Extending a λ-calculus with explicit substitution which preserves strong normalisation into a confluent calculus on open terms \dagger

FAIROUZ KAMAREDDINE and ALEJANDRO RÍOS
Department of Computing Science, 17 Lilybank Gardens, University of Glasgow, Glasgow G12 8QQ, Scotland
email: \{fairouz,rios\}@dcs.gla.ac.uk

Abstract

The last 15 years have seen an explosion in work on explicit substitution, most of which is done in the style of the $\lambda \sigma$-calculus. In Kamareddine and Ríos (1995a), we extended the λ-calculus with explicit substitutions by turning de Bruijn's meta-operators into objectoperators offering a style of explicit substitution that differs from that of $\lambda \sigma$. The resulting calculus, λs, remains as close as possible to the λ-calculus from an intuitive point of view and, while preserving strong normalisation (Kamareddine and Ríos, 1995a), is extended in this paper to a confluent calculus on open terms: the λs_{e}-caculus. Since the establishment of these results, another calculus, $\lambda \zeta$, came into being in Muñoz Hurtado (1996) which preserves strong normalisation and is itself confluent on open terms. However, we believe that λs_{e} still deserves attention because, while offering a new style to work with explicit substitutions, it is able to simulate one step of classical β-reduction, whereas $\lambda \zeta$ is not. To prove confluence we introduce a generalisation of the interpretation method (cf. Hardin, 1989; Curien et al., 1992) to a technique which uses weak normal forms (instead of strong ones). We consider that this extended method is a useful tool to obtain confluence when strong normalisation of the subcalculus of substitutions is not available. In our case, strong normalisation of the corresponding subcalculus of substitutions s_{e}, is still a challenging open problem to the rewrite community, but its weak normalisation is established here via an effective strategy.

Capsule Review

Explicit substitution in the lambda calculus is of interest to both theoreticians and practitioners, since substitution is a key meta-process in the lambda calculus and a critical component of most programming language implementations. This theoretical paper establishes the confluence of a formal system of explicit substitutions know as λs_{e}. The method for proving confluence is itself of some interest, since it may be applicable to other systems.

[^0]
Introduction

Most literature on the λ-calculus considers substitution as an implicit operation. It means that the computations to perform substitution are usually described with operators which do not belong to the language of the λ-calculus. There has, however, been an interest in formalising substitution explicitly to provide a theoretical framework for the implementation of functional programming languages. Various calculi including new operators to denote substitution have been proposed. Amongst these calculi we mention $C \lambda \xi \phi$ (cf. de Bruijn, 1978); the calculi of categorical combinators (cf. Curien, 1993); $\lambda \sigma, \lambda \sigma_{\Uparrow}, \lambda \sigma_{S P}$ (cf. Abadi et al., 1991; Curien et al., 1992; Ríos, 1993) referred to as the $\lambda \sigma$-family; $\varphi \sigma B L T$ (cf. Karareddine and Nederpelt, 1993); λv (cf. Benaissa et al., 1995), a descendant of the $\lambda \sigma$-family; λs (cf. Kamareddine and A. Ríos, 1995a); $\lambda \exp$ (cf. Bloo, 1995) and $\lambda \zeta$ (cf. Muñoz Hurtado, 1996).

These calculi (except $\lambda \exp$) are described in a de Bruijn setting where natural numbers play the role of the classical variables. Classical terms are coded as closed terms in these calculi and called pure terms. A natural question concerning these calculi is the preservation of strong normalisation: are strongly normalising terms in the classical λ-calculus still strongly normalising when considered as pure terms of these new calculi? This question is obviously important. However, various calculi of explicit substitutions do not possess this property.
It is possible to consider, besides the classical variables (now numbers), real variables (which correspond to meta-variables in the classical setting). The terms obtained with this extended syntax are called open terms and they can be considered as contexts, the new variables corresponding to holes. Hence the interest in studying the calculi on open terms, since they allow contexts as first class citizens.

The main interest in introducing the λs-calculus (cf. Kamareddine and A. Ríos, 1995a) was to provide a calculus of explicit substitutions which would both preserve strong normalisation and have a confluent extension on open terms. There are calculi of explicit substitutions which are confluent on open terms: the $\lambda \sigma_{\Uparrow}$-calculus (cf. Hardin and Lévy, 1989; Curien et al., 1992), but the non-preservation of strong normalisation for $\lambda \sigma_{\Uparrow}$, as well as for the rest of the $\lambda \sigma$-family and for the categorical combinators, has recently been proved (cf. Melliès, 1995). There are also calculi which satisfy the preservation property: the λv-calculus (cf. Benaissa et al., 1995), but this calculus is not confluent on open terms and the existence of a confluent extension of $\lambda \nu$ is still unknown.

We proved (Kamareddine and A. Ríos, 1995a) that λs preserves strong normalisation and proposed the extension λs_{e} in Kamareddine and Ríos (1995b), where we proved its local confluence on open terms and the weak normalisation (every term has at least one normal form) of the corresponding subcalculus of substitutions s_{e} (the calculus obtained from λs_{e} by removing the rule that starts β-reduction). Confluence of λs_{e} and strong normalisation (all derivations terminate) of s_{e} were left open.

This paper establishes the confluence of λs_{e} making λs a calculus which preserves strong normalisation and admits a confluent extension on open terms. Preservation of strong normalisation of λs_{e} and strong normalisation of s_{e} remain open. As far
as we know, at the time of writing this paper, no other calculus which had these two properties existed. Since then, the $\lambda \zeta$-calculus (cf. Muñoz Hurtado, 1996) came into being which preserves strong normalisation, is itself confluent on open terms and possesses a strongly normalising subcalculus of substitutions. The $\lambda \zeta$-calculus is obtained by a clever introduction of two new applications that allows the passage of substitutions within the classical application only if the latter has a head variable. This is done to cut the branch of the critical pair which is responsible of the non-confluence of λv on open terms. Unfortunately, $\lambda \zeta$ is not able to simulate one step of clasical β-reduction as shown in Muñoz Hurtado (1996), it simulates only a 'big step' beta reduction. Furthermore, this lack of the simulation property is an uncommon feature among calculi of explicit substitutions.

As the strong normalisation of s_{e} remains open, the interpretation method (cf. Hardin, 1989; Curien et al., 1992), which is usually used to prove the confluence of a λ-calculus with explicit substitutions is not applicable to λs_{e}. In Section 1 we propose a generalisation of the interpretation method which enables us to prove the confluence of λs_{e} with just weak normal forms. The method is general enough to be applied to any reduction systems satisfying the hypotheses (not necessarily a calculus of explicit substitutions) and therefore we consider it a new tool to prove confluence.

Section 2 is devoted to the syntax and rules of the calculi we are going to deal with: the λ-calculus à la de Bruijn, the λs-calculus and its extension the λs_{e}-calculus together with a summary of the results obtained so far (cf. Kamareddine and Ríos, $1995 \mathrm{a}, \mathrm{b})$ for these calculi. At the end of the section we provide motivation for the new rules of λs_{e}, and finally we compare λs_{e} with $\lambda \sigma, \lambda \nu, \lambda \sigma_{\Uparrow}$ and $\lambda \zeta$.

In section 3 we recall the description of the s_{e}-normal forms, define a strategy for computing them and establish the weak normalisation of s_{e}. We also prove that s_{e}-normal forms are preserved by s_{e}-reductions and that the s_{e}-calculus is confluent on open terms.

In section 4 we introduce the calculus of the interpretation, whose only rule we call β^{\prime}, and prove that the σ-generation rule (the rule that starts β-reduction) can be simulated on the corresponding weak normal forms by β^{\prime}.

In section 5 we prove the confluence of β^{\prime} à la Tait-Martin-Löf to apply the generalised interpretation method to show the confluence of the λs_{e}-calculus. We also show that the λs_{e}-calculus is correct/sound with respect to the λ-calculus in that, all λs_{e}-derivations beginning and ending with pure terms can also be obtained in the λ-calculus.

We conclude by stating the problems which remain still open and we include a result by Hans Zantema showing the termination of the rule of λs_{e} which enables the transition of a substitution operator over another one.

This article is an abridged version of Kamareddine and Ríos (1996), where the proofs are presented in more detail.

1 The generalised interpretation method

We begin by introducing the notation we use and some essential definitions and properties.

Definition 1

Let A be a set and R a binary relation on A. We denote the fact $(a, b) \in R$ by $a \rightarrow_{R} b$ or $a \rightarrow b$ when the context is clear enough. We call reduction this relation and reduction system, the pair $(A, R) . R^{*}$ or \rightarrow_{R} or just \rightarrow denote the reflexive and transitive closure of $R . R^{+}$or \rightarrow_{R}^{+}or just \rightarrow^{+}denote the transitive closure of R. When $a \rightarrow b$ we say there exists a derivation from a to b.

Definition 2

Let R be a reduction on A. For R, we define local confluence (WCR), confluence (CR) and strong confluence (SCR) respectively as follows:

1. WCR: $\forall a, b, c \in A \exists d \in A:(a \rightarrow b \wedge a \rightarrow c) \Rightarrow(b \rightarrow d \wedge c \rightarrow d)$.
2. CR: $\forall a, b, c \in A \exists d \in A:(a \rightarrow b \wedge a \rightarrow c) \Rightarrow(b \rightarrow d \wedge c \rightarrow d)$.
3. SCR: $\forall a, b, c \in A \exists d \in A:(a \rightarrow b \wedge a \rightarrow c) \Rightarrow(b \rightarrow d \wedge c \rightarrow d)$.

Definition 3

Let R be a reduction on A. We say that $a \in A$ is an R -normal form ($\mathrm{R}-\mathrm{nf}$ for short) if there exists no $b \in A$ such that $a \rightarrow b$ and we say that b has a normal form if there exists a normal form a such that $b \rightarrow a . R$ is weakly normalising (WN) if every $a \in A$ has an R-normal form. R is strongly normalising (SN) if there is no infinite sequence $\left(a_{i}\right)_{i \geq 0}$ in A such that $a_{i} \rightarrow a_{i+1}$ for all $i \geq 0$.

Note that confluence of R guarantees unicity of R-normal forms. In that case, the R-normal form of a, if it exists, is denoted by $R(a)$. Strong normalisation implies weak normalisation and therefore the existence of normal forms.

At some point we shall need the following lemmas (cf. Barendregt, 1984).

Lemma 1

Let R be a reduction, if R is SCR then R^{*} is also SCR.

Lemma 2 (Newman)

Every strongly normalising, locally confluent reduction is confluent.
We state now the interpretation method we wish to generalise. This method was first identified in Hardin (1989), where it was used for the categorical combinators. In Curien et al. (1992), it is used to prove the confluence of the weak $\lambda \sigma$-calculus, of the $\lambda \sigma$-calculus on closed terms and the non-confluence of the $\lambda \sigma_{S P}$-calculus on open terms. In Ríos (1993), it was used to prove the confluence of the $\lambda \sigma_{S P}$-calculus on semi-closed terms. Finally, in Benaissa et al. (1995) and Kamareddine and Ríos (1995a), it was used to prove the confluence of λv and λs, respectively.

Lemma 3 (Interpretation method)
Let $R=R_{1} \cup R_{2}$ where R_{1} is a confluent and SN reduction on A and R_{2} an arbitrary reduction. If there exists a reduction R^{\prime} on the set of R_{1}-normal forms satisfying $R^{\prime} \subseteq R^{*}$ and $\left(a \rightarrow R_{2} b \Rightarrow R_{1}(a) \rightarrow R_{R^{\prime}} R_{1}(b)\right)$, then R^{\prime} is confluent iff R is confluent.

Fig. 1. Generalised interpretation method.

Lemma 4 (Generalised Interpretation Method (GIM))
Let $B \subseteq A, R$ and R^{\prime} reduction relations on A and B respectively and $f: A \rightarrow B$ such that:

1. $R^{\prime} \subseteq R^{*}$
2. $\forall a \in A: a \rightarrow_{R} f(a)$
3. $\forall a, b \in A: a \rightarrow_{R} b \Rightarrow f(a) \rightarrow_{R^{\prime}} f(b)$
then, if R^{\prime} is confluent, R is also confluent. Moreover, if we also have:
4. $\forall b \in B: b \rightarrow R_{R^{\prime}} f(b)$
then R^{\prime} is confluent iff R is confluent.

Proof

$\left(\Rightarrow\right.$) Assume $a \rightarrow_{R} b$ and $a \rightarrow_{R} c$. By $2, x \rightarrow_{R} f(x)$ for $x \in\{a, b, c\}$. By 3, $f(a) \rightarrow_{R^{\prime}} f(b)$ and $f(a) \rightarrow_{R^{\prime}} f(c)$. Now, confluence of R^{\prime} gives d such that $f(b) \rightarrow_{R^{\prime}} d$ and $f(c) \rightarrow_{R^{\prime}} d$. 1 implies $f(b) \rightarrow_{R} d$ and $f(c) \rightarrow_{R} d$. Therefore, $b \rightarrow_{R} d$ and $c \rightarrow_{R} d$ (see figure 1).
(\Leftarrow) Let $a, b, c \in B, a \rightarrow{ }_{R^{\prime}} b$ and $a \rightarrow_{R^{\prime}} c$. By $1, a \rightarrow_{R} b$ and $a \rightarrow_{R} c$. By confluence of R, there exists d such that $b \rightarrow_{R} d$ and $b \rightarrow_{R} d$. By $4, x \rightarrow R_{R^{\prime}} f(x)$ for $x \in\{b, c, d\}$. By $3, f(b) \rightarrow_{R^{\prime}} f(d)$ and $f(c) \rightarrow_{R^{\prime}} f(d)$ and we are done.

A particular case of the GIM that is useful for calculi of explicit substitutions is the following:

Corollary 1 (GIM for Explicit Substitutions (GIMES))
Let $R=R_{1} \cup R_{2}$ where R_{1} and R_{2} are arbitrary reductions on A. Let B be the set of R_{1}-normal forms and let $f: A \rightarrow B$ be a function (strategy) such that $f(a)$ is an R_{1}-normal form of a. If there exists a reduction R^{\prime} on the set of R_{1}-normal forms satisfying

1. $R^{\prime} \subseteq R^{*}$
2. $\forall a, b: a \rightarrow_{R_{1}} b \Rightarrow f(a) \rightarrow_{R^{\prime}} f(b)$
3. $\forall a, b: a \rightarrow_{R_{2}} b \Rightarrow f(a) \rightarrow_{R^{\prime}} f(b)$
then R^{\prime} is confluent iff R is confluent.

Proof

Note that $1,2,3$ of GIMES imply $1,2,3,4$ of GIM. In particular, 2,3 of GIMES imply 3 of GIM, 2 of GIM holds as $f(a)$ is an R_{1}-nf of a and hence $a \rightarrow_{R} f(a)$. Moreover, 4 of GIM holds because for $b \in B, b$ is in R_{1}-nf and hence $b=f(b)$.

In the context of the GIM lemma and its corollary GIMES, the function f is called the interpretation function; B, the set of the interpretation and $\left(B, \rightarrow R_{R^{\prime}}\right)$, the calculus of the interpretation. A generalization in the lines of the GIMES has been suggested in 1992 by Hardin (personal communication) but, as far as we know, this is the first time that such a generalization is applied to prove confluence of a concrete calculus.

We use a particular case of the GIMES where 2 is strengthened to: $a \rightarrow_{R_{1}} b \Rightarrow$ $f(a)=f(b)$ (syntactic identity). Having established that GIM \Longrightarrow GIMES, we comment now that even the GIMES generalises the interpretation method. In fact, when R_{1} is confluent and SN, R_{1}-normal forms exist and are unique. Hence there is only one $f\left(f(a)=R_{1}(a)\right)$ such that $f(a)$ is a normal form of a. Note that in this case hypothesis 2 . of the GIMES is obviously satisfied.

2 The calculi

2.1 The classical λ-calculus in de Bruijn notation

We assume the reader familiar with de Bruijn notation (cf. de Bruijn, 1972; Kamareddine and Ríos, 1996). We define Λ, the set of terms with de Bruijn indices, as follows:

$$
\Lambda::=\mathbf{N}|(\Lambda \Lambda)|(\lambda \Lambda)
$$

We use a, b, \ldots to range over Λ and m, n, \ldots to range over \mathbf{N} (positive natural numbers). Furthermore, we assume the usual conventions about parentheses and avoid them when no confusion occurs. Throughout the whole article, $a=b$ is used to mean that a and b are syntactically identical. We say that a reduction \rightarrow is compatible on Λ when for all $a, b, c \in \Lambda$, we have $a \rightarrow b$ implies $a c \rightarrow b c, c a \rightarrow c b$ and $\lambda a \rightarrow \lambda b$.

To define β-reduction à la de Bruijn, we must define the substitution of a variable n for a term b in a term a. Therefore, we need to update the term b :

Definition 4

The updating functions $U_{k}^{i}: \Lambda \rightarrow \Lambda$ for $k \geq 0$ and $i \geq 1$ are defined inductively:

$$
\begin{array}{ll}
U_{k}^{i}(a b)=U_{k}^{i}(a) U_{k}^{i}(b) & U_{k}^{i}(\mathrm{n})=\left\{\begin{array}{ll}
\mathrm{n}+\mathrm{i}-1 & \text { if } n>k \\
\mathrm{n} & \text { if } n \leq k
\end{array} .\right. \\
U_{k}^{i}(\lambda a)=\lambda\left(U_{k+1}^{i}(a)\right) &
\end{array}
$$

Now we define the family of meta-substitution functions:

Definition 5

The meta-substitution at level j, for $j \geq 1$, of a term $b \in \Lambda$ in a term $a \in \Lambda$,
denoted $a\{j \leftarrow b\}$, is defined inductively on a as follows:

$$
\begin{array}{ll}
\left(a_{1} a_{2}\right)\{\mathrm{j} \leftarrow b\}=\left(a_{1}\{\mathrm{j} \leftarrow b\}\right)\left(a_{2}\{\mathrm{j} \leftarrow b\}\right) \\
(\lambda a)\{\mathrm{j} \leftarrow b\}=\lambda(a\{\mathrm{j}+1 \leftarrow b\})
\end{array} \quad \mathrm{n}\{\mathrm{j} \leftarrow b\}= \begin{cases}\mathrm{n}-1 & \text { if } n>j \\
U_{0}^{j}(b) & \text { if } n=j \\
\mathrm{n} & \text { if } n<j .\end{cases}
$$

The following lemmas establish the properties of meta-substitution and updating (cf. Kamareddine and Ríos, 1996).

Lemma 5

For $k<n<k+i$ we have: $U_{k}^{i-1}(a)=U_{k}^{i}(a)\{\mathrm{n} \leftarrow b\}$.

Lemma 6

For $l \leq k<l+j$ we have: $U_{k}^{i}\left(U_{l}^{j}(a)\right)=U_{l}^{j+i-1}(a)$.

Lemma 7

For $k+i \leq n$ we have: $\left.U_{k}^{i}(a)\{n \leftarrow b\}=U_{k}^{i}(a \llbracket n-i+1 \leftarrow b\}\right)$.
Lemma 8 (Meta-substitution Lemma)
For $i \leq n$ we have:

$$
a\{\mathrm{i} \leftarrow b\}\{\{\mathrm{n} \leftarrow c\}=a\{\mathrm{n}+1 \leftarrow c\}\{\mathrm{i} \leftarrow b\{\mathrm{n}-\mathrm{i}+1 \leftarrow c\}\}
$$

Lemma 9

For $l+j \leq k+1$ we have: $U_{k}^{i}\left(U_{l}^{j}(a)\right)=U_{l}^{j}\left(U_{k+1-j}^{i}(a)\right)$.
Lemma 10 (Distribution Lemma)
For $n \leq k+1$ we have:

$$
U_{k}^{i}(a\{\mathrm{n} \leftarrow b\})=U_{k+1}^{i}(a)\left\{\mathrm{n} \leftarrow U_{k-n+1}^{i}(b)\right\} .
$$

Definition 6

β-reduction is the least compatible reduction on Λ generated by:

$$
(\beta \text {-rule }) \quad(\lambda a) b \rightarrow_{\beta} a\{1 \leftarrow b\}
$$

The λ-calculus (à la de Bruijn), is the reduction system whose only rewriting rule is β.

Theorem 1
The λ-calculus à la de Bruijn is confluent.

2.2 The λs-calculus

The subjacent idea in the mechanism of λs is the explicit handling of the metaoperators given in Definitions 4 and 5. Therefore, the syntax of the λs-calculus is obtained by adding two families of operators:

- $\left\{\sigma^{j}\right\}_{j \geq 1}$, which denotes the explicit substitution operators. Each σ^{j} is an infix operator of arity 2 and $a \sigma^{j} b$ has as intuitive meaning the term a where all free occurrences of the variable corresponding to the de Bruijn index j are to be substituted by the term b.
- $\left\{\varphi_{k}^{i}\right\}_{k \geq 0} i \geq 1$, which denotes the updating functions necessary when working with de Bruijn numbers to fix the variables of the term to be substituted.

Fig. 2. The λs-calculus.

Definition 7

The set of terms, noted Λs, of the λs-calculus is given as follows:

$$
\Lambda s::=\mathbb{N}|\Lambda s \Lambda s| \lambda \Lambda s\left|\Lambda s \sigma^{j} \Lambda s\right| \varphi_{k}^{i} \Lambda s \quad \text { where } j, i \geq 1, k \geq 0
$$

We take a, b, c to range over Λs. A term containing neither σ 's nor φ 's is called a pure term. Λ denotes the set of pure terms.

A compatible reduction \rightarrow on Λs is such that for all $a, b, c \in \Lambda s$, if $a \rightarrow b$ then $a c \rightarrow b c, c a \rightarrow c b, \lambda a \rightarrow \lambda b, a \sigma^{j} c \rightarrow b \sigma^{j} c, c \sigma^{j} a \rightarrow c \sigma^{j} b$ and $\varphi_{k}^{i} a \rightarrow \varphi_{k}^{i} b$.

We include, besides the rule mimicking the β-rule (σ-generation), a set of rules which are the equations in Definitions 4 and 5 orientated from left to right.

Definition 8

The λs-calculus is the reduction system $\left(\Lambda s, \rightarrow_{\lambda s}\right)$, where $\rightarrow_{\lambda s}$ is the least compatible reduction on Λs generated by the rules given in figure 2 .

We use λs to denote this set of rules. The subcalculus of substitutions associated with the λs-calculus is the reduction system generated by the set of rules $s=$ $\lambda s-\{\sigma$-generation $\}$ and we call it the s-calculus.

The σ-generation rule starts β-reduction by generating a substitution operator at the first level $\left(\sigma^{1}\right)$. The σ-app and $\sigma-\lambda$ rules allow this operator to travel throughout the term until its arrival to the variables. If a variable should be affected by the substitution, the σ-destruction rules (case $j=n$) carry out the substitution of the variable by the updated term, thus introducing the updating operators. Finally, the other rules compute the updating.

We state now the main properties of the λs-calculus (cf. Kamareddine and Ríos, 1995a, b)

Theorem 2 (SN and confluence of s)
The s-calculus is strongly normalising and confluent on Λs. Hence, every term a has a unique s-normal form denoted $s(a)$.

Lemma 11
The set of s-normal forms is exactly Λ.
Lemma 12
For all $a, b \in \Lambda s$ we have:
$s(a b)=s(a) s(b), \quad s(\lambda a)=\lambda(s(a)), \quad s\left(\varphi_{k}^{i} a\right)=U_{k}^{i}(s(a)), \quad s\left(a \sigma^{j} b\right)=s(a)\{j \leftarrow s(b)\}$.

Lemma 13

Let $a, b \in \Lambda s$, if $a \rightarrow_{\sigma-g e n} b$ then $s(a) \rightarrow_{\beta} s(b)$.
Corollary 2
Let $a, b \in \Lambda s$, if $a \rightarrow{ }_{\lambda s} b$ then $s(a) \rightarrow_{\beta} s(b)$.
Corollary 3 (Soundness)
Let $a, b \in \Lambda$, if $a \rightarrow_{\lambda s} b$ then $a \rightarrow_{\beta} b$.
Lemma 14 (Simulation of β-reduction)
Let $a, b \in \Lambda$, if $a \rightarrow_{\beta} b$ then $a \rightarrow_{\lambda s} b$.
Theorem 3 (Confluence of λs)
The λs-calculus is confluent on Λs.
Theorem 4 (Preservation of $S N$)
Pure terms which are strongly normalising in the λ-calculus are also strongly normalising in the λs-calculus.

Theorem 5 (SN of typed terms)
Every well typed term is strongly normalising in the simply typed λs-calculus.

2.3 The λs_{e}-calculus

We introduce the open terms and the rules added to λs to obtain the λs_{e}-calculus.

Definition 9

The set of open terms, noted $\Lambda s_{o p}$ is given as follows:
$\Lambda s_{o p}::=\mathbf{V}|\mathbf{N}| \Lambda s_{o p} \Lambda s_{o p}\left|\lambda \Lambda s_{o p}\right| \Lambda s_{o p} \sigma^{j} \Lambda s_{o p} \mid \varphi_{k}^{i} \Lambda s_{o p} \quad$ where $j, i \geq 1, k \geq 0$ and where \mathbf{V} stands for a set of variables, over which X, Y, \ldots range. We take a, b, c to range over $\Lambda s_{o p}$. Furthermore, pure terms and compatibility are defined as for Λs.

Working with open terms one loses confluence as shown by the following counterexample:

$$
((\lambda X) Y) \sigma^{1} 1 \rightarrow\left(X \sigma^{1} Y\right) \sigma^{1} 1 \quad((\lambda X) Y) \sigma^{1} 1 \rightarrow\left((\lambda X) \sigma^{1} 1\right)\left(Y \sigma^{1} 1\right)
$$

and $\left(X \sigma^{1} Y\right) \sigma^{1} 1$ and $\left((\lambda X) \sigma^{1} 1\right)\left(Y \sigma^{1} 1\right)$ have no common reduct. Moreover, the above example shows that even local confluence is lost. But as $\left((\lambda X) \sigma^{1} 1\right)\left(Y \sigma^{1} 1\right) \rightarrow$

Fig. 3. The new rules of the λs_{e}-calculus.
$\rightarrow\left(X \sigma^{2} 1\right) \sigma^{1}\left(Y \sigma^{1} 1\right)$, the solution to the problem seems at hand if one has in mind the properties of meta-substitutions and updating functions of the λ-calculus in the Bruijn notation (cf. Lemmas 5-10). These properties are equalities which can be given a suitable orientation and the new rules, thus obtained, added to λs give origin to a rewriting system which happens to be locally confluent (cf. Kamareddine and Ríos, 1995b). For instance, the rule corresponding to the Metasubstitution Lemma (Lemma 8) is the σ - σ-transition rule given in figure 3. The addition of this rule solves the critical pair in our counterexample, since now we have $\left(X \sigma^{1} Y\right) \sigma^{1} 1 \rightarrow\left(X \sigma^{2} 1\right) \sigma^{1}\left(Y \sigma^{1} 1\right)$.

Definition 10

The set of rules λs_{e} is obtained by adding the rules in figure 3 to the rules of the λs-calculus (figure 2). The λs_{e}-calculus is the reduction system $\left(\Lambda s_{o p}, \rightarrow{ }_{\lambda s_{e}}\right)$ where $\rightarrow \lambda s_{e}$ is the least compatible reduction on $\Lambda s_{o p}$ generated by the set of rules λs_{e}.
The subcalculus of substitutions associated with the λs_{e}-calculus is the rewriting system generated by the set of rules $s_{e}=\lambda s_{e}-\{\sigma$-generation $\}$ and we call it $s_{e^{-}}$ calculus.

We call the rules whose name start with σ, σ-rules. We define similarly the φ-rules.
Note that when transcribing Lemmas 5-10 as rewriting rules, instead of keeping the condition $l+j \leq k+1$ for rule φ - φ-transition 1 , we restricted it to $l+j \leq k$. The reason for this is that for the extreme case $i=1, j=1$ and $l+j=k+1$ we would have:

$$
\varphi_{k}^{i}\left(\varphi_{l}^{j}(a)\right) \rightarrow \varphi_{l}^{j}\left(\varphi_{k+1-j}^{i}(a)\right) \rightarrow \varphi_{k+1-j}^{i}\left(\varphi_{l+1-i}^{j}(a)=\varphi_{k}^{i}\left(\varphi_{l}^{j}(a)\right),\right.
$$

giving an infinite loop which would destroy strong normalisation. Furthermore, for $l+j=k+1$ we have φ - φ-transition 2 that allows us to reduce $\varphi_{k}^{i}\left(\varphi_{l}^{j}(a)\right)$. Note also that for $a, b \in \Lambda s_{o p}$:

1. $\left(\varphi_{k}^{i} a\right) \sigma^{j} b$ has a redex at the root iff $j>k$.
2. $\varphi_{k}^{i}\left(\varphi_{l}^{j} a\right)$ has a redex at the root iff $k \geq l$.

Finally, local confluence for λs_{e} is obtained by analysis of critical pairs (cf. Kamareddine and Ríos, 1995b):

Theorem 6 (Local confluence)
The $s_{e^{-}}$and λs_{e}-calculi are locally confluent on $\Lambda s_{o p}$.

We give now further motivation for the rules of λs_{e}. Motivation behind the rules of figure 2 was given in Kamareddine and Ríos (1995b) and motivation for explicit substitution rules that belong to the same family can be found in Kamareddine and Nederpelt (1995). Hence, we concentrate on the rules of figure 3.

We gave already some motivation for the σ - σ-transition rule where we said that such a rule helps to re-establish confluence. The other rules were also introduced as a necessity to close critical pairs. Note now the following symetries. There are:

- two 'simplification' rules: $\sigma-\varphi-$ tr. 1 and $\varphi-\varphi-\operatorname{tr} .2$;
- two 'distribution' rules: $\sigma-\sigma-\operatorname{tr}$. and $\varphi-\sigma-\operatorname{tr}$.;
- two 'commutation' rules: $\sigma-\varphi-$ tr. 2 and $\varphi-\varphi-$ tr. 1 .

The intuitive interpretation of φ_{k}^{i}, as for U_{k}^{i}, is the updating of the free variables greater than k with an increment of $i-1$. In this informal context one must be careful: if a de Bruijn number corresponds to a free variable, the 'real' number of such a variable may not be its value. For instance, in $1 \lambda 2$, the index 2 corresponds to the 'real' free variable 1 . One may check this fact by translating $1 \lambda 2$ to classical notation: the result is $x \lambda y . x$ where x is the first variable in the free variable list. Note that $\varphi_{1}^{i}(1 \lambda 2) \rightarrow_{s} 1 \lambda 2$ whereas $\varphi_{0}^{4}(1 \lambda 2) \rightarrow_{s} 4 \lambda 5$.

The intuitive interpretation of $a \sigma^{j} b$, like $a\{j \leftarrow b\}$, is the substitution of the free variables (whose 'real' number is j) by the updating $\left(\varphi_{0}^{j}\right)$ of b in a. In the same way that the occurences of the 'real' variable j in λa are the occurrences of the 'real' variable $j+1$ in a, it is easy to check (for the meta-substitutions) that the occurrences of the 'real' variable j in $a \sigma^{i} b$ ($i \leq j$ and i free in a) are the occurrences of $j+1$ in a and the occurrences of $\mathrm{j}-\mathrm{i}+1$ in b.

Now we explain each type of rule:

- The intuitive interpretations given above of φ_{k}^{i} and $a \sigma^{j} b$ explain the distribution rules: the σ^{j} operator in the LHS of $\sigma-\sigma-t r$. must become, on the RHS, σ^{j+1} when acting on a and σ^{j-i+1} when acting on b. In the same way, the transition of φ_{k}^{i} into φ_{k+1}^{i} and φ_{k+1-j}^{i} is explained for the rule $\varphi-\sigma$-tr..
- The simplification rules are also easy to grasp:

To understand the rule φ - φ-transition 2 , let us consider $n>k$. Since $n>l$ and $l+j>k$ implies $n+j-1>k$, we get $\varphi_{k}^{i}\left(\varphi_{l}^{j} \mathrm{n}\right) \rightarrow_{s} \varphi_{k}^{i}(\mathrm{n}+\mathrm{j}-1) \rightarrow_{s}$ $n+j+i-2$. Now this double process of updating can be achieved by a single updating: $\varphi_{k}^{i+j-1} \mathrm{n} \rightarrow_{s} \mathrm{n}+\mathrm{j}+\mathrm{i}-2$, hence our $\varphi-\varphi$-transition 2 rule. The rule $\sigma-\varphi$-tr. 1 may be explained as a void substitution (the variable to be replaced does not occur free). In fact, it is also easy to check (for the meta-updatings) that the occurrences of the 'real' variable j in $\varphi_{k}^{i} a$ are the occurrences of $j-i+1$ in a when $j-i+1>k$. Hence, if $j<k+i$, the variable j cannot occur free in $\varphi_{k}^{i} a$ and therefore the substitution in the LHS of the rule is void. Furthermore the dissapearance of the σ^{j} operator is the reason why the upper index of the φ operator is decreased by 1.

- Finally, both commutation rules postpone an updating: $\sigma-\varphi-\operatorname{tr} .2$ postpones the updating φ_{k}^{i}, whereas φ - φ-tr. 1 postpones the updating φ_{l}^{j}. The transition of σ^{j} into σ^{j-i+1} can be explained by the fact that the occurrences of j in $\varphi_{k}^{i} a$ are
the occurrences of $j-i+1$ in a. Analogously, the transition of φ_{k}^{i} into φ_{k+1-j}^{i} can be understood.

We believe that further intuition, from the point of view of normalisation, can be gained in the next section where we describe the s_{e}-normal forms. We define there the skeletons as certain structures of φ and σ operators. The rules can be viewed as acting on skeletons to 'order' them (what we call normal skeletons should be seen as completely 'ordered' structures). This point of view helps to understand the interaction between the indices of the σ operators and the lower indices of the φ operators.

From a computational point of view these new rules offer the possibility of interaction between σ - and φ-operators, whereas in λs the interaction of these operators was restricted to de Bruijn numbers, applications and abstractions. This restriction is also present in λv and enables the preservation of strong normalisation, whereas this property does not hold in $\lambda \sigma$, where interaction of substitutions is available through the composition operator. We believe that the interaction we propose in λs_{e} is more controlled than the interaction allowed in $\lambda \sigma$, because of the restriction on indices and therefore this stratified interaction would not be harmful from the point of view of preservation. However, the preservation of strong normalisation of λs_{e} is still an open problem.

We note that Lemmas 5-10 were all the knowledge required about metasubstitutions and meta-updatings to prove confluence of λs (cf. Kamareddine and Ríos, 1995a). This knowledge must become available within the calculus if we expect to obtain nice confluence properties. Therefore the new rules about σ - and φ-operators internalise the knowledge in the meta-level about the meta-operators they represent.

We end this section by comparing λs and λs_{e} with $\lambda \sigma, \lambda \sigma_{\Uparrow}, \lambda v$ and $\lambda \zeta$. Since the interpretations ${ }^{1} T$ and S of λs into $\lambda \sigma$ and $\lambda \nu$, respectively, were already presented in Kamareddine and Ríos (1995a); we highlight here the translation into $\lambda \sigma_{\hat{\wedge}}$.

Definition 11

The translation R of λs-terms into $\lambda \sigma_{\Uparrow}$-terms is defined inductively by:

$$
\begin{array}{lll}
R(\mathrm{n})=\mathrm{n} & R(a b)=R(a) R(b) & R\left(a \sigma^{i+1} b\right)=R(a)\left[\Uparrow^{i}(R(b) \cdot i d)\right] \\
& R(\lambda a)=\lambda R(a) & R\left(\varphi_{k}^{i} a\right)=R(a)\left[\Uparrow^{k}\left(\uparrow^{i-1}\right)\right]
\end{array}
$$

where $\uparrow^{0}=i d, \uparrow^{n+1}=\uparrow \circ \uparrow^{n}$ and $\Uparrow^{0}(s)=s, \Uparrow^{n+1}(s)=\Uparrow\left(\Uparrow^{n}(s)\right)$.
The following theorem summarizes the properties of these translations:

Theorem 7

For $a, b \in \Lambda s$ we have:

[^1]1. If $a \rightarrow_{s} b$ then $T(a) \rightarrow_{\sigma}^{+} T(b)$
2. If $a \rightarrow_{\lambda s} b$ then $S(a) \rightarrow{ }_{\lambda \nu}^{+} S(b)$ and $R(a) \rightarrow{ }_{\lambda \sigma_{\phi}}^{+} R(b)$.
3. If $a \rightarrow_{\lambda s_{e}} b$ then $T(a)=\lambda_{\lambda \sigma} T(b), S(a)=\lambda_{\lambda \nu} S(b)$ and $R(a)={ }_{\lambda \sigma_{\Uparrow}} R(b)$.

Proof

By induction on a, using the classical equalities of $\lambda \sigma, \lambda \nu$ and $\lambda \sigma_{\hat{\imath}}$.
Note that, since $\lambda \zeta$ only differs from λv in the treatment of applications, the 'natural' translation of λs_{e} into $\lambda \zeta$ is also S. But, as expected, $a \rightarrow_{\lambda s_{e}} b$ does not imply $S(a)={ }_{\lambda \zeta} S(b)$. The reason for this is that $\lambda \zeta$ is unable to prove $(a b)[s]=a[s] b[s]$, in fact $(\lambda .11)(\lambda .11)[s] \neq \lambda \xi(\lambda .11)[s](\lambda .11)[s]$ because substitutions may be introduced into applications only if the application has a head variable. Therefore, no translation of λs_{e} into $\lambda \zeta$ preserving equalities seems possible.

Finally, we compare the amount of reduction steps needed to perform some β reductions of pure terms in the different calculi. We just give two examples to show that for certain terms $\lambda \sigma$ and $\lambda \nu$ are more efficient than λs whereas there are terms for which λs is the most efficient. For instance, the term $(\lambda .1) a$ reduces in two steps to a in $\lambda \sigma$ and λv but $2+n$ steps are needed in λs, where n is the length of $\varphi_{0}^{1} a \rightarrow a$. On the other hand, terms of the form $(\lambda \cdots \lambda . n) a$, with $m \lambda$'s and $n>m>1$, can be reduced more efficiently in λs beacuse the single step $n \sigma^{m} a \rightarrow_{s} \mathrm{n}-1$ requires $2 m-1$ steps in λv and much more in $\lambda \sigma$. Remark that $\lambda \zeta$ is less efficient than λv every time the new mechanism of application is started.

3 The weak normal forms

The following theorem classifies s_{e}-normal forms (cf. Kamareddine and Ríos, 1995b).
Theorem 8
A term $a \in \Lambda s_{o p}$ is an s_{e}-normal form iff one of the following holds:

- $a \in \mathbf{V} \cup \mathbb{N}$, i.e. a is a variable or a de Bruijn number.
- $a=b c$, where b and c are s_{e}-normal forms.
- $a=\lambda b$, where b is an s_{e}-normal form.
- $a=b \sigma^{j} c$, where c is an s_{e}-nf and b is an s_{e}-nf of the form X, or $d \sigma^{i} e$ with $j<i$, or $\varphi_{k}^{i} d$ with $j \leq k$.
- $a=\varphi_{k}^{i} b$, where b is an s_{e}-nf of the form X, or $c \sigma^{j} d$ with $j>k+1$, or $\varphi_{l}^{j} c$ with $k<l$.

There is a simple way to describe the s_{e}-nf's using item notation (Kamareddine and Nederpelt, 1995). In this notation one writes $a b=(b \delta) a, \lambda a=(\lambda) a, a \sigma^{i} b=\left(b \sigma^{i}\right) a$ and $\varphi_{k}^{i} a=\left(\varphi_{k}^{i}\right) a .(b \delta),(\lambda),\left(c \sigma^{i}\right),\left(\varphi_{k}^{i}\right)$ are called items (δ-, λ-, σ - and φ-items, respectively) and b and c the bodies of the respective items. A sequence of items is called a segment. Note that every term in $\Lambda s_{o p}$ can be written as $\bar{s} n$ or $\bar{s} X$ for some segment \bar{s}.

A normal $\sigma \varphi$-segment \bar{s} is a sequence of σ - and φ-items such that every pair of adjacent items in \bar{s} has one of the following forms:

$$
\begin{gathered}
\left(\varphi_{k}^{i}\right)\left(\varphi_{l}^{j}\right) \text { and } k<l \quad\left(\varphi_{k}^{i}\right)\left(b \sigma^{j}\right) \text { and } k<j-1 \quad\left(b \sigma^{i}\right)\left(c \sigma^{j}\right) \text { and } i<j \\
\left(b \sigma^{j}\right)\left(\varphi_{k}^{i}\right) \text { and } j \leq k .
\end{gathered}
$$

Two examples of normal $\sigma \varphi$-segments are: $\left(\varphi_{3}^{2}\right)\left(\varphi_{4}^{1}\right)\left(\varphi_{7}^{6}\right)\left(b \sigma^{9}\right)\left(c \sigma^{11}\right)\left(\varphi_{11}^{2}\right)\left(\varphi_{16}^{5}\right)$ and $\left(b \sigma^{1}\right)\left(c \sigma^{3}\right)\left(d \sigma^{4}\right)\left(\varphi_{5}^{2}\right)\left(\varphi_{6}^{1}\right)\left(\varphi_{7}^{4}\right)\left(a \sigma^{10}\right)$.
Finally, to make the dependence of a normal $\sigma \varphi$-segment on the bodies of the σ-items explicit, we define the skeleton of a $\sigma \varphi$-segment as the pseudo-segment obtained by removing the bodies of the σ-items. We call it pseudo-segment because it is not a segment as defined above. We write $\overline{\sigma \varphi}\left(a_{1}, \ldots, a_{n}\right)$ to mean the normal $\sigma \varphi$-segment \bar{s} (whose skeleton is $\overline{\sigma \varphi}$) which has $n \sigma$-items such that the body of the i-th (begining from the left) of them is a_{i}. We call such a skeleton a normal skeleton of arity n. For example, the following segments:

$$
\begin{gathered}
\overline{s^{\prime}}=\left(\varphi_{3}^{2}\right)\left(\varphi_{4}^{1}\right)\left(\varphi_{7}^{6}\right)\left(b \sigma^{9}\right)\left(c \sigma^{11}\right)\left(\varphi_{11}^{2}\right)\left(b \sigma^{14}\right)\left(\varphi_{16}^{5}\right) \\
\overline{s^{\prime \prime}}=\left(b \sigma^{1}\right)\left(c \sigma^{3}\right)\left(d \sigma^{4}\right)\left(\varphi_{5}^{2}\right)\left(\varphi_{6}^{1}\right)\left(\varphi_{7}^{4}\right)\left(a \sigma^{10}\right)
\end{gathered}
$$

have the respective skeletons

$$
\begin{gathered}
\overline{\sigma \varphi^{\prime}}=\left(\varphi_{3}^{2}\right)\left(\varphi_{4}^{1}\right)\left(\varphi_{7}^{6}\right)\left(\sigma^{9}\right)\left(\sigma^{11}\right)\left(\varphi_{11}^{2}\right)\left(\sigma^{14}\right)\left(\varphi_{16}^{5}\right) \\
\overline{\sigma \varphi^{\prime \prime}}=\left(\sigma^{1}\right)\left(\sigma^{3}\right)\left(\sigma^{4}\right)\left(\varphi_{5}^{2}\right)\left(\varphi_{6}^{1}\right)\left(\varphi_{7}^{4}\right)\left(\sigma^{10}\right),
\end{gathered}
$$

and are written: $\overline{s^{\prime}}=\overline{\sigma \varphi^{\prime}}(b, c, b)$ and $\overline{s^{\prime \prime}}=\overline{\sigma \varphi^{\prime \prime}}(b, c, d, a)$.
We can now give another description of the s_{e}-nf's, as presented in Kamareddine and Ríos (1995b). This different point of view of the structure of the s_{e}-normal forms will be exploited later.

Theorem 9

The s_{e}-normal forms can be described by the following syntax:

$$
N F::=\mathbf{V}|\mathbf{N}|(N F \delta) N F|(\lambda) N F| \overline{\sigma \varphi}(N F, \ldots, N F) \mathbf{V}
$$

where $\overline{\sigma \varphi}$ are normal skeletons. Terms of the form $\overline{\sigma \varphi}\left(a_{1}, \ldots, a_{n}\right) X$ are called $\sigma \varphi$ normal forms (even if they are not written in item notation).

Now, we define an innermost strategy (before reducing a redex all its subterms must have been already normalised) to calculate normal forms. We do it in three steps:

1. We define a function s_{e}^{\prime} to evaluate a normal form of $\varphi_{k}^{i} d$ for $d \in N F$.
2. We use s_{e}^{\prime} to define a function $s_{e}^{\prime \prime}$ to evaluate a normal form of $d \sigma^{j} e$ for $d, e \in N F$.
3. We use s_{e}^{\prime} and $s_{e}^{\prime \prime}$ to define a function $s_{e}^{* *}$ to evaluate an s_{e}-normal form for $a \in \Lambda s_{o p}$.

Definition 12

Let $d \in N F$, we define $s_{e}^{\prime}\left(\varphi_{k}^{i} d\right)$ by induction on d as follows:

$$
\begin{aligned}
s_{e}^{\prime}\left(\varphi_{k}^{i} X\right) & =\varphi_{k}^{i} X \\
s_{e}^{\prime}\left(\varphi_{k}^{i} \mathrm{n}\right) & = \begin{cases}\mathrm{n}+\mathrm{i}-1 & \text { if } n>k \\
\mathrm{n} & \text { if } n \leq k\end{cases} \\
s_{e}^{\prime}\left(\varphi_{k}^{i}(a b)\right) & =s_{e}^{\prime}\left(\varphi_{k}^{i} a\right) s_{e}^{\prime}\left(\varphi_{k}^{i} b\right) \\
s_{e}^{\prime}\left(\varphi_{k}^{i}(\lambda a)\right) & =\lambda s_{e}^{\prime}\left(\varphi_{k+1}^{i} a\right) \\
s_{e}^{\prime}\left(\varphi_{k}^{i}\left(\varphi_{l}^{j} a\right)\right) & = \begin{cases}\varphi_{k}^{i}\left(\varphi_{l}^{j} a\right) & \text { if } k<l \\
\varphi_{l}^{j+i-1} a & \text { if } l \leq k<l+j \\
\varphi_{l}^{j}\left(s_{e}^{\prime}\left(\varphi_{k+1-j}^{i} a\right)\right) & \text { if } l+j \leq k\end{cases} \\
s_{e}^{\prime}\left(\varphi_{k}^{i}\left(a \sigma^{j} b\right)\right) & = \begin{cases}\varphi_{k}^{i}\left(a \sigma^{j} b\right) & \text { if } j>k+1 \\
s_{e}^{\prime}\left(\varphi_{k+1}^{i} a\right) \sigma^{j} s_{e}^{\prime}\left(\varphi_{k+1-j}^{i} b\right) & \text { if } j \leq k+1\end{cases}
\end{aligned}
$$

Note the analogy of these equalities with the φ-rules.
Definition 13
Let $d, e \in N F$, we define $s_{e}^{\prime \prime}\left(d \sigma^{j} e\right)$ by induction on d as follows:

$$
\begin{aligned}
s_{e}^{\prime \prime}\left(X \sigma^{j} b\right) & =X \sigma^{j} b \\
s_{e}^{\prime \prime}\left(\mathrm{n} \sigma^{j} b\right) & = \begin{cases}\mathrm{n}-1 & \text { if } n>j \\
s_{e}^{\prime}\left(\varphi_{0}^{j} b\right) & \text { if } n=j \\
\mathrm{n} & \text { if } n<j\end{cases} \\
s_{e}^{\prime \prime}\left((a c) \sigma^{j} b\right) & =s_{e}^{\prime \prime}\left(a \sigma^{j} b\right) s_{e}^{\prime \prime}\left(c \sigma^{j} b\right) \\
s_{e}^{\prime \prime}\left((\lambda a) \sigma^{j} b\right) & =\lambda s_{e}^{\prime \prime}\left(a \sigma^{j+1} b\right) \\
s_{e}^{\prime \prime}\left(\left(\varphi_{k}^{i} a\right) \sigma^{j} b\right) & = \begin{cases}\left(\varphi_{k}^{i} a\right) \sigma^{j} b & \text { if } j \leq k \\
\varphi_{k}^{i-1} a & \text { if } k<j<k+i \\
s_{e}^{\prime}\left(\varphi_{k+1}^{i} a\right) \sigma^{k+1} s_{e}^{\prime}\left(\varphi_{0}^{i} b\right) & \text { if } j=k+i \\
\varphi_{k}^{i}\left(s_{e}^{\prime \prime}\left(a \sigma^{j+1-i} b\right)\right) & \text { if } j>k+i\end{cases} \\
s_{e}^{\prime \prime}\left(\left(a \sigma^{i} c\right) \sigma^{j} b\right) & = \begin{cases}\left(a \sigma^{i} c\right) \sigma^{j} b & \text { if } i>j \\
s_{e}^{\prime \prime}\left(a \sigma^{j+1} b\right) \sigma^{i} s_{e}^{\prime \prime}\left(c \sigma^{j+1-i} b\right) & \text { if } i \leq j\end{cases}
\end{aligned}
$$

Remark again the analogy of these equalities with the σ-rules. Only one does not fit the pattern: $s_{e}^{\prime \prime}\left(\left(\varphi_{k}^{i} a\right) \sigma^{j} b\right)=s_{e}^{\prime}\left(\varphi_{k+1}^{i} a\right) \sigma^{k+1} s_{e}^{\prime}\left(\varphi_{0}^{i} b\right)$ when $j=k+i$. The reason for treating this case separately is that only when $j=k+i$ an application of $\sigma-\varphi \operatorname{tr} .2$ creates a new $\varphi-\sigma$ tr.-redex:

$$
\left(\varphi_{k}^{i} a\right) \sigma^{j} b \longrightarrow_{\sigma-\varphi-t r .2} \varphi_{k}^{i}\left(a \sigma^{k+1} b\right) \longrightarrow_{\varphi-\sigma-t r}\left(\varphi_{k+1}^{i} a\right) \sigma^{k+1}\left(\varphi_{0}^{i} b\right)
$$

Definition 14

Let $d \in \Lambda s_{o p}$, we define $s_{e}^{*}(d)$ by induction on d as follows:

$$
\begin{array}{lll}
s_{e}^{*}(X)=X & s_{e}^{*}(a b)=s_{e}^{*}(a) s_{e}^{*}(b) & s_{e}^{*}\left(\varphi_{k}^{i} a\right)=s_{e}^{\prime}\left(\varphi_{k}^{i} s_{e}^{*}(a)\right) \\
s_{e}^{*}(\mathrm{n})=\mathrm{n} & s_{e}^{*}(\lambda a)=\lambda s_{e}^{*}(a) & s_{e}^{*}\left(a \sigma^{j} b\right)=s_{e}^{\prime \prime}\left(s_{e}^{*}(a) \sigma^{j} s_{e}^{*}(b)\right)
\end{array}
$$

To prove weak normalisation of s_{e}, we need to show that s_{e}^{\prime} and $s_{e}^{\prime \prime}$ define normal forms and this requires a powerful inductive hypothesis (see Lemmas 15 and 16) which uses S and N below:

Definition 15
The set of sorts is defined as $\mathscr{S}=\{V, B, \delta, \lambda, \sigma, \varphi\}$. The sort of a term a, denoted $S(a)$, is defined as: $S(X)=V, S(\mathrm{n})=B, S(a b)=\delta, S(\lambda a)=\lambda, S\left(a \sigma^{i} b\right)=\sigma, S\left(\varphi_{k}^{i} a\right)=\varphi$. The number of a term c of sort σ or φ or V, denoted $N(c)$, is defined as $N\left(\varphi_{k}^{i} a\right)=k$, $N\left(a \sigma^{j} b\right)=j$ and $N(X)=0$.
S and N really matter in deciding the existence of redexes:

Remark 1

Let $b \in N F$:

1. If $\varphi_{k}^{i} a \in N F, S(a)=S(b)$ and $N(a)=N(b)$, then $\varphi_{k}^{j} b \in N F$ for every $j \geq 1$.
2. If $a \sigma^{j} c \in N F, S(a)=S(b)$ and $N(a)=N(b)$, then $b \sigma^{j} c \in N F$.
3. If $\varphi_{k}^{i} a \in N F, S(a)=S(b)$ and $N(a)=N(b)$, then $b \sigma^{k+1} c \in N F$ for $c \in N F$.

Proof

By analysis of the redex at the root (cf. (KR96)).

Lemma 15

If $a \in N F$ then $s_{e}^{\prime}\left(\varphi_{k}^{i} a\right)$ is an s_{e}-normal form of $\varphi_{k}^{i} a$. Moreover, if $s_{e}^{\prime}\left(\varphi_{k}^{i} a\right) \neq \varphi_{k}^{i} a$ then $S(a)=S\left(s_{e}^{\prime}\left(\varphi_{k}^{i} a\right)\right)$ and when $S(a)=\sigma$ or $S(a)=\varphi$ we also have $N(a)=N\left(s_{e}^{\prime}\left(\varphi_{k}^{i} a\right)\right)$.

Proof

By induction on a. We only show the case $a=\varphi_{l}^{j} b$ and $l+j \leq k$. Now, $s_{e}^{\prime}\left(\varphi_{k}^{i} a\right)=$ $s_{e}^{\prime}\left(\varphi_{k}^{i}\left(\varphi_{l}^{j} b\right)\right) \stackrel{D 12}{=} \varphi_{l}^{j} s_{e}^{\prime}\left(\varphi_{k+1-j}^{i} b\right)$. If $s_{e}^{\prime}\left(\varphi_{k+1-j}^{i} b\right)=\varphi_{k+1-j}^{i} b$, then $s_{e}^{\prime}\left(\varphi_{k}^{i} a\right)=\varphi_{l}^{j}\left(\varphi_{k+1-j}^{i} b\right)$ wich is in normal form, beacuse $l<k+1-j$. If $s_{e}^{\prime}\left(\varphi_{k+1-j}^{i} b\right) \neq \varphi_{k+1-j}^{i} b$, then our strong inductive hypothesis ensures $S(b)=S\left(s_{e}^{\prime}\left(\varphi_{k+1-j}^{i} b\right)\right)$. Note that, since $a=\varphi_{l}^{j} b \in N F, \mathrm{~b}$ is neither an application nor an abstraction, also b is not a variable (otherwise $s_{e}^{\prime}\left(\varphi_{k+1-j}^{i} b\right)=\varphi_{k+1-j}^{i} b$). Hence b is a $\sigma \varphi$-normal form, and we have $N(b)=N\left(s_{e}^{\prime}\left(\varphi_{k}^{i} b\right)\right)$. We conclude by Remark 1.1 that $\varphi_{l}^{j} s_{e}^{\prime}\left(\varphi_{k}^{i} b\right) \in N F$.

Lemma 16

If $a, b \in N F$ then $s_{e}^{\prime \prime}\left(a \sigma^{j} b\right)$ is an s_{e}-normal form of $a \sigma^{j} b$. Moreover, if $s_{e}^{\prime \prime}\left(a \sigma^{j} b\right) \neq$ $a \sigma^{j} b$ and $a \neq \mathrm{j}$ then:

1. If $a \neq \varphi_{k}^{i} c$ with $i+k=j$ then $S(a)=S\left(s_{e}^{\prime \prime}\left(a \sigma^{j} b\right)\right)$ and when $S(a)=\sigma$ or $S(a)=\varphi$ we have furthermore $N(a)=N\left(s_{e}^{\prime \prime}\left(a \sigma^{j} b\right)\right)$.
2. If $a=\varphi_{k}^{i} c$ with $i+k=j$ then $S\left(s_{e}^{\prime \prime}\left(a \sigma^{j} b\right)\right)=\sigma$ and $N\left(s_{e}^{\prime \prime}\left(a \sigma^{j} b\right)\right)=k+1$.

Proof
By induction on a. The proof is similar to the proof of the previous lemma.
Theorem 10 (Weak normalisation of s_{e})
For every term $a \in \Lambda s_{o p}, s_{e}^{*}(a)$ is an s_{e}-normal form of a. Hence, the s_{e}-calculus is weakly normalising.

Proof

By induction on a using Lemmas 15 and 16 and the fact that left members of s_{e}-rules are neither applications nor abstractions.

We therefore have a strategy to find s_{e}-normal forms. Furthermore, the strategy is innermost indeed: notice that for the out-of-the-pattern case we pointed out after Definition 13 , the strategy remains innermost. In fact, for $j=k+i$, we had:

$$
\left(\varphi_{k}^{i} a\right) \sigma^{j} b \longrightarrow_{\sigma-\varphi-t r .2} \varphi_{k}^{i}\left(a \sigma^{k+1} b\right) \longrightarrow_{\varphi-\sigma-t r}\left(\varphi_{k+1}^{i} a\right) \sigma^{k+1}\left(\varphi_{0}^{i} b\right),
$$

and if $\varphi_{k}^{i} a \in N F$ and $b \in N F$ then, $a \sigma^{k+1} b \in N F$. Therefore, the only redex in $\varphi_{k}^{i}\left(a \sigma^{k+1} b\right)$ is the $\varphi-\sigma$-transition-redex at the root.

If we knew that s_{e} is SN , since we proved local confluence of s_{e} (cf. Theorem 6), we could apply Newman's Lemma to show the confluence of s_{e}. In the abscence of this information, we establish the following proposition.

Proposition 1

Let $a, b \in \Lambda s_{o p}$, if $a \rightarrow_{s_{e}} b$ then $s_{e}^{*}(a)=s_{e}^{*}(b)$.
Proof
Induction on a showing first that $s_{e}^{*}\left(s_{e}^{*}(a)\right)=s_{e}^{*}(a), s_{e}^{*}\left(\varphi_{k}^{i} a\right)=s_{e}^{*}\left(\varphi_{k}^{i} s_{e}^{*}(a)\right)$ and $s_{e}^{*}\left(a \sigma^{j} b\right)=s_{e}^{*}\left(s_{e}^{*}(a) \sigma^{j} s_{e}^{*}(b)\right)$ and that for every rule $L \rightarrow R$ of the s_{e}-calculus, $s_{e}^{*}(L)=s_{e}^{*}(R)$. This last statement should be first proved assuming that all the terms involved in the rules are s_{e}-nfs. This is easy for the s-rules, but for the other rules an enormous amount of elementary calculations is needed. Furthermore, for some rules it is necessary to assume that the fact hold for other rules, hence the importance of the chosen order for the proofs. This order works: $\varphi-\varphi-t r .1, \varphi-\varphi-t r .2, \sigma-\varphi-t r .1$, $\sigma-\varphi-t r .2, \varphi-\sigma-t r ., \sigma-\sigma-t r .$. More details can be found in Kamareddine and Ríos (1996).

Theorem 11 (Confluence of s_{e})
The s_{e}-calculus is confluent both on $\Lambda s_{o p}$ and on Λs.

Proof

Since all the s_{e}-rules preserve closed terms, we just prove the theorem for $\Lambda s_{o p}$.
It is easy to show by induction on the length of the derivation and using Proposition 1 that for $a, b \in \Lambda s_{o p}, a \rightarrow s_{e} b$ implies $s_{e}^{*}(a)=s_{e}^{*}(b)$.

Let us suppose $a \rightarrow_{s_{e}} b$ and $a \rightarrow s_{e} c$, hence $s_{e}^{*}(a)=s_{e}^{*}(b)$ and $s_{e}^{*}(a)=s_{e}^{*}(c)$. The theorem is therefore settled since $b \rightarrow_{s_{e}} s_{e}^{*}(b)$ and $c \rightarrow{ }_{s} s_{e}^{*}(c)$.

Hence, for every term $a \in \Lambda s_{o p}$ there exists (Theorem 10) a unique s_{e}-normal form that we denote $s_{e}(a)$. Hence, $s_{e}(a)=s_{e}^{*}(a)$ for every $a \in \Lambda s_{o p}, s_{e}\left(\varphi_{k}^{i} b\right)=s_{e}^{\prime}\left(\varphi_{k}^{i} b\right)$ for every $b \in N F$ and every $i \geq 1, k \geq 0$ and $s_{e}\left(c \sigma^{j} d\right)=s_{e}^{\prime \prime}\left(c \sigma^{j} d\right)$ for every $c, d \in N F$ and $j \geq 1$.

4 The calculus of the interpretation

Our aim is to apply the GIMES (Corollary 1) to obtain the confluence of the λs_{e}-calculus. Our interpretation function will be s_{e}. Coming back to the notation
of Corollary 1, we intend to apply the GIMES with: $f=s_{e}, R=\rightarrow \lambda_{s_{e}}, R_{1}=\rightarrow_{s_{e}}$ and $R_{2}=\rightarrow_{\sigma-g e n}$. In the previous section we proved Proposition 1 which evidently implies that Condition 2 of the GIMES is satisfied. In this section we are going to introduce the calculus of the interpretation. The set of the interpretation is, of course, $N F$. Therefore, we shall define R^{\prime} on $N F$ and prove that Conditions 1 and 3 of the GIMES are also satisfied. We postpone the confluence of R^{\prime} until the next section.

Definition 16 (The interpretation reduction β^{\prime})
For $a, b \in N F, a \rightarrow_{\beta^{\prime}} b$ iff there exists $d \in \Lambda s_{o p}$ such that $a \rightarrow_{\sigma-g e n} d$ and $b=s_{e}(d)$.
We take $\rightarrow_{\beta^{\prime}}$ as R^{\prime}. Condition 1 of the GIMES is immediate:

Proposition 2

Let $a, b \in N F$, if $a \rightarrow_{\beta^{\prime}} b$ then $a \rightarrow{ }_{\lambda s_{e}} b$.
The following lemmas are needed to prove Proposition 3 which is Condition 3 of the GIMES.

Lemma 17

Let $a, b, c \in N F$.

1. If $a \rightarrow \beta_{\beta^{\prime}} b$ and $c \rightarrow \beta_{\beta^{\prime}} d$ then $a c \rightarrow \beta_{\beta^{\prime}} b d$.
2. If $a \rightarrow \beta^{\prime} b$, then $\lambda a \rightarrow \beta^{\prime} \lambda b$.

Proof

1. Prove first that if $a \rightarrow_{\beta^{\prime}} b$, then $a c \rightarrow_{\beta^{\prime}} b c$ and $c a \rightarrow_{\beta^{\prime}} c b$. Then use a double induction.
2. Prove first that if $a \rightarrow_{\beta^{\prime}} b$, then $\lambda a \rightarrow_{\beta^{\prime}} \lambda b$.

Lemma 18

If a is a $\sigma \varphi$-normal form and $a \rightarrow_{\sigma-g e n} d$ then $S(a)=S\left(s_{e}(d)\right)$ and $N(a)=N\left(s_{e}(d)\right)$ (cf. Definition 15).

Proof
By induction on a using Remark 1 (cf. Kamareddine and Ríos (1996) for details).

Lemma 19

For $a, b, c, e \in N F$ the following hold:

1. If $a \rightarrow \beta_{\beta^{\prime}} b$ and $\varphi_{k}^{i} a \in N F$ then $\varphi_{k}^{i} b \in N F$ and $\varphi_{k}^{i} a \rightarrow_{\beta^{\prime}} \varphi_{k}^{i} b$.
2. If $a \rightarrow_{\beta^{\prime}} b$ and $a \sigma^{j} c \in N F$ then $b \sigma^{j} c \in N F$ and $a \sigma^{j} c \rightarrow \beta^{\prime} b \sigma^{j} c$.
3. If $a \rightarrow_{\beta^{\prime}} b$ and $c \sigma^{j} a \in N F$ then $c \sigma^{j} b \in N F$ and $c \sigma^{j} a \rightarrow_{\beta^{\prime}} c \sigma^{j} b$.
4. If $a \rightarrow \beta_{\beta^{\prime}} b$ and $\varphi_{k}^{i} a \in N F$ then $\varphi_{k}^{i} b \in N F$ and $\varphi_{k}^{i} a \rightarrow \beta_{\beta^{\prime}} \varphi_{k}^{i} b$.
5. If $a \rightarrow \beta_{\beta^{\prime}} b, c \rightarrow \beta_{\beta^{\prime}} e$ and $a \sigma^{j} c \in N F$ then $b \sigma^{j} e \in N F$ and $a \sigma^{j} c \rightarrow \beta_{\beta^{\prime}} b \sigma^{j} e$.

Proof
Using Lemma 18 and Remark 1 (cf. (KR96) for details).

Lemma 20

Let $a, b \in N F$ and $d \in \Lambda s_{o p}$. The following holds:

1. If $a \rightarrow{ }_{\sigma-\text { gen }} d$ then $s_{e}\left(\varphi_{k}^{i} a\right) \rightarrow \beta_{\beta^{\prime}} S_{e}\left(\varphi_{k}^{i} d\right)$.
2. If $a \rightarrow_{\sigma-\text { gen }} d$ then $s_{e}\left(a \sigma^{j} b\right) \rightarrow_{\beta^{\prime}} s_{e}\left(d \sigma^{j} b\right)$.
3. If $b \rightarrow_{\sigma-g e n} d$ then $S_{e}\left(a \sigma^{j} b\right) \rightarrow \beta^{\prime} S_{e}\left(a \sigma^{j} d\right)$.

Proof
By induction on a

1. Use Lemma 19.1, 2 and 3.
2. The previous item is required.
3. Use Lemma 17 and Lemma 19.3, 4 and 5, as well as the first item.

See Kamareddine and Ríos (1996) for more technical details.

Lemma 21

For $a, b, c \in N F$ the following hold:

1. If $a \rightarrow \beta_{\beta^{\prime}} b$ then $S_{e}\left(\varphi_{k}^{i} a\right) \rightarrow \beta_{\beta^{\prime}} S_{e}\left(\varphi_{k}^{i} b\right)$.
2. If $a \rightarrow \beta_{\beta^{\prime}} b$ then $s_{e}\left(a \sigma^{j} c\right) \rightarrow \beta_{\beta^{\prime}} s_{e}\left(b \sigma^{j} c\right)$.
3. If $b \rightarrow \beta^{\prime} c$ then $s_{e}\left(a \sigma^{j} b\right) \rightarrow \beta^{\prime} s_{e}\left(a \sigma^{j} c\right)$.

Proof

Straightforward using Lemma 20.
The following proposition states that Condition 3 of the GIMES is satisfied.

Proposition 3

Let $a, b \in \Lambda s_{o p}$, if $a \rightarrow_{\sigma-g e n} b$ then $s_{e}(a) \rightarrow_{\beta^{\prime}} s_{e}(b)$.
Proof
By induction on a.
$a=c d$: If the reduction is internal $\left(c \rightarrow_{\sigma-g e n} c^{\prime}\right.$ or $\left.d \rightarrow_{\sigma-g e n} d^{\prime}\right)$, use IH and Lemma 17.1. If the reduction is at the root $\left(c=\lambda c^{\prime}\right.$ and $\left.b=c^{\prime} \sigma^{1} d\right)$ we have:
$s_{e}\left(\left(\lambda c^{\prime}\right) d\right)=\left(\lambda s_{e}\left(c^{\prime}\right)\right) s_{e}(d) \rightarrow \beta_{\beta^{\prime}} s_{e}\left(s_{e}\left(c^{\prime}\right) \sigma^{1} s_{e}(d)\right)=s_{e}\left(c^{\prime} \sigma^{1} d\right)$.
$a=\lambda c$: Use the IH and Lemma 17.2.
$a=\varphi_{k}^{i} c:$ Use the IH and Lemma 21.1.
$a=c \sigma^{j} d:$ Use IH and Lemma 21.2 or 21.3, if the reduction is within c or d, respectively.

5 Confluence results

In this section we prove confluence for the calculus of the interpretation $\left(N F, \rightarrow \beta^{\prime}\right)$ in order to obtain the confluence of the λs_{e}-calculus via the GIMES. The confluence of $\left(N F, \rightarrow_{\beta^{\prime}}\right)$ is obtained via a parallelisation à la Tait-Martin-Löf (cf. Barendregt, 1984) defined as follows:

Definition 17

Let $a, b, c, d, a_{1}, \ldots, a_{n} \in N F$. The reduction \Rightarrow is defined on $N F$ by:

$$
\begin{array}{lcc}
(R E F L) & a \Rightarrow a & (S P H I) \\
\overline{\sigma \varphi}\left(a_{1}, \ldots, a_{n}\right) X \Rightarrow \overline{\sigma \varphi}\left(b_{1}, \ldots, b_{n}\right) X \\
(A B S T) & \frac{a \Rightarrow b}{\lambda a \Rightarrow \lambda b} & (B E T A)
\end{array}
$$

We note that $S P H I$ is a rule scheme where $\overline{\sigma \varphi}$ ranges over normal skeletons.
To prove that the transitive closures of $\rightarrow_{\beta^{\prime}}$ and \Rightarrow coincide, we establish the following two lemmas.

Lemma 22

Let $a, b \in N F$, if $a \Rightarrow b$ then $a \rightarrow \beta_{\beta^{\prime}} b$.
Proof
By induction on the length of the deduction $a \Rightarrow b$. We only treat two cases according to the last rule applied in this deduction:

SPHI: $a=\overline{\sigma \varphi}\left(a_{1}, \ldots, a_{n}\right) X, b=\overline{\sigma \varphi}\left(b_{1}, \ldots, b_{n}\right) X$ and $a_{h} \Rightarrow b_{h}$ for $1 \leq h \leq n$.
By IH, $a_{h} \rightarrow \beta^{\prime} b_{h}$, and we use the following (proved by induction on the length of $\overline{\sigma \varphi}$ and using Lemma 19.4 and 5):
Fact: For every normal skeleton $\overline{\sigma \varphi}$ of arity n and for every $a_{h}, b_{h} \in N F(1 \leq$ $h \leq n$), if $a_{h} \rightarrow{ }_{\beta^{\prime}} b_{h}$ for $1 \leq h \leq n$, then $\overline{\sigma \varphi}\left(a_{1}, \ldots, a_{n}\right) X \rightarrow{ }_{\beta^{\prime}} \overline{\sigma \varphi}\left(b_{1}, \ldots, b_{n}\right) X$.
BETA: $a=\left(\lambda a^{\prime}\right) b^{\prime}, b=s_{e}\left(c^{\prime} \sigma^{1} d^{\prime}\right), a^{\prime} \Rightarrow c^{\prime}$ and $b^{\prime} \Rightarrow d^{\prime}$.
By IH, $a^{\prime} \rightarrow{ }_{\beta^{\prime}} c^{\prime}$ and $b^{\prime} \rightarrow{ }_{\beta^{\prime}} d^{\prime}$ and therefore $\left(\lambda a^{\prime}\right) b^{\prime} \rightarrow \beta_{\beta^{\prime}} s_{e}\left(a^{\prime} \sigma^{1} b^{\prime}\right) \xrightarrow{L 21.2} \beta^{\prime}$ $s_{e}\left(c^{\prime} \sigma^{1} b^{\prime}\right) \xrightarrow{L 21.3} \beta^{\prime} s_{e}\left(c^{\prime} \sigma^{1} d^{\prime}\right)$.

Remark 2

For $a_{1}, \ldots, a_{n} \in \Lambda s_{o p}$ and $\overline{\sigma \varphi}$ the skeleton of a normal $\sigma \varphi$-segment, we have $s_{e}\left(\overline{\sigma \varphi}\left(a_{1}, \ldots, a_{n}\right) X\right)=\overline{\sigma \varphi}\left(s_{e}\left(a_{1}\right), \ldots, s_{e}\left(a_{n}\right)\right) X$.

Proof

Because $\overline{\sigma \varphi}\left(a_{1}, \ldots, a_{n}\right) X \rightarrow s_{e} \bar{\sigma}\left(s_{e}\left(a_{1}\right), \ldots, s_{e}\left(a_{n}\right)\right) X$ which is a (unique) $s_{e}-\mathrm{nf}$.
Lemma 23
Let $a \in N F$ and $d \in \Lambda s_{o p}$, if $a \rightarrow_{\sigma-g e n} d$ then $a \Rightarrow s_{e}(d)$.
Proof
By induction on a. As an example, we treat the case $a=\overline{\sigma \varphi}\left(a_{1}, \ldots, a_{n}\right) X$. The reduction must occur within some a_{i}, hence $d=\overline{\sigma \varphi}\left(a_{1}, \ldots, a_{i}^{\prime}, \ldots, a_{n}\right)$ such that $a_{i} \rightarrow_{\sigma-\text { gen }} a_{i}^{\prime}$. By IH, $a_{i} \Rightarrow s_{e}\left(a_{i}^{\prime}\right)$ and, since $a_{h} \Rightarrow a_{h}$, applying rule SPHI:
$a \Rightarrow \overline{\sigma \varphi}\left(a_{1}, \ldots, s_{e}\left(a_{i}^{\prime}\right), \ldots, a_{n}\right) \stackrel{R 2}{=} s_{e}\left(\overline{\sigma \varphi}\left(a_{1}, \ldots, a_{i}^{\prime}, \ldots, a_{n}\right)\right)$

Lemma 24

The transitive closures of $\rightarrow \beta^{\prime}$ and \Rightarrow coincide, i.e. $\rightarrow \beta^{\prime}={ }^{*}$.

Proof

If $a \rightarrow_{\beta^{\prime}} b$ then $a \rightarrow_{\sigma-g e n} d$ and $b=s_{e}(d)$ and, by Lemma 23, $a \Rightarrow b$. Therefore, $\rightarrow \beta_{\beta^{\prime}} \subseteq \Rightarrow$. Now, by Lemma $22, \Rightarrow \subseteq \rightarrow_{\beta^{\prime}}$, hence $\rightarrow \beta_{\beta^{\prime}} \subseteq \Rightarrow \subseteq \rightarrow_{\beta^{\prime}}$. Therefore, $\rightarrow \beta_{\beta^{\prime}}=\Rightarrow^{*}$.

To prove that \Rightarrow is SCR we must first establish some lemmas (see Kamareddine and Ríos (1996) for details).

Lemma 25

For every $i \geq 1, k \geq 0$ and normal skeleton $\overline{\sigma \varphi}$ of arity n, there exists a normal skeleton $\overline{\sigma \varphi_{1}}, m, i_{1}, \ldots, i_{m}, k_{1}, \ldots, k_{m}$ such that $0 \leq m \leq n, i_{h} \geq 1$ and $k_{h} \geq 0$ $(1 \leq h \leq m)$ and such that for every $a_{1}, \ldots, a_{n} \in N F$ the following holds:

$$
s_{e}\left(\varphi_{k}^{i} \overline{\sigma \varphi}\left(a_{1}, \ldots, a_{n}\right) X\right)=\overline{\sigma \varphi_{1}}\left(s_{e}\left(\varphi_{k_{1}}^{i_{1}} a_{1}\right), \ldots, s_{e}\left(\varphi_{k_{m}}^{i_{m}} a_{m}\right), a_{m+1}, \ldots, a_{n}\right) X
$$

Proof
By induction on the length of the skeleton $\overline{\sigma \varphi}$.

Lemma 26

For every $j \geq 1$ and normal skeleton $\overline{\sigma \varphi}$ of arity n, there exists a normal skeleton $\overline{\sigma \varphi}, m, i_{1}, \ldots, i_{m}$ such that $0 \leq m \leq n, i_{h} \geq 1(1 \leq h \leq m)$ and one and only one of the following holds:

- There exist $i_{0} \geq 1, p, i_{m+1}, \ldots, i_{p}, k_{m+1}, \ldots, k_{p}$ such that $m \leq p \leq n, i_{h} \geq 1, k_{h} \geq 0$ $(m+1 \leq h \leq p)$ and for every $a_{1}, \ldots, a_{n}, c \in N F$, the following holds:

$$
\begin{aligned}
& s_{e}\left(\overline{\sigma \varphi}\left(a_{1}, \ldots, a_{n}\right) X \sigma^{j} c\right)= \\
& \overline{\sigma \varphi_{2}}\left(s_{e}\left(b_{1}\right), \ldots, s_{e}\left(b_{m}\right), s_{e}\left(\varphi_{0}^{i_{0}} c\right), s_{e}\left(d_{m+1}\right), \ldots, s_{e}\left(d_{p}\right), a_{p+1}, \ldots, a_{n}\right) X
\end{aligned}
$$

where $b_{l}=a_{l} \sigma^{i_{l}} c$ and $d_{l}=\varphi_{k_{l}}^{i_{l}} a_{l}$

- For every $a_{1}, \ldots, a_{n}, c \in N F$, the following holds:

$$
\begin{aligned}
& s_{e}\left(\overline{\sigma \varphi}\left(a_{1}, \ldots, a_{n}\right) X \sigma^{j} c\right)= \\
& \overline{\sigma \varphi_{2}}\left(s_{e}\left(a_{1} \sigma^{i_{1}} c\right), \ldots, s_{e}\left(a_{m} \sigma^{i_{m}} c\right), c, a_{m+1}, \ldots, a_{n}\right) X
\end{aligned}
$$

- For every $a_{1}, \ldots, a_{n}, c \in N F$, the following holds:

$$
\begin{aligned}
& s_{e}\left(\overline{\sigma \varphi}\left(a_{1}, \ldots, a_{n}\right) X \sigma^{j} c\right)= \\
& \overline{\sigma \varphi_{2}}\left(s_{e}\left(a_{1} \sigma^{i_{1}} c\right), \ldots, s_{e}\left(a_{m} \sigma^{i_{m}} c\right), a_{m+1}, \ldots, a_{n}\right) X
\end{aligned}
$$

Proof

By induction on the length of the skeleton $\overline{\sigma \varphi}$.
Lemma 27
Let $a, b \in N F$, if $a \Rightarrow b$ then $s_{e}\left(\varphi_{k}^{i} a\right) \Rightarrow s_{e}\left(\varphi_{k}^{i} b\right)$.
Proof
By induction on the length of the deduction $a \Rightarrow b$. If the last rule is, e.g.:
SPHI: Hence $a=\overline{\sigma \varphi}\left(a_{1}, \ldots, a_{n}\right) X, b=\overline{\sigma \varphi}\left(b_{1}, \ldots, b_{n}\right) X$ and $a_{h} \Rightarrow b_{h}$ for all h. By Lemma 25 we have
$s_{e}\left(\varphi_{k}^{i} \overline{\sigma \varphi}\left(a_{1}, \ldots, a_{n}\right) X\right)=\overline{\sigma \varphi_{1}}\left(s_{e}\left(\varphi_{k_{1}}^{i_{1}} a_{1}\right), \ldots, s_{e}\left(\varphi_{k_{m}}^{i_{m}} a_{m}\right), a_{m+1}, \ldots, a_{n}\right) X$.
By IH, $s_{e}\left(\varphi_{k_{h}}^{i_{h}} a_{h}\right) \Rightarrow s_{e}\left(\varphi_{k_{h}}^{i_{h}} b_{h}\right)$ for $h \leq m$ and, since $a_{h} \Rightarrow b_{h}$ for all h, in particular
for $m<h \leq n$, we apply rule $S P H I$ to get
$\overline{\sigma \varphi_{1}}\left(s_{e}\left(\varphi_{k_{1}}^{i_{1}} a_{1}\right), \ldots, s_{e}\left(\varphi_{k_{m}}^{i_{m}} a_{m}\right), a_{m+1}, \ldots, a_{n}\right) X \Rightarrow$
$\overline{\sigma \varphi_{1}}\left(s_{e}\left(\varphi_{k_{1}}^{i_{1}} b_{1}\right), \ldots, s_{e}\left(\varphi_{k_{m}}^{i_{m}} b_{m}\right), b_{m+1}, \ldots, b_{n}\right) X \stackrel{L_{25}}{=} s_{e}\left(\varphi_{k}^{i} \overline{\sigma \varphi}\left(b_{1}, \ldots, b_{n}\right) X\right)$
BETA: Hence $a=\left(\lambda a_{1}\right) a_{2}, b=s_{e}\left(b_{1} \sigma^{1} b_{2}\right), a_{1} \Rightarrow b_{1}$ and $a_{2} \Rightarrow b_{2}$.
$s_{e}\left(\varphi_{k}^{i}\left(\left(\lambda a_{1}\right) a_{2}\right)\right)=\left(\lambda s_{e}\left(\varphi_{k+1}^{i} a_{1}\right)\right) s_{e}\left(\varphi_{k}^{i} a_{2}\right) \stackrel{I H}{\Rightarrow} s_{e}\left(s_{e}\left(\varphi_{k+1}^{i} b_{1}\right) \sigma^{1} s_{e}\left(\varphi_{k}^{i} b_{2}\right)\right)=$
$s_{e}\left(\left(\varphi_{k+1}^{i} b_{1}\right) \sigma^{1}\left(\varphi_{k}^{i} b_{2}\right)\right)=s_{e}\left(\varphi_{k}^{i}\left(b_{1} \sigma^{1} b_{2}\right)\right)=s_{e}\left(\varphi_{k}^{i} s_{e}\left(b_{1} \sigma^{1} b_{2}\right)\right)$

Corollary 4
Let $a, b \in N F$ such that $\varphi_{k}^{i} a, \varphi_{k}^{i} b \in N F$, if $a \Rightarrow b$ then $\varphi_{k}^{i} a \Rightarrow \varphi_{k}^{i} b$.

Lemma 28

Let $a, b, c \in N F$, if $b \Rightarrow c$ then $s_{e}\left(a \sigma^{j} b\right) \Rightarrow s_{e}\left(a \sigma^{j} c\right)$.
Proof
By induction on a (see Kamareddine and Ríos (1996) for details).

Lemma 29

Let $a, b, c, d \in N F$, if $a \Rightarrow b$ and $c \Rightarrow d$ then $s_{e}\left(a \sigma^{j} c\right) \Rightarrow s_{e}\left(b \sigma^{j} d\right)$.

Proof

By induction on the length of the deduction $a \Rightarrow b$. If the last rule is, e.g.:
BETA: Hence $a=\left(\lambda a_{1}\right) a_{2}, b=s_{e}\left(b_{1} \sigma^{1} b_{2}\right), a_{1} \Rightarrow b_{1}$ and $a_{2} \Rightarrow b_{2}$.

$$
\begin{aligned}
& s_{e}\left(\left(\left(\lambda a_{1}\right) a_{2}\right) \sigma^{j} c\right)=\left(\lambda s_{e}\left(a_{1} \sigma^{j+1} c\right)\right) s_{e}\left(a_{2} \sigma^{j} c\right) \stackrel{I H}{ } \stackrel{\text { \& BETA }}{\Rightarrow} \\
& s_{e}\left(s_{e}\left(b_{1} \sigma^{j+1} d\right) \sigma^{1} s_{e}\left(b_{2} \sigma^{j} d\right)\right)= \\
& s_{e}\left(\left(b_{1} \sigma^{j+1} d\right) \sigma^{1}\left(b_{2} \sigma^{j} d\right)\right)=s_{e}\left(\left(b_{1} \sigma^{1} b_{2}\right) \sigma^{j} d\right)=s_{e}\left(s_{e}\left(b_{1} \sigma^{1} b_{2}\right) \sigma^{j} d\right)
\end{aligned}
$$

SPHI: Hence $a=\overline{\sigma \varphi}\left(a_{1}, \ldots, a_{n}\right) X, b=\overline{\sigma \varphi}\left(b_{1}, \ldots, b_{n}\right) X, a_{h} \Rightarrow b_{h}(1 \leq h \leq n)$. Lemma 26 offers three possibilities which are treated analogously. We choose the second one:

$$
\begin{aligned}
& s_{e}\left(\overline{\sigma \varphi}\left(a_{1}, \ldots, a_{n}\right) X \sigma^{j} c\right)= \\
& \overline{\sigma \varphi_{2}}\left(s_{e}\left(a_{1} \sigma^{i_{1}} c\right), \ldots, s_{e}\left(a_{m} \sigma^{i_{m}} c\right), c, a_{m+1}, \ldots, a_{n}\right) X
\end{aligned}
$$

$$
\text { by IH, } s_{e}\left(a_{h} \sigma^{i_{h}} c\right) \Rightarrow s_{e}\left(b_{h} \sigma^{i_{h}} d\right) \text { and as } c \Rightarrow d \text { and } a_{h} \Rightarrow b_{h} \text { for } m+1 \leq h \leq n
$$

SPHI gives: $\overline{\sigma \varphi_{2}}\left(s_{e}\left(a_{1} \sigma^{i_{1}} c\right), \ldots, s_{e}\left(a_{m} \sigma^{i_{m}} c\right), c, a_{m+1}, \ldots, a_{n}\right) X \Rightarrow$
$\overline{\sigma \varphi_{2}}\left(s_{e}\left(b_{1} \sigma^{i_{1}} d\right), \ldots, s_{e}\left(b_{m} \sigma^{i_{m}} d\right), d, b_{m+1}, \ldots, b_{n}\right) X$. Finally, by Lemma 26,

$$
\begin{aligned}
& s_{e}\left(\overline{\sigma \varphi}\left(b_{1}, \ldots, b_{n}\right) X \sigma^{j} d\right)= \\
& \frac{\sigma \varphi_{2}}{}\left(s_{e}\left(b_{1} \sigma^{i_{1}} d\right), \ldots, s_{e}\left(b_{m} \sigma^{i_{m}} d\right), d, b_{m+1}, \ldots, b_{n}\right) X .
\end{aligned}
$$

Note that, to check the first option of Lemma 26, Lemma 27 is needed.

Theorem 12
The parallelisation \Rightarrow is strongly confluent.

Proof

By induction on the length of the deduction $a \Rightarrow b$. We just study two cases for the last rule applied in this deduction:

SPHI: Hence $a=\overline{\sigma \varphi}\left(a_{1}, \ldots, a_{n}\right) X, b=\overline{\sigma \varphi}\left(b_{1}, \ldots, b_{n}\right) X$ and $a_{h} \Rightarrow b_{h}$ for all h. Remark that $c=\overline{\sigma \varphi}\left(c_{1}, \ldots, c_{n}\right) X$ and $a_{h} \Rightarrow c_{h}$ for all h, since the last rule to obtain $\overline{\sigma \varphi}\left(a_{1}, \ldots, a_{n}\right) X \Rightarrow c$ must be either SPHI or REFL. By IH there exist d_{h} such that $b_{h} \Rightarrow d_{h}$ and $c_{h} \Rightarrow d_{h}$ for all h. Take $d=\overline{\sigma \varphi}\left(d_{1}, \ldots, d_{n}\right) X$.
BETA: Hence $a=\left(\lambda a_{1}\right) a_{2}, b=s_{e}\left(b_{1} \sigma^{1} b_{2}\right), a_{1} \Rightarrow b_{1}$ and $a_{2} \Rightarrow b_{2}$. There are two possibilities for c according to the last rule applied to obtain $a \Rightarrow c$. We only treat the case where the last rule is BETA: Hence $c=s_{e}\left(c_{1} \sigma^{1} c_{2}\right)$, with $a_{1} \Rightarrow c_{1}$ and $a_{2} \Rightarrow c_{2}$, then by IH there exists d_{1}, d_{2} such that $b_{1} \Rightarrow d_{1}, c_{1} \Rightarrow d_{1}, b_{2} \Rightarrow d_{2}$ and $c_{2} \Rightarrow d_{2}$. Take $d=s_{e}\left(d_{1} \sigma^{1} d_{2}\right)$ and use Lemma 29.

Proposition 4

The calculus of the interpretation $\left(N F, \rightarrow_{\beta^{\prime}}\right)$ is confluent.
Proof
By Theorem 12, \Rightarrow is SCR, and by Lemma 1 , also $\Rightarrow{ }^{*}$ is SCR. Hence, by Lemma 24 , $\rightarrow \beta^{\prime}$ is SCR, and so $\rightarrow \beta^{\prime}$ is confluent.

Theorem 13

The λs_{e}-calculus is confluent on $\Lambda s_{o p}$.

Proof

All the conditions hold (see our four propositions) and the GIMES (Corollary 1) can be applied as proposed at the beginning of Section 4.

Corollary 5

The λs_{e}-calculus is confluent on Λs.
Finally, we show that λs_{e} is correct with respect to the λ-calculus, i.e. that all λs_{e}-derivations beginning and ending with pure terms can also be obtained in the λ-calculus.

Theorem 14 (Soundness)
For $a, b \in \Lambda$, if $a \rightarrow_{\lambda s_{e}} b$ then $a \rightarrow_{\beta} b$.
Proof
First we show by induction on a that for all $a, b \in \Lambda, a \rightarrow_{\beta^{\prime}} b$ iff $a \rightarrow_{\beta} b$ and deduce that $a \rightarrow \beta^{\prime} b$ iff $a \rightarrow{ }_{\beta} b$. Then we show by induction on the length of the derivation $a \rightarrow{ }_{\lambda s_{e}} b$ using Prpositions 1 and 3 that for all $a, b \in \Lambda s_{o p}$, if $a \rightarrow \lambda_{\lambda s_{e}} b$ then $s_{e}(a) \rightarrow{ }_{\beta^{\prime}} s_{e}(b)$. Now we are done because $a, b \in \Lambda \subset N F$.

6 Conclusion

We think that λs is an interesting alternative to calculi of explicit substitutions in the $\lambda \sigma$-style: it preserves SN (cf. Kamareddine and Ríos, 1995a), has a confluent extension on open terms (cf. Theorem 13) and simulates one step β-reduction (cf. Lemma 14). Two important questions are still open:

1. Is the s_{e}-calculus strongly normalising?
2. Does the λs_{e}-calculus preserve SN ?

If the second question could be decided positively, λs_{e} would be the answer to the two open problems in Muñoz Hurtado (1996), namely, a confluent (on open terms) calculus of explicit substitutions that preserves strong normalisation which

1. reduces substitution redexes before β-redexes.
2. admits interaction of substitutions.

We note that SN of s_{e} would also shorten the proof of confluence that we have given here: most of the results of section 3 become trivial in the presence of SN.

Finally, from a computational point of view, the lack of SN is not a major problem, since the s_{e}-calculus has been shown weakly normalising and an effective strategy to evaluate normal forms has been proposed.

However, from a theoretical point of view, the strong normalisation of the $S_{e^{-}}$ calculus is an important feature and seems a very difficult problem which remains still a challenge to the rewriting community. Zantema showed in a private communication, that the $\sigma-\sigma$-transition rule terminates. He considered the infinite Term Rewriting Structure TRS (with this rule), ranging over an infinite signature $\left\{\sigma^{i}, i>0\right\}$. He showed strong normalisation of this TRS (call it S) by showing weak normalisation and using the following lemma (cf. Klop, 1992):

Lemma 30

Any reduction relation \rightarrow on a set T satisfying 1, 2 and 3 is strongly normalising:

1. \rightarrow is weakly normalising.
2. \rightarrow is WCR.
3. \rightarrow is increasing, i.e. there exists $f: T \longrightarrow \mathbb{N}$ s.t. $a \rightarrow b \Rightarrow f(a)<f(b)$.

For $S, 2$ follows from a simple critical pair analysis and 3 can be easily established by choosing $f(a)$ to be the size of a. To show weak normalisation of S, Zantema establishes first two lemmas:

Lemma 31

Let $b=\left(\left(\cdots\left(a \sigma^{i_{1}} a_{1}\right) \sigma^{i_{2}} a_{2}\right) \sigma^{i_{3}} a_{3}\right) \cdots \sigma^{i_{n}} a_{n}$, where a is either a variable or its root is not σ^{q}, and $i_{1}>i_{2}>\ldots>i_{n-1}, i_{n-1} \leq i_{n}$. Then
$b \rightarrow^{+}\left(\left(\cdots\left(a \sigma^{j_{1}} b_{1}\right) \sigma^{j_{2}} b_{2}\right) \sigma^{j_{3}} b_{3}\right) \cdots \sigma^{j_{n}} b_{n}$, where $j_{1}>j_{2}>j_{3} \ldots>j_{n-1}>j_{n}=i_{n-1}$, and for every $r=1, \cdots, n$ either $b_{r}=a_{p}$ for some $p \leq n$ or $b_{r}=a_{p} \sigma^{k} a_{n}$ for some $p<n$ and some k.

Proof

By induction on n. At the top level, $b \rightarrow\left(\left(\ldots . \sigma^{i_{n}+1} a_{n}\right) \sigma^{i_{n-1}}\left(a_{n-1} \sigma^{k} a_{n}\right)\right)$.

Lemma 32

Let $b=\left(\left(. .\left(a \sigma^{i_{1}} a_{1}\right) \sigma^{i_{2}} a_{2}\right) \sigma^{i_{3}} a_{3}\right) \ldots \sigma^{i_{n}} a_{n}$, where a is either a variable or its root is not σ^{q}. Then $b \rightarrow^{*}\left(\left(\cdots\left(a \sigma^{j_{1}} b_{1}\right) \sigma^{j_{2}} b_{2}\right) \sigma^{j_{3}} b_{3}\right) \cdots \sigma^{j_{n}} b_{n}$, where $j_{1}>j_{2}>j_{3} \ldots>j_{n-1}>j_{n}$, and for every $r=1, \cdots, n$ the term b_{r} can be written as
$b_{r}=\left(. .\left(a_{c(r, 1)} \sigma a_{c(r, 2)}\right) \sigma a_{c(r, 2)}\right) \ldots \sigma a_{c(r, n)}$ for $1 \leq c(r, 1)<c(r, 2)<\ldots<c(r, n) \leq n$, where σ stands for arbitrary σ^{k}.

Proof

Induction on n using Lemma 31.
Lemma 33 (Weak normalisation of S)
S is weakly normalising.

Proof

By induction on the size of the term: assume there is a term b not having a normal form for which every term of size smaller than b admits a normal form. Apply Lemma 32 to this term. Note that a and $b_{1}, b_{2}, \ldots b_{n}$ are all smaller than b, hence admit a normal form. Replace a and $b_{1}, b_{2}, \cdots, b_{n}$ by their normal forms in the term $\left(\left(. .\left(a \sigma^{j_{1}} b_{1}\right) \sigma^{j_{2}} b_{2}\right) \sigma^{j_{3}} b_{3}\right) \cdots \sigma^{j_{n}} b_{n}$, yielding a normal form of b, contradiction.

Zantema correctly comments that weak normalisation of this TRS does not follow from weak normalisation of the whole s_{e}-calculus (cf. Theorem 10). We note, moreover, that his proof of weak normalisation differs from ours, which provides an effective strategy to calculate normal forms. Furthermore, Zantema notes that his proof above is the first one that establishes strong normalisation from weak normalisation. Finally, he remarks that Lemma 30 cannot be used to establish strong normalisation of s_{e} from its weak normalisation because the full system is easily proved to be non-increasing.

References

Abadi, M., Cardelli, L., Curien, P.-L. and Lévy, J.-J. (1991) Explicit substitutions. J. Functional Programming, 1(4): 375-416.
Barendregt, H. (1984) The Lambda Calculus: Its Syntax and Semantics (revised edition). North Holland.
Benaissa, Z., Briaud, D., Lescanne, P. and Rouyer-Degli, J. (1995) λv, a calculus of explicit substitutions which preserves strong normalisation. Personal communication.
Bloo, R. (1995) Preservation of Strong Normalisation for Explicit Substitution. Technical Report 95-08, Department of Mathematics and Computing Science, Eindhoven University of Technology.
Curien, P.-L., Hardin, T. and Lévy, J.-J. (1992) Confluence properties of weak and strong calculi of explicit substitutions. Technical Report RR 1617, INRIA, Rocquencourt. To appear in J. ACM.)
Curien, P.-L. (1986) Categorical Combinators, Sequential Algorithms and Functional Programming. Pitman. (Revised edition: Birkhäuser (1993).)
de Bruijn, N. (1972) Lambda-Calculus notation with nameless dummies, a tool for automatic formula manipulation, with application to the Church-Rosser Theorem. Indag. Mat., 34(5): 381-392.
de Bruijn, N.-G. (1978) A namefree lambda calculus with facilities for internal definition of expressions and segments. Technical Report TH-Report 78-WSK-03, Department of Mathematics, Eindhoven University of Technology.
Hardin, T. (1989) Confluence Results for the Pure Strong Categorical Logic CCL: 入-calculi as Subsystems of CCL. Theoretical Computer Science, 65(2): 291-342.
Hardin, T. and Lévy, J.-J. (1989) A Confluent Calculus of Substitutions. France-Japan Artificial Intelligence and Computer Science Symposium, December.
Klop, J.-W. (1992) Term rewriting systems. Handbook of Logic in Computer Science, II.

Kamareddine, F. and Nederpelt, R. P. (1993) On stepwise explicit substitution. Int. J. Foundations of Computer Science, 4(3): 197-240.
Kamareddine, F. and Nederpelt, R. P. (1995) Generalising reduction in the λ-calculus. J. Functional Programming, 5(4): 637-651.
Kamareddine, F. and Ríos, A. (1995a) A λ-calculus à la de Bruijn with explicit substitutions. Proceedings of PLILP'95. Lecture Notes in Computer Science 982, pp. 45-62. SpringerVerlag.
Kamareddine, F. and Ríos, A. (1995b) The λs-calculus: its typed and its extended versions. Technical report, Department of Computing Science, University of Glasgow.
Kamareddine, F. and Ríos, A. (1996) The confluence of the λs_{e}-calculus via a generalized interpretation method. Technical report, Department of Computing Science, University of Glasgow.
Melliès, P.-A. (1995) Typed λ-calculi with explicit substitutions may not terminate. Proceedings of TLCA'95: Lecture Notes in Computer Science 902. Springer-Verlag.
Muñoz Hurtado., C. A. (1996) Confluence and preservation of strong normalisation in an explicit substitutions calculus. Proceedings IEEE Conference on Logics in Computer Science.
Ríos, A. (1993) Contribution à l'étude des λ-calculs avec substitutions explicites. PhD thesis, Université de Paris 7.

[^0]: \dagger We are grateful to the anonymous referees for their comments and suggestions. We are also grateful to Hans Zantema for his interest in the strong normalisation property of our calculus and for his proof of termination of our σ - σ-transition rule. Kamareddine is grateful to Boston University and, in particular, to Assaf Kfoury and Joe Wells for their hospitality during work on this article. This work was carried out under EPSRC grant GR/K25014.

[^1]: ${ }^{1} T$ and S are defined on numbers, abstractions and applications like R in Definition 11. We just recall here the translations of substitutions and updatings:

 $$
 \begin{array}{ll}
 T\left(a \sigma_{i+1}^{i+1} b\right)=T(a)\left[1 \cdot 2 \cdot \ldots \cdot \mathrm{i} \cdot T(b)\left[\uparrow^{i}\right] \cdot \uparrow^{i}\right] & S\left(a \sigma^{i+1} b\right)=S(a)\left[\AA^{i}(S(b) /)\right] \\
 T\left(\varphi_{k}^{i} a\right)=T(a)\left[1 \cdot 2 \cdot \ldots \cdot \mathrm{k} \cdot \uparrow^{k+i-1}\right] & S\left(\varphi_{k}^{i} a\right)=S(a)\left[\uparrow^{k}(\uparrow)\right]^{i-1}
 \end{array}
 $$

 where \uparrow^{n} and \Uparrow^{n} are as in Definition 11 and $a[s]^{0}=a, a[s]^{n+1}=(a[s])[s]^{n}$.

