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ONE-DIMENSIONAL MONOID RINGS 
WITH «-GENERATED IDEALS 

JAMES S. OKON AND J. PAUL VICKNAIR 

ABSTRACT. A commutative ring R is said to have the «-generator property if each 
ideal of R can be generated by n elements. Rings with the rc-generator property have 
Krull dimension at most one. In this paper we consider the problem of determining 
when a one-dimensional monoid ring R[S] has the «-generator property where R is an 
artinian ring and S is a commutative cancellative monoid. As an application, we explic
itly determine when such monoid rings have the three-generator property. 

Let R be a commutative ring with identity. If an ideal I of R can be generated by « 
elements, then we say that / is n-generated; and, if every ideal of R is «-generated, we 
say that R has the n-generator property. Determining when a group or monoid ring has 
the «-generator property has been studied in [1], [3], [4], [6], [7], [8], [9], [11] and [12]. 
The case n = 1 can be found in [4] or Chapter 19 of [2]. Monoid (and group) rings with 
the two-generator property were determined in [8] and [9]. In this note we consider the 
problem of determining when a one-dimensional monoid ring R[S] has the «-generator 
property where R is an artinian ring and 5 is a commutative cancellative monoid. 

All rings and groups will be commutative and the groups will be written additively. 
All monoids S will be commutative and cancellative and the quotient group of a monoid 
S will be written G(S) while the invertible elements of S will be denoted by T(S). We 
refer to [2] or [5] for elementary properties of group or monoid rings. A typical element 
of R[S] will be written a\XSl + • • • + akX

Sk where a} G R and Sj e S. When we refer to 
(/?, M) being a local ring, we mean R is a noetherian ring with unique maximal ideal M; 
l(M) will denote the length of M. The integers will be denoted by Z while the nonnegative 
integers will be denoted by Z+. 

It is well-known that a ring with the «-generator property has Krull dimension zero 
or one. From this restriction on dimension we have 1 > dim(/?[S]) = dim(/?[G(S)]) = 
dim(/?) + a where a denotes the torsionfree rank of G(S) and dim is Krull dimension. 
Thus, three cases naturally arise: dim(R) = 0, a = 0; dim(R) — 1, a = 0; and dim(/?) = 
0 and a — 1. In this note we are interested in the last case. For the first two cases 
S = G(S) is a finite group and in the last case G(S) — ZÇ&H where H is a finite group. 
Group rings with Krull dimension zero having the «-generator property were studied in 
[9] and determined when the base ring R is a field. Also, it was determined in [9] when 
7?[Z0//] has the «-generator property where R is a field. Note that the arguments needed 
for the second case seem to be of a different nature (see [8, Section 2]) than the other 
two. 
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Assume S is a submonoid of Z+ 0 H with quotient group G(S) = Z(BH where H is 
a finite group. If R = #1 0 • • • 0 /?5 is a direct sum of rings, then the monoid ring R[S] 
has the «-generator property if and only if each Rt[S] has the «-generator property. Thus, 
to determine when R[S] has the «-generator property, it suffices to consider the case of 
when R is an artinian local ring. 

Let S be as defined in the previous paragraph. Section 1 contains results for an arbitrary 
«. In particular, Theorem 1.2 yields necessary and sufficient conditions for the monoid 
ring R[S] to have the «-generator property where R is a local ring and r(5) = 0. In 
Theorem 1.4 we are able, in certain situations, to remove the assumption of r(S) = 0. 
In Section 2 we apply these theorems to determine when the monoid ring R[S] has the 
three-generator property. 

1. The general case. Let S be a cancellative monoid with quotient group G(S) = 
Z(&H where H is a finite group. If <j>: G(S) —> Z is the projection mapping, then we may 
assume that <f>(S) = Z or </>(S) C Z+ since Gfasj) = Z. Also, R[S] is graded by the 
first coordinates of S and the homogeneous elements of degree j are sums of elements of 
the form rXs where r G R and s — (/, «) G Z 0 / / . We begin with a lemma concerning 
submonoids of Z+ 0 H. 

LEMMA 1.1. Let S Ç Z+&H be monoid with quotient group G(S) = Z 0 / / where 
H is a nonzero finite abelian group. Then there exists N > 1 so that («z, «) G S for all 
m>N and h G H. 

PROOF. Write H = Zjn\Z 0 • • 0 Z/ntZ and let i be the exponent of H. We first 
note that (m,0) G 5 for all large m. Indeed, write (1,0) = (« + 1, a) — («, a) where 
(« +1, a), («, a) G S and observe that (/«, 0) = /(«, a) G S and (m +1,0) = (/ —1)(«, a) + 
(« + l ,a) G S. 

Next write (0,1,0, . . . , 0) = si — £2 where si = («, a, 7) and S2 — («, /?, 7) belong to 
S and a — (3 = 1 in Z/n\Z. Thus, (/«, 1,0,..., 0) = si + (/ — 1)̂ 2 G S. Thus, for all large 
m, («z, a, 0 , . . . , 0) G S for all a GZ/n\Z. Since / / is a finite group, the lemma follows. 

Before stating our first theorem we need additional notation. Let (R, M) be an artinian 
local ring with l(M) = m and let u be the smallest integer so that Mu+l = 0. If m > 1, then 
there exist n , . . . , rm G R and 0 < i\ < • • • < iu = m so that r/v_I+i +MV+1,..., riv +AT+1 

is a basis for the R/M-vector space Mv /AT+1 for 1 < v < w. Also, for the proof of the 
following theorem we need to define a congruence ~ on the monoid S. Let ~ be the 
equivalence relation defined on S by si ~ S2 if si = 2̂ + s for some s G r(5). Note that 

r ( S / ~) = 0. See [2, Theorem 4.4]. 

THEOREM 1.2. Assume (R, M) is an artinian local ring and let S be a submonoid of 
Z+(BH with quotient group G(S) = Z(BH where H is a finite abelian group. Let i be the 
smallest positive integer so that (/, «) G S for some h G H. Set l(M) = m. 

(a) Let k be the order of H/ U where r(S) — 0 0 U. If R[S] has the n-generator 
property, then (1 + m)ik < n. 
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(b) Let k be the order ofH. If(l+ m)ik < n, then R[S] has the n-generator property. 

PROOF. Fix g G H so that a = (i,g) G S. Also, let n , . . . , rm G R be the elements 
defined in the paragraph preceding the statement of the theorem. 

(a) Let ~ be the equivalence relation defined above. Then T(S/ ~) = 0, and R[S/ ~] 
has the «-generator property. If we write G(S/ ~) = Z © K for K a finite abelian group, 
then we have H/U ~ K. Thus, we may assume r(5) = 0. 

Suppose (\+m)ik > n. Now write// = {h\,..., hk} and let aj = rm_7+] for 1 <j<m. 
By the above lemma there exists N > 1 so that (/, h) e S for ally > N and h G H. Now 
set 5i = (N9h\),s2 = (N,h2),...,sk = (N,hk),sk+{ = (N+l,/ i i) , . . . , ^ = (N+i-l,hk). 
Let / be the ideal generated by 

a iX\ . . . , a iX 5 *, 

a2X
Si+a,...,a2X

Sik+a, 

YS\+(m-\)a ysik+(m-\)a 
« m A ? • • • » amA. , 

yj1! +ma ySik+ma 

Then / = (/i,... ,/„) for some/i , . . . , /„ G /?[5]. We may write for 1 <j<n 

fi = bj(l, 1)X51 + • • • + fy(/fc, 1)XS* + fy(l, 2)XJl+or + • • • + fy(/fc, 2)X%+a + • • • 

where 

^ l , l ) , . . . , Z ^ M ) G ( a i ) f l ; 

fy(l, 2 ) , . . . , bj{ik, 2) G («i, a2)#; 

bj(l,m),... ,bj(ik,m) G (ai,«2,. • • ,am)R. 

We now consider the matrix 2? formed by using the coefficients of / i , . . . ,/n. If one per
forms the usual row operations (interchanging two rows, replacing a row by a unit (of R) 
multiple of itself, replacing a row with itself added to a unit multiple of another row) on 
B to form B', then the resulting elements of R[S] obtained in the obvious way from the 
rows of B' will still generate /. Now perform the procedure described on page 25 of [6] 
in order to row reduce B. The resulting matrix will have the upper triangular pattern 

\D\ S\2 S\3 S\4 •••! 
0 D2 S23 S24 

0 0 D3 S34 • • • 

where Dj = a;7#, /# is the /& by ik identity matrix, and Suv is an ik by ik diagonal matrix 
whose entries belong to (au)R. Since (1 + m)ik > n, let £ be the (n + l)-st generator in 
the original list of generators of /. Then £ G (f\,... ,/w) leads to a contradiction. 
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(b) As above, write// = {h\,..., hk}. Now suppose there is an ideal / = (/i,... ,fn+\) 
which requires n + 1 generators, and assume that the^ have the form^y = bj\XsJl + 
• • • + bjkX

sJk+ lower degree terms where buv G R, Sjv — (ej,hv) G S and at least one 
member of the &-tuple (bj\,..., bjk) is nonzero. Furthermore, we assume these genera
tors are chosen so that e\ + • • • + en+\ is minimal among all such n + 1 generators of / 
and e\ < • • • < en+\. We now show how to select w = (1 + ra)& + 1 of these generators 
so that we can use elimination techniques to reduce the degree of a generator. Viewing 
e\,..., en+\ modulo /, determine the number of the ej which belong to each of the residue 
classes 0 ,1 , . . . , /— 1. Since at least one of the residue classes contains at least w elements, 
there is a subsequence e^,..., ejw with the property that the difference of any two terms 
of this subsequence is divisible by /. We now restrict our attention to the correspond
ing fil9... ,fjw. For notational convenience we relabel these a s / i , . . . ,/w. Now let tj — 
(ej+\ — ej)/i and set ctj = tjOt where 1 <j<w—l. Then for 2 < j < w we can rearrange 
and relabel suv so that suv — (e\, hv) + oc\ + • • • + aM_i. Of course, we also rearrange and 
relabel the corresponding coefficients of the^ for 2 < j < w. Note that the coefficients 
of / i , . . . ,fw can be written as buv = cuv(0) + cuv(\)r\ + cuv(2)r2 + • • • + cuv(m)rm where 
cuv(j) is zero or a unit of R. Now consider the w by w — 1 matrix C which consists of the 
initial coefficients of the fy,... ,/w: 

rcn(O) cn(l)ri cn(2)r2 ••• Cn(m)rm ci2(0) ••• c2k(m)rm 1 
C2i(0) c2i(l)ri c2i(2)r2 ••• c2i(m)rm c22(0) ••• clk(m)rm 

Uwi(0) cwi(l)ri cwi(2)r2 ••• cw\(m)rm cw2(0) ••• c^(m)rmJ 
We reach a contradiction if the above matrix is equivalent to a matrix with a row of zeros. 
(By equivalent we mean performing the latter two of the three row operations described 
above. Interchanging two rows is not allowed because of the restriction e\ < • • • < ew.) 
Locate the first nonzero entry, if any, in the first column of C and use it to eliminate 
the nonzero entries below it. At this point one must rearrange the entries of the rows 
which have been altered. Indeed, if one considers the sum e\Vj + e2r7 where ei,e2 are 
units of R, then e\ + e2 may be a unit of R, zero or a nonzero nonunit of R. For the 
first two possibilities, no rearranging is needed. However, for the third one, e\r}• + e2r7 = 
€j+\ rj+\ + • • •+emrm where the e 's are either units ofR or 0. Note that for all three cases, the 
terms n , . . . , r7-_i were not involved, i.e., the rearrangement of the rows does not affect 
prior columns. So, proceed to the second column and repeat the process. Because of the 
size of C, we will eventually obtain a row of zeros, and hence arrive at our contradiction. 

The following example illustrates that the lack of the assumption "T(S) = 0" in part (b) 
of the above theorem can lead one to overestimate the number of generators. Let F be a 
field of odd characteristic and let S = ((1,0), (2, l),(O,2))beasubmonoidofZ+0Z/4Z. 
Since m — 0, / = 1 and k — 4, F[S] has the four-generator property; however, F[S] has 
the two-generator property by [8, Theorem 3.1]. 

The following corollary shows that when r(5) = 0 we do obtain necessary and suffi
cient conditions for when R[S] has the ̂ -generator property. Also note that Theorem 5.17 
of [6] is just the case of k = 1 in the following corollary. 
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COROLLARY 1.3. Assume (R, M) is an artinian local ring and let S be a submonoid 

ofZ+ 0 / / with quotient group G(S) — Z(BH where H is a finite abelian group of order k. 

Assume T(S) — 0. Let i be the smallest positive integer so that (i, h) G S for some h G H. 

Set l(M) = m. Then R[S] has the n-generator property if and only if (I + m)ik < n. 

We now generalize an argument found in the proof of [8, Theorem 3.1] to show the 

assumption r(S) = 0 in Corollary 1.3 may be removed under certain circumstances. 

THEOREM 1.4. Let F be afield and S a submonoid ofZ+ 0 H with quotient group 

G(S) — Z@H where H is a finite abelian group whose order is a unit ofF. Let k be the 

order ofHJ U where r(S) = 0 0 U, and i the smallest positive integer so that (/, h) G S 

for some h G H. Then F[S] has the n- generator property if and only ifik < n. 

PROOF. If F[S] has the «-generator property, then apply Theorem 1.2. For the con

verse, F[Z+][H] is an etale F[Z+]-algebra by [8, Lemma 1.5] and is integrally closed by 

[10, p. 75, Proposition 2]. Thus, F[Z+][i/] is the integral closure of F[S]. Choose repre

sentatives hu...,hke H of H lU. Let B = {(u,hv) G S : 0 < u < i - 1,1 < v < k}. 

Then F[Z+][H] = F[S][Xb : b G B], Thus, the integral closure of F[S] is generated 

as a module by ik elements over F[S]. Since F[S] is reduced, F[S] has the /^-generator 

property by [3, Theorem 2.3]. 

2. The case n = 3. In the case of n — 2, Theorem 3.1 of [8] now follows easily 

from the results of Section 1 and [8, Theorem 2.7]. We illustrate this by obtaining the 

corresponding theorems for n — 3. In particular, the following Theorems 2.1 and 2.4 are 

the n — 3 versions of [8, Theorems 2.7 and 3.1], respectively. 

THEOREM 2.1. Let Rhea commutative ring and let S be a cancellative monoid whose 

quotient group G(S) has torsionfree rank one, say G(S) = Z 0 / / where H is a finite group 

of order mo = 2u3vm\ where m\ is not divisible by 2 or 3. If H C S, then R[S] has the 

three-generator property if and only if the following hold. 

(i) R = R\ 0 • • • 0 Rs where each (Rj,Mj) is a local artinian ring with the two-

generator property, 

(ii) mo is a unit in each Rj which is not afield of characteristic 2 or 3. 

(Hi) If any Rj is afield of characteristic 2 or 3, then u or v is less than or equal to 1, 

repectively. 

(iv) IfMj is not principal, then Mj = 0; but ifMj is principal, then M3 = 0. 

(v) One of the following holds: 

(a) S~Z®H. 

(b) S~Z+(&H. 

(c) S ~ T ® H where T is a submonoid ofZ+ \ {1} containing 2, each Rj 

is a field, and if any Rj has characteristic 2 or 3, then u or v equals 0, 

respectively. 

(d) S ^ T 0 H where T is a submonoid ofZ+ \ {1,2} containing 3, each Rj 

is a field, and if any Rj has characteristic 2 or 3, then u or v equals 0, 

respectively. 
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PROOF. Note that if S = G(S), then we are in the case treated by [9, Theorem 5.1]. 
Thus, since R[S] having the three-generator property implies R[G(S)] has the three-
generator property, conditions (i)-(iv) follow from [9, Theorem 5.1]. It suffices to show 
parts (c) and (d) of (v). Consider Rj[T\. By Corollary 1.3, (1 + m)i < 3 where m = l(M) 
and i = min(7 \ {0}). (Here k = 1.) If i = 2 or 3, then m = 0, i.e., Rj is a field. Since 
Rj[H][T\ n a s the three-generator property, apply the above argument to the decomposi
tion of Rj[H] as a direct sum of local rings to obtain that Rj[H] is a direct sum of fields. 
Hence, rao is a unit of Rj. Thus, (c) and (d) hold. 

For the converse, since R[Z] has the three-generator property if and only if the poly
nomial ring R[x] has the three-generator property, if S ~ Z © H or Z+ © H, then we are 
done by [9, Theorem 5.1]. Assume part (c) or (d) of (v) hold. Since the order of His a unit 
ofR, R[H] is a direct sum of fields. Thus, it suffices to show R[T] has the three-generator 
property where R is a field. Using the notation of Corollary 1.3, / = 2 or 3 and m — 0. 
Thus, (1 + m)i < 3 and R[T] has the three-generator property. 

With the next theorem we complete the characterization by assuming H is not con
tained in S. The proof depends upon the next two lemmas, the results of Section 1 and 
Theorem 2.1. When/? = 2 the first lemma is just [8, Lemma 3.4]. Its proof is omitted 
since it requires only minor modifications to the proof of [8, Lemma 3.4]. Note that when 
we say S is irreducible we mean S has no nontrivial finite direct summands. 

LEMMA 2.2. Let S be a submonoid ofZ+ÇBH with quotient group G{S) — Z (B H 
where H is a finite abelian p-group, p a prime. If S is irreducible and 0 © pH Ç T(S), 
then 0 © pH = r{S). 

The next lemma follows from the one above and Theorem 1.2. 

LEMMA 2.3. Let Rbea commutative ring and S a submonoid ofZ+ ®H with quotient 
group G(S) = Z © / / where H is a finite abelian group. If S is irreducible and R[S] has 
the three-generator property, then H — Z j'2^Z or Z/fyZ for some j > 0. Furthermore, if 
T(S) = 0, thenj < 1. 

THEOREM 2.4. Let R be a ring and let S be a submonoid ofZ+($H with quotient 
group G(S) = Z(&H where H is a finite abelian group not contained in S. Then R[S] has 
the three-generator property if and only if the following hold: 

(i) R = Ri © • • • © Rs where Rj is afield, 
(ii) S = S\ © K, K a finite abelian group of order m and either m — 0 or is a unit in 

each oftheRj. 
(Hi) One of the following holds : 

(a) Si is a submonoid ofZ+ © Z/2UZ with u > 1 containing (0,2) and (1, g) 
for some g G Z/2UZ. If some Rj has characteristic 2, then u—\. 

(b) S\ is a submonoid ofZ+ © Z/3"Z with u > 1 containing (0,3) and (1, g) 
for some g G Z/3UZ. If some Rj has characteristic 3, then u—\. 

PROOF. Just as in the proof of [8, Theorem 3.1] we may assume S is irreducible, 
i.e., m = 0 in (ii). For the sufficiency of the conditions we may assume R is a field. If 
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(a) of (iii) holds, then R[S] has the two-generator property by [8, Theorem 3.1]. Now 
assume (b) holds. Depending on whether the characteristic ofR is or is not 3, R[S] has 
the three-generator property by either Corollary 1.3 or Theorem 1.4, respectively. 

For the necessity of (i)—(iii) we have, by Lemma 2.3, H = Z/2UZ or Z/3"Z with 
u > 1 and G(S) = Z 0 H (since we have assumed S is irreducible). Now write R = 
R\ © • • • 0 Rs where each Rj is a local artinian ring and then consider Rj[S/ ~] where 
^ is the equivalence relation defined in Section 1. Using Corollary 1.3 (and its notation) 
we have Rj is a field, / = 1 and G(S/ ~) = Z 0 Z/2Z or Z 0 Z/3Z. Thus, we have the 
description of S found in (iii). It remains only to show if G(S) = Z^Zj 2UZ or Z(BZ/ 3UZ 
with the characteristic of some Rj being 2 or 3, respectively, then u = 1. But this follows 
from Theorem 2.1. 

The authors wish to thank David E. Rush for his helpful comments. 
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