projections of K on the axis and on the perpendicular through G to $S P$ respectively, $G U=e . K I$.

From the similar triangles $K G I, P Z M, \frac{K I}{K G}=\frac{P M}{P Z}$,

$$
K G U, P S Z, \frac{K G}{G U}=\frac{P Z}{S P}
$$

$$
\text { Therefore } \quad \frac{K I}{G U}=\frac{P M}{S P}=\frac{1}{e}, \quad \text { or } G U=e . K I .
$$

If K is (r, θ) and if $K V$ is perpendicular to $S P$,

$$
K I=r \sin \theta, \quad K V=r \sin (\theta-a)
$$

and from the equation of the conic $S P=\frac{l}{1+e \cos a}$.
Again $\quad G J=G S . \sin \alpha=e . S P \sin \alpha$.
Therefore er $\sin \theta+r \sin (\theta-a)=\frac{e l \sin \alpha}{1+e \cos \alpha}$ or $\quad \frac{e \sin \alpha}{1+e \cos \alpha} \cdot \frac{l}{r}=\sin (\theta-\alpha)+e \sin \theta$
is the equation of the normal.

A Problem in Confocals

By Robert J. T. Bell.

In the standard text books on Analytical Geometry the following problem occurs in the exercises on confocals:

The product of the four normals from a point P to the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ is equal to $\frac{\lambda_{1} \lambda_{2}\left(\lambda_{1}-\lambda_{2}\right)}{a^{2}-b^{2}}$ where λ_{1} and λ_{2} are the parameters of the confocals through P.

In the volume of solutions to the examples in C. Smith's "Conic Sections" two methods of solving the problem are given, the second of which, it is pointed out, is due to A. R. Forsyth. The following method is on much the same lines as Forsyth's, but seems to be more direct.

If P is $(\alpha, \beta), \lambda_{1}, \lambda_{2}$ are the roots of the equation

$$
f(\lambda) \equiv\left(\lambda+a^{2}\right)\left(\lambda+b^{2}\right)-a^{2}\left(\lambda+b^{2}\right)-\beta^{2}\left(\lambda+a^{2}\right)=0,
$$

and $\frac{\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)}{\left(\lambda+a^{2}\right)\left(\lambda+b^{2}\right)} \equiv 1-\frac{a^{2}}{\lambda+a^{2}}-\frac{\beta^{2}}{\lambda+b^{2}}$,
whence, by the rule for partial fractions,

$$
a^{2}=\frac{\left(a^{2}+\lambda_{1}\right)\left(a^{2}+\lambda_{2}\right)}{a^{2}-b^{2}} \text { and } \beta^{2}=-\frac{\left(b^{2}+\lambda_{1}\right)\left(b^{2}+\lambda_{2}\right)}{a^{2}-b^{2}}
$$

If the normal at $Q,\left(x_{1}, y_{1}\right)$ passes through $P,(\alpha, \beta)$,

$$
\begin{equation*}
\frac{a-x_{1}}{x_{1} / a^{2}}=\frac{\beta-y_{1}}{y_{1} / b^{2}}=k \text {, say. } \tag{1}
\end{equation*}
$$

Therefore $\quad x_{1}=\frac{a^{2} a}{a^{2}+k}, \quad y_{1}=\frac{b^{2} \beta}{b^{2}+k}$, and hence

$$
\frac{a^{2} a^{2}}{\left(a^{2}+k\right)^{2}}+\frac{b^{2} \beta^{2}}{\left(b^{2}+k\right)^{2}}=1
$$

or $\quad \phi(k) \equiv\left(k+a^{2}\right)^{2}\left(k+b^{2}\right)^{2}-a^{2} a^{2}\left(b^{2}+k\right)^{2}-b^{2} \beta^{2}\left(a^{2}+k\right)^{2}=0$,

$$
\begin{equation*}
\equiv\left(k-k_{1}\right)\left(k-k_{2}\right)\left(k-k_{3}\right)\left(k-k_{4}\right) \tag{2}
\end{equation*}
$$

so that $k_{1}, k_{2}, k_{3}, k_{4}$ give the first of the four normals from (a, β).
Again if n is the distance from $Q\left(x_{1}, y_{1}\right)$ to $P(\alpha, \beta)$, we have from (1)

$$
k=\frac{\left(a-x_{1}\right)^{2}+\left(\beta-y_{1}\right)^{2}}{\left(a-x_{1}\right) x_{1} / a^{2}+\left(\beta-y_{1}\right) y_{1} / \overline{b^{2}}}=\frac{n^{2}}{\frac{a x_{1}}{a^{2}}+\frac{\beta y^{1}}{b^{2}}}-1 .
$$

Therefore $\quad n^{2}=k\left(\frac{a^{2}}{a^{2}+k}+\frac{\beta^{2}}{b^{2}+k}-1\right)$

$$
=-k \frac{f(k)}{\left(a^{2}+k\right)\left(b^{2}+k\right)}=-k \frac{\left(k-\lambda_{1}\right)\left(k-\lambda_{2}\right)}{\left(a^{2}+k\right)\left(b^{2}+k\right)},
$$

whence $\quad \Pi n^{2}=\frac{k_{1} k_{2} k_{3} k_{4} \Pi\left(\lambda_{1}-k_{1}\right) \cdot \Pi\left(\lambda_{2}-k_{1}\right)}{\Pi\left(a^{2}+k_{1}\right) \cdot \Pi\left(b^{2}+k_{1}\right)}$.

$$
=\frac{k_{1} k_{2} k_{3} k_{4} \phi\left(\lambda_{1}\right) \cdot \phi\left(\lambda_{2}\right)}{\phi\left(-a^{2}\right) \cdot \phi\left(-b^{2}\right)}
$$

But $k_{1} k_{2} k_{3} k_{4}=a^{2} b^{2}\left(a^{2} b^{2}-b^{2} a^{2}-a^{2} \beta^{2}\right)=a^{2} b^{2} \lambda_{1} \lambda_{2} ;$ by (1) and (2);

$$
\phi\left(-a^{2}\right)=-a^{2} a^{2}\left(a^{2}-b^{2}\right)^{2}, \quad \phi\left(-b^{2}\right)=-b^{2} \beta^{2}\left(a^{2}-b^{2}\right)^{2}
$$

$$
\phi\left(\lambda_{1}\right)=\left(\lambda_{1}+a^{2}\right)^{2}\left(\lambda_{1}+b^{2}\right)^{2}-\frac{a^{2}\left(a^{2}+\lambda_{1}\right)\left(a^{2}+\lambda_{2}\right)\left(b^{2}+\lambda_{1}\right)^{2}}{a^{2}+b^{2}}+\frac{b^{2}\left(b^{2}+\lambda_{1}\right)\left(b^{2}+\lambda_{2}\right)\left(a^{2}+\lambda_{1}\right)^{2}}{a^{2}-b^{2}}
$$

$=\left(a^{2}+\lambda_{1}\right)\left(b^{2}+\lambda_{1}\right) \lambda_{1}\left(\lambda_{1}-\lambda_{2}\right)$, on reduction.
Similarly

$$
\phi\left(\lambda_{2}\right)=\left(a^{2}+\lambda_{2}\right)\left(b^{2}+\lambda_{2}\right) \lambda_{2}\left(\lambda_{2}-\lambda_{1}\right), \text { and so }
$$

$$
\phi\left(\lambda_{1}\right) \cdot \phi\left(\lambda_{2}\right)=\left(a^{2}-b^{2}\right)^{2} a^{2} \beta^{2} \lambda_{1} \lambda_{2}\left(\lambda_{1}-\lambda_{2}\right)^{2}
$$

Hence

$$
\Pi n^{2}=\frac{\lambda_{1}^{2} \lambda_{2}^{2}\left(\lambda_{1}-\lambda_{2}\right)^{2}}{\left(a^{2}-b^{2}\right)^{2}}
$$

