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Abstract

We construct collocation methods with an arbitrary degree of accuracy for integral
equations with logarithmically or algebraically singular kernels. Superconvergence at
collocation points is obtained. A grid is used, the degree of non-uniformity of which is in
good conformity with the smoothness of the solution and the desired accuracy of the
method.

1. The integral equation

Consider the integral equation

u(t)=[\(\t-s\)u(s)ds + /(,), (1.1)
•'o

with an m times, m > 2, continuously differentiate absolute term on [0, b] and
with an m — 1 times continuously differentiable kernel on (0, b], satisfying

or

KOI < c(|ln t\ + 1) and |K<*>(/)| < crk for k = 1, . . . , m - 1 (1.2)

|K(*>(0I < crk-a, 0 < a < l , for k = 0, 1, . . . , m - 1. (1.3)

We assume that the corresponding homogeneous integral equation has only
the trivial solution. In this case equation (1.1) has a unique solution u, where

©Copyright Australian Mathematical Society 1981

431

https://doi.org/10.1017/S0334270000002770 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002770


432 G. Vainikko and P. Uba f 2 ]

u e C[0, b] n C""(0, b) and (see [4])

\*kKt)\ < coif*-"*1 + (b - t)-*-*1),
k = 1 /H and c0 = constant; (1.4)

in the case (1.2) of logarithmic singularity, these estimates hold with a = 0 for
k = 2, . . . , m, and

|w'(/)|<co(|ln/| + | ln (6- / ) | ) .

On the basis of this information, collocation methods on non-uniform grids with
piecewise polynomial approximation of the solution are constructed.

As break points of a piecewise polynomial approximation we choose

and 'i
'„ + » = b ~ /„_„ 1 = 1 , . . . , / ! ,

where r E. R, r > 1, characterizes the degree of non-uniformity of the grid. The
break points are located symmetrically with regard to the centre of the interval
[0, b], with a greater density towards its ends, and

l- ' = 0, 1, . . . , « - 1. (1.6)

Analogous estimates are valid for the break points on the other half of the
interval [0, b].

2. The first method

We define some interpolation points in the standard interval [-1, 1]:

- 1 < T , < T 2 < • • • < r m < 1. (2.1)

By the linear transformation

T,* := ', + (rk + l )( / ,+ 1 - t,)/2, k = 1, . . . , m, i = 0, 1 , . . . . 2/i - 1,

(2.2)

we transfer these points into the interval [/,-, tl+l]. It is clear that

'/ < T , , < T / 2 < • • • < r , m < / , + 1, i = 0 , 1 , . . . . 2 / i - 1 .

We construct the approximate solution un of equation (1.1) as a piecewise
polynomial function of degree m — 1 with break points (1.5); at points /,.,
/ = 1, . . . , 2/i — 1, the function un may be discontinuous. It is required that un

should satisfy equation (1.1) at the interpolation points:

[(\rlk - s\)un(s) ds + f(rllc),
o

k = 1 ,m, i = 0, 1 , 2 / i - L (2.3)
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The conditions (2.3) form a linear system of equations whose exact form is
determined by the choice of a basis in the subspace of the piecewise polynomial
functions. For example, taking un in each subinterval in the form

where <̂ 7 are the Lagrange fundamental polynomials (^ / (T ,*) = Skl, for k, I =
1, . . . , m) of degree m — 1, the conditions (2.3) lead to the system of equations

2n-\ m

7 = 0 l=\J'j

with respect to the unknown coefficients aik, k = 1, . . . , m, i = 0, 1, . . . ,
In - 1.

3. The second method

We choose the interpolation points rk, k = 1, . . . , m, in the standard interval
[-1 , 1] so that (compare with (2.1))

- 1 = T, < T 2 < • • • < r m = 1, (3.1)

and transfer them according to formula (2.2) into the interval [/,, f1 + 1]. It is clear
that now

', = T,, < T,, < • • • < r,m = ti+v i = 0, 1, . . . , In - 1.

The approximate solution un of equation (1.1) is constructed in the form of a
continuous piecewise polynomial function of degree m — 1, with break points
(1.5). It is required that un should satisfy equation (1.1) in the interpolation
points, that is, conditions (2.3) should be satisfied, with the reservation that these
conditions are taken only once for the break points /,- = T,_)m = Tn, / =
1 , . . . , 2 / f - l .

4. Formulation of the main result

THEOREM. Let the conditions for f, K and equation (I A) presented in Section 1 be
satisfied. In the case of the validity of condition (1.2) put a = 0. Then, for
sufficiently large n, either of the two methods described in Sections 2 and 3
determines a unique approximate solution un. If

r = [i/(l-a)> 1, fi<m, (4.1)
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then

sup \un{t) - u(t)\ < (constant)n~~* (4.2)

and

. k(Tt t) - "(T,*)| < (constant)en, (4.3)
1 <k<m

I «-m(ln n)a for /* > m/2,
en=\n-m]nn for n = m/2, (4.4)

[ «-2"(ln n)a for n < m/2,
in the case o/(1.3) and

i n'm In n for n > m/2,

n-m(lnnf for /x = m/2, (4.5)
/T2" In n forn < m/2

in the case of (1.2).
The proof is presented in Sections 5 and 6. We shall not specify the constants

in (4.2) and (4.3), but note here that, by increasing r, they also increase, and thus
the superconvergence at interpolation points is highly useful: to attain a method
of mth degree of accuracy in the uniform norm we must choose p = m and
r = m/{\ — a) whereas, to attain nearly the same accuracy at the interpolation
points, it is sufficient to put ju = m/2 and r = m/(2(l — a)).

Numerical testing of the described methods will be undertaken in the future.
In the case where m = 2, the method described in Section 3 reduces to the
piecewise linear collocation mehod. This method for the uniform grid (in our
notation r = 1) is investigated in [2]. Our result for m = 2 and r = 1 is con-
sistent with the results of [2]. Numerical calculations confirm the superconver-
gence at the points of interpolation (see [2]). The theorem was announced in [5].
We refer also to Rice [3], who appears to have been the first to study graded
grids for approximation of functions with singularities.

5. Transition to the operator equation

Let us denote by T the integral operator of equation (1.1). Then (1.1) can be
considered as the equation

u = Tu + f (5.1)
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in the Banach space E = !„ , with the norm ||u|| = supo</<fc|«(r)|. Both meth-
ods for the solution of (1.1) described above are equivalent to the solution of
equation

«„ = PnTun + PJ, (5.2)

where Pn = Pnm is the interpolation projector assigning to any continuous
function u its piecewise polynomial interpolant:

m
( ' « « ) ( ' ) - 2 « ( T * ) 9 * ( 0 f o r t , < t < t i + l , i = 0 , 1 , . . . , 2 n - I;

the interpolant is determined in each interval [tt, ti+l] independently; Pnu is
discontinuous or continuous in break points /,, depending on the choice of (2.1)
or (3.1), respectively.

The norms \\Pn\\ are uniformly bounded, \\Pn\\ = \\P\\, n = 1, 2, . . . , where
P is the Lagrange interpolation projector of degree m — 1 on [-1, 1] defined by
interpolation points (2.1) or (3.1). It is easy to see that \\Pnu — u\\L —*Q as
n ^ o o f o r « e £ " = C[0, b].

Since T is a compact operator from LM into C, we conclude by means of
standard arguments (see [1], Lemma 15.5) that \\PnT — T\\L^^,L^ -» 0 as n -> oo.
Now, from the unique solvability of (5.1), it follows that (5.2) is uniquely
solvable for sufficiently large n, n > n0, whereby

\\u.-«\\L^<cl\\u-Pnu\\Lm, c , = sup | | ( / - P , ^ ) - 1 1 | <oo. (5.3)

In addition to this traditional estimate we need an estimate

which follows from equalities un — Pnu = PnT{un — u), un — u =
(/ - PnT)-\Pnu - u) and un - Pnu = (/ - PnT)'lPnT(Pnu - u).

6. Error estimates for the piecewise polynomial interpolant

Let u be any function satisfying (1.4).

PROPOSITION I. If r = n/(\ - a) > 1 and ju. < m then

\\u — Pnu\\L < c3n~|1 where c3 = constant. (6.1)

PROOF. The well-known inequality ||u - Pnu\\ < (1 + ||Pn||)dist(M, PnE) can
be reduced to the form

\W~ Pnu\\L < ( 1 + \\P\\)n max 7,,,

TJ,. = inf max \u{t) — v(i)\,

https://doi.org/10.1017/S0334270000002770 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002770


436 G. Vainikko and P. Uba [6]

where mm _, denotes the set of the polynomials of degree < m — 1. We prove the
inequalities

H < <yr"(i + I)"""1, i - O , 1 , . . . , # 1 - 1 , (6.2)

and similar inequalities for the other half of the interval [0, b], that is, for
/ = n, . . . , 2n — 1. By (1.4) to (1.6), the known estimate TJ,- <
ym m a x , ^ , J K ^ O K ^ , - *,)", where ym = 2 ' - 2 - / ( m ! ) for 1 < i < n - 1,

uc icwiincii

= 2c0ym{b/2)x-°rmn-»(i + l ) ' - " ( ( i + I ) / / ) " - " < c4#|->(i + I)""".

To estimate T;0, it is sufficient to take v(t) as a constant or a linear function. In
the case of a > 0, by (1.4) and (1.5),

f''\u'(s)\ ds
^0

max

•-» . , » - « =
I — a I — a

in the case of a = 0, we put v(t) = w(0) + (M(/,) - u(O))(t/tx); therefore

\u(t) - v(t)\ = f'u'(s) ds - - ('' u'(s) ds

and

TJ0 < max |w(/) — v(t)\ < c0 max r In —
0<K(,

That completes the proof of the estimate (6.2). Estimate (6.1) follows from (6.2)
and similar estimates for i = n,. . . , 2n — 1. Thus Proposition 1 is proved.

PROPOSITION 2. If r = n/(l - a) > 1, jn < m andp = 1/(1 - a), then

where

n'm for n> m/2,

«„ =
v l - a for fi = m/2,

for ii < m/2.

(6-3)
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PROOF. It is clear that

2 n - l /( 2n

(/,+ I - / , ) max
0 ',<»<'.+ !

2 n - l

< (i + mi)

By (6.2) and (1.6)

\X/F
 - M / V '

' [ «-o

and a similar estimate holds for the other half of the interval. Now estimates
(6.3) follow, because

n 1

H > m/2 => r - 1 - (m - n)p > - 1 , 2 (' + l ) ( - ' - ( m - ' l ) ' < c6 n1-^-^";
/=o

n - l

«— 1

ji < m/2 =s> r — 1 — (m — fi)p < - 1 , 2 (' + l ) r ~ '~ ( m ~ ' l ) ; ' < c6(1.
/=o

Thus Proposition 2 is proved.
PROPOSITION 3. If r = /*/(l — a) > I, n < m, then

\\T(u - Pnu)\\Lm < c7Men, (6.4)
H>/iere en is determined by (4.4) or (4.5).

PROOF. Let a > 0. Forp = 1/(1 — a) and q = I / a it holds that

-6

\u - Pnu\\L« sup f \K(\t - s\)\ ds
0<KbJsS[0,b]

\s-t\<h

\K(\t - S\)\"

By means of (1.3) and Propositions 1 and 2 this can be reduced to

- pH«)\\L. < csAn~"hi~a + 5 > h\a)- (6-5)
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Choosing h in the case p > m/2 such that hl~a = n*~m and in the case
\i < m/2 such that hx~a = n~*, we obtain the estimates (6.4) and (4.4).

In the case of a = 0, instead of (6.5) we have \\J\u - Pnu)\\Lu> <
c8/1(/T

fl/i|ln h\ + 5Jln h\) and the proof of the estimates (6.4) and (4.5) is analo-
gous to the one above. Thus Proposition 3 is proved.

To complete the proof of the theorem, note that we obtain (4,2) immediately
from (5.3) and (6.1). From (5.4) and (6.4) we get (4.3), since

k('*)-«(Ttt)| < IK - PMLm.
The proof of the theorem is now complete.
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