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Abstract. The LISA mission is an interferometer, formed by three spacecraft, that aims at
the detection of gravitational waves in the [10™*,107"'] Hz frequency band. Present LISA TDI
simulators, aimed at validating the novel Time Delay Interferometry method, use a classical
Keplerian orbit model at first order in eccentricity in the gravitational field of a spherical non-
rotating Sun, without planets. We propose to use the same model but described in the framework
of relativistic gravity, and we focus here on quantifying the differences between classical and
relativistic orbits for the LISA spacecraft, under the same assumptions.
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1. Introduction

The Laser Interferometer Space Antenna (LISA) is a joint ESA-NASA mission to be
launched in 2018 (at the earliest) [LISA Pre-Phase A Report (1998)]. From the point of
view of France, it involves the CNES and the LISAFrance group [LISA-France (2009)].
LISA consists in 3 spacecraft, each following a free-falling test-mass, and of double laser-
links connecting the free-falling test-masses.

The aim of LISA is the detection of gravitational waves in a frequency band comple-
mentary to that of Earth based detectors. Indeed, a gravitational wave is a propagating
spacetime deformation. As it passes by, a free-falling mass moves like a cork on an os-
cillating water surface. So, the interferometric armlength between a pair of free-falling
test-masses varies. To detect gravitational waves implies to monitor very precisely the in-
terferometric armlength via phase shifts (or fractional frequency fluctuations): a AL/L of
the order of 10723 with L = 5-10° m, the nominal interdistance between LISA spacecraft.

However, a huge challenge faces LISA. Laser frequency and optical bench noises are
well above (~ 10713 in fractional frequency units), by orders of magnitude, the gravita-
tional wave threshold (~ 102! in fractional frequency units). To solve this problem, a
new metrology technique, the so-called Time-Delay Interferometry (TDI) was developed
[Shaddock et al. (2003)]. It is based on the precise knowledge of photon time transfer ¢;;
between a pair of LISA spacecraft i and j. That is the delay taken by a photon to travel
the interdistance L;;. At lowest order, that is the L;; distance divided by the speed of
light. Moreover, the LISA detector is complex. Its sensitivity depends to a large extent
on the different noise contributions and on the efficiency of the TDI novel technique.
Therefore, and because a laboratory replica of the system is not totally achievable, the
performance of LISA (and of TDI in particular) can only be studied with computer sim-
ulations of the different processes involved. Such is the aim of the LISACode software
[Petiteau et al. (2008)] developed by the LISAFrance group, or of other simulators in
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the USA, namely Synthetic LISA [Vallisneri (2005)] and LISA Simulator [Cornish et al.
(2004)]. Among the processes to be implemented in a LISA simulator, the orbit model
of the spacecraft, providing positions, velocities and interdistances of spacecraft needed
for TDI, is the subject of the present paper.

2. The three LISA orbit models used

The orbits of LISA spacecraft have the following characteristics. The three spacecraft
should have a drag-free motion at an average interdistance of L, forming a triangle that
rotates around its center of mass and follows the Earth in its orbit around the Sun at a
distance a = 1 Astronomical Unit.

From the point of view of orbit models, up to now, simulators for TDI LISA [LISACode:
Petiteau et al. (2008), Synthetic LISA: Vallisneri (2005) and LISA Simulator: Cornish
et al. (2004)] being used by the Mock LISA Data Challenge (MLDC) task force make
the following additional simplifying assumptions. Each spacecraft follows perfectly a test
mass that is itself perfectly shielded from non-gravitational forces and feels no constraints
(for simplicity, one test mass per spacecraft is modeled). As the gravitational field is
concerned, solely a spherical non-rotating Sun is considered. Departures from the above
assumptions on orbits are presently considered as part of the noise budget in TDI: residual
laser frequency and optical bench noises, detector shot noise, ultra-stable oscillator noise,
scattered-light noise, laser-beam pointing instability, acceleration noise, inertial mass
noise and others (as specified in Table 1 of reference [Petiteau et al. (2008)]).

In the present study, we considered three different orbit models described in the next
subsections.

2.1. Classical orbits

The first model follows what is used presently in LISA TDI simulators (LISACode, Syn-
thetic LISA, LISA Simulator): classical orbits. Usually, in orbit determination, Newton’s
second law of motion around a central body, with additional 1PN relativistic corrections,
are numerically integrated. However, for LISA, up to now, neither relativistic corrections
nor planetary perturbations to orbits are considered by the MLDC task force [Petiteau
et al. (2008), Vallisneri (2005), Cornish et al. (2004) and Arnaud et al. (2007)]. This
means Keplerian orbits for each LISA spacecraft. The Keplerian orbits are furthermore
developped up to first order in eccentricity in present MLDCs [Arnaud et al. (2007)].
A special angle, v = % + %i, is selected for the plane of the LISA triangle with the
ecliptic. Indeed, it was shown to minimise LISA natural armlength variations and make
it easier to detect gravitational waves. The 3 spacecraft orbits share the same very small

eccentricity, e = \/1 + %% cosv + % (QL—G)Q — 1~ 0.0096. They have also the same orbit
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b sin v

inclination, i = arctg(\/g ), and orbital period, T,; ~ 1 year. But each space-

/2+ & cosv

craft orbit & = 1,2,3 is out of phase with respect to number 1 by 9, = —2(k—1) %
[Nayak & Vinet (1999)].

2.2. Relativistic Motion Integrator (RMI) method
Since our aim is to estimate relativistic effects in LISA orbits, we used the Relativistic
Motion Integrator (RMI) method [Pireaux et al. (2006), Pireaux & Chauvineau (2008)].
Instead of integrating Newton plus relativistic corrections, RMI integrates numerically
straightaway the relativistic equations of motion, i.e. geodesic equations for a given met-
ric, ggy, and possibly an additional term for non-gravitational forces. Doing so, both
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classical and relativistic gravitational effects (up to the corresponding order of the cho-
sen metric) are taken into account natively.

When applying this RMI method to LISA, following LISA’s simplifying assumptions,
there is no non-gravitational force term and thus we integrate

A2

_ dz'l dzf  da?
a2

1
—Th, (a") + Erg7 @)~ o (2.1)
where | = 1,2,3, 2=01%3 = (ct, x,y, 2), [, are Christoffel symbols associated with the
metric and c is the speed of light in vacuum. We selected the Barycentric Coordinate
Reference System metric recommended by the TAU 2000 resolutions; and in order to
compare the RMI relativistic orbits for LISA with the standard classical orbits used for
the MLDCs, we used it without planets, for a spherical non-rotating Sun (in which case

I'f;., does not explicitly depend on t).

2.3. Relativistic analytical development

Our third model for LISA orbits is an analytical development up to first order in the
eccentricity e of the orbit and up to first order in GM/c?, where G is Newton’s constant
and M, the solar mass [Pireaux & Chauvineau (2008)].

Why a development at first order in eccentricity? Because LISA’s eccentricity is small

and because TDI and classical orbit models for LISA used by the MLDC task force have
been developed using first order in eccentricity approximations [Arnaud et al. (2007): the
pseudo-LISA set of conventions].
Hence, the geodesic equations are developed to obtain the purely relativistic radial,
Ar = rpe — 1o (el and o for relativistic and classical orbit models, respectively), and
along track, Al = a- A8 = a- (0,0 — 0.1), effects at first Post-Newtonian (PN) order
as the sum of a zeroth order, ], and first order, [1l, in eccentricity for each satellite
k=1 to 3:

K]Q GM { +neit — o8 (neityp) sin (ne (t — tgy)) }
k a ac | —sin(naty) cos (na(t —ty))
+2sin (netey) — 21 cos (Nertep) Nart
—18 netcos (ne (t — trp))
E]H _ +6G7M +22 cos (neitgp) sin (nertyy ) cos (ne (t — try))
B a c? + {2 + 22 cos? (ncltkp } sin (ne(t — trp))
+15sin (naty,) cos® (ne(t — ty))
+15cos (neitep) sin (e (t — tgp)) cos (ne (t — try))

[0] GM [ +1 — cos (netyy) cos (ne(t — tip))
A = — . N ¢ P

T = 3 { - sin (nety) sin (ne(t — ty)) }
+20 cos (neitep) — 9 netsin (ne (t — trp))
] aM 7{3+110052 (ncltkp)}cos (ner(t — trp))

= +11 cos (neitrp) sin (Nertrp ) sin (ne (t — trp))

—6cos (netey) cos® (ne(t — try))
+6sin (neitey) sin (ne (t — trp)) cos (e (t — tip))

(2.2)

We see that these expressions, in polar coordinates (z = rcosf, y = rsin ), as functions
of the derivative of the classical angle, n, = df./dt, and of the time of passage of
spacecraft k at perihelion, t;,, already contain quite a few terms.
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Figure 1. Purely general relativistic effect in [a, left]: radial distance (Ar); [b, right]: along
track distance (Al).

3. Orbit model comparison

We now compare the different orbit models used. First, we check that the spacecraft
ephemerides produced by RMI agree with the analytical development at first order in
GM/c* and in eccentricity, up to e* - GM/c* terms.

Second, we estimate the purely relativistic effects (Ar and Al) in LISA orbits by
computing the differences between relativistic spacecraft ephemerides obtained with RMI
and classical ones for the same initial coordinate conditions. Figure la shows Ar for the
three LISA spacecraft for one classical period, as a function of the barycentric coordinate
time. We see that this radial effect can reach about 9 km.

Figure 1b shows Al for one classical period: it can reach about 60 km.

These relativistic effects impact on the satellite interdistance L;; which is crucial in a
TDI analysis. We first recall that even classically, the LISA triangle breathes around the
nominal interferometric armlength of 5 million km. The armlength flexing amplitude is
about 48 000km. Now, relativistic effects add a small contribution to the flexing: up to
3 km after a period, as is shown in Figure 2. This additional relativistic contribution to
the arm flexing is interesting for the TDI method since it impacts on the time taken by
photons to travel along those interferometric arms. Indeed, at zeroth order in 1/c2, the
nominal 5 million km armlength means 16.7 s of travel time; the flexing amplitude of
48000 km means 0.16 s fluctuation. At half order, the Sagnac and parallax effects amount
to 960 km, that is 3- 1072 s. While at first order, the Shapiro contribution, thanks to the
supressing effect of LISA configuration, is less than 30 m, that is 1077 s, as we computed
in [Chauvineau et al. (2005)], with the classical orbit model. Now, we have shown that
purely relativistic effects in orbits cause a correction up to 3 km in a period, meaning an
effect of several milliseconds in the photon flight time at zeroth order in 1/c2.
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Figure 2. Purely general relativistic effect in armlength.
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4. Conclusions

The big relativistic picture in LISA. Time Delay Interferometry (TDI) is a novel tech-
nique for spacecraft constellations interconnected by laser links. TDI data-preprocessing
[Shaddock et al. (2003)] should help mitigate laser frequency and optical bench noises in
interferometry, and bring them down to LISA specifications. TDI ranging [Tinto et al.
(2005)] will allow to measure the photon time transfer between two spacecraft. Using an
appropriate (with respect to requested precision) laser link model, one can then com-
pute the spacecraft relative interdistances. The LISA mission is a good example to stress
that a coherent general relativistic approach is needed. In particular since LISA is a
very complex mission and the TDI method must be validated. Hence, the need for LISA
TDI simulators. We stress that coherence is needed, in those, between the photon time
transfer model [Chauvineau et al. (2005)], the orbit model, coordinates and timescales
transformations [Pireaux (2007)]. We studied here the second point.

Relativistic orbit model for LISA TDI simulators. Since, in the simulator named
LISACode, as well as in other LISA TDI simulators used by the LISA Mock Data Chal-
lenge (LMDC) task force, the orbit model used so far is classical while the laser link
is relativistic, we needed to quantify the impact of relativistic effects in LISA orbits on
TDI. We have shown that a numerical classical model for LISA orbits in the gravita-
tional field of a non-rotating spherical Sun without planets can be wrong, with respect to
the relativistic version of the same model, by as much as about ten kilometers in radial
distance during a year and up to about 60 kilometers in along track distance or 3 km in
terms of spacecraft interdistance after a year... with consequences on estimated photon
flight times between spacecraft used in TDI.

Note that relativistic orbits for the LISA spacecraft, taking into account planetary
and the Moon perturbations, have been obtained through the integration of the Einstein-
Infeld-Hoffmann (EIH) equations [Folkner et al. (1997)] and are used for the sake of orbit
selection/analysis/formation control studies.

Strength of the Relativistic Motion Integrator (RMI) method. RMI can be used to
compute relativistic orbits for different missions (whether barycentric or planetocen-
tric): only the central body parameters and initial conditions, mission parameters in the
corresponding RMI modules change. When updating or changing the metric, only the
metric module in RMI needs to be updated. No need to recompute additional analytical
developments. Indeed, RMI includes any gravitational contribution at the corresponding
order of the metric (whether 1PN or higher). RMI has been validated using a 1PN (Post-
Newtonian) development [Hees & Pireaux (2009)] and is a coherent native relativistic
approach. It should be preferred to “Newton plus relativistic correction” methods, since
analytical developments might become cumbersome as the precision of measurements
increases and more than 1PN terms are required.
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