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Abstract

Early life is a sensitive period when microbiota-gut-brain interactions may have important impact on development. This study investigated the
associations of the gutmicrobiota in the first three years of life (two, six, and 12weeks, and one and three years) with problem behavior and executive
functions in N= 64 three-year-old children. Higher relative abundance of Streptococcus at the age of two weeks, as well as its trajectory over time
(including ages two, six and 12 weeks, and one and three years), was related to worse executive functions. Higher relative abundance of
[Ruminococcus] torques group at the age of three years, as well as its trajectory fromone to three years, was associatedwith less internalizing behavior.
Besides, several robust age-specific associationswere identified: higherBifidobacterium relative abundance (age three years)was associatedwithmore
internalizing and externalizing issues; higher Blautia relative abundance (age three years) was linked to less internalizing behavior; and increased
relative abundance of an unidentified Enterobacteriaceae genus (age two weeks) was related to more externalizing behavior. Our findings provide
important longitudinal evidence that early-life gut microbiota may be linked to behavioral and cognitive development in low-risk children.
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Introduction

The human gut harbors a great number of microorganisms, of
which bacteria are an essential part. These microorganisms are
collectively termed the ‘gut microbiota’ (Thursby & Juge, 2017).
Not only has the gut microbiota been involved in many health
outcomes, such as obesity, type 2 diabetes, and irritable bowel
syndrome (Vos et al., 2022), but it has also been linked to mental
health (Cryan et al., 2019). Accumulating evidence from animal
and adult human studies has uncovered several key bidirectional
communication pathways between the gut microbiota and brain
functioning, named the microbiota-gut-brain axis (MGBA)
(Cryan et al., 2019). Remarkably, the MGBA is not only functional
in adults but starts playing an equally or even more important role
at early ages with regard to child behavior and cognition (Cryan

et al., 2019). Both the gut microbiota and the brain develop at a
rapid pace during early life, however, only few studies investigated
associations between the gut microbiota and behavior in such
sensitive periods. Therefore, this study aimed to investigate the
relations of the gut microbiota in the first three years of life with
child problem behavior and executive functions at the age of
three years.

The bidirectional interactions of the MGBA occur through
intricately innervated and highly adaptable neuronal pathways,
and extremely delicate and difficult-to-measure molecular com-
munication systems (Cryan et al., 2019; de Weerth, 2017). For
instance, short-chain fatty acids (SCFAs), mainly produced
through dietary fiber fermentation by the gut microbiota, likely
affect the brain via the vagus nerve, immunity, and the endocrine
system (Dalile et al., 2019). Furthermore, specific microbial taxa
can generate γ-aminobutyric acid (GABA), which is the main
inhibitory neurotransmitter of the central nervous system and
regulates many physiological functions (Mazzoli & Pessione, 2016;
Silva et al., 2020). The symporter that mediates the uptake of
microbiota-derived GABA is present through the gastrointestinal
tract, suggesting that luminal GABA is able to cross the gut barrier
and influence extra-gut targets. Although remaining controversial,
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recent studies suggest the permeability of the blood-brain barrier to
GABA, implying its direct impact on the central nervous system
(Mazzoli & Pessione, 2016). Besides, GABA receptors are widely
expressed in enteric neurons and immune cells, indicating the role
of GABA in regulating the gut-to-brain signaling and neuro-
inflammation (Auteri et al., 2015; Hyland & Cryan, 2010). Such
pathways along the MGBA may partially explain how the gut
microbiota impacts mental health.

The colonization of the gut by microorganisms mostly
commences soon after birth and continues in the following years.
The general consensus is that the gut microbiota develops into an
adult-like configuration around the age of three years (Derrien
et al., 2019), while some studies suggested that this step toward
maturation may take longer than previously thought (Ou et al.,
2022, 2023). Gut microbial disturbances during the early dynamic
and sensitive colonization period can result in subsequent health
problems, such as developing allergies and obesity (Zhuang et al.,
2019). This is explained by the early-life programing theory, which
refers to long-lasting changes and disruptions as a consequence of
environmental exposures at a young age (Tarry-Adkins & Ozanne,
2011). In early life, the brain experiences numerous quick
developments in neuronal proliferation, migration, differentiation,
synaptogenesis, myelination, and apoptosis (Rice & Barone, 2000),
largely impacting brain functioning, cognition, and behavior (Erus
et al., 2015). Simultaneously, the microbiota is becoming
established in the gut of infants and young children (de Weerth,
2017; Wang et al., 2018). Thus, alterations of the gut microbiota in
early life may exert considerable effects on the development of the
brain. Indeed, there is compelling evidence from animal studies
supporting such a hypothesis (Clarke et al., 2014; Leclercq et al.,
2017; O’Mahony et al., 2014; Stilling et al., 2015). This marks early
life as a sensitive time window to obtain and maintain microbiota
composition that will promote normal physical and mental
development. However, we know little about early-life gut
microbiota in association with child behavior and cognition.
Specifically, how the gut microbiota and brain functioning, in
particular host behavior, are interconnected in low-risk commu-
nity infants and children (i.e., generally healthy and neurotypically
developing) is underexplored. Knowledge of these associations,
particularly when uncovered by comprehensive longitudinal
studies, can provide insight into the typical early development
of the gut microbiota in relation to child behavior and cognition.

First studies have found evidence for associations between the
gut microbiota and child behavior and cognition. Regarding
behavior, Loughman et al., reported that increased relative
abundances of taxa belonging to the genus Prevotella at one year
of age were associated with less internalizing behavior at age two
(i.e., problem behavior affecting internal psychological conditions,
characterized by withdrawal, anxiety, and emotional problems
(T. M. Achenbach, 1966)) (Loughman et al., 2020). In our previous
study, we found that the rise of Prevotella 9 in middle childhood
was related to more externalizing behavior at age ten (i.e., problem
behavior exhibited in the external environment, including features
like impulsivity, aggression, and hyperactivity (T. M. Achenbach,
1966)) (Ou et al., 2022). Besides, Laue et al., observed a negative
relation between Streptococcus peroris and internalizing behavior
in girls before school age, and a positive association between
Lachnospiraceae species and externalizing behavior in both
genders (Laue et al., 2021). Furthermore, Lachnospiraceae species
and Veillonella were linked to more internalizing behavior in
preschoolers; interestingly, Veillonella was positively related to

externalizing behavior as well (Van De Wouw et al., 2022).
Additionally, increased alpha diversity was observed in preschool
children with less internalizing (Laue et al., 2021; Van De Wouw
et al., 2022).

Four other studies have found an underlying link between
infant gut microbiota and child cognition (Aatsinki et al., 2020;
Carlson et al., 2017; Rothenberg et al., 2021; Streit et al., 2021;
Tamana et al., 2021). Cognition is fundamental for the develop-
ment of executive functions, including higher-level cognitive
processes like inhibitory control (Diamond, 2013). Specifically, a
cross-sectional study found more Enterobacteriaceae species in
relation to worse cognition at age 45 months (Streit et al., 2021).
Longitudinal research reflected that high relative abundances of
Bacteroides at age one year were related to better cognition at age
two (Carlson et al., 2017; Tamana et al., 2021). Furthermore,
Faecalibacterium at one year of age was associated with reduced
cognitive functions at age two (Carlson et al., 2017). Additionally, a
lower relative abundance of Bifidobacterium and a higher relative
abundance ofClostridium at two-and-a-half months were linked to
increased attention at eight months (Aatsinki et al., 2020).
Moreover, Rothenberg et al., found that children with better
cognition showed enriched Faecalibacterium, Sutterella, and
Clostridium cluster XIVa at age three years. Finally, high alpha
diversity at age one year was reported in two-year-old children
with worse cognition (Carlson et al., 2017).

To conclude, a number of associations have been observed
between the gut microbiota and problem behavior and cognition in
early life, but findings are variable and inconsistent across studies,
mainly due to different methodologies used regarding microbiota
analyses, genomics, epidemiology, and statistics. Furthermore,
most of the previous studies have assessed problem behavior and
cognition by using only one questionnaire of a single reporter. In
the current longitudinal study in a community sample of children,
we investigated the gut microbiota in relation to problem behavior
(i.e., internalizing and externalizing behavior) and executive
functions (i.e., advanced cognitive abilities, including inhibitory
control (Diamond, 2013)) using questionnaires of multiple
reporters and behavioral tasks. We had the following two
hypotheses: (1) relative abundances and alpha diversity (i.e.,
Chao1, Shannon, and phylogenetic diversity) of the gut microbiota
at age three years are associated with reported problem behavior
and executive functions at the same age; (2) relative abundances
and alpha diversity of the gut microbiota at early ages (i.e., two, six,
and 12 weeks, and one year) are associated with reported problem
behavior and executive functions at age three.

We investigated these hypotheses in three ways: (1) as the gut
microbiota is highly dynamic in early life, its composition at
different ages may be differently associated with problem behavior
and executive functions later in life. For this reason, we analyzed
the overall gut microbiota composition in relation to preschool-
aged cognitive measures in an age-specific manner; (2) for the
same reason, relations regarding a single taxon and an alpha
diversity index were analyzed in an age-specific manner; (3) based
on the age-specific analyses, we explored the trajectories of taxa
and alpha diversity parameters in association with mental
outcomes over the whole study period. Figure 1 shows the
workflow of our analyses. Considering that most published
findings were at the genus level, we performed our analyses at
the same taxonomic level. However, given the paucity of studies on
these relations at such early ages, we did not hypothesize specific
associations between microbial taxa and mental outcomes.
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Materials and methods

Participants

The current study is part of the longitudinal Dutch study named
BINGOwhere early factors associated with child development were
investigated. Participants were healthy children and their parents
living in the Netherlands. Detailed in- and exclusion criteria are
described in a previous publication (Hechler et al., 2018). At
baseline, 88 pregnant women were recruited in the Arnhem-
Nijmegen region for the BINGO study; 96% were born in the
Netherlands. Postnatal exclusion criteria included: complications
during pregnancy, gestational age at birth< 37 weeks, birth weight
< 2500 g, 5-min Apgar score < 7, and congenital malformations.
Seventy-seven mothers were followed up after postnatal exclusion.
At three years of child age, 76 families were approached (one drop-
out occurred during the previous measurement rounds). Among
them, two families could not be contacted, six families did not
participate due to time constraints, and one family dropped out
due to personal reasons. Parental demographics did not differ
significantly between participating and nonparticipating families.
This resulted in a final sample of 67 families. Of them, 64 families
participated in home visits when their children reached age three,
and the other three families were unable to join home visits but
filled out questionnaires in this assessment round. Both parents
participated in 54 families (81%, 54/67), and only mothers
participated in 13 families (19%, 13/67).

Ethics

The BINGO study was independently reviewed by the Ethics
Committee of Social Sciences of Radboud University, and no
formal objection to this research was made [ECSW2014–1003–189
and amendment: ECSW–2018–034]. The current study was
preregistered on the Open Science Framework: https://osf.io/
vwgef with amendment: https://osf.io/nyeb4.

Data collection procedure

Collection of child stool samples was done at the ages of two, six,
and 12weeks, and one and three years. Stool samples were stored in
the participant’s freezer (−20°C) until they were collected with a
portable freezer. The stool samples were stored at -80°C at
Radboud University prior to being processed at Laboratory of
Microbiology at Wageningen University & Research.

Home visits took place when the child turned three years old.
Prior to the home visit, mothers and their partners independently
filled in digital questionnaires about their child’s problem behavior
and executive functions. During the home visit, the child
performed inhibitory control tasks. Tasks were video recorded
and afterward rated by two trained observers. Observers were
trained by use of a coding manual specific to each task.

Measures

Gut microbiota composition
Stool samples were collected with a polystyrene 10 mL stool
container. Total DNA was extracted from 0.01 to 0.15 g of stool
sample with 300 μL of Stool Transport and Recovery Buffer by
double bead-beating steps as previously described (Gu et al., 2018).
The variable V4 region of prokaryotic 16S ribosomal RNA (rRNA)
genes was then amplified by PCR in duplicate reactions, by using
primers 515F-n (5’-GTGCCAGCMGCCGCGGTAA) and 806R-n
(5’-GGACTACHVGGGTWTCTAAT) (Gu et al., 2018). The 16S
rRNA gene sequencing was completed on the Illumina HiSeq
platform by Eurofins Genomics Germany GmbH.

Behavioral measures
Parental questionnaires. Mothers and their partners filled in all
questionnaires mentioned below. However, because fewer
partners completed the questionnaires, we used partner reports
for sensitivity analyses to validate the maternal reports by
calculating Kendall correlations between both. The non-

Figure 1. Workflow of the analyses.
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parametric Kendall method was chosen due to its better
performance in handling non-normally distributed data and
tied values (Kendall, 1945). Maternal reports were used as the
final measure of reported problem behavior and executive
functions.

To assess child problem behavior, the Child Behavior
Checklist for ages of one and a half to five years (CBCL, 103
items) (Thomas M. Achenbach & Ruffle, 2000) and the Strengths
and Difficulties questionnaire (SDQ, 25 items) (Goodman, 1997)
were used. The CBCL and the SDQ include internalizing and
externalizing subscales, consisting of items scored on a three-
point Likert scale. The SDQ can detect problem behavior as
accurately as the CBCL does (Goodman & Scott, 1999). Raw
scores for both questionnaires were used as outcome measure in
order to compare and possibly aggregate the measures. However,
given that the Kendall correlations on the same subscales of the
CBCL and the SDQ were lower than 0.5 (Table S1), we included
both instruments separately in the analyses. In both instruments,
higher scores on subscales indicate more problem behavior.

To evaluate child executive functions, the Behavior Rating
Inventory of Executive Function – preschool version (BRIEF-P, 63
items) questionnaire for preschoolers (Sherman & Brooks, 2010)
and the Ratings of Everyday Executive functions (REEF, 77 items)
(Nilsen et al., 2017) were used. The BRIEF-P and the REEF are
scored on three- and four-point scales, respectively. A higher score
on the BRIEF-P indicates worse executive functions, while a higher
score on the REEF indicates better executive functions. The BRIEF-P
is a commonly used questionnaire that measures general executive
functions and does not differentiate between different situations.
The REEF rates executive functions in different situations (e.g.,
executive functions around friends, during grocery shopping, or in
the community) and determines an average score. Raw scores for
both questionnaires were used as outcome measure in order to
compare and possibly aggregate the measures. However, Kendall
correlations between the BRIEF-P and the REEFwere lower than 0.5
(Table S1), hence both instruments were included in the analyses.

Parental questionnaires were considered acceptable and reliable
based on theirωtotal (ranging between 0.65 and 0.94) or Cronbach’s
α values (ranging between 0.83 and 0.96) (Table S2) (Revelle &
Condon, 2019).

Inhibitory control tasks. Six different behavioral tasks with good
reliability (i.e., Flanker, Whisper, Gift Wrap, Gift Delay, Snack
Delay, and Bear Dragon) were performed to measure inhibitory
control as previously stated in detail (Willemsen et al., 2021).
Observer reliability was determined by the Intraclass Correlation
Coefficient (ICC) relying on absolute agreement. The ICC’s for
the inhibitory control tasks ranged from r = 0.84 to r = 0.96 (p <
0.001). Snack Delay and Bear Dragon were excluded from the
analyses due to insufficient variation and low number of children
that passed the practice trials, respectively. The other four tasks
were included in our study. Higher scores on these tasks indicate
better inhibitory control.

Statistical analyses

Pre-processing of sequence data
Sequence data were processed via NG-Tax 2.0 with default settings
(Poncheewin et al., 2020; Ramiro-Garcia et al., 2018), with SILVA
SSU 16S rRNA gene reference database (version 132) (Quast et al.,
2012). The raw amplicon sequence variant (ASV) count data were

used to calculate alpha diversity by the ape (Paradis, 2020) and the
picante (Kembel, 2020) packages. Then, ASV count data were
glommed at the genus level prior to analyses.

Gut microbiota composition and development over the first
three years of life
For descriptive purposes, we first delineated gut microbiota
composition and development in the first three years after birth
(including all samples at the age of two, six, and 12 weeks, and one
and three years). We compared differences in alpha diversity
indices, including Chao1, Shannon, and phylogenetic diversity,
between ages using Wilcoxon rank-sum tests corrected with the
False Discovery Rate (FDR) method. Next, we also compared beta
diversity between ages by conducting Principal Coordinate
Analysis (PCoA) via the vegan package (Oksanen et al., 2020).
Considering that PCoA can be applied to different dissimilarity
and distance metrics that all differ in specific aspects and
corresponding interpretation, we included the Bray-Curtis,
weighted Jaccard (formula= 2*Bray-Curtis dissimilarity / (1 þ
Bray-Curtis dissimilarity)), unweighted UniFrac, weighted
UniFrac, and Aitchison (the Euclidean distance based on
centered-log-transformed ASV count data) methods, to compre-
hensively describe the compositional differences. Except for the
Aitchison distance, we transformed genus-level count data into
relative abundances before calculating other dissimilarity and
distance metrices. Significance was determined as a p value lower
than 0.05 for non-multiple tests and an FDR-adjusted p value lower
than 0.05 for multiple tests.

Additionally, we visualized average and individual relative
abundances at the genus level over the study period by using a bar
plot and a heatmap, respectively. To identify differentially
abundant microbial taxa at the genus level between ages, we
conducted the Linear Discriminant Analysis Effect Size (LEfSe)
method by using the microbiomeMarker R package (Segata et al.,
2011), with a log-transformed Linear Discriminant Analysis
(LDA) score higher than two indicating significance.

Confounding effects
In our original preregistration, we considered child age and diet
quality as potential confounders (i.e., variables that influence both
the independent variables and the outcome). After reconsideration,
both variables were removed as potential confounders due to two
major reasons (amendment can be found via https://osf.io/nyeb4):
(1) low variation in child age (see Figure 2 for notes regarding ages);
(2) our previous study using the same cohort found no significant
associations of diet quality with behavior and executive functions
(Willemsen et al., 2021).Given these considerations, no confounders
were accounted for in the models performed in this study. Note that
potential covariates of the independent variables only (i.e., the gut
microbiota) were not accounted for in downstream analyses (Cinelli
et al., 2020), as they would remove variation in the gut microbiota
data, which was not the purpose of this study. These potential
confounders and covariates as well as their relations to the gut
microbiota and behavioral outcomes are displayed in a directed
acyclic graph (Figure S1).

Data imputation and transformation
Missing values (proportion of missing values is shown in Table
S3) in problem behavior, executive functions, and inhibitory
control were imputed ten times together, by using the predictive
mean match method in the R package mice (Buuren, 2021). The
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imputation model was conducted separately at each age. For
instance, at the age of three, 64 children provided gut microbiota
data, and their missing values in aforementioned behavioral
measures were imputed jointly in one model. No auxiliary
variables (i.e., variables that are not included in analyses, but are
correlated with imputed variables) were considered in the
imputation.

For both random forest models and the Bayesian linear
regression models, genus-level relative abundance data were used.
Numeric variables were standardized (i.e., subtracting the mean
and dividing by the standard deviation) for the Bayesian models
only, as random forest models rely on decision trees for which
standardization is considered unnecessary.

Main analyses
To determine whether gut microbiota composition in the first
three years of life (i.e., two, six, and 12 weeks, and one and three
years) is associated with problem behavior (i.e., internalizing and
externalizing behavior) and executive functions (including
inhibitory control) at age three, we conducted random forest
models and the Bayesian linear regression models (Bürkner, 2017;
Kuhn et al., 2020). Random forest is first of all well suited to analyze
microbiome data as it is appropriate for high-dimensional data,
invariant to scaling of inputs, computationally efficient, and able to
uncover nonlinear relationships (Belk et al., 2018; Louppe, 2014;
Namkung, 2020). The first random forest model was applied to
assess the contribution of the total gut microbiota composition on

Figure 2. Alpha and beta diversity of the gut microbiota in the first three years of life. (a–c) alpha diversity as measured by Chao1, Shannon, and phylogenetic diversity indices.
Wilcoxon rank-sum tests were conducted between ages and corrected with the FDR method (ns, not significant; *, <0.01). Age2w_mean±sd= 2.08 ± 0.28. Age6w_mean
±sd = 6.23 ± 0.55. Age12w_mean±sd = 12.27 ± 0.42. Age1y_mean±sd= 1.04 ± 0.08. Age3y_mean±sd = 3.18 ± 0.10. (d–h) principal coordinate plots of beta diversity, based on
different pairwise dissimilarity (Bray-curtis and weighted Jaccard) and distance (UniFrac and Aitchison) matrices, with points and ellipses colored by ages (Lake blue, two weeks;
orange, six weeks; purple, 12 weeks; Pink, one year; grass green, three years).
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our behavioral outcomes. This was done for the purpose of
exploring the gut microbial community as a whole to account for
the complex interplay between taxa. The following random forest
model was applied as a preselection tool, to select possibly
important taxa from high-dimensional data, before passing them
on to the Bayesian linear regression model. The Bayesian model
was first used to determine age-specific relations (i.e., directions
and strengths) of a selected taxon and an alpha diversity index with
each outcome measure. By looking at the different time points
separately, these analyses can help identify periods of development
that are sensitive to certain microbial compositions. Although not
preregistered, after reconsideration, we decided to perform an
additional analysis to optimize the use of our longitudinal data.
Based on the age-specific results, we implemented a multilevel
Bayesian model to determine whether trajectories of change in the
gut microbiota were associated with the outcome measures at age
three. Figure 1 shows the workflow of our analyses.

Age-specific analyses - Determining the contribution of the
overall gut microbiota to each behavioral measure through
random forest models. Data were imputed ten times: data were
randomly split into a training dataset (including 80% participants)
and a testing dataset (including 20% participants), leading to ten
training datasets and ten corresponding testing datasets. The
procedure of data splitting was applied to children who provided
gut microbiota information at each age separately. To prevent data
leakage, themissing values of behavioral measures were imputed in
training and testing datasets separately (ten times) as described
earlier. Next, we included genus-level relative abundances of
overall gut microbiota as independent variables and one behavioral
measure as an outcome. This step was performed on each
individual behavioral measure separately. To train the model, a
ten-repeated ten-fold cross-validation was conducted on each
complete training dataset including imputed values via the caret
package (Kuhn et al., 2020). Afterward, we used the trained model
to obtain predicted behavioral outcomes of each corresponding
complete testing dataset including imputed values. Similarity
between predicted and actual behavioral outcomes of the complete
testing dataset was measured by the Pearson correlation with its p
value obtained from a permutation test (N= 1000). Considering
that data splitting and imputation resulted in multiple datasets, we
used the median value of the Pearson correlation coefficient from
multiple cases to represent the final similarity. The p value
corresponding to this median was included. P values were adjusted
with FDR methods, with corrected values under 0.05 indicating
significance.

Age-specific analyses - Preselecting potentially important gut
microbiota contributing to each behavioral measure through
random forest models. To identify microbial taxa that contribute
to each behavioral outcome, we measured the change in the
generalized cross-validation (GCV) value in the random forest
model. Larger GCV changes indicate more contribution of the
independent variable to the model, in other words, this analysis
shows which taxa are potentially more important (Kuhn et al.,
2020). Unlike the first random forest model, we did not split the
data but used the whole dataset here, because we prioritized the
structure of the model and a large sample size can provide more
valid information. Missing values of behavioral measures in the
whole dataset were imputed as described in the section on data
imputation and transformation. Then, relative abundances of all
taxa were treated as independent variables with one behavioral

measure as an outcome. This procedure was performed on each
behavioral measure separately. Next, we carried out a ten-repeated
ten-fold cross-validation on each complete dataset containing
imputed data and calculated average GCV values of multiple
datasets acquired from data imputation. Based on the size of
average GCV values, we selected the largest 20 taxa as the top 20 in
importance. These 20 taxa were then passed to the Bayesian linear
regression models to confirm their actual associations with
behavioral measures.

Age-specific analyses – Associating the gut microbiota with
behavioral measures by using Bayesian linear regression models.
We implemented Bayesian linear regressionmodels to estimate the
relations of relative abundances of the selected top 20 microbial
taxa with a prevalence value higher than 10% and alpha diversity
with the child behavioral measures. Compared to standard linear
regression models, the Bayesian linear regression models compute
the probability of different effects rather than simply reporting
single estimates of the “true effect” (Bürkner, 2018).We performed
the Bayesianmodels by using the brmsR package built based on the
programing language Stan (Bürkner, 2017). The brm function
within the brms package was used with the Gaussian distribution
(mean = 0, std= 1) as the prior distribution for all beta coefficients
and the Student’s t-distribution for error distribution (due to better
performance in handling extreme values) (Lange et al., 1989). A list
containing multiple complete datasets including imputed data was
directly passed to the brm function, which in turn generated a
single estimate. Other arguments of the brm function were set as
follows: chains= 4, iter = 2000, and warmup = 1000. Under these
settings, chains converged properly with Rhat values lower than
1.01. Regarding the outcomes of the Bayesian models, the less the
posterior distribution overlaps with zero, the more likely a relation
is positive or negative. In the current study, we defined a relation as
positive or negative with confidence when its 95% credible interval
(CI) excluded the value zero.

Trajectory analyses – Relating the developmental trajectories of
the gut microbiota to behavioral measures through multilevel
Bayesian linear regression models. To make maximum use of
our longitudinal data, we conducted multilevel models to
investigate relations between the developmental trajectories of
the gut microbiota and behavioral measures. The multilevel
models were performed on microbial taxa and alpha diversity with
confident age-specific relations to behavioral measures (i.e., as
determined by the Bayesian linear regressions described above). In
the multilevel models, microbial and behavioral information as
well as the actual age were level 1 variables, and the child was the
level 2 variable. Note that missing values in behavioral measures
and actual age were not imputed and that in these analyses we used
the same distributions and arguments as described earlier. Before
performing a testing model, we first checked the intraclass
correlation (ICC) of an intercept-only model. When the 95% CI of
an ICC excluded the value zero in the intercept-only model,
multilevel strategies were used. A trajectory relation was
considered with confidence when there was no overlap between
its 95% CI and zero.

With respect to taxa, when their prevalence was higher than
10% at five-time points (i.e., two, six, and 12 weeks, and one and
three years), multilevel models were performed on the pooled data
of all ages. When only the first three time points met the 10%
criteria, multilevel models were carried out by pooling samples at
these three ages together.When only the prevalences at the last two
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ages were higher than 10%, multilevel approaches were done in the
pooled aged-one-and-three years samples. Rhat values were used
to check chain convergence.

Results

Population characteristics and descriptives

Demographic data and descriptives of study variables are shown in
Table 1. Roughly 50% of the children were girls. Mothers were
mostly highly educated (86.2%). Scores on the questionnaires
measuring child problem behavior and executive functions did not
differ significantly between mothers and their partners, and they
were significantly positively intercorrelated (Table S1).

Gut microbiota composition and development over the first
three years of life

We analyzed microbial composition of 345 fecal samples taken at
five-time points. A total of 42,056,591 high-quality reads were
obtained after being processed with NG-Tax 2.0. Within these
reads, 220 microbial taxa were identified at the genus level mainly
belonging to the phyla Firmicutes, Actinobacteria, Bacteroidetes,
Proteobacteria, and Verrucomicrobia.

For descriptive purposes, we compared alpha and beta diversity
between ages (Fig. 2; beta-diversity comparisons between the first
three ages and between the last two ages are displayed in Figures S2
and S3) and delineated a general developmental trajectory of the gut
microbiota over time (Fig. 3a). Diversity comparisons reflected
profound compositional differences between infancy and preschool
age. These differences were visualized by the heatmap showing
individual relative abundance data (Figure S4). LEfSe identified a
total of 106 differentially abundantmicrobial taxa between ages (log-
transformed LDA scores higher than two; Table S4). Due to the large
number of significant taxa, only the taxa with log-transformed LDA
scores higher than four are highlighted and displayed in Figure 3b,
such as an unidentified genus within Enterobacteriaceae,
Lactobacillus, Bifidobacterium, Faecalibacterium, and Blautia.

Age-specific analyses

Determining the contribution of the overall gut microbiota to
each behavioral measure through random forest models
To explore whether the overall microbial composition in the first
three years (i.e., at ages two, six, and 12 weeks, and one and three
years) contributes to problem behavior and executive functions at
age three, we compared the similarity between the actual and the
predicted behavioral results. As shown in Table S5, 92% (46/50) of
the models showed insignificant absolute correlation coefficients
(i.e., lower than 0.3), indicating a low likelihood that the gut
microbiota can contribute to behavioral outcomes. Regarding the
8% (4/50) models with correlation coefficients higher than 0.3, the
similarity remained insignificant between the actual and predicted
data, implying the same low likelihood. The random forest models
showed that the overall gut microbiota did not contribute to
problem behavior and executive functions in the present study.

Preselecting potentially important gut microbiota contributing
to each behavioral measure through random forest models
As planned in our preregistration, we preselected the microbial
taxa that may contribute to the behavioral outcomes the most (i.e.,
top important taxa) based on GCV values, by performing separate
random forest models at each age. The top 20 important taxa at the

genus level are depicted in Figures 4 and 5, with the following
observations:

(1) Bacteroides and Clostridium sensu stricto 1 were the most
frequent contributors to CBCL internalizing behavior;

(2) Bacteroides and Bifidobacterium were the most frequent
contributors to CBCL externalizing behavior, SDQ internal-
izing and externalizing behavior, and BRIEF-P executive
functions;

(3) Bacteroides and Blautiawere themost frequent contributors to
REEF executive functions;

(4) Additionally, Bacteroides and Bifidobacterium were the most
frequent contributors to the behavioral measures of inhibitory
control (i.e. Flanker, Whisper, Gift Wrap, and Gift
Delay) (Fig. 6).

Associating the gut microbiota with behavioral measures by
using Bayesian linear regression models
To confirm whether the aforementioned top 20 important
microbial taxa were associated with problem behavior and
executive functions, we performed the Bayesian linear regression
model on each genus-level taxa (relative abundance) and behavior
pair. Table 2 shows the strongest observed associations of these
pairs (i.e. estimates higher than 0.2 or lower than −0.2).

Remarkably, there were several highly present taxa (i.e. prevalent
in more than 80% of the samples, relative abundance higher than
10%) in relation to the outcome measures: Bifidobacterium at age
three years was associated withmore internalizing and externalizing
behavior (est. = 0.27 for both), Blautia at three years was linked to
less internalizing behavior (est. = −0.25), and an unidentified taxa
within the Enterobacteriaceae family was related to more
externalizing behavior (est. = 0.25).

Next, we checked for consensus between the questionnaires
assessing the same construct. For internalizing behavior, there was no
consensus between the associations found for the CBCL and the SDQ.
For externalizing behavior, more Parabacteroides at two weeks were
associated with less externalizing behavior in both the CBCL (est. =
−0.30) and the SDQ (est.=−0.28). An opposite findingwas found for
Butyricicoccus at one year in relation to more externalizing behavior
by the CBCL (est. = 0.23), while at three years, it was associated with
less externalizing behavior by the SDQ (est. = −0.35).

Within the CBCL results, Barnesiella at age three years was
associated with more internalizing (est. = 0.31) and externalizing
behavior (est. = 0.33). Within the SDQ results, Bifidobacterium at
age three years was associated with more internalizing and
externalizing behavior (est. = 0.27 for both).

Regarding executive functions, Ruminococcus 2 at one year and
[Ruminococcus] torques group at age three years, were associated
with better executive functions as measured by the BRIEF-P (est.=
−0.30, note that higher scores on the BRIEF-P indicate worse
executive functions) and worse executive functions measured by
the REEF (est. = −0.24), respectively. Lastly, Halomonas at six
weeks was associated with worse executive functions as measured
by the BRIEF-P (est. = 0.24) and the REEF (est. = −0.24).

Different associations were found for the Flanker and the Gift
Delay tasks. For the Flanker, relations were identified at the age of
six weeks, and one and three years, while for the Gift Wrap,
associations were observed at age one year only. This may be due to
a highly dynamic gut microbiota ecosystem in early life, of which
composition at different ages may be variously linked to executive
functions.
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There were some overlapping associations between the
questionnaires on problem behavior and executive functions.
Parabacteroides at two weeks were associated with better executive
functions (REEF, est. = 0.25), and less externalizing behavior
(CBCL and SDQ, est. = −0.30 and −0.28, respectively). Another
consistent result was Streptococcus at two weeks in relation to
worse executive functions (BRIEF-P, est. = 0.40) and more
externalizing behavior (CBCL, est. = 0.26).

We also measured behavioral relations to alpha diversity,
including Chao 1, Shannon and phylogenetic diversity by using the
Bayesian linear regression models (strongest results are displayed
in Table 3). Interestingly, relations were only observed for alpha
diversity at age two weeks. Higher Chao 1 values were associated
with less internalizing behavior (CBCL) (est. = −0.28).

Furthermore, Chao1 values were in positive relation to better
executive function performance (REEF and Gift Wrap, est. = 0.31
and 0.43, respectively). Lastly, higher phylogenetic diversity at age
two weeks was also linked to better inhibitory control during the
Gift Wrap task (est. = 0.32).

Trajectory analyses

Relating the developmental trajectories of the gut microbiota
to behavioral measures through multilevel Bayesian linear
regression models
Based on the results of age-specific Bayesian models and the 10%
prevalence rule applied to microbial taxa (Table S6), we
identified 16 pairs (including 12 pairs of taxa and behavioral

Table 1. Descriptives of study subjects

Characteristics

Categorical variable Ratio Sample size Completion rate %

Child sex girl: boy= 34:30 64 100

Delivery mode vaginal: C-section = 54:7 61 95

Antibiotic treatment no: yes= 60:3 63 98

Educational level (%) low: middle: high = 0:12.5:87.5 64 100

Numeric variable Mean ± SD Minimum
Lower
quartile Median

Upper
quartile Maximum

Sample
size

Completion
rate %

Age at age three in years 3.2 ± 0.1 3.1 3.1 3.2 3.2 3.5 63 98

Gestational age in weeks 39.8 ± 1.5 35.6 38.9 40 40.9 42.1 63 98

Birth weight in grams 3556 ± 426.2 2570 3270 3480 3885 4445 61 95

Total breastfeeding duration in months 9.6 ± 8.1 0 4 8 13.2 36 64 100

Total exclusive breastfeeding duration in months 3.9 ± 1.7 0 3 4 5 7 53 82

Age at solid food introduction in months 4.6 ± 1 3 4 4 5 7 59 92

Average diet quality at age three 4 ± 1.2 2 3.3 3.9 4.8 7.2 64 100

CBCL_M_Internalizing 7.1 ± 5.7 0 3 5.5 10.8 24 62 97

CBCL_M_Externalizing 11.8 ± 7.3 0 7 12 15.8 31 62 97

SDQ_M_Internalizing 3.6 ± 2.5 0 2 3 5 11 62 97

SDQ_M_Externalizing 5.5 ± 3 1 3.2 5 7 14 62 97

BRIEF-P_M_TotalScore 94.4 ± 15.4 69 83 92 106.5 146 63 98

REEF_M_TotalScore 151.1 ± 31 74 133.2 153 172.8 215 62 97

Flanker 1.6 ± 0.3 0.9 1.4 1.7 1.9 2 47 73

Whisper 1.9 ± 0.3 0.9 1.8 2 2 2 60 94

Gift Wrap 2.2 ± 0.9 0 1.5 2.5 3 3 60 94

Gift Delay 3.9 ± 0.2 2.9 3.9 4 4 4 61 95

CBCL_P_Internalizing 7.5 ± 5.5 0 4 6 11 22 49 96

CBCL_P_Externalizing 12.2 ± 5.8 1 8 12 17 24 49 96

SDQ_P_Internalizing 3.5 ± 2.4 0 2 3 5 9 44 86

SDQ_P_Externalizing 5.4 ± 2.9 0 3 5 7 12 50 98

BRIEF-P_P_TotalScore 97.2 ± 17.8 69 86.2 96 109.2 137 50 98

REEF_P_TotalScore 147 ± 28.9 78 133 148 164 212 49 96

In the assessment round at age three, 64 children, 64mothers, and 51 partners participated in the study. In total, 66, 70, 73, 72, and 64 fecal samples were collected at ages two, six, and 12 weeks,
and one, and three years, respectively. Completion percentages were based on number of participating individuals (i.e., completion rates for mothers are based on 64 participatingmothers, and
completion rates for partners are based on 51 participating partners). P= partner; M=mother; CBCL= the child behavioral checklist; SDQ= the strengths and difficulties questionnaire; BRIEF-P
= behavior rating inventory of executive functions – preschool; REEF= ratings of everyday executive functioning. Differences were compared between mother and partner reports by Wilcoxon
tests. None of them were significant before or after FDR adjustments.

8 Yvonne Willemsen et al.

https://doi.org/10.1017/S0954579423001402 Published online by Cambridge University Press

https://doi.org/10.1017/S0954579423001402
https://doi.org/10.1017/S0954579423001402


measures, and four pairs of alpha diversity and behavioral
measures) available at all five ages (i.e., two, six, and 12 weeks,
and one and three years), three at the first three ages, and 12 at
the last two ages (Table S7). Higher relative abundances of
Streptococcus over the first three years of life were weakly related
to worse executive functions reported by the BRIEF-P (est. =
0.05; higher scores on the BRIEF-P indicating worse perfor-
mance), conforming to earlier age-specific findings. We also
found that the trajectory of [Ruminococcus] torques group from
age one to three was negatively related to internalizing behavior
(SDQ, est. = −0.22), implying that higher relative abundances
were associated with fewer internalizing difficulties during this
period. No enduring associations were observed with confidence
regarding alpha diversity.

Discussion

In this longitudinal study, we investigated associations of the gut
microbiota during early life with problem behavior and executive
functions, including inhibitory control, at three years of age.
Several associations with behavior and cognition were found for
relative abundances of microbial taxa and alpha diversity
throughout the first three years of life. Table S8 provides an
overview of the different microbiota taxa and microbial diversity
index at different ages relative to the developmental findings. In
addition, Table S8 shows the existing literature relative to our
findings. Based on this table, we discuss the most prominent
findings below.

We found evidence that increased relative abundance of
Streptococcus, specifically at the age of two weeks and over the first

Figure 3. Characteristics of the gut microbiota in the first three years of life. (a) Average relative abundances of the gut microbiota at the genus level over time. Others represent
genera with relative abundances lower than 1%. (b) Differentially abundant genus-level taxa between ages, identified by linear discriminant analysis effect size (LEfSe) with log-
transformed linear discriminant analysis (LDA) scores higher than four.
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Figure 4. Heatmap showing the top 20 important microbial taxa over time and their associations to problem behavior at age three as reported by the mother. The top 20
important genus-level taxa within each age (i.e., 2w, two weeks; 6w, six weeks; 12w, 12 weeks; 1y, one year; 3y, three years) per behavioral measure are shown on the right side of
the figure. Behavioral measures include: CBCL-I = internalizing behavior measured by the CBCL; SDQ-I = internalizing behavior measured by the SDQ; CBCL-E, externalizing
behavior measured by the CBCL; SDQ-E, externalizing behavior measured by the SDQ. The orange scale indicates the importance of the taxa, with darker color referring to
increased importance. The importance was determined by the generalized cross-validation value, with a larger value change indicatingmore contribution of a taxon to themodel,
i.e., which taxon is more important. As not all taxa appeared in the top 20 list at each time point, these absent taxa are colored in gray. Numbers on the left side of the figure show
how many times a taxon appeared to be in the top 20 list of a behavioral measure over time. The frequently appearing taxa are bolded and colored in orange (five times), yellow
(four times), or green (three times).
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three years after birth, was associated with worse executive
functions at the age of three years. This result indicates that
Streptococcusmight affect cognitive development throughout early
life. Relations between early-life relative abundances of
Streptococcus and behavior and cognition in typically developing
children have not been observed in previous literature. For
comparative purposes, we, therefore, examined studies on micro-
biota composition in children diagnosed with neurodevelopmental
disorders as they mostly have comorbid behavioral and cognitive
issues (Schoemaker et al., 2014). According to a systematic review,
children with ASD (autism spectrum disorder) frequently show an

overgrowth of Streptococcus (Bundgaard-Nielsen et al., 2020).
Although gut microbiota dysbiosis in ASD was seemingly partially
attributed to an altered dietary pattern (Li et al., 2022; Welberg,
2022), diet was not correlated to the mental outcomes of our
community samples. In addition to Streptococcus, both age-specific
and trajectory relations were discerned for the [Ruminococcus]
torques group: higher relative abundances at the age of three years
and throughout the period from one to three years of age were
associated with fewer child internalizing problems. Previous
research showed excessive absolute abundances of fecal
[Ruminococcus] torques group in children with ASD

Figure 5. Heatmap showing the top 20 important microbial taxa over time and their associations to executive functions at age three as reported by the mother. The top 20
important genus-level taxa within each age (i.e., 2w, twoweeks; 6w, six weeks; 12w, 12 weeks; 1y, one year; 3y, three years) per cognitivemeasure are shown on the right side of the
figure. The measures include: BRIEF-P = executive functions measured by the BRIEF-P; REEF =, executive functions measured by the REEF. The orange scale indicates the
importance of the taxa, with darker color referring to increased importance. The importance was determined by the generalized cross-validation value, with a larger value change
indicatingmore contribution of a taxon to themodel, i.e., which taxon ismore important. As not all taxa appeared in the top 20 list at each time point, these absent taxa are colored
in gray. Numbers on the left side of the figure show howmany times a taxon appeared to be in the top 20 list of ameasure over time. The frequently appearing taxa are bolded and
colored in orange (five times), yellow (four times), or green (three times).
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Figure 6. Heatmap showing the top 20 important microbial taxa over time and their associations to observed inhibitory control behavior at age three. The top 20 important genus-
level taxawithin each age (i.e., 2w, twoweeks; 6w, six weeks; 12w, 12weeks; 1y, one year; 3y, three years) per inhibitory control task are shown on the right side of the figure. The tasks
include: FL= flanker;WHSP=whisper; GW= gift wrap; GD= gift delay. The orange scale indicates the importance of the taxa, with darker color referring to increased importance. The
importance was determined by the generalized cross-validation value, with a larger value change indicating more contribution of a taxon to the model, i.e., which taxon is more
important. As not all taxa appeared in the top 20 list at each time point, these absent taxa are colored in gray. Numbers on the left side of the figure show howmany times a taxon
appeared to be in the top 20 list of a task over time. The frequently appearing taxa are bolded and colored in orange (five times), yellow (four times), or green (three times).
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Table 2. Associations of the gut microbiota in the first three years of life with behavioral measures at age three

Behavior at age
three

Age of the
gut

microbiota Genus Estimate
Estimate
error 95% CI

Prevalence
%

Relative abundance
%

mean ± SD

Mother−reported

CBCL_Internalizing 12w Intestinibacter 0.23 0.12 [0.01, 0.47] 16 0.2 ± 0.6

3y Barnesiella 0.31 0.12 [0.08, 0.55] 50 0.4 ± 0.6

CBCL_Externalizing 2w Streptococcus 0.26 0.12 [0.01, 0.5] 94 8.8 ± 10.1

2w Parabacteroides − 0.3 0.12 [− 0.51, −0.06] 35 1.8 ± 4.9

1y Clostridium sensu stricto 1 0.23 0.11 [0.01, 0.46] 62 1.2 ± 3.5

1y Butyricicoccus 0.23 0.12 [0.01, 0.48] 56 0.4 ± 0.5

1y Parabacteroides − 0.22 0.12 [− 0.45, −0.01] 44 0.8 ± 1.8

3y Barnesiella 0.33 0.12 [0.1, 0.56] 50 0.4 ± 0.6

SDQ_Internalizing 1y Ruminococcus 2 −0.36 0.11 [− 0.58, −0.14] 39 1.4 ± 2.4

3y Bifidobacterium 0.27 0.13 [0.01, 0.53] 100 14.6 ± 11.6

3y Blautia −0.25 0.12 [− 0.48, 0] 100 11.1 ± 4.5

3y [Ruminococcus] torques group −0.25 0.13 [− 0.51, −0.01] 84 0.8 ± 0.7

3y Sutterella 0.25 0.13 [0.01, 0.5] 61 0.3 ± 0.3

SDQ_Externalizing 2w Enterobacteriaceae unidentified
genus

0.25 0.12 [0.01, 0.5] 89 21.6 ± 24.1

2w Parabacteroides − 0.28 0.12 [− 0.51, −0.05] 35 1.8 ± 4.9

6w Halomonas 0.28 0.11 [0.06, 0.5] 11 0.1 ± 0.2

3y Butyricicoccus − 0.35 0.12 [− 0.57, −0.11] 89 0.4 ± 0.3

3y Bifidobacterium 0.27 0.13 [0.01, 0.52] 100 14.6 ± 11.6

3y Oscillibacter 0.28 0.12 [0.04, 0.51] 22 0 ± 0.1

BRIEF − P 2w Streptococcus 0.4 0.12 [0.15, 0.64] 94 8.8 ± 10.1

6w Halomonas 0.24 0.12 [0.01, 0.49] 11 0.1 ± 0.2

12w Streptococcus 0.31 0.12 [0.07, 0.55] 88 5.1 ± 10.4

12w Intestinibacter 0.3 0.11 [0.08, 0.53] 16 0.2 ± 0.6

1y Ruminococcus 2 −0.3 0.12 [− 0.54, −0.08] 39 1.4 ± 2.4

1y Clostridium sensu stricto 1 0.27 0.12 [0.03, 0.5] 62 1.2 ± 3.5

3y Blautia −0.3 0.13 [− 0.57, −0.05] 100 11.1 ± 4.5

REEF 2w Parabacteroides 0.25 0.12 [0, 0.47] 35 1.8 ± 4.9

6w Halomonas − 0.24 0.12 [− 0.48, −0.01] 11 0.1 ± 0.2

1y Lachnospiraceae unidentified genus 0.28 0.11 [0.06, 0.5] 78 3.1 ± 4.1

3y [Ruminococcus] torques group − 0.24 0.13 [− 0.49, −0.01] 84 0.8 ± 0.7

Inhibitory control tasks

Flanker 6w Bacteroides 0.28 0.12 [0.05, 0.51] 59 10.6 ± 16.3

1y Anaerostipes −0.29 0.12 [− 0.51, −0.07] 96 3.8 ± 3.6

1y Sutterella −0.24 0.12 [− 0.48, −0.01] 46 0.3 ± 0.6

3y Subdoligranulum −0.25 0.13 [− 0.5, 0] 95 2.5 ± 1.8

3y Ruminococcaceae UCG− 013 0.26 0.12 [0.03, 0.51] 73 0.2 ± 0.2
Gift Wrap 1y Subdoligranulum − 0.31 0.12 [− 0.54, −0.08] 31 0.7 ± 1.4

1y Coprococcus 3 − 0.26 0.12 [− 0.48, −0.02] 14 0.1 ± 0.3

1y Veillonella 0.24 0.12 [0.01, 0.47] 71 3.3 ± 5

1y Lachnospiraceae NK4A136 group − 0.3 0.12 [− 0.55, −0.08] 38 0.4 ± 0.7

Associations of estimates with 95% credible intervals (CIs) excluding 0 are presented. Behavioral measures include: CBCL= the child behavioral checklist; SDQ= the strengths and difficulties
questionnaire; BRIEF− P = behavior rating inventory of executive functions − preschool; REEF= ratings of everyday executive functioning.
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(Wang et al., 2013) and this taxon was strikingly increased in
patients with inflammatory bowel disease (Png et al., 2010).

With respect to microbial taxa that only showed age-specific
associations, we observed higher relative abundances of
Bifidobacterium at age three years related to more internalizing
and externalizing behavior at the same age. Interestingly, a
systematic review showed decreased Bifidobacterium in ASD
children compared to neurotypically developing controls (Xu et al.,
2019). Besides, supplementing ASD children with a prebiotic
galacto-oligosaccharide increased Bifidobacterium populations in
the gut and alleviated autistic symptoms (Grimaldi et al., 2017).
However, opposite roles of Bifidobacterium have been described in
major depressive disorder (MDD) (Cheung et al., 2019; Knudsen
et al., 2021). Such inconsistency also takes place within ADHD
studies. Two studies reported that Bifidobacterium longum
mitigated ADHD (Finegold et al., 2010; Pärtty et al., 2015), while
another study found overgrowing Bifidobacterium species in
ADHD subjects (Aarts et al., 2017). In addition, in the current
study, a higher relative abundance of Blautia at the age of three
years was related to fewer internalizing difficulties (as well as to
better executive functions at the same age). Blautia is suggested to
play an important role in nutrient absorption and digestion (Eren
et al., 2015), and in child gut microbiota development towards a
normal adult-like configuration (Hsiao et al., 2014). In line with
our findings, depleted Blautia was seen in ASD populations aged
from two to 18 years old by several studies as concluded in a
systematic review (Liu et al., 2019). However, elevated levels of
Blautia were reported in relation to MDD in adults (Cheung et al.,
2019) and ADHD in three-year-old children (Laue et al., 2021),
indicating that different mechanisms may be involved depending
on the psychopathology and chronological age. Lastly, we observed
a positive relation between one unidentified Enterobacteriaceae
genus at the age of two weeks and externalizing problems at the age
of three years. Of interest, more Enterobacteriaceae species were
cross-sectionally related to decreased cognitive functioning at the
age of 45 months (Streit et al., 2021).

Another of our findings was that higher alpha diversity at age
two weeks was linked to fewer internalizing problems and better
executive functions at age three years. In accordance with our
internalizing behavior result, Laue et al., observed that higher alpha
diversity in the first two months of life was related to less
internalizing behavior in three-year-old boys (Laue et al., 2021).
Furthermore, van de Wouw et al., found lower alpha diversity in
three-to-five-year-old children with clinically relevant CBCL
cutoff scores for internalizing behavior (Van De Wouw et al.,
2022). Besides, Eckermann et al., observed higher Shannon alpha
diversity at the age of one, three, and four months in relation to
better cognitive ability as measured by Digit Span forwards test at

the age of ten years, although not for Shannon alpha diversity at the
age of six and ten years (Eckermann et al., 2022). Despite the
generally weak or absent relations found between child gut
microbiota and executive functions, the abovementioned studies
may indicate that higher alpha diversity in the first years of life is
related to improved subsequent mental outcomes at later ages. On
the contrary, Carlson et al., found higher alpha diversity at one year
of age related to worse cognition at two years of age in typically
developing toddlers (Carlson et al., 2017). Additionally, a recent
paper from van deWouw et al. (2023) found evidence for a weak to
modest cross-sectional relation between higher Shannon diversity
and worse verbal comprehension in three- to four-year-old
children (van de Wouw et al., 2023). Together, these findings
illustrate the fact that we are yet to understand the potential impact
of alpha diversity levels at different developmental stages. In
general, alpha diversity levels of newborns start increasing
immediately after birth due to colonization of microorganisms.
With time, breastfed-infants tend to form a Bifidobacterium-
predominated configuration which is often less diverse than
formula-fed infants. After the introduction of solid food, child
alpha diversity starts to increase, gradually reaching a steady state
resembling gut microbiota composition of adults. Given these
apparent normative fluctuations in levels of alpha diversity in the
first months and years of life, having a comparatively high (or low)
alpha diversity will potentially impact a child’s development
differently depending on the child’s specific age.

Our study contributes to the growing body of literature on the
gut microbiota, problem behavior, and executive functions. A
strength of our study is the longitudinal design, which covered the
period from birth to age three years and allowed for the assessment
of multiple developmental stages of the gut microbiota. Another
advantage was that questionnaires were filled in by both mother
and partner. Partner reports were used for sensitivity analyses and
because they showed positive correlations with maternal reports,
they enhanced the reliability of our study measures. Furthermore,
problem behavior and executive functions were assessed with
multiple questionnaires (i.e., CBCL and SDQ for problem
behavior, and BRIEF-P and REEF for executive functions),
allowing us to determine conformity and consistency between
various questionnaires. Finally, we used standardized behavioral
tasks as a tool to objectively determine child executive functions.

A limitation of our study is the possible overreliance on the
compositional features of the gut microbiota using relative
abundances instead of absolute abundances. This approach may
increase the chance of spurious associations as relative abundances
are dependent on each other. Besides, 16S rRNA gene sequence
data are limited at species-level resolution and profiling precise
gene functions (Durazzi et al., 2021). Hence, although multiple

Table 3. Associations of alpha diversity in the first three years of life with problem behavior, executive functioning, and inhibitory controls at age three

Behavior at age three Age of the gut microbiota Alpha diversity Estimate Estimate error 95% CI

Mother-reported

CBCL_Internalizing 2w chao1 −0.28 0.12 [ − 0.51, −0.04]

REEF 2w chao1 0.31 0.13 [0.07, 0.57]

Inhibitory control tasks
Gift Wrap 2w chao1 0.43 0.12 [0.19, 0.64]

2w PD 0.32 0.12 [0.08, 0.56]

Associations of estimates with 95% credible intervals (CIs) excluding 0 are presented. CBCL= the child behavioral checklist; REEF= ratings of everyday executive functioning.
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associations were identified, it is worth noting that these relations
do not indicate causality. The results await follow-up studies,
preferably preclinical experimental studies, to determine if
individual microbes (e.g., aforementioned Streptococcus and
Bifidobacterium) and microbial communities as a whole influence
behavior and cognition, e.g., by generating neurotransmitters (e.g.,
GABA and serotonin) and their precursors (e.g., tryptophan and
phenylalanine) in the gut (Altaib et al., 2021; Barandouzi et al.,
2022; Biederman & Spencer, 1999; Gizer et al., 2009; Kandel et al.,
2000; Kanehisa et al., 2022; Staller & Faraone, 2007). Further
research including quantitative PCR, whole-genome shotgun
metagenomic sequencing, targeted fecal metabolomics, and
experimental studies in animal models, would improve the
understanding of current correlational results and provide insight
into microbial functions and even causality. An analytic limitation
of our study is LEfSe, which was used to identify differentially
abundant taxa in this study and has recently been pointed out to
have higher sensitivity to false positive rates compared to other
microbial composition analyses, such as ALDEx2, ANCOM− II,
and DESeq2 (Nearing et al., 2022). Due to such methodological
limitations, LEfSe-based significant findings should be carefully
validated in future studies. Another limitation of our study is the
relatively small sample size and mostly highly educated study
population, limiting the generalizability of the findings. The
restricted sample size may also hamper deep inference with respect
to taxa with low prevalence rates to some degree. Our findings on
microbial relations to themental outcomes need to be confirmed in
a larger, more representative cohort. Also, the participants were
highly educated, which may hamper translating of our findings to
individuals with a lower socioeconomic status. Lastly, recent
developments in longitudinal analytical approaches (Kodikara
et al., 2022), such as zero-inflated beta regression models, block
bootstrap methods, and SplinectomeR, will better facilitate the
identification of differentially abundant microbial taxa between
groups (e.g., below and above clinical cutoffs) over time.

To conclude, our results provide tentative evidence supporting
the idea that in a child’s first years of life, the gut microbiota might
play a vital role in the development of the brain, in line with the
early-life programing theory (Tarry-Adkins & Ozanne, 2011).
Potential mechanisms are likely related to microbiota-derived
metabolites (Ahmed et al., 2022). As the nature of this study was
exploratory and the body of similar research needs to grow to a
large extent, it is still premature to translate our correlational
findings into clinical implications. Replications in other longi-
tudinal studies on healthy community children are necessary to
confirm our findings. Ideally, to avoid inconsistent results caused
by different methods used, replication studies should apply the
same methodology regarding microbiology, genomics, epidemi-
ology, and statistics (Ou et al., 2024). This will shed more light on
key microbial taxa and latent pathways of associations between
early gut microbiota and child behavior and cognition.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/S0954579423001402.
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