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The rigorous derivation of linear elasticity from finite elasticity by means of
Γ-convergence is a well-known result, which has been extended to different models
also beyond the elastic regime. However, in these results the applied forces are
usually assumed to be dead loads, that is, their density in the reference configuration
is independent of the actual deformation. In this paper we begin a study of the
variational derivation of linear elasticity in the presence of live loads. We consider a
pure traction problem for a nonlinearly elastic body subject to a pressure live load
and we compute its linearization for small pressure by Γ-convergence. We allow for a
weakly coercive elastic energy density and we prove strong convergence of
minimizers.
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1. Introduction

Linear elasticity is a well-known and powerful mathematical approximation of the
nonlinear theory of elasticity, with extensive application to the structural analysis
and the numerical treatment of elastic bodies. In engineering textbooks its deriva-
tion is classical and is based on a formal linearization of finite elasticity about
a reference configuration. A rigorous mathematical derivation via Γ-convergence
was developed only rather recently in the pioneering work [8], where a Dirichlet
boundary value problem was considered. A similar approach was then applied to
different frameworks in elasticity, such as rubber-like materials [3], multiwell models
[1, 2, 32], elasticity with residual stress [27, 28] and incompressible materials [21].
Beyond elasticity we also mention the papers [9, 10, 25, 26] for models in fracture
mechanics, [12] for viscoelasticity, [23] for plasticity and the recent contribution
[11] for materials with stress-driven rearrangement instabilities.

Linearization of pure traction problems has been recently studied in [14, 16, 17,
19], again in the context of elasticity. In this setting a full Γ-convergence result has
been obtained in [22] and later extended to incompressible materials in [20]. As
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observed in [22], in the Dirichlet case the boundary conditions prescribe the rigid
motion to linearize about, whereas in the purely Neumann case the linearization
process occurs around suitable rotations that are preferred by the applied forces.

In all this literature the main focus is on understanding the behaviour of the
bulk elastic energy and the applied forces are usually assumed to be dead loads,
namely their density in the reference configuration is independent of the actual
deformation. This assumption is mathematically convenient, since the work done
by the loadings turns out to be a continuous perturbation of the elastic energy,
so that Γ-convergence of the total energy immediately follows from Γ-convergence
of the elastic energy. However, restricting the analysis to dead loads is physically
unsatisfactory, since the only realistic examples of dead loads are the gravitational
body force and the zero surface load (see, e.g. [29, 30] and [4, § 2.7]).

In this paper we begin a study of the derivation of linear elasticity in the presence
of live loads. More precisely, we consider a pure traction problem for a hyperelastic
body Ω ⊂ R

n subject to a (small) pressure load on its boundary. In this setting the
total energy of a deformation y : Ω → R

n is given by

Tε(y) :=
∫

Ω

W (x,∇y(x)) dx+ ε

∫
Ω

π(y(x)) det∇y(x) dx,

where the elastic energy density W : Ω × R
n×n → [0, +∞] satisfies the usual

assumptions of nonlinear elasticity (see (W1)–(W5)) and επ is the intensity of the
applied pressure load, with ε > 0 a small parameter and π : R

n → R a given func-
tion. For simplicity in this Introduction we assume π to be continuous. As shown
in [30, proposition 5.1] (see also [15, proposition 1.2.8]), the second term in the
energy Tε is the potential of the pressure load

−επ(y(x))(cof ∇y(x))n∂Ω(x) for x ∈ ∂Ω (1.1)

acting on the whole boundary of Ω, where cof F denotes the cofactor of the matrix
F and n∂Ω is the outward unit normal to ∂Ω. In the deformed configuration y(Ω)
the pressure load (1.1) corresponds to the surface force

−επ(z)n∂(y(Ω))(z) for z ∈ ∂(y(Ω)).

Since W (x, ·) is frame-indifferent and minimized at the identity, it is immediate
to see that for ε = 0 the minimizers of Tε are all the rigid motions of Ω. When ε
is small, it is thus natural to expect minimizers to be close to rigid motions and
their asymptotic behaviour to be described by a linearization of the energy. In pure
traction problems, as mentioned before, the applied forces select the class of rigid
motions around which the linearization takes place (see [22]). Indeed, if yε is a
minimizer of Tε, then we have

Tε(yε) � ε

∫
Ω

π(Rx) dx for every rotation R ∈ SO(n).

If we assume yε to be of the form yε(x) = R0(x+ εu0(x)) with R0 ∈ SO(n), then
by a formal expansion we obtain

ε2

2

∫
Ω

Q(x, e(u0)(x)) dx+ ε

∫
Ω

π(R0x) dx+O(ε2) � ε

∫
Ω

π(Rx) dx
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for every rotation R ∈ SO(n). Here Q(x, ·) is the quadratic form given by the
Hessian of W (x, ·) computed at the identity and e(u0) is the symmetric gradient
of u0. Dividing by ε and letting ε tend to zero, we deduce that R0 is a so-called
optimal rotation, that is, R0 belongs to the set

R := argmin
R∈SO(n)

{∫
Ω

π(Rx) dx
}
.

Assume now for simplicity that the identity matrix belongs to R (one can always
reduce to this case, up to rotating the whole system). The previous argument sug-
gests that in order to identify the limiting behaviour of minimizers one needs to
renormalize the energy as follows:

1
ε2

Eε(y) : =
1
ε2

(
Tε(y) − ε

∫
Ω

π(x) dx
)

=
1
ε2

∫
Ω

W (x,∇y(x)) dx+
1
ε

∫
Ω

(
π(y(x)) det∇y(x) − π(x)

)
dx. (1.2)

Under suitable assumptions for π and a weak p-coercivity condition on W with
1 < p � 2 (see (W5)), we compute the Γ-limit of the rescaled energies (1/ε2)Eε and
we establish a compactness result for deformations with equibounded energies. Here
deformations are assumed to have zero average on Ω, as it is common in Neumann
boundary value problems. More precisely, we prove the following results:

Compactness: If Eε(yε) � Cε2, then there exist rotations Rε ∈ SO(n) and
displacements uε ∈W 1,p(Ω; Rn) such that

yε(x) = Rε(x+ εuε(x)) for x ∈ Ω (1.3)

and, up to subsequences, there holds

• uε ⇀ u0 weakly in W 1,p(Ω; Rn) with u0 ∈ H1(Ω; Rn),

• Rε → R0 with R0 ∈ R.

Γ-convergence: Under the above notion of convergence yε → (u0, R0), the
rescaled energies (1/ε2)Eε Γ-converge to

E0(u0, R0) :=
1
2

∫
Ω

Q(x, e(u0)(x)) dx+
∫

∂Ω

π(R0x)n∂Ω(x) · u0(x) dHn−1(x).

We also deduce strong convergence of (almost) minimizers: if (yε) is a sequence of
(almost) minimizers, then we have in addition that uε → u0 strongly inW 1,p(Ω; Rn)
and the pair (u0, R0) is a minimizer of E0.

We now comment on the expression of the limiting energy E0, which features
two terms: the usual linear elastic energy and a potential term accounting for the
surface load −π(R0x)n∂Ω(x) on ∂Ω. The emergence of this boundary term can
be explained by the following heuristic considerations: on the one hand, a formal
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linearization of (1.1) leads to a pressure load of the above form; on the other hand,
if y is smooth enough, the force term in (1.2) can be written as

1
ε

(∫
y(Ω)

π(x) dx−
∫

Ω

π(x) dx

)
.

Hence, taking into account (1.3), computing the limit of the above expression on
sequences (yε) with equibounded energies corresponds to a sort of shape derivative
of the functional Ω �→

∫
Ω
π(x) dx (see, e.g. [18, proposition 17.8]). However, we

stress that in the present setting deformations yε are only of Sobolev regularity
and are close to rigid motions only in the sense of W 1,p(Ω; Rn), therefore the usual
arguments in the context of shape derivatives do not apply.

From a mathematical viewpoint the main difference with respect to previous
contributions dealing with dead loads, is that the force term in (1.2) is not a con-
tinuous perturbation of the elastic energy. Indeed, our assumptions on W imply
that deformations are at most strongly convergent in W 1,p(Ω; Rn) with 1 < p � 2
and this is not enough to guarantee convergence of the determinants. Moreover, the
crucial step in the proof of compactness is to show that deformations satisfying the
bound Eε(yε) � Cε2 have an elastic energy of order ε2. Once this is established, one
can apply the rigidity estimate by Friesecke et al. [13] and deduce (1.3), together
with a uniform bound for (uε) in W 1,p(Ω; Rn). In the case of dead loads deducing
the ε2-bound on the elastic energy is straightforward, since the force term is linear
with respect to the deformation. In our setting, instead, this is one of the main
difficulties. We show that the problem can be solved under two different sets of
conditions:

• π Lipschitz continuous in a suitable neighbourhood of Ω and nonnegative;

• π Lipschitz continuous in a suitable neighbourhood of Ω, with a growth con-
dition on its negative part (see (π3)) and an additional coercivity property for
W (·, F ) in terms of detF (see (W6)).

We note that this additional coercivity condition on W is satisfied by a large class
of elastic materials (see, e.g. [3, remark 2.8]).

We also observe that both the nonlinear energy (1.2) and the Γ-limit E0 are well
defined if π is merely a continuous function. However, because of the low regularity
of deformations, in our proofs we need π to be Lipschitz continuous, at least in a
suitable neighbourhood of Ω. How to extend our analysis to less regular pressure
loads is an interesting question that we plan to consider in a future work.

In the case of dead loads the set R of optimal rotations is a submanifold of
SO(n) and, as a consequence, one can prove that the distance of the approximating
rotations Rε in (1.3) from R is at most of order

√
ε, see [22]. In the last part of the

paper we show that neither of these properties is true, in general, in the present
setting.

Finally, we mention that the displacement-traction problem, where a Dirichlet
condition is prescribed on a part ∂DΩ of ∂Ω and the remaining part of the bound-
ary is subject to a pressure load, can be treated combining the techniques of this
paper with the results in [3]. More precisely, assuming deformations y to satisfy a
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boundary condition of the form y(x) = x+ εw(x) for x ∈ ∂DΩ, the compactness and
Γ-convergence results still hold with R0 = I and the boundary condition u0 = w on
∂DΩ. In particular, one can show that the approximating rotations Rε in (1.3) are
ε-close to the identity, see [3, lemma 3.3]. Therefore, there is no need to introduce
the set of optimal rotations and the analysis turns out to be simpler than the one
considered here.

Plan of the paper: In § 2 we set the problem and we state the main assumptions.
In § 3 we discuss the case of a nonnegative pressure intensity π. We then extend
our analysis to pressures with arbitrary sign in § 4. Finally, in § 5 we compute a
refined Γ-limit, which takes into account how much deformations differ from being
optimal rotations, and we make a comparison with the results proved in [22] in the
case of dead loads.

2. Setting of the problem

2.1. Notation and preliminaries

Throughout the paper, the symbols C or c will be used to denote some positive
constants not depending on ε, whose value may change from line to line.

Given two (extended) real numbers a and b the notation a ∨ b (respectively, a ∧ b)
stands for the maximum (respectively, the minimum) between the two numbers.
Given a scalar function f , we denote its positive and negative part by f+ and f−,
respectively, so that f = f+ − f−. By Br ⊂ R

n we mean the open ball with radius
r > 0 centred at the origin.

Let Ω be an open set in R
n. For p ∈ [1, ∞] the norms in Lp(Ω) and Lp(Ω; Rn)

will be simply denoted by ‖ · ‖p. The conjugate exponent of p ∈ [1, ∞] will be
denoted by p′. The notation W̊ 1,p(Ω; Rn) stands for the space of Sobolev functions
y ∈W 1,p(Ω; Rn) with zero average; if p = 2, we shall write H̊1(Ω; Rn) instead of
W̊ 1,2(Ω; Rn).

We denote by R
n×n, R

n×n
sym and R

n×n
skew the set of (n× n)-matrices and the subsets

of symmetric and skew-symmetric matrices, respectively. The set of rotations is
denoted by SO(n), namely

SO(n) = {R ∈ R
n×n : RTR = I, detR = 1}.

Finally, we recall that for every F ∈ R
n×n and ε > 0 there holds

det(I + εF ) = 1 +
n∑

k=1

εkιk(F ), (2.1)

where ιk(F ) is a homogeneous polynomial of degree k in the entries of F . In
particular, there exists a constant C > 0, depending only on n, such that

|ιk(F )| � C|F |k for every F ∈ R
n×n. (2.2)

For k = 1 and k = n we have that ι1(F ) = trF and ιn(F ) = detF .
For the definition and the properties of Γ-convergence we refer to the monograph

[7].
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2.2. The main assumptions

Let Ω ⊂ R
n, with n � 2, be a bounded domain with Lipschitz boundary repre-

senting the reference configuration of a hyperelastic body. Up to a translation of
the axes, we can assume without loss of generality that the origin is the barycentre
of Ω, i.e. ∫

Ω

xdx = 0. (2.3)

For future use we also introduce the set

O :=
⋃

R∈SO(n)

RΩ,

which is an open annulus (if 0 �∈ Ω; an open ball if 0 ∈ Ω) centred at 0 and containing
Ω.

The stored energy density of the body is assumed to be a Carathéodory function
W : Ω × R

n×n → [0, +∞] satisfying the following conditions for almost every x ∈
Ω:

(W1) W (x, F ) = +∞ if detF � 0 (orientation preserving condition);

(W2) W (x, RF ) = W (x, F ) for every F ∈ R
n×n and R ∈ SO(n) (frame indiffer-

ence);

(W3) W (x, I) = 0 (the reference configuration is stress-free);

(W4) W (x, ·) is of class C2 in a neighbourhood of SO(n), independent of x, where
the second derivatives of W are bounded, uniformly with respect to x ∈ Ω;

(W5) W (x, F ) � c1gp(dist(F ;SO(n))) for every F ∈ R
n×n and for some p ∈ (1, 2],

where gp is defined as

gp(t) :=

⎧⎪⎪⎨⎪⎪⎩
t2

2
if t ∈ [0, 1],

tp

p
+

1
2
− 1
p

if t > 1,
(2.4)

and c1 > 0 is a constant independent of x (coercivity).

Assumptions (W1)–(W3) are natural conditions in elasticity theory (see, e.g. [4,
15]), assumption (W4) is the minimal regularity hypothesis needed to perform
the linearization, while condition (W5) is satisfied by a large class of compressible
rubber-like materials (see, e.g. [2, 3, 19–21]).

We note that

gp(t) � 1
2
(t2 ∧ tp) for every t � 0. (2.5)

Moreover, condition (W5) implies the following bound:

W (x, F ) � c |detF − 1|2 for a.e. x ∈ Ω and for every F ∈ R
n×n

with |detF − 1| � 1, (2.6)
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for a suitable constant c > 0, independent of x. Indeed, by (W5) the bound (2.6)
is satisfied for F outside a neighbourhood of SO(n). If instead dist(F ;SO(n)) is
small enough, then one has

c|detF − 1|2 � dist2(F ;SO(n)),

which implies (2.6) by using again (W5).
We assume the body to be subjected to a pressure load, whose (unscaled) intensity

is a Borel measurable function π : R
n → R such that

(π1) π is Lipschitz continuous in an open set containing O.

Since we do not prescribe any Dirichlet boundary condition, the linearization pro-
cess will naturally select, as in [22] in the case of dead loads, a particular set of
rotations that are ‘preferred’ by the force. This set is called the set of optimal
rotations and in our framework it is defined as

R := argmin
R∈SO(n)

{∫
Ω

π(Rx) dx
}
. (2.7)

Since the map R �→
∫
Ω
π(Rx) dx is continuous and SO(n) is compact, the set of

optimal rotations is not empty and is a compact subset of SO(n). For simplicity
we assume that

I ∈ R, (2.8)

where I is the identity matrix. Indeed, if this is not the case, we can always replace
π by π(R0·) and deformations y by RT

0 y, where R0 is a given optimal rotation.
Let R0 ∈ R. By computing the first variation of the functional in (2.7) along the

curve t �→ R0etA with A ∈ R
n×n
skew, we deduce that any optimal rotation R0 satisfies

the following Euler–Lagrange equation:∫
Ω

∇π(R0x) ·R0Axdx = 0 for every A ∈ R
n×n
skew. (2.9)

Applying the divergence theorem, condition (2.9) can be rewritten as∫
∂Ω

π(R0x)n∂Ω(x) ·AxdHn−1(x) = 0 for every A ∈ R
n×n
skew, (2.10)

where n∂Ω is the outward unit normal to ∂Ω.

3. Nonnegative pressure loads

We start our analysis by considering a pressure load with nonnegative intensity,
that is,

(π2) π(y) � 0 for every y ∈ R
n.

This includes, for instance, the relevant case of hydrostatic pressure π(y) = gρy−3 ,
where g is the gravitational constant, ρ is the constant density of the fluid and y−3
denotes the negative part of the third component of y.
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For every ε ∈ (0, 1) we consider the energy Eε : W̊ 1,p(Ω; Rn) → (−∞, +∞]
defined as

Eε(y) :=

⎧⎨⎩
∫

Ω

W (x,∇y(x)) dx+ ε

∫
Ω

(π(y(x)) det∇y(x) − π(x)) dx if y ∈ Y p,

+∞ otherwise,
(3.1)

where the set of admissible deformations is

Y p :=
{
y ∈ W̊ 1,p(Ω; Rn) : det∇y(x) > 0 for a.e. x ∈ Ω

}
.

In other words, admissible deformations are orientation preserving and, as it is
common in Neumann boundary value problems, have zero average on Ω.

By (2.3) any rigid motion of the form

yR(x) := Rx with R ∈ SO(n) (3.2)

belongs to Y p. Moreover, under the assumption (π2), the energy is well defined
since the two integrands W (·, ∇y) and π(y) det∇y are nonnegative for y ∈ Y p.

Remark 3.1. Here we do not assume deformations to be injective in any sense.
However, one can easily include the requirement that admissible deformations are
a.e. injective (see, e.g. [4]), without affecting the results of the paper, see also remark
3.13.

The key ingredient in the proof of compactness is the following variant of the
celebrated rigidity estimate by Friesecke et al. [13], whose proof can be found, e.g.
in [3, lemma 3.1]. Similar variants of the rigidity estimates with mixed growth
condition have been proved in [5, 24, 31].

Theorem 3.2. There exists a positive constant C = C(Ω, p) > 0 with the following
property: for every y ∈W 1,p(Ω; Rn) there exists a constant rotation R ∈ SO(n) such
that ∫

Ω

gp(|∇y(x) −R|) dx � C

∫
Ω

gp(dist(∇y(x);SO(n))) dx.

The following generalized rigidity estimate will be used in theorem 3.14 to infer
strong convergence of almost minimizers. For a proof we refer to [6, theorem 1.1].

Theorem 3.3. Let 1 < p1 < p2 <∞. Then there exists a positive constant C =
C(Ω, p1, p2) > 0 with the following property: for every y ∈W 1,1(Ω; Rn) with

dist(∇y;SO(n)) = f1 + f2 for some fi ∈ Lpi(Ω), i = 1, 2,

there exist a constant rotation R̃ ∈ SO(n) and two functions gi ∈ Lpi(Ω) such that

∇y = R̃+ g1 + g2 and ‖gi‖pi
� C‖fi‖pi

, i = 1, 2.

Our arguments will strongly rely on the Lipschitz continuity of the pressure
function π. This, however, holds only in a suitable set Ω′ containing Ω (see (π1)).
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Since deformations y ∈ Y p may be a priori valued outside Ω′, it is convenient to
introduce an auxiliary Lipschitz continuous function that coincides with π in Ω′

and is bounded on the whole of R
n. This is the content of the following lemma,

which is clearly not necessary if π itself is Lipschitz continuous and bounded.

Lemma 3.4. Assume (π1) and (π2). Then there exists a Lipschitz continuous func-
tion π̂ : R

n → [0, +∞), with compact support, such that π̂ coincides with π in
an open neighbourhood of O and π̂(y) � π(y) for all y ∈ R

n. In particular, π̂ is
bounded.

Remark 3.5. Note that the set of optimal rotations (2.7) stays the same if π is
replaced by π̂, since π and π̂ coincide in a neighbourhood of O.

Proof of lemma 3.4. Assume 0 �∈ Ω, so that O is an open annulus centred at 0 (the
case where 0 ∈ Ω can be treated similarly). Let 0 < r1 < r2 and 0 < δ < r1 be such
that O ⊂ Br2 \Br1 and π is Lipschitz continuous in Br2+δ \Br1−δ with Lipschitz
constant L. Let M � 0 be the maximum of π on ∂Br1 ∪ ∂Br2 . We first define
π̃ : Br2+δ \Br1−δ → R as

π̃(y) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
π
(
r1

y
|y|
)
−K(r1 − |y|) if r1 − δ � |y| < r1,

π(y) if r1 � |y| < r2,

π
(
r2

y
|y|
)
−K(|y| − r2) if r2 � |y| � r2 + δ,

where K := L ∨M/δ. It is easy to see that π̃ is Lipschitz continuous in its domain;
moreover, by construction it coincides with π in an open neighbourhood of O. We
now show that π̃ � π on Br2+δ \Br1−δ. Indeed, if r1 − δ � |y| < r1, by the Lipschitz
continuity of π we have

π̃(y) � π(y) + L

∣∣∣∣r1 y|y| − y

∣∣∣∣−K(r1 − |y|) = π(y) − (K − L)(r1 − |y|) � π(y),

and similarly if r2 � |y| � r2 + δ. Finally, we note that, if y ∈ ∂Br1−δ ∪ ∂Br2+δ,
then

π̃(y) � M −Kδ � 0.

We now conclude by considering π̂(y) := π̃(y) ∨ 0 for y ∈ Br2+δ \Br1−δ, π̂(y) := 0
otherwise in R

n. �

We are now in a position to state and prove some estimates which will be crucial
to infer compactness of deformations with equibounded (rescaled) energy.
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Lemma 3.6. Assume (W1)–(W5), (π1), and (π2). If Eε(yε) � Cε2 for every ε ∈
(0, 1), then there holds∫

{| det∇yε−1|�1}
|det∇yε(x) − 1|2 dx � Cε2 for every ε ∈ (0, 1). (3.3)

Furthermore, there exist constant rotations Rε ∈ SO(n) such that the rescaled
displacements uε ∈ W̊ 1,p(Ω; Rn) defined by

uε :=
1
ε
RT

ε (yε − yRε
) (3.4)

(see (3.2) for the definition of yRε
) satisfy∫

Ω

gp(ε|∇uε(x)|) dx � Cε2 for every ε ∈ (0, 1) (3.5)

and are uniformly bounded in W 1,p(Ω; Rn).
If, moreover, (R′

ε) ⊂ SO(n) is another sequence for which the rescaled displace-
ments, defined as in (3.4), satisfy (3.5), then

|Rε −R′
ε| � Cε (3.6)

for every ε ∈ (0, 1).

Proof. Let Êε be the auxiliary energy defined as in (3.1) with π replaced by the
function π̂ given by lemma 3.4. Since π � π̂ everywhere and π ≡ π̂ on Ω, we have
that

Êε(y) � Eε(y) for every y ∈ W̊ 1,p(Ω; Rn). (3.7)

For the sake of brevity we introduce the notation

Ω−
ε := {x ∈ Ω : |det∇yε(x) − 1| � 1} , Ω+

ε := Ω \ Ω−
ε . (3.8)

Since Êε(yε) � Eε(yε) � Cε2, we have that yε belongs to Y p, hence in particular
det∇yε > 0 a.e. in Ω. By (W5) and theorem 3.2 we infer the existence of Rε ∈
SO(n) such that∫

Ω

gp(|∇yε(x) −Rε|) dx � C

∫
Ω

W (x,∇yε(x)) dx. (3.9)

By (2.8) we deduce that∫
Ω

W (x,∇yε) dx = Êε(yε) + ε

∫
Ω

(π̂(x) − π̂(yε) det∇yε) dx

� Cε2 + ε

∫
Ω

(π̂(yRε
) − π̂(yε) det∇yε) dx

� Cε2 + ε

∫
Ω

|π̂(yε) − π̂(yRε
)|dx+ ε

∫
Ω

π̂(yε)(1 − det∇yε) dx.

Since π̂ � 0 by construction, the integrand in the last integral above is nonposi-
tive on Ω+

ε . Thus, using the fact that π̂ is Lipschitz continuous and bounded, and
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applying Hölder’s inequality we deduce that∫
Ω

W (x,∇yε) dx � Cε2 + Cε‖yε − yRε
‖1 + Cε‖det∇yε − 1‖L2(Ω−

ε ). (3.10)

By (2.6) this implies

‖det∇yε − 1‖2
L2(Ω−

ε )
� Cε2 + Cε‖yε − yRε

‖1 + Cε‖det∇yε − 1‖L2(Ω−
ε ),

which, in turn, by Young’s inequality yields

‖det∇yε − 1‖2
L2(Ω−

ε )
� Cε2 + Cε‖yε − yRε

‖1. (3.11)

By combining (3.10) and (3.11) we deduce∫
Ω

W (x,∇yε) dx � Cε2 + Cε‖yε − yRε
‖1, (3.12)

and, as a consequence of (3.4), (3.9) and (3.12), we obtain∫
Ω

gp(|ε∇uε|) dx =
∫

Ω

gp(|∇yε −Rε|) dx�Cε2 + Cε‖yε − yRε
‖1 = Cε2(1 + ‖uε‖1).

(3.13)
Using the definition (2.4) of gp this implies that∫

{|ε∇uε|�1}
|ε∇uε|2 dx � 2

∫
Ω

gp(|ε∇uε|) dx � Cε2(1 + ‖uε‖1). (3.14)

By Hölder’s inequality we obtain∫
{|ε∇uε|�1}

|ε∇uε|p dx � C

(∫
{|ε∇uε|�1}

|ε∇uε|2 dx

)p/2

� Cεp(1 + ‖uε‖1)p/2 � Cεp(1 + ‖uε‖1), (3.15)

where the last inequality follows from the fact that tp/2 � 1 + t for t � 0.
Again from (2.4) and recalling that p � 2 we also have that∫
{|ε∇uε|>1}

|ε∇uε|p dx �
∫

Ω

gp(|ε∇uε|) dx � Cε2(1 + ‖uε‖1) � Cεp(1 + ‖uε‖1).

(3.16)

By (3.15), (3.16) and the continuous embedding of W 1,p(Ω; Rn) into L1(Ω; Rn) we
deduce that

‖∇uε‖p
p � C + C‖uε‖W 1,p .

Since uε has zero average, Poincaré–Wirtinger inequality finally yields

‖uε‖p
W 1,p � C + C‖uε‖W 1,p ,

which implies ‖uε‖W 1,p � C. This inequality, combined with (3.11) and (3.13),
provides (3.3) and (3.5).
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Finally, if (R′
ε) is a sequence of rotations whose corresponding rescaled displace-

ments satisfy (3.5), then

|Rε −R′
ε| � C(‖∇yε −Rε‖p + ‖∇yε −R′

ε‖p) � Cε.

This concludes the proof. �

As an immediate corollary we obtain that the infimum of the energy Eε is of order
ε2.

Corollary 3.7. Assume (W1)–(W5), (π1) and (π2). Then

− Cε2 � inf
W̊ 1,p(Ω;Rn)

Eε � 0 for every ε ∈ (0, 1). (3.17)

Proof. Let (yε) be a minimizing sequence satisfying

Eε(yε) � inf
W̊ 1,p(Ω;Rn)

Eε + ε2.

Using the fact that W is nonnegative and arguing as in the proof of lemma 3.6, we
deduce that

Eε(yε) � ε

∫
Ω

(π̂(yε) det∇yε − π̂(yRε
)) dx

� −Cε‖yε − yRε
‖1 − Cε‖det∇yε − 1‖L2(Ω−

ε )

� −Cε2,

where the last inequality follows from lemma 3.6. This proves the first inequality
in (3.17).

The other inequality in (3.17) follows trivially by the fact that the energy Eε is
zero on the identity map. �

We now have all the main ingredients to prove compactness of deformations with
equibounded rescaled energies.

Proposition 3.8 (Compactness). Assume (W1)–(W5), (π1) and (π2). If
Eε(yε) � Cε2 for every ε ∈ (0, 1), then for any Rε, uε given by lemma 3.6 we have
that, up to subsequences,

• uε ⇀ u0 weakly in W̊ 1,p(Ω; Rn) with u0 ∈ H̊1(Ω; Rn),

• Rε → R0 with R0 ∈ R,

as ε→ 0. Moreover, R0 is independent of the choice of Rε and u0 is independent
up to infinitesimal rigid motions of the form Ax, with A ∈ R

n×n
skew.

Proof. By lemma 3.6 the sequence (uε) is uniformly bounded in W 1,p(Ω; Rn).
Hence, up to subsequences, uε ⇀ u0 weakly in W̊ 1,p(Ω; Rn). We now show that
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u0 belongs to H̊1(Ω; Rn). We first introduce the set

Gε :=
{
x ∈ Ω : ε1/2|∇uε(x)| � 1

}
, (3.18)

and we observe that by Tchebichev inequality

|Ω \Gε| � Cεp/2. (3.19)

We claim that

(i) χGε
∇uε is bounded in L2(Ω; Rn×n);

(ii) ∇u0 ∈ L2(Ω; Rn×n) and, up to subsequences, χGε
∇uε ⇀ ∇u0 weakly in

L2(Ω; Rn×n).

Assertion (i) easily follows from (3.5) arguing as in (3.14) and using that Gε ⊂
{|ε∇uε| � 1}. To prove (ii) we first note that (i) ensures that χGε

∇uε ⇀ v weakly
in L2(Ω; Rn×n), up to subsequences, for some v ∈ L2(Ω; Rn×n). On the other hand,
by (3.19) we have that χGε

converges to 1 boundedly in measure. Since ∇uε ⇀ ∇u0

in Lp(Ω; Rn×n), we conclude that χGε
∇uε ⇀ ∇u0 in Lp(Ω; Rn×n). Hence, v = ∇u0

and (ii) is proved. By Sobolev embedding we have that u0 ∈ H̊1(Ω; Rn).
Since SO(n) is a compact set, there exists R0 ∈ SO(n) such that Rε → R0, up

to subsequences. To prove that R0 ∈ R we argue as in the proof of lemma 3.6 and
deduce

C � 1
ε2

Eε(yε)

� 1
ε2

Êε(yε) � 1
ε

∫
Ω

(π̂(yε) det∇yε − π̂(x)) dx � −c+
1
ε

∫
Ω

(π(Rεx) − π(x)) dx.

Note that in the last integral we used that π̂ ≡ π on O.
Multiplying by ε and then letting ε→ 0 we infer that∫

Ω

(π(R0x) − π(x)) dx � 0.

This implies that R0 ∈ R since by assumption the identity matrix is an optimal
rotation.

Uniqueness of R0 is a straightforward consequence of (3.6). Uniqueness (up to an
infinitesimal rigid motion) of u0 follows by arguing as in [22, theorem 5.1], recalling
that displacements have zero average in our setting. �

The following proposition will be useful in both the liminf and the limsup inequal-
ities to characterize the asymptotic behaviour of the rescaled pressure potential.
Note that, besides the presence of π̂ in place of π, the integral at the left-hand side
of (3.20) differs from the rescaled pressure potential in the total energy whenever
Rε is not an optimal rotation.

Proposition 3.9. Let π̂ be a function as in lemma 3.4 and let yε ∈ W̊ 1,p(Ω; Rn)
satisfy (3.3). Assume there exist Rε ∈ SO(n) converging to R0 ∈ R such that the
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corresponding displacements uε, defined as in (3.4), weakly converge in W̊ 1,p(Ω; Rn)
to u0 ∈ H̊1(Ω; Rn). Then,

lim inf
ε→0

1
ε

∫
Ω

(π̂(yε) det∇yε − π̂(yRε
)) dx

� lim
ε→0

1
ε

∫
{| det∇yε−1|�1}

(π̂(yε) det∇yε − π̂(yRε
)) dx

=
∫

∂Ω

π(R0x)n∂Ω(x) · u0(x) dHn−1(x). (3.20)

Proof. We write

1
ε

∫
Ω

(π̂(yε) det∇yε − π̂(yRε
)) dx

=
1
ε

∫
Ω

π̂(yε)(det∇yε − 1) dx+
1
ε

∫
Ω

(π̂(yε) − π̂(yRε
)) dx

=: Iε + IIε. (3.21)

We start by considering Iε. Let Ω−
ε and Gε be defined as in (3.8) and (3.18). Since

(uε) is bounded in W 1,p(Ω; Rn), property (3.19) still holds. Moreover, by (2.1)

det∇yε(x) = det(I + ε∇uε(x)) = 1 +
n∑

k=1

εkιk(∇uε(x)) for a.e. x ∈ Ω.

Since by (2.2) we have that for k = 1, . . . , n

|εkιk(∇uε(x))| � Cεk|∇uε(x)|k � Cεk/2 � Cε1/2 for a.e. x ∈ Gε,

we deduce that Gε ⊂ Ω−
ε for ε small enough. Therefore, using the nonnegativity of

π̂ and (2.1) again, we obtain

Iε � 1
ε

∫
Ω−

ε

π̂(yε)(det∇yε − 1) dx

=
∫

Gε

π̂(yε)div uε dx

+
n∑

k=2

εk−1

∫
Gε

π̂(yε)ιk(∇uε) dx+
1
ε

∫
Ω−

ε \Gε

π̂(yε)(det∇yε − 1) dx

=: J1
ε + J2

ε + J3
ε .

We first show that

lim
ε→0

J1
ε =

∫
Ω

π(R0x)div u0(x) dx. (3.22)
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Indeed, since π̂ = π on O, we may write∣∣∣∣J1
ε −

∫
Ω

π(R0x)div u0(x) dx
∣∣∣∣ �∫

Gε

|π̂(Rεx+ εRεuε(x)) − π̂(R0x)||div uε|dx

+
∣∣∣∣∫

Gε

π(R0x)div uε dx−
∫

Ω

π(R0x)div u0 dx
∣∣∣∣ .

(3.23)

Using the Lipschitz continuity of π̂ and the definition of Gε, the first integral at the
right-hand side can be bounded as follows:∫

Gε

|π̂(Rεx+ εRεuε(x)) − π̂(R0x)||div uε|dx

� C|Rε −R0|‖∇uε‖p + Cε

∫
Gε

|uε||∇uε|dx

� C|Rε −R0| + Cε1/2‖uε‖p

� C|Rε −R0| + Cε1/2,

where the last term goes to zero, as ε→ 0. Since χGε
converges to 1 boundedly in

measure, we have that χGε
div uε ⇀ div u0 weakly in Lp(Ω), hence the second term

in (3.23) goes to zero, as well. This proves (3.22).
We now prove that both J2

ε and J3
ε converge to 0, as ε→ 0. By (2.2) and (3.4),

since π̂ is bounded, we obtain

|J2
ε | � C

n∑
k=2

εk−1

∫
Gε

|∇uε|k dx = C

n∑
k=2

εk−1

∫
Gε

|∇uε|k−p|∇uε|p dx.

Since |∇uε| � ε−1/2 on Gε, we have that

|J2
ε | � C

n∑
k=2

ε(k+p−2)/2‖∇uε‖p
p � Cεp/2 → 0.

To bound J3
ε we use (3.3) and deduce

|J3
ε | � C

ε
‖det∇yε − 1‖L2(Ω−

ε )|Ω \Gε|1/2 � C|Ω \Gε|1/2,

which vanishes by (3.19).
By combining the previous inequalities we conclude that

lim inf
ε→0

Iε � lim
ε→0

1
ε

∫
Ω−

ε

π̂(yε)(det∇yε − 1) dx =
∫

Ω

π(R0x)div u0(x) dx. (3.24)

We now claim that

lim
ε→0

IIε = lim
ε→0

1
ε

∫
Ω−

ε

(π̂(yε) − π̂(yRε
)) dx =

∫
Ω

∇π(R0x) ·R0u0(x) dx. (3.25)
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Assuming this is true, the thesis follows by (3.21), (3.24), (3.25) and the divergence
theorem, since

π(R0x)div u0(x) + ∇π(R0x) ·R0u0(x) = div (π(R0x)u0(x)).

To conclude we only need to prove (3.25). We can write the integrand in IIε as

1
ε
(π̂(yε) − π̂(yRε

)) =
1
ε
(π̂(Rεx+ εRεuε(x)) − π̂(Rεx)) (3.26)

and owing to the Lipschitz continuity of π̂ we have

1
ε
|π̂(yε) − π̂(yRε

)| � C|uε(x)| for a.e. x ∈ Ω. (3.27)

Since (uε) is bounded in Lp(Ω; Rn) and |Ω \ Ω−
ε | � |Ω \Gε| → 0 by (3.19), we

deduce that

lim
ε→0

1
ε

∫
Ω\Ω−

ε

(π̂(yε) − π̂(yRε
)) dx = 0.

Hence, proving (3.25) is equivalent to show that

lim
ε→0

IIε =
∫

Ω

∇π(R0x) ·R0u0(x) dx. (3.28)

On the other hand, uε → u0 strongly in L1(Ω; Rn) by compact embedding. Thus,
by (3.27) and the generalized dominated convergence theorem, (3.28) is proved if
we show that the integrand (3.26) converges a.e. to ∇π(R0x) ·R0u0(x).

To this aim, we first note that, up to subsequences,

lim
ε→0

∇π̂(Rεx) = ∇π̂(R0x) for a.e. x ∈ Ω.

Indeed, the convergence is actually in L1(O; Rn). This can be easily proved by
approximating ∇π̂ with functions in C0(O; Rn). Now, by Rademacher theorem (we
point out that we are working with a countable sequence of rotations Rε) for almost
every x ∈ Ω we have

π̂(Rεx+ εRεuε(x)) − π̂(Rεx)
ε

= ∇π̂(Rεx) ·Rεuε(x) +
1
ε
o(ε|uε(x)|).

Since uε → u0 a.e., up to subsequences, and π̂ ≡ π on O, we deduce the desired
convergence. This concludes the proof. �

With the result of proposition 3.9 at hand, we are now in a position to state and
prove the liminf and the limsup inequalities for the energy functionals (1/ε2)Eε.

Proposition 3.10 (Liminf inequality). Assume (W1)–(W5), (π1) and (π2). For
every ε ∈ (0, 1) let yε ∈ W̊ 1,p(Ω; Rn) be such that there exist Rε ∈ SO(n) converg-
ing to R0 ∈ R and the corresponding displacements uε, defined as in (3.4), weakly
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converge in W̊ 1,p(Ω; Rn) to u0 ∈ H̊1(Ω; Rn). Then

E0(u0, R0) � lim inf
ε→0

1
ε2

Eε(yε),

where E0 : H̊1(Ω; Rn) ×R → R is defined by

E0(u0, R0) :=
1
2

∫
Ω

Q(x, e(u0)(x)) dx+
∫

∂Ω

π(R0x)n∂Ω(x) · u0(x) dHn−1(x).

(3.29)
The density Q(x, ·) is the quadratic form given by

Q(x, F ) = D2
FW (x, I)F : F for F ∈ R

n×n,

and e(u0) denotes the symmetric gradient of u0.

Remark 3.11. For any optimal rotation R0 ∈ R the functional E0(·, R0) is invari-
ant under perturbations by infinitesimal rigid motions. Indeed, if u′0(x) = u0(x) +
Ax with A ∈ R

n×n
skew, then clearly e(u′0) = e(u0) and by (2.10)∫

∂Ω

π(R0x)n∂Ω(x) · u′0(x) dHn−1(x) =
∫

∂Ω

π(R0x)n∂Ω(x) · u0(x) dHn−1(x).

Proof of proposition 3.10. Without loss of generality we can assume

lim inf
ε→0

1
ε2

Eε(yε) < +∞,

so that yε ∈ Y p and, up to subsequence, Eε(yε) � Cε2. By lemma 3.6 and proposi-
tion 3.8 there exist a (possibly different) sequence (R′

ε) ⊂ SO(n) such that, up to
subsequences, R′

ε → R0, the corresponding displacements u′ε satisfy (3.5) and, up to
subsequences, weakly converge to u0 +Ax for some A ∈ R

n×n
skew. However, by remark

3.11 we can assume, without loss of generality, that Rε = R′
ε and so, uε = u′ε and

A = 0.
Let Êε be the auxiliary energy defined as in (3.1) with π replaced by the function

π̂ given by lemma 3.4. By the properties of π̂ we have

1
ε2

Eε(yε) � 1
ε2

Êε(yε) =
1
ε2

∫
Ω

W (x,∇yε) dx+
1
ε

∫
Ω

(π̂(yε) det∇yε − π̂(yRε
)) dx

+
1
ε

∫
Ω

(π̂(yRε
) − π̂(x)) dx. (3.30)

Arguing as in [3, proof of theorem 2.4] one can prove that

lim inf
ε→0

1
ε2

∫
Ω

W (x,∇yε) dx � 1
2

∫
Ω

Q(x, e(u0)(x)) dx.

Since condition (3.3) is satisfied by lemma 3.6, we can apply proposition 3.9 and
we obtain

lim inf
ε→0

1
ε

∫
Ω

(π̂(yε) det∇yε − π̂(yRε
)) dx �

∫
∂Ω

π(R0x)n∂Ω(x) · u0(x) dHn−1(x).

Finally, assumption (2.8) guarantees that the last term in (3.30) is nonnegative.
This proves the desired inequality. �
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Proposition 3.12 (Limsup inequality). Assume (W1)–(W5), (π1) and (π2).
For every (u0, R0) ∈ H̊1(Ω; Rn) ×R there exist (uε, Rε) ∈ W̊ 1,p(Ω; Rn) × SO(n)
such that uε ⇀ u0 weakly in W̊ 1,p(Ω; Rn), Rε → R0 and, setting yε(x) := Rε(x+
εuε(x)), there holds

lim sup
ε→0

1
ε2

Eε(yε) � E0(u0, R0),

where E0 is the functional defined in (3.29).

Proof. Let (u0, R0) ∈ H̊1(Ω; Rn) ×R. By mollification there exists (uε) ⊂
W̊ 1,∞(Ω; Rn) such that

uε → u0 strongly in H1(Ω; Rn) and ε1/2‖uε‖W 1,∞ � 1. (3.31)

We define Rε := R0, so that yε(x) = R0(x+ εuε(x)).
We first observe that yε ∈ Y p for ε small enough. Indeed, by (2.3) it has zero-

average and by (2.1) it satisfies

det∇yε(x) = det(I + ε∇uε(x)) = 1 +
n∑

k=1

εkιk(∇uε(x)) for a.e. x ∈ Ω. (3.32)

Since by (2.2) we have that for k = 1, . . . , n

|εkιk(∇uε(x))| � Cεk|∇uε(x)|k � Cεk/2 � Cε1/2 for a.e. x ∈ Ω,

for ε small enough we obtain

|det∇yε(x) − 1| � Cε1/2 � 1
2

for a.e. x ∈ Ω, (3.33)

and thus, det∇yε > 0 a.e. in Ω.
By (3.31) we have that for ε small enough the set yε(Ω) is contained in the

neighbourhood of O where π and π̂ coincide. Therefore, using also that R0 ∈ R, we
can write

1
ε2

Eε(yε) =
1
ε2

∫
Ω

W (x, I + ε∇uε(x)) dx+
1
ε

∫
Ω

(π̂(yε) det∇yε−π̂(yR0)) dx.

Arguing as in [3, proof of theorem 2.4], one can show that

lim sup
ε→0

1
ε2

∫
Ω

W (x, I + ε∇uε(x)) dx � 1
2

∫
Ω

Q(x, e(u0)(x)) dx.

On the other hand, by (3.32) we have that

|det∇yε(x) − 1| � ε|∇uε(x)| + Cε for a.e. x ∈ Ω,

hence condition (3.3) is satisfied and we can apply proposition 3.9. By (3.33) we
deduce

lim
ε→0

1
ε

∫
Ω

(π̂(yε) det∇yε)−π̂(yR0)) dx =
∫

∂Ω

π(R0x)n∂Ω(x) · u0(x) dHn−1(x).

This concludes the proof. �
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Remark 3.13. If we include a.e. injectivity in the definition of the space Y p of
admissible deformations (see remark 3.1), the limsup inequality can be proved
by means of the same recovery sequence. Indeed, by [4, theorem 5.5-1(b)] the
deformations yε are a.e. injective owing to (3.31).

Combining together the previous propositions, we can prove the main result of
this section. It ensures that almost minimizers of the nonlinear energy strongly
converge to minimizers of the limiting energy.

Theorem 3.14 (Convergence of almost minimizers). Assume (W1)–(W5),
(π1) and (π2). If (yε) is a sequence of almost minimizers for the energies Eε, that
is,

Eε(yε) � inf
W̊ 1,p(Ω;Rn)

Eε + o(ε2), (3.34)

then there exist Rε ∈ SO(n) such that, up to passing to a subsequence, we have

• uε → u0 strongly in W̊ 1,p(Ω; Rn) with u0 ∈ H̊1(Ω; Rn),

• Rε → R0 with R0 ∈ R,

as ε→ 0. Furthermore, the pair (u0, R0) is a minimizer of E0 on H̊1(Ω; Rn) ×R
and

lim
ε→0

1
ε2

(
inf

W̊ 1,p(Ω;Rn)
Eε

)
= min

{
E0(u,R) : (u,R) ∈ H̊1(Ω; Rn) ×R

}
. (3.35)

Proof. Let (yε) be a sequence of almost minimizers. By corollary 3.7 we have that

inf
W̊ 1,p(Ω;Rn)

Eε � 0,

hence by proposition 3.8 there exist u0 ∈ H̊1(Ω; Rn) and R0 ∈ R such that, up to
a subsequence,

uε ⇀ u0 weakly in W̊ 1,p(Ω; Rn) and Rε → R0.

We now show that (u0, R0) is a minimizer of E0. To this aim let (v, S) ∈
H̊1(Ω; Rn) ×R and let (vε, Sε) be a recovery sequence for (v, S), as in proposition
3.12. Let zε(x) := Sε(x+ εvε(x)). By proposition 3.10 we have

E0(u0, R0) � lim inf
ε→0

1
ε2

Eε(yε) � lim inf
ε→0

(
inf

W̊ 1,p(Ω;Rn)

1
ε2

Eε

)
� lim sup

ε→0

(
inf

W̊ 1,p(Ω;Rn)

1
ε2

Eε

)
� lim sup

ε→0

1
ε2

Eε(zε) � E0(v, S). (3.36)

This implies that E0 is minimized at (u0, R0) and, as a consequence, (3.35) holds.
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To conclude, it remains to prove that uε → u0 strongly in W 1,p(Ω; Rn). We adapt
the argument in [3, theorem 2.5] to our framework. We claim that the following
properties hold:

(a) χGε
e(uε) → e(u0) strongly in L2(Ω; Rn×n

sym ), where the set Gε is defined as in
(3.18);

(b) the sequence ((1/εp) distp(∇yε;SO(n))) is equi-integrable;

(c) the sequence (|∇uε|p) is equi-integrable.

The thesis follows from (a) and (b), by using Vitali’s convergence theorem together
with Korn’s second inequality, see [3, proof of theorem 2.5] for more details.

We now prove (a). By choosing (v, S) = (u0, R0) in (3.36) we deduce

lim
ε→0

1
ε2

Eε(yε) = E0(u0, R0).

By (3.30) and assumption (2.8) we have

1
ε2

Eε(yε) � 1
ε2

∫
Ω

W (x,∇yε) dx+
1
ε

∫
Ω

(π̂(yε) det∇yε − π̂(yRε
)) dx.

Therefore, letting ε→ 0 and applying proposition 3.9 yield

lim sup
ε→0

1
ε2

∫
Ω

W (x,∇yε) dx � E0(u0, R0) −
∫

∂Ω

π(R0x)n∂Ω(x) · u0(x) dHn−1(x)

=
1
2

∫
Ω

Q(x, e(u0)) dx.

On the other hand, by Taylor expansion ofW around I and by the weak convergence
of χGε

e(uε) to e(u0) in L2(Ω; Rn×n
sym ) (see property (ii) in the proof of proposition

3.8) we obtain

lim sup
ε→0

1
ε2

∫
Ω

W (x,∇yε) dx � lim sup
ε→0

1
2

∫
Ω

Q(x, χGε
e(uε)) dx

� lim inf
ε→0

1
2

∫
Ω

Q(x, χGε
e(uε)) dx

� 1
2

∫
Ω

Q(x, e(u0)) dx,

see, e.g. [3, 8, 22]. Combining the previous inequalities yields

lim
ε→0

1
2

∫
Ω

Q(x, χGε
e(uε)) dx =

1
2

∫
Ω

Q(x, e(u0)) dx. (3.37)

Since χGε
e(uε) ⇀ e(u0) weakly in L2(Ω; Rn×n

sym ) and the quadratic form Q(x, ·) is
coercive on R

n×n
sym by (W2), (W4) and (W5), equation (3.37) proves claim (a).

To show claim (b) one can repeat verbatim the proof in [3, theorem 2.5].
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We now prove claim (c). Given α > p and η > 0, we deduce by (b) that there
exists Mη > 0 such that, setting

fε,η
1 (x) := dist(∇yε(x);SO(n))χEε,η (x), fε,η

2 (x) := dist(∇yε(x);SO(n))χΩ\Eε,η (x),

where

Eε,η :=
{
x ∈ Ω :

1
εp

distp(∇yε(x);SO(n)) � Mη

}
,

we have that ∥∥∥∥fε,η
1

ε

∥∥∥∥p

p

� η and
∥∥∥∥fε,η

2

ε

∥∥∥∥α

α

� |Ω|Mα/p
η . (3.38)

Theorem 3.3 now ensures the existence of R̃ε,η ∈ SO(n) and of gε,η
1 , gε,η

2 such that

∇yε = R̃ε,η + gε,η
1 + gε,η

2 and ‖gε,η
1 ‖p � C‖fε,η

1 ‖p, ‖gε,η
2 ‖α � C‖fε,η

2 ‖α. (3.39)

Since ∇yε = Rε + εRε∇uε, we deduce that

R̃ε,η −Rε

ε
= Rε∇uε −

gε,η
1

ε
− gε,η

2

ε
, (3.40)

hence

|R̃ε,η −Rε|p
εp

� C

(
‖∇uε‖p

p +
∥∥∥∥gε,η

1

ε

∥∥∥∥p

p

+
∥∥∥∥gε,η

2

ε

∥∥∥∥p

p

)
� C(1 + η +Mη), (3.41)

where the last inequality follows from Hölder’s inequality, (3.38), and (3.39).
On the other hand, by (3.40) we can write

∇uε = RT
ε

(
R̃ε,η −Rε

ε
+
gε,η
1

ε
+
gε,η
2

ε

)
.

Thus, by (3.38), (3.39) and (3.41) we have that for every measurable set A ⊂ Ω

∫
A

|∇uε|p dx � C

(
|R̃ε,η −Rε|p

εp
|A| +

∫
A

∣∣∣∣gε,η
1

ε

∣∣∣∣p dx+
∫

A

∣∣∣∣gε,η
2

ε

∣∣∣∣p dx

)

� C

(
(1 + η +Mη)|A| + η +

∥∥∥∥fε,η
2

ε

∥∥∥∥p

α

|A|1−p/α

)
� C

(
(1 + η +Mη)|A| + η +Mη|A|1−p/α

)
.

Now, for every δ > 0 we can choose first η = η(δ) and then ω = ω(δ, η) in such a
way that the right-hand side above is less than δ for every measurable set A ⊂ Ω
with |A| < ω. This proves claim (c) and concludes the proof of the theorem. �
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4. Pressure loads of arbitrary sign

Here we extend the results of the previous section to pressure loads whose intensity
π is not necessarily nonnegative (and still satisfies (π1)). To deal with the negative
part of π we need to assume an additional bound from below for W (·, F ) in terms
of detF :

(W6) W (x, F ) � c2gq(|detF − 1|) for a.e. x ∈ Ω and for every F ∈ R
n×n, for some

q ∈ [1, 2],

where gq is defined as in (2.4) and c2 > 0 is a constant independent of x. According
to the value of q in (W6), we assume π to satisfy the following condition:

(π3) if q = 1, π− is bounded; if q ∈ (1, 2], π−(y) � C(1 + |y|p/q′
) for every y ∈ R

n.

We note that the growth condition in (π3) is at most linear, since p, q ∈ (1, 2]
implies p/q′ ∈ (0, 1].

In the current framework the energy Eε is defined as in (3.1) with the set of
admissible deformations Y p replaced by

Y p
q := {y ∈ Y p : det∇y ∈ Lq(Ω)} . (4.1)

Owing to (π3) the energy is well defined on Y p
q : indeed, if y ∈ Y p

q , then the com-
position π− ◦ y belongs to Lq′

(Ω) and thus, π(y) det∇y is integrable. Clearly, all
rigid motions yR with R ∈ SO(n) are still admissible deformations. As observed in
remark 3.1, also in this setting the a.e. injectivity condition can be included in the
definition of Y p

q without altering the results of this section.
As in the previous section we need a Lipschitz continuous function that extends π

outside a neighbourhood of O, is below π everywhere, and satisfies the same growth
condition (π3) as π.

Lemma 4.1. Assume conditions (π1) and (π3). Then, there exists a Lipschitz con-
tinuous function π̂ : R

n → R such that π̂ coincides with π in a neighbourhood of O,
π̂(y) � π(y) for all y ∈ R

n, and π̂ has the following property: if q = 1, π̂ is bounded;
if q ∈ (1, 2], |π̂(y)| � C(1 + |y|p/q′

) for every y ∈ R
n.

Proof. We consider only the case q ∈ (1, 2], being the case q = 1 analogous and
even simpler. Let C > 0 be a constant for which (π3) is satisfied and let

h(y) :=
(
C(1 + |y|p/q′

)
)
∨ (1 + C).

Since p/q′ ∈ (0, 1], the function h is Lipschitz continuous in the whole of R
n and

π � −h by (π3). Hence we can apply lemma 3.4 to the function Π := π + h. This
provides us with a function Π̂. It is now easy to check that the function π̂ := Π̂ − h
has all the required properties. �

Under this new set of assumptions, the results of § 3 can be modified as follows.
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Lemma 4.2. Assume (W1)–(W6), (π1) and (π3). Then there exists ε0 ∈ (0, 1) such
that, if Eε(yε) � Cε2 for every ε ∈ (0, ε0), then there holds∫

Ω

gq(|det∇yε(x) − 1|) dx � Cε2 for every ε ∈ (0, ε0). (4.2)

Furthermore, there exist constant rotations Rε ∈ SO(n) such that the rescaled
displacements uε defined by (3.4) satisfy∫

Ω

gp(ε|∇uε(x)|) dx � Cε2 for every ε ∈ (0, ε0) (4.3)

and are uniformly bounded in W 1,p(Ω; Rn).
If, moreover, (R′

ε) ⊂ SO(n) is another sequence for which the rescaled displace-
ments, defined as in (3.4), satisfy (4.3), then

|Rε −R′
ε| � Cε

for every ε ∈ (0, ε0). Finally, one has

−Cε2 � inf
W̊ 1,p(Ω;Rn)

Eε � 0 for every ε ∈ (0, ε0).

Proof. The choice of ε0 will be made throughout the proof. We follow the lines of
the proof of lemma 3.6. By lemma 4.1 inequality (3.7) still holds. By (W5) and
theorem 3.2 there exists a sequence (Rε) ⊂ SO(n) such that∫

Ω

gp(|∇yε(x) −Rε|) dx � C

∫
Ω

W (x,∇yε(x)) dx,

and∫
Ω

W (x,∇yε) dx � Cε2 + Cε‖yε − yRε
‖1 + ε

∫
Ω

|π̂(yε)||det∇yε − 1|dx. (4.4)

We denote by Pε the last term in the above inequality. In the following, c2 is the
constant in condition (W6). If q = 1, the function π̂ is bounded and thus, recalling
the definition (3.8) of the sets Ω±

ε , we have

Pε � Cε‖det∇yε − 1‖L2(Ω−
ε ) + Cε‖det∇yε − 1‖L1(Ω+

ε )

� Cε2 +
c2
4
‖det∇yε − 1‖2

L2(Ω−
ε )

+ Cε‖det∇yε − 1‖L1(Ω+
ε )

� Cε2 +
(c2

2
+ Cε

)∫
Ω

g1(|det∇yε − 1|) dx,

where we used Cauchy’s inequality and (2.5). If instead q ∈ (1, 2], the function π̂
is Lipschitz continuous and satisfies a p/q′-growth condition with p/q′ � 1, so that
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we obtain

Pε � Cε

∫
Ω−

ε

(1 + |yε − yRε
|)|det∇yε − 1|dx

+ Cε

∫
Ω+

ε

(1 + |yε − yRε
|p/q′

)|det∇yε − 1|dx.

Using that |det∇yε − 1| � 1 on Ω−
ε and applying Hölder’s inequality, from the

previous equation we deduce

Pε � Cε‖det∇yε − 1‖L2(Ω−
ε ) + Cε‖yε − yRε

‖W 1,p + Cε‖det∇yε − 1‖Lq(Ω+
ε )

+ Cε

∫
Ω+

ε

|yε − yRε
|p dx+ Cε

∫
Ω+

ε

|det∇yε − 1|q dx

� Cε2 +
c2
4
‖det∇yε − 1‖2

L2(Ω−
ε )

+ Cεq′
+
(c2

4
+ Cε

)
‖det∇yε − 1‖q

Lq(Ω+
ε )

+ Cε‖yε − yRε
‖W 1,p + Cε‖yε − yRε

‖p
W 1,p

� Cε2 +
(c2

2
+ Cε

)∫
Ω

gq(|det∇yε − 1|) dx

+ Cε‖yε − yRε
‖W 1,p + Cε‖yε − yRε

‖p
W 1,p ,

where we used Young’s inequality, (2.5) and the fact that q′ � 2. Combining (4.4)
with the previous bounds on Pε, we obtain that∫

Ω

W (x,∇yε) dx � Cε2 + Cε‖yε − yRε
‖W 1,p + Cε‖yε − yRε

‖p
W 1,p

+
(c2

2
+ Cε

)∫
Ω

gq(|det∇yε − 1|) dx
(4.5)

in both cases q = 1 and q ∈ (1, 2].
Now, if ε0 � c2/(4C), where C is a constant for which (4.5) is true, then by (W6)

we deduce that∫
Ω

gq(|det∇yε − 1|) dx � Cε2 + Cε‖yε − yRε
‖W 1,p + Cε‖yε − yRε

‖p
W 1,p (4.6)

for every ε ∈ (0, ε0). Combining (4.6) and (4.5) yields∫
Ω

W (x,∇yε) dx � Cε2 + Cε‖yε − yRε
‖W 1,p + Cε‖yε − yRε

‖p
W 1,p

= Cε2(1 + ‖uε‖W 1,p + εp−1‖uε‖p
W 1,p).

(4.7)

Arguing as in (3.14)–(3.16) and using Poincaré–Wirtinger inequality we deduce that

‖uε‖p
W 1,p � C(1 + ‖uε‖W 1,p + εp−1‖uε‖p

W 1,p).

Up to choosing ε0 smaller, if needed, we obtain

‖uε‖p
W 1,p � C(1 + ‖uε‖W 1,p),

which implies ‖uε‖W 1,p � C.
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Inequality (4.2) now follows easily from (4.6), while (4.3) is a consequence of (4.7)
and (W5). The last two statements of the lemma can be proved arguing exactly as
in the proofs of lemma 3.6 and corollary 3.7. �

The proof of the following compactness result is completely analogous to that of
proposition 3.8.

Proposition 4.3 (Compactness). Assume (W1)–(W6), (π1) and (π3). If
Eε(yε) � Cε2 for ε ∈ (0, ε0), then for any Rε, uε given by lemma 4.2, we have
that, up to subsequences,

• uε ⇀ u0 weakly in W̊ 1,p(Ω; Rn) with u0 ∈ H̊1(Ω; Rn),

• Rε → R0 with R0 ∈ R,

as ε→ 0. Moreover, R0 is independent of the choice of Rε and u0 is independent
up to infinitesimal rigid motions of the form Ax, with A ∈ R

n×n
skew.

The next proposition is the analogue of proposition 3.9. However, in the present
setting, owing to the assumptions (W6) and (π3), we can improve the result and
show convergence on the whole of Ω.

Proposition 4.4. Let π̂ be a function as in lemma 4.1 and let yε ∈ W̊ 1,p(Ω; Rn)
satisfy (4.2). Assume there exist Rε ∈ SO(n) converging to R0 ∈ R such that the
corresponding displacements uε, defined as in (3.4), weakly converge in W̊ 1,p(Ω; Rn)
to u0 ∈ H̊1(Ω; Rn). Then,

lim
ε→0

1
ε

∫
Ω

(π̂(yε) det∇yε − π̂(yRε
)) dx =

∫
∂Ω

π(R0x)n∂Ω(x) · u0(x) dHn−1(x).

Proof. We follow the lines of the proof of proposition 3.9. The only difference is in
the analysis of the term Iε in (3.21), which now can be written as

Iε =
∫

Gε

π̂(yε)div uε dx+
n∑

k=2

εk−1

∫
Gε

π̂(yε)ιk(∇uε) dx

+
1
ε

∫
Ω−

ε \Gε

π̂(yε)(det∇yε − 1) dx+
1
ε

∫
Ω+

ε

π̂(yε)(det∇yε − 1) dx

=: J̃1
ε + J̃2

ε + J̃3
ε + J̃4

ε ,

where the sets Ω±
ε and Gε are defined as in (3.8) and (3.18). Here we recall that

Gε ⊂ Ω−
ε for ε small enough. The first integral J̃1

ε can be handled exactly as in the
proof of proposition 3.9. To conclude it is enough to show that the remaining terms
are infinitesimal, as ε→ 0.
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By (2.2) and the Lipschitz continuity of π̂ we obtain

|J̃2
ε | � C

n∑
k=2

εk−1

∫
Gε

(1 + ε|uε|)|∇uε|k dx

= C

n∑
k=2

(
εk−1

∫
Gε

|∇uε|k−p|∇uε|p dx+ εk

∫
Gε

|uε||∇uε|k dx
)
.

Since |∇uε| � ε−1/2 on Gε, we have that

|J̃2
ε | � C

n∑
k=2

(
ε(k+p−2)/2‖∇uε‖p

p + εk/2‖uε‖p

)

� C

n∑
k=2

(
ε(k+p−2)/2 + εk/2

)
� Cεp/2 → 0.

Using (4.2), the boundedness of (uε) in W 1,p(Ω; Rn), and recalling that
|det∇yε−1| � 1 on Ω−

ε , we deduce that

|J̃3
ε | � C

ε

∫
Ω−

ε \Gε

(1 + ε|uε|)|det∇yε−1|dx

� C

ε
‖det∇yε−1‖L2(Ω−

ε )|Ω \Gε|1/2 + C

∫
Ω−

ε \Gε

|uε|dx

� C|Ω \Gε|1/2 + C‖uε‖p|Ω \Gε|1/p′ � C|Ω \Gε|1/2 + C|Ω \Gε|1/p′
,

where the last term goes to zero, as ε→ 0, by (3.19).
To deal with J̃4

ε we consider the two cases q = 1 and q ∈ (1, 2], separately. If
q = 1, the function π̂ is bounded and so, we have

|J̃4
ε | � C

ε
‖det∇yε − 1‖L1(Ω+

ε ) � Cε,

where in the last inequality we used (4.2).
If instead q ∈ (1, 2], by using the p/q′-growth of π̂ we have

|J̃4
ε | � C

ε

∫
Ω+

ε

(1 + (ε|uε|)p/q′
)|det∇yε − 1|dx

� C

ε
‖det∇yε − 1‖Lq(Ω+

ε )|Ω+
ε |1/q′

+ Cεp/q′−1‖det∇yε − 1‖Lq(Ω+
ε )‖uε‖p/q′

p .

By (4.2) and the boundedness of (uε) in W 1,p(Ω; Rn) we deduce

|J̃4
ε | � Cε2/q−1|Ω+

ε |1/q′
+ Cε2/q+p/q′−1‖uε‖p/q′

p � C|Ω+
ε |1/q′

+ Cε2/q+p/q′−1.

It is easy to verify that 2/q + p/q′ − 1 > 0. Moreover, since Gε ⊂ Ω−
ε for ε small

enough, we have that |Ω+
ε | → 0 by (3.19). Therefore, we conclude that in both cases

J̃4
ε is infinitesimal, as ε→ 0. �
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The next proposition collects both the liminf and the limsup inequalities, which
thus provide a full Γ-convergence result.

Proposition 4.5 (Liminf and limsup inequalities). Assume (W1)–(W6), (π1)
and (π3). For every ε ∈ (0, ε0) let yε ∈ W̊ 1,p(Ω; Rn) be such that there exist Rε ∈
SO(n) converging to R0 ∈ R and the corresponding displacements uε, defined as in
(3.4), weakly converge in W̊ 1,p(Ω; Rn) to u0 ∈ H̊1(Ω; Rn). Then

E0(u0, R0) � lim inf
ε→0

1
ε2

Eε(yε),

where E0 is the functional defined in (3.29).
On the other hand, for every (u0, R0) ∈ H̊1(Ω; Rn) ×R there exist (uε, Rε) ∈

W̊ 1,p(Ω; Rn) × SO(n) such that uε ⇀ u0 weakly in W̊ 1,p(Ω; Rn), Rε → R0 and,
setting yε(x) := Rε(x+ εuε(x)), there holds

lim sup
ε→0

1
ε2

Eε(yε) � E0(u0, R0).

Proof. The proof is the same of propositions 3.10 and 3.12, once we have at our
disposal proposition 4.4. The only additional remark is that the deformations yε in
the recovery sequence are admissible since det∇yε ∈ L∞(Ω) by construction (see
(4.1) for the definition of Y p

q ). �

Combining the previous results and arguing as in theorem 3.14, one can infer the
following convergence result for almost minimizers.

Theorem 4.6 (Convergence of almost minimizers). Assume (W1)–(W6), (π1)
and (π3). If (yε) is a sequence of almost minimizers for the energies Eε, that is,

Eε(yε) � inf
W̊ 1,p(Ω;Rn)

Eε + o(ε2),

then there exist Rε ∈ SO(n) such that, up to passing to a subsequence, we have

• uε → u0 strongly in W̊ 1,p(Ω; Rn) with u0 ∈ H̊1(Ω; Rn);

• Rε → R0 with R0 ∈ R.

Furthermore, the pair (u0, R0) is a minimizer of E0 on H̊1(Ω; Rn) ×R and

lim
ε→0

1
ε2

(
inf

W̊ 1,p(Ω;Rn)
Eε

)
= min

{
E0(u,R) : (u,R) ∈ H̊1(Ω; Rn) ×R

}
.

5. A refined Γ-limit and a comparison with dead loads

In this section we make a comparison with the results obtained in [22], in the case
of dead loads. In particular, we compute a refined version of the Γ-limit of the
rescaled energies (1/ε2)Eε.

We assume (W1)–(W5) and (π1), together with either (π2) or (π3) and (W6).
In addition, we require
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(π4) π is of class C2 in the open set given by (π1).

Under this assumption any optimal rotation R0 ∈ R satisfies, in addition to (2.9),
the following condition:∫

Ω

(
∇π(R0x) ·R0A

2x+D2π(R0x)R0Ax ·R0Ax
)
dx � 0 for every A ∈ R

n×n
skew.

(5.1)
This is obtained by imposing that the second variation of the functional in (2.7)
is positive semidefinite along the curve t �→ R0etA. By the divergence theorem,
condition (5.1) can be rewritten as∫

∂Ω

(
∇π(R0x) ·R0Ax

)
n∂Ω(x) ·AxdHn−1(x) � 0 for every A ∈ R

n×n
skew. (5.2)

In [22] the applied body force is assumed to be a dead load of the form

−
∫

Ω

g(x) · y(x) dx,

where g ∈ L2(Ω; Rn) is given. In this setting the authors proved that the set of
optimal rotations, which is defined as

Rg := argmin
R∈SO(n)

{
−
∫

Ω

g(x) ·Rxdx
}
, (5.3)

is a submanifold of SO(n) (see [22, proposition 4.1]). Moreover, if (yε) is a sequence
of deformations with total energy of order ε2, then any sequence of rotations
(Rε) provided by the rigidity estimate converges to an optimal rotation R0 (as
in propositions 3.8 and 4.3) and, in addition, satisfies

distSO(n)(Rε;Rg) � C
√
ε, (5.4)

where distSO(n) is the intrinsic distance in SO(n), that is,

distSO(n)(R,S) := min
{
|A| : A ∈ R

n×n
skew, R = SeA

}
.

Finally, the Γ-limit of the rescaled energies can be expressed as

1
2

∫
Ω

Q(x, e(u0)(x)) dx−
∫

Ω

g(x) ·R0u0(x) dx− 1
2

∫
Ω

g(x) ·R0A
2
0xdx, (5.5)

where u0 is the limit displacement, A0 ∈ R
n×n
skew is the limit of

1√
ε
RT

0 (Rε − Pg(Rε))

(which exists up to subsequences), and Pg is the projection operator on Rg (see [22,
§ 5]). We note that the last term in (5.5) is the second variation of the functional
in (5.3) at R0 computed in the direction A0. In [22] it is then proved that A0 = 0
for sequences (yε) of almost minimizers, so that the last term in (5.5) is identically
equal to 0 on minimizers.
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Figure 1. Set Ω in example 5.1.

In our setting of a pressure live load, a first difference with [22] is that the set of
optimal rotations may not be a manifold, as the following example shows.

Example 5.1. Let n = 2 and let Ω be the set given in polar coordinates by

Ω = {(ρ, θ) : ρ < 1 if θ ∈ [0, π/2] ∪ [π, 3π/2], and ρ < 2 otherwise}

(see figure 1). We note that (2.3) is satisfied.
Let ϕ ∈ C3([0, π/2]) be a nonnegative function satisfying ϕ(0) = 0 and attain-

ing its maximum at α = π/2. Suppose, in addition, that the first, second and
third derivatives of ϕ vanish at α = 0 and at α = π/2. Let ψ ∈ C2([1, +∞)) be
a bounded function with bounded first and second derivatives satisfying ψ(1) =
ψ′(1) = ψ′′(1) = 0 and

∫ 2

1
ρψ(ρ) dρ = 1. A simple choice of ψ could be ψ(ρ) =

(20/9)(ρ− 1)3 for ρ ∈ [1, 2], suitably extended to [2, +∞).
We consider the following pressure function:

π(x1, x2) =

⎧⎨⎩ψ(
√
x2

1 + x2
2)ϕ

′(arctan
x2

x1
) if x1 > 0, x2 > 0, and x2

1 + x2
2 > 1,

0 otherwise.

Elementary computations show that π is Lipschitz continuous and of class C2(Rn),
so that (π1) and (π4) are satisfied; furthermore, π is bounded, so also (π3) holds
true.

We recall that SO(2) can be identified with the unit sphere S
1 via the map

[0, 2π) � α �→ Rα :=
(

cosα − sinα
sinα cosα

)
,

so that we can write

R = argmin
α∈[0,2π)

{∫
RαΩ

π (x1, x2) dx1 dx2

}
.
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For α ∈ [0, π/2) we can compute

∫
RαΩ

π (x1, x2) dx1 dx2 =
∫ 2

1

∫ α

0

ψ(ρ)ϕ′(θ)ρdθ dρ

=
∫ 2

1

ρψ(ρ) dρ
∫ α

0

ϕ′(θ) dθ = ϕ(α).

Similarly, we obtain

∫
RαΩ

π (x1, x2) dx1 dx2 = φ(α) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϕ(α) if α ∈ [0, π/2),
ϕ(π/2) − ϕ(α− π/2) if α ∈ [π/2, π),
ϕ(α− π) if α ∈ [π, 3π/2),
ϕ(π/2) − ϕ(α− 3π/2) if α ∈ [3π/2, 2π).

(5.6)
Since ϕ is nonnegative and maximized at π/2, the set of optimal rotations corre-
sponds to the zero-level set of the function φ. In particular, in [0, π/2) this is given
by the zero-level set of ϕ, which can be any closed set at positive distance from
π/2.

This example shows that, in general, we cannot expect R to be a manifold.

Since R is not in general a manifold, the projection operator on R is not well
defined. However, in the limiting process we can keep track of the distance of the
approximating rotations Rε from R through a suitable sequence of skew-symmetric
matrices Aε. In contrast with (5.4), the scaling of this distance may be larger than√
ε (actually, larger than k

√
ε for any given k > 2), see example 5.3. To recover

compactness of (Aε) we rescale it by |Aε| ∨
√
ε and we denote by A0 its limit. The

Γ-limit of the rescaled energies can be then expressed as

E0(u0, R0) +
1
2
F(R0, A0),

where F : R× R
n×n
skew → [0, +∞) is the second variation of the functional in (2.7).

This additional term measures the cost due to the fluctuations of the approximating
rotations from the set R. Arguing as in (5.1) and (5.2), the functional F takes the
form

F(R0, A0) =
∫

∂Ω

(
∇π(R0x) ·R0A0x

)
A0x · n∂Ω(x) dHn−1(x).

For sequences (yε) of almost minimizers the limit A0 may be different from 0;
however, we have F(R0, A0) = 0. More precisely, we have the following result.

Theorem 5.2. Under the assumptions of propositions 3.8 or 4.3, we have in
addition that there exist Aε ∈ R

n×n
skew such that Rε = SεeAε for some Sε ∈ R and,

up to subsequences, Aε → 0 and Aε/(|Aε| ∨
√
ε) → A0 for some A0 ∈ R

n×n
skew with

|A0| � 1.
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If also (π4) is in force, then

Γ − lim
ε→0

1
ε2

Eε(yε) = E0(u0, R0) +
1
2
F(R0, A0)

with respect to the following convergences: uε ⇀ u0 weakly in W̊ 1,p(Ω; Rn), Rε →
R0, Aε → 0, and Aε/(|Aε| ∨

√
ε) → A0.

Finally, if (yε) is a sequence of almost minimizers for the energies Eε, that is,
(3.34) holds, then there exist Rε ∈ SO(n) and Aε ∈ R

n×n
skew as above such that, up to

a subsequence, we have

• uε → u0 strongly in W̊ 1,p(Ω; Rn) with u0 ∈ H̊1(Ω; Rn),

• Rε → R0 with R0 ∈ R,

• Aε → 0 and Aε/(|Aε| ∨
√
ε) → A0 with A0 ∈ R

n×n
skew, |A0| � 1.

Furthermore, the triplet (u0, R0, A0) is a minimizer of E0 + (1/2)F on
H̊1(Ω; Rn) ×R× R

n×n
skew, F(R0, A0) = 0, and

lim
ε→0

1
ε2

(
inf

W̊ 1,p(Ω;Rn)
Eε

)
= min

{
E0(u,R) +

1
2
F(R,A) : (u,R,A) ∈ H̊1(Ω; Rn) ×R× R

n×n
skew

}
= min

{
E0(u,R) : (u,R) ∈ H̊1(Ω; Rn) ×R

}
.

Proof. As for the compactness statement, since R is a closed set, there exist Sε ∈ R
and Aε ∈ R

n×n
skew such that Rε = SεeAε and

distSO(n)(Rε;R) = distSO(n)(Rε, Sε) = |Aε|.

Since, up to subsequences, Rε → R0 ∈ R, we have that Aε → 0. The remaining
properties follow from the fact the sequence (Aε/(|Aε| ∨

√
ε)) is bounded by 1.

We now give a sketch of the proof of the liminf inequality. By proposition 3.10
or 4.5 we have that

lim inf
ε→0

1
ε2

Eε(yε) � E0(u0, R0) + lim inf
ε→0

∫
Ω

π(Rεx) − π(x)
ε

dx.

In fact, the last term above was always neglected in the previous computations,
since it is nonnegative by (2.8). Using that Sε ∈ R, a Taylor expansion of π and of
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the exponential map yields∫
Ω

π(Rεx) − π(x)
ε

dx (5.1)

=
1
ε

∫
Ω

∇π(Sεx) · SεAεxdx

+
1
2ε

∫
Ω

(
∇π(Sεx) · SεA

2
εx+D2π(Sε(I + tε(x)Kε)x)SεKεx · SεKεx

)
dx

+
1
ε

∫
Ω

|Aε|3∇π(Sεx) · SεHεxdx, (5.7)

where tε(x) ∈ [0, 1], Hε is a uniformly bounded matrix, and

Kε := Aε +
1
2
A2

ε + |Aε|3Hε.

We now note that the first integral in (5.7) is equal to 0 by (2.9); thus, by multiplying
and dividing by αε := (|Aε| ∨

√
ε)2 we obtain∫

Ω

π(Rεx) − π(x)
ε

dx

=
αε

2ε

[∫
Ω

(
∇π(Sεx) · Sε

A2
εx

αε
+D2π(Sε(I + tε(x)Kε)x)Sε

Kεx√
αε

· Sε
Kεx√
αε

)
dx

+
2|Aε|3
αε

∫
Ω

∇π(Sεx) · SεHεxdx
]
.

We observe that the left-hand side is nonnegative, hence the term within square
brackets is nonnegative, as well. Since

√
αε = |Aε| ∨

√
ε � √

ε, |Aε| → 0, Sε → R0,
Aε/

√
αε → A0, letting ε→ 0 and using the dominated convergence theorem yield

lim inf
ε→0

∫
Ω

π(Rεx) − π(x)
ε

dx

� 1
2

∫
Ω

(
∇π(R0x) ·R0A

2
0x+D2π(R0x)R0A0x ·R0A0x

)
dx.

The liminf inequality follows now from the divergence theorem.
For the construction of the recovery sequence we proceed as in proposition 3.12

or 4.5, but choosing Rε := R0eAε with Aε :=
√
εA0. Since R0 is in R, we can write

1
ε2

Eε(yε) =
1
ε2

∫
Ω

W (x,∇yε) dx+
1
ε

∫
Ω

(π(yε(x)) det∇yε − π(Rεx)) dx

+
∫

Ω

π(Rεx) − π(R0x)
ε

dx.
(5.8)

The first two integrals at the right-hand side can be bounded by E0(u0, R0), arguing
as in proposition 3.12 or 4.5. Repeating the same computations as for the liminf
inequality, one can show that the last integral converges to (1/2)F(R0, A0).
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Convergence of almost minimizers and of infima can be proved exactly as in the-
orems 3.14 and 4.6. Finally, we observe that the functional F is always nonnegative
by (5.2) and F(R, 0) = 0 for every R ∈ R. Hence, by minimality we deduce that
F(R0, A0) = 0. This concludes the proof. �

We conclude the paper with an example showing that, given any sequence λε → 0
such that

lim
ε→0

λ2
ε

ε
= +∞ and lim

ε→0

λk
ε

ε
= 0 (5.9)

for some k > 2, there may exist sequences of almost minimizers of Eε for which
any approximating sequence of rotations has a distance from R of order λε. This
provides a further difference with the case of dead loads [22].

Example 5.3. We start by considering a sequence (λε) satisfying (5.9) with k = 3.
We assume the pressure intensity π to be of class C3. Moreover, we assume that
the set of optimal rotations R is finite and that for every R0 ∈ R there exists
A0 ∈ R

n×n
skew such that

|A0| = 1 and F(R0, A0) = 0. (5.10)

These properties are satisfied, for instance, in example 5.1 if the function ϕ is
strictly increasing. Indeed, in this case the function φ in (5.6) attains its minimum
only at α = 0 and α = π and thus, R = {±I}. Moreover, in this example ∇π(x) =
∇π(−x) = 0 for every x ∈ ∂Ω, so that F(R0, A0) = 0 for every R0 ∈ R and every
A0 ∈ R

n×n
skew. Finally, π is of class C3 if we assume, in addition, ϕ ∈ C4([0, π/2])

with ϕ(iv)(0) = ϕ(iv)(π/2) = 0 and ψ ∈ C3([1, +∞)) with bounded third derivative
and ψ′′′(1) = 0.

Now let (u0, R0) be a minimizer of E0 on H̊1(Ω; Rn) ×R and let A0 ∈ R
n×n
skew

satisfy (5.10). Let Rε := R0eλεA0 and let (uε) be an approximating sequence for u0

as in (3.31). We claim that the deformations yε(x) := Rε(x+ εuε(x)) are a sequence
of almost minimizers of Eε. Indeed, arguing as in the proof of the limsup inequality
in theorem 5.2, we have by (5.8) that

lim
ε→0

1
ε2

Eε(yε) = E0(u0, R0) + lim
ε→0

∫
Ω

π(Rεx)−π(R0x)
ε

dx

= min
H̊1×R

E0 + lim
ε→0

∫
Ω

π(Rεx)−π(R0x)
ε

dx

= lim
ε→0

(
1
ε2

inf
W̊ 1,p(Ω;Rn)

Eε +
∫

Ω

π(Rεx)−π(R0x)
ε

dx

)
.

Therefore, the claim is proved if we show that the last term above vanishes, as
ε→ 0. To prove it we argue as in the proof of the liminf inequality in theorem 5.2,
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now expanding up to the third order. By (2.9) and (5.10) we obtain∫
Ω

π(Rεx)−π(R0x)
ε

dx

=
λε

ε

∫
Ω

∇π(R0x) ·R0A0xdx+
λ2

ε

2ε
F(R0, A0) +O

(
λ3

ε

ε

)
= O

(
λ3

ε

ε

)
, (5.11)

which proves the claim owing to (5.9) with k = 3.
We note that the intrinsic distance of Rε = R0eλεA0 from R in SO(n) is of

order λε. Indeed, since R is finite by assumption, we have that dSO(n)(Rε;R) =
dSO(n)(Rε, R0) for ε small enough. By definition we clearly have dSO(n)(Rε, R0) �
λε. On the other hand, since the intrinsic distance in SO(n) is equivalent to the
Euclidean distance, we obtain

dSO(n)(Rε, R0) � c|eλεA0 − I| � cλε.

We now prove that for the sequence (yε) constructed above, any sequence (R′
ε)

of approximating rotations satisfies

dSO(n)(R′
ε;R) � cλε. (5.12)

By lemma 3.6 or lemma 4.2 we deduce that |Rε −R′
ε| � Cε, hence R′

ε → R0. Since
R is finite, we have that dSO(n)(R′

ε;R) = dSO(n)(R′
ε, R0) for ε small enough.

Let A′
ε ∈ R

n×n
skew be such that R′

ε = R0eA′
ε and dSO(n)(R′

ε, R0) = |A′
ε|. Assume by

contradiction that (5.12) does not hold, that is, |A′
ε|/λε → 0, as ε→ 0. Then we

have

Cε � |Rε −R′
ε| = |eλεA0 − eA′

ε | � |eλεA0 − I| − |eA′
ε − I| � |eλεA0 − I| − c|A′

ε|.

Dividing by λε and sending ε→ 0, we obtain a contradiction, since the left-hand
side vanishes by (5.9) and the right-hand side converges to |A0| = 1.

Using again that |Rε −R′
ε| � Cε, it is easy to see that in fact the intrinsic distance

of R′
ε from R is of order λε.

If, instead, the sequence (λε) satisfies (5.9) for some k � 4, the previous argu-
ments can be adapted with small changes as follows. We assume, in addition, that
π is of class Ck and that for every R0 ∈ R there exists A0 ∈ R

n×n
skew such that

|A0| = 1 and Vj(R0, A0) = 0 for every j = 2, . . . , k − 1, (5.13)

where Vj(R0, A0) is the j-th variation of the functional in (2.7) at R0 computed in
the direction A0. This is fulfilled by the pressure load in example 5.1, if ϕ and ψ
have enough regularity and satisfy suitable boundary conditions. By expanding up
to order k in (5.11), condition (5.13) guarantees that the sequence (yε), constructed
as above, is still a sequence of almost minimizers. The bounds on the intrinsic
distance from R can be proved as before.

Remark 5.4. If condition (5.10) is not satisfied, that is, for every R0 ∈ R one has

F(R0, A0) = 0 ⇐⇒ A0 = 0,

the phenomenon described in the previous example cannot arise. More precisely,
one can show that the intrinsic distance of the approximating rotations from R is
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at most of order
√
ε, as in (5.4). The argument is the same as in [22, theorem 5.1],

combined with (5.7).
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linearized elasticity. Math. Models Methods Appl. Sci. 25 (2015), 1389–1420.

26 M. Negri and C. Zanini. From finite to linear elastic fracture mechanics by scaling. Calc.
Var. Partial Differ. Equ. 50 (2014), 525–548.

27 R. Paroni and G. Tomassetti. A variational justification of linear elasticity with residual
stress. J. Elasticity 97 (2009), 189–206.

28 R. Paroni and G. Tomassetti. From non-linear elasticity to linear elasticity with initial stress
via Γ-convergence. Continuum Mech. Thermodyn. 23 (2011), 347–361.

29 P. Podio-Guidugli. A variational approach to live loadings in finite elasticity. J. Elasticity
19 (1988), 25–36.

30 P. Podio-Guidugli and G. Vergara Caffarelli. Surface interaction potentials in elasticity.
Arch. Ration. Mech. Anal. 109 (1990), 343–383.

31 L. Scardia and C. I. Zeppieri. Line-tension model for plasticity as the Γ-limit of a nonlinear
dislocation energy. SIAM J. Math. Anal. 44 (2012), 2372–2400.

32 B. Schmidt. Linear Γ-limits of multiwell energies in nonlinear elasticity theory. Continuum
Mech. Thermodyn. 20 (2008), 375–396.

https://doi.org/10.1017/prm.2022.79 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.79

	1 Introduction
	2 Setting of the problem
	2.1 Notation and preliminaries
	2.2 The main assumptions

	3 Nonnegative pressure loads
	4 Pressure loads of arbitrary sign
	5 A refined -limit and a comparison with dead loads
	References

