼 ≤ 1.
To show that zero is a virtual level when 0 < 𝛼 ≤ 1, we take any 𝜑 ∈ C∞

0 (R) with 𝜑(𝑡) = 1 for
|𝑡 | ≤ 1, 𝜑(𝑡) = 0 for |𝑡 | ≥ 2, and define

𝜑𝑅 (𝑥) = 𝜑(|𝑥 |/𝑅)

for 𝑅 > 0. Then |∇𝜑𝑅 (𝑥) | = 𝑅−1 |𝜑′ | ( |𝑥 |/𝑅). Using 𝜓𝑅 = 𝜓𝛼,𝑑 𝜑𝑅, we get

〈𝜓𝑅,𝐻𝛼,𝑑𝜓𝑅〉 = 𝑅−2
∫

|𝜑′( |𝑥 |/𝑅) |2 (1 + |𝑥 |2) (2−𝑑)/2−𝛼 𝑑𝑥

� 𝑅−2
∫ 2𝑅

𝑅
(1 + 𝑟2) (2−𝑑)/2−𝛼 𝑟𝑑−1𝑑𝑟 ∼ 𝑅−2

∫ 2𝑅

𝑅
(1 + 𝑟2)−𝛼 𝑟𝑑𝑟 � 𝑅−2𝛼 → 0

for 𝑅 → ∞ and 𝛼 > 0. Now let 𝑊 ≥ 0 have compact support, be infinitesimally form bounded w.r.t.
−Δ , and 𝑊 > 0 on a set of positive Lebesgue measure. Since 𝜓𝑅 (𝑥) → (1 + |𝑥 |2) (2−𝑑)/4−𝛼/2 as 𝑅 → ∞
uniformly on compact sets, we have

lim
𝑅→∞

〈𝜓𝑅, (𝐻𝛼,𝑑 − 𝜆𝑊)𝜓𝑅〉 = −𝜆
∫

𝑊 (𝑥) (1 + |𝑥 |2) (2−𝑑)/2−𝛼 𝑑𝑥 < 0

for all 𝜆 > 0. Thus, 〈𝜓𝑅, (𝐻𝛼,𝑑 − 𝜆𝑊)𝜓𝑅〉 < 0 for all large enough 𝑅 > 0. Since 𝜎ess(𝐻𝛼,𝑑 − 𝜆𝑊) =
[0,∞), the Rayleigh–Ritz principle shows that 𝐻𝛼,𝑑 − 𝜆𝑊 has a negative eigenvalue for any 𝜆 > 0.
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Thus, the potential 𝑉𝛼,𝑑 is critical. Clearly, zero cannot be an eigenvalue because 𝜓𝛼,𝑑 is not 𝐿2 for
𝛼 ≤ 1 (see (A.7)). To see that𝑉0,𝑑 is critical, one needs to modify the ansatz function. Let 𝛿 > 0, and set

𝜑𝛿 (𝑥) �
{

1 if |𝑥 | ≤ 1
(1 − 𝛿 ln |𝑥 |)+ if |𝑥 | > 1

and 𝜓𝛿 = 𝑈𝛼,𝑑𝜑𝛿 . A straightforward calculation shows

〈𝜓𝛿 , 𝐻0,𝑑𝜓𝛿〉 = 𝛿2
∫

1≤ |𝑥 | ≤𝑒1/𝛿
(1 + |𝑥 |2) (2−𝑑)/2 |𝑥 |−2 𝑑𝑥

� 𝛿2
∫ 𝑒1/𝛿

1
(1 + 𝑟2) (2−𝑑)/2 𝑟𝑑−3𝑑𝑟 ∼ 𝛿2

∫ 𝑒1/𝛿

1
(1 + 𝑟2)−1 𝑟𝑑𝑟

=
𝛿2

2
ln(1 + 𝑒1/𝛿) → 0 as 𝛿 → 0.

Thus, lim𝛿→0〈𝜓𝛿 , (𝐻0,𝑑 − 𝜆𝑊)𝜓𝛿〉 = −𝜆
∫
𝑊 (𝑥) (1 + |𝑥 |2) (2−𝑑)/2 𝑑𝑥 < 0. As before, this shows that

𝑉0,𝑑 is critical. Moreover, even though 𝜓𝛼,𝑑 ∉ 𝐿2 (R𝑑) when 0 ≤ 𝛼 ≤ 1, its gradient ∇𝜓𝛼,𝑑 is in 𝐿2 (R𝑑)
when 0 < 𝛼 ≤ 1 and the 𝐿2-norm of ∇𝜓0,𝑑 is only logarithmically divergent. Hence, 𝜓𝛼,𝑑 is a zero
energy resonance for 𝐻𝛼,𝑑 when 0 ≤ 𝛼 ≤ 1. This finishes the proofs of claims b), c).

Finally, we look at 𝑉−𝛼,𝑑 for 𝛼 > 0. A simple calculation shows

𝑉−𝛼,𝑑 (𝑥) = 𝑉𝛼,𝑑 (𝑥) + 2𝛼𝑑 (1 + |𝑥 |2)−2.

Thus, with 𝑊 (𝑥) = (1 + |𝑥 |2)−2 > 0 and 𝜆 = 2𝛼𝑑 > 0, we have

〈𝜓, (𝐻−𝛼,𝑑 − 𝜆𝑊)𝜓〉 = 〈𝜓, 𝐻𝛼,𝑑𝜓〉 ≥ 0

for all 𝜓 ∈ 𝐻1 (R𝑑), since 𝜎(𝐻𝛼,𝑑) = [0,∞) by part a). Hence, 𝑉−𝛼,𝑑 is subcritical for 𝛼 > 0. �

Remark A.6. Our proof that𝑉𝛼,𝑑 is critical for 𝛼 ≥ 0 depends on the ground state representation (A.6).
Instead of using this representation, one can also use the main result in [60] to show that 𝑉𝛼,𝑑 is critical
for 𝛼 ≥ 0.

The family of potential 𝑉𝛼,𝑑 has several interesting properties summarized in

Lemma A.7 (Properties of 𝑉𝛼,𝑑). Let 𝛼 ∈ R and 𝑑 ∈ N. Then

a) In dimensions 𝑑 = 1, 2, the potential 𝑉𝛼,𝑑 is nontrivial if 𝛼 ≠ |𝑑 − 2|/2, and in dimension 𝑑 ≥ 3, it
is nontrivial if 𝛼 ≠ (2 − 𝑑)/2.

b) In dimension 𝑑 = 1, we have 𝑉𝛼,1 > 0 for 𝛼 ≤ −1/2. If −1/2 < 𝛼 < 1/2, then 𝑉𝛼,1 > 0 near zero,
and it has a negative tail, that is, 𝑉𝛼,1(𝑥) < 0 for large |𝑥 |. If 𝛼 > 1/2, then 𝑉𝛼,1 is negative near
zero, and it has a positive tail.

c) In dimension 𝑑 = 2, we have 𝑉𝛼,2 > 0 for all 𝛼 < 0, that is, 𝑉𝛼,2 is purely repulsive. For 𝛼 > 0, the
potential 𝑉𝛼,2 is negative near zero and has a positive tail.

d) In dimension 𝑑 ≥ 3, we have 𝑉𝛼,𝑑 > 0 for 𝛼 < (2 − 𝑑)/2, that is, the potential is repulsive. For
(2 − 𝑑)/2 < 𝛼 ≤ (𝑑 − 2)/2, we have 𝑉𝛼,𝑑 < 0, that is, the potential is attractive. If 𝛼 > (𝑑 − 2)/2,
then 𝑉𝛼,𝑑 is negative near zero and has a positive tail.

e) For 𝑑 = 1, the potential 𝑉𝛼,1 is integrable and∫ ∞

−∞
𝑉𝛼,1(𝑥) 𝑑𝑥 =

𝜋

2
(𝛼 − 1/2)2.

The integral is positive unless 𝛼 = 1/2.
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f) For large enough R and all dimensions 𝑑 ≥ 1, the potentials 𝑉𝛼,𝑑 satisfy the bounds (1.7) for
0 ≤ 𝛼 < 1, respectively (1.9) for 𝛼 = 1, while they satisfy the complementary bound (1.8) for
0 < 𝜖 < 4(𝛼2 − 1) when 𝛼 > 1.

Remark A.8. Claims b) and c) above are consistent with what is known about weakly coupled bound
states in low dimensions. It is known that if 𝑉 ∈ 𝐿1 (R𝑑) and

∫
R𝑑

𝑉 𝑑𝑥 ≤ 0, where V is supposed to be
nontrivial when

∫
𝑉 𝑑𝑥 = 0, then the operator −Δ + 𝜆𝑉 always has a negative bound state, no matter

how small the coupling parameter 𝜆 > 0 is, when 𝑑 = 1, 2. See, for example, [69], where this is proved
under some additional assumptions, or [25] for the full result. In particular, this implies that critical
potentials in one and two dimensions have to change sign and, if they are integrable, then

∫
R𝑑

𝑉 𝑑𝑥 > 0
unless V is trivial.

In addition, claim d) is consistent with our nonexistence Theorem 1.3. Nonpositive potentials cannot
have a zero energy ground state in dimensions 𝑑 ≤ 4. They need to have a strong enough positive tail
in order to be able to have zero energy bound states. Claim f) together with the fact that the potential
𝑉𝛼,𝑑 supports zero energy ground states if and only if 𝛼 > 1, see Theorem A.4, is consistent with our
Theorems 1.3 and 1.7.

It is illuminating to plot 𝑉𝛼,𝑑 (𝑥) for |𝑥 | = 𝑟 to explicitly see the behavior of 𝑉𝛼,𝑑 for various values
of the parameters 𝛼 and d.

Proof. The first claim a) is easy to check. To prove the rest, let 𝑎𝛼,𝑑 = 𝛼2 − (𝑑 − 2)2/4 and 𝑏𝛼,𝑑 =
1 − (𝛼 + 𝑑/2)2. Then

4𝑉𝛼,𝑑 (0) = 4(𝑎𝛼,𝑑 + 𝑏𝛼,𝑑) = −2𝑑 (𝑑 − 2 + 2𝛼) > 0

if and only if 𝛼 < (2 − 𝑑)/2. Moreover, unless 𝑎𝛼,𝑑 = 0, the sign of 𝑉𝛼,𝑑 (𝑥) for large |𝑥 | is determined
by the sign of 𝑎𝛼,𝑑 . Since 𝑎𝛼,𝑑 > 0 if and only if |𝛼 | > |𝑑 − 2|/2, it is straightforward to deduce the
claims b), c), and d) from this.

Clearly, 𝑉𝛼,1 is integrable. Using
∫ ∞
−∞(1+ 𝑥2)−1 𝑑𝑥 = 𝜋 and

∫ ∞
−∞(1+ 𝑥2)−2 𝑑𝑥 = 𝜋/2, claim e) follows

from a simple calculation.
Since for large |𝑥 | the second term in the definition of 𝑉𝛼,𝑑 is much smaller than the first, the last

claim f) follows from a straightforward computation. �

It remains to give the proof of the ground state representation.

Proof of Lemma A.2. Let 𝛾 ∈ R, and set 𝜓𝛾 (𝑥) = (1 + |𝑥 |2)−𝛾/2 for 𝑥 ∈ R𝑑 , which is a regularized
version of |𝑥 |−𝛾 used at the end of Section 2. When 𝜓 and 𝜑 are related by

𝜓 = 𝜓𝛾 𝜑, (A.8)

then 𝜓 ∈ 𝐿2 (R𝑑) is clearly equivalent to 𝜑 ∈ 𝐿2 (R𝑑 , 𝜓2
𝛾 𝑑𝑥) and the corresponding norms are the same.

So the map 𝑈𝛾 : 𝐿2 (R𝑑 , 𝜓2
𝛾 𝑑𝑥) → 𝐿2 (R𝑑), 𝜑 ↦→ 𝜓𝛾𝜑 preserves the corresponding norms. Its inverse

is given by 𝑈−1
𝛾 𝜓 = 𝑈−𝛾𝜓 = 𝜓−1

𝛾 𝜓 and from this, one easily checks that 𝑈𝛾 is a unitary map from the
weighted space 𝐿2 (R𝑑 , 𝜓2

𝛾 𝑑𝑥) to 𝐿2 (R𝑑). This proves (A.4).
If 𝜓 ∈ 𝐿2 (R𝑑) and 𝜑 = 𝑈−1

𝛾 𝜓 ∈ 𝐿2 (R𝑑 , 𝜓2
𝛾 𝑑𝑥), then we have, in the sense of distributions,

∇𝜓 = 𝜑∇𝜓𝛾 + 𝜓𝛾∇𝜑 = −𝛾𝜓𝛾 (1 + |𝑥 |2)−1𝑥𝜑 + 𝜓𝛾∇𝜑 = −𝛾(1 + |𝑥 |2)−1𝑥𝜓 + 𝜓𝛾∇𝜑 (A.9)

since 𝜓𝛾 ∈ C∞(R𝑑). Clearly, (1 + |𝑥 |2)−1𝑥 is bounded on R𝑑 . Therefore, if 𝜑 ∈ 𝐿2 (R𝑑 , 𝜓2
𝛾 𝑑𝑥) and

∇𝜑 ∈ 𝐿2 (R𝑑 , 𝜓2
𝛾 𝑑𝑥), then (A.9) shows that ∇𝜓 ∈ 𝐿2 (R𝑑). Hence, if 𝜑 and ∇𝜑 are in 𝐿2 (R𝑑 , 𝜓2

𝛾 𝑑𝑥),
then 𝜓 = 𝑈𝛾𝜑 is in 𝐻1(R𝑑).

https://doi.org/10.1017/fms.2023.39 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.39


26 Dirk Hundertmark et al.

Conversely, if 𝜓 ∈ 𝐻1(R𝑑), then, as distributions, ∇𝜑 = 𝛾(1+ |𝑥 |2)𝛾/2−1𝑥𝜓 + (1+ |𝑥 |2)𝛾/2∇𝜓 , which
shows that

𝜓𝛾∇𝜑 = (1 + |𝑥 |2)−1𝑥𝜓 + ∇𝜓 ∈ 𝐿2 (R𝑑). (A.10)

That is, if 𝜓 ∈ 𝐿2 (R𝑑), then 𝜑 = 𝑈−1
𝛾 𝜓 ∈ 𝐿2 (R𝑑 , 𝜓2

𝛾 𝑑𝑥) and if, in addition, ∇𝜓 ∈ 𝐿2 (R𝑑), then (A.10)
shows that ∇𝜑 ∈ 𝐿2 (R𝑑 , 𝜓2

𝛾 𝑑𝑥). Altogether, this proves

𝑈−1
𝛾 (𝐻1 (R𝑑)) =

{
𝜑 ∈ 𝐿2 (R𝑑 , 𝜓2

𝛾 𝑑𝑥) : ∇𝜑 ∈ 𝐿2 (R𝑑 , 𝜓2
𝛾 𝑑𝑥)

}
,

which is (A.5). Moreover, C∞
0 (R𝑑) is dense in 𝐻1 (R𝑑) and since 𝑈𝛾 maps C∞

0 (R𝑑) into itself, it is also
dense in 𝑈−1

𝛾 (𝐻1(R𝑑)). So we only have to prove (A.6) for 𝜑 ∈ C∞
0 (R𝑑).

Let 𝛾 ∈ R and 𝜓 = 𝜓𝛾𝜑 with 𝜑 ∈ C∞
0 (R𝑑). Then, as already noticed before,

∇𝜓(𝑥) = −𝛾(1 + |𝑥 |2)−𝛾/2−1𝑥𝜑(𝑥) + (1 + |𝑥 |2)−𝛾/2∇𝜑(𝑥),

hence

〈∇𝜓,∇𝜓〉 = 〈∇𝜑, (1 + |𝑥 |2)−𝛾∇𝜑〉 − 2𝛾Re(〈∇𝜑, (1 + |𝑥 |2)−𝛾−1𝑥𝜑〉)
+ 𝛾2〈𝜑, (1 + |𝑥 |2)−𝛾−2 |𝑥 |2𝜑〉.

(A.11)

An integration by parts shows

Re(〈∇𝜑, (1 + |𝑥 |2)−𝛾−1𝑥𝜑〉) = −Re(〈𝜑,∇ · ((1 + |𝑥 |2)−𝛾−1𝑥𝜑)〉)
= 2(𝛾 + 1)〈𝜑, (1 + |𝑥 |2)−𝛾−2 |𝑥 |2𝜑〉 − 𝑑〈𝜑, (1 + |𝑥 |2)−𝛾−1𝜑〉 − Re(〈𝜑, (1 + |𝑥 |2)−𝛾−1𝑥∇𝜑〉).

Noticing that Re(〈𝜑, (1 + |𝑥 |2)−𝛾−1𝑥∇𝜑〉) = Re(〈∇𝜑, (1 + |𝑥 |2)−𝛾−1𝑥𝜑〉), we get

2𝛾Re(〈∇𝜑, (1 + |𝑥 |2)−𝛾−1𝑥𝜑〉) = 2𝛾(𝛾 + 1)〈𝜑, (1 + |𝑥 |2)−𝛾−2 |𝑥 |2𝜑〉 − 𝑑𝛾〈𝜑, (1 + |𝑥 |2)−𝛾−1𝜑〉,

and plugging this into (A.11), we arrive at

〈∇𝜓,∇𝜓〉 = 〈∇𝜑, (1 + |𝑥 |2)−𝛾∇𝜑〉 − 2𝛾(𝛾 + 1)〈𝜑, (1 + |𝑥 |2)−𝛾−2 |𝑥 |2𝜑〉
+ 𝑑𝛾〈𝜑, (1 + |𝑥 |2)−𝛾−1𝜑〉 + 𝛾2〈𝜑, (1 + |𝑥 |2)−𝛾−2 |𝑥 |2𝜑〉

= 〈∇𝜑, (1 + |𝑥 |2)−𝛾∇𝜑〉 − 𝛾(𝛾 + 2 − 𝑑)〈𝜑, (1 + |𝑥 |2)−𝛾−1𝜑〉
+ 𝛾(𝛾 + 2)〈𝜑, (1 + |𝑥 |2)−𝛾−2𝜑〉

= 〈∇𝜑, (1 + |𝑥 |2)−𝛾∇𝜑〉 − 𝛾(𝛾 + 2 − 𝑑)〈𝜓, (1 + |𝑥 |2)−1𝜓〉
+ 𝛾(𝛾 + 2)〈𝜓, (1 + |𝑥 |2)−2𝜓〉.

Choosing 𝛾 = (𝑑 − 2)/2 + 𝛼 finishes the proof of Lemma A.2. �

Remarks A.9. The proof of Lemma A.2 is clearly inspired by the proof of Hardy’s inequality on 𝐿2 (R𝑑)
for 𝑑 ≥ 3, where one considers 𝜓(𝑥) = |𝑥 |−𝛾/2𝜑(𝑥) for 𝜑 ∈ C∞

0 (R𝑑 \ {0}) and optimizes in 𝛾 > 0. One
needs to restrict to 𝜑 ∈ C∞

0 (R𝑑 \ {0}) due to the singularity of |𝑥 |−𝛾/2 in zero. Since C∞
0 (R𝑑 \ {0}) is

dense in 𝐿2 (R𝑑) only when 𝑑 ≥ 3, this leads to the well-known fact that Hardy’s inequality only holds
in dimensions 𝑑 ≥ 3.
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