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The Quotient Problem for Entire Functions

Ji Guo

Abstract. Let {F(n)}n∈N and {G(n)}n∈N be linear recurrence sequences. It is a well-known
Diophantine problem to determine the ûniteness of the setN of natural numbers such that their ratio
F(n)/G(n) is an integer. In this paperwe study an analogue of such a divisibility problem in the com-
plex situation. Namely, we are concerned with the divisibility problem (in the sense of complex entire
functions) for two sequences F(n) = a0 + a1 f n1 + ⋅ ⋅ ⋅ + a l f nl and G(n) = b0 + b1 gn

1 + ⋅ ⋅ ⋅ + bm gn
m ,

where the f i and g j are nonconstant entire functions and the a i and b j are non-zero constants except
that a0 can be zero. We will show that the setN of natural numbers such that F(n)/G(n) is an entire
function is ûnite under the assumption that f i11 ⋅ ⋅ ⋅ f

i l
l g j1

1 ⋅ ⋅ ⋅ g
jm
m is not constant for any non-trivial

index set (i1 , . . . , i l , j1 , . . . , jm) ∈ Zl+m .

1 Introduction

A sequence of complex numbers {G(n)}n∈N is called a linear recurrence if there
exist complex numbers c0 , . . . , ck−1 (k ≥ 1) such that G(n + k) = c0G(n) + ⋅ ⋅ ⋅ +
ck−1G(n + k − 1) for all n ∈ N. his is equivalent to a unique expression

G(n) =
r

∑
i=1

g i(n)αn
i , for all n ∈ N,

with nonzero polynomials g i ∈ C[X] and distinct nonzero α i ∈ C∗. he recurrence is
called simple when all the g i(n) are constant. he “Hadamard-quotient theorem", a
conjecture of Pisot, was solved by van der Poorten. (See [7,9] for a detailed argument
and see [2, 12] for an overview of the existing improvements.) We now state a simple
version of the theorem: if F(n) and G(n) are linear recurrences such that their ratio
F(n)/G(n) is an integer for all large n ∈ N, then F(n)/G(n) is itself a linear recurrence.
In particular, it implies that: given integers a, b > 1, if an − 1 divides bn − 1 for all
large positive integers n, then b is a power of a. he following recent result can be
viewed as an analogue in the complex situation, while a non-Archimedean analogue
was established in [6].

heorem 1.1 ([4]) Let f and g be entire functions on C. hen Tf (r) ≍ Tg(r), and
there exists an inûnite set N of positive integers such that gn − 1∣ f n − 1 for each n ∈ N

if and only if f = ξ ⋅ gℓ , where ℓ is a positive integer and ξ is a d-th root of unity with
d = gcd{n ∶ n ≥ 2 and n ∈ N}.

Here, Tf (r) denotes the Nevanlinna characteristic function (see Section 2). he
notation Tf (r) ≍ Tg(r) means that there exist positive numbers a, b such that
aTf (r) < Tg(r) < bTf (r) for r suõciently large.
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Our purpose is to show amulti-variable version of the above theorem as follows.

heorem 1.2 Let l ,m ≥ 1 be two positive integers. Let f1 , . . . , f l and g1 , . . . , gm be
nonconstant entire functions such that

max
i=1, . . . , l

Tf i (r) ≍ max
j=1, . . . ,m

Tg j(r).

Let

F(n) = a0 + a1 f n1 + ⋅ ⋅ ⋅ + a l f nl and G(n) = b0 + b1gn
1 + ⋅ ⋅ ⋅ + bm gn

m ,

where a0 ∈ C and a1 , . . . , a l , b0 , . . . , bm ∈ C∗.

(i) If the ratio F(n)/G(n) is an entire function for inûnitely many n ∈ Z+, or
(ii) f1 , . . . , f l and g1 , . . . , gm are all units, i.e., entire functions without zero, and if the

ratio F(1)/G(1) is an entire function,

then f i11 ⋅ ⋅ ⋅ f i ll g j1
1 . . . g jm

m ∈ C for some (i1 , . . . , i l , j1 , . . . , jm) ≠ (0, . . . , 0) ∈ Zl+m .

Remark his growth condition is essential as, for part (ii), there are examples sat-
isfying g − 1∣ f − 1, such as g(z) = exp(2π

√
−1z) and f (z) = exp(2π

√
−1p(z)), where

p(z) is a polynomial of degree at least 2 with coeõcients in Z, while limr→∞ Tf (r)/
Tg(r) =∞.

One can also view this as a complex analogue of theHadamard quotient theorem.
Indeed, our proof is inspired by the article [2], where Corvaja and Zannier proved a
stronger version of the Hadamard quotient theorem with a sophisticated application
of Schmidt’s subspace theorem. However, their methods applied to the complex case
via Vojta’s dictionary of Diophantine geometry and Nevanlinna theory ([11] or [8])
can only cover the case where the f i and g j are units, i.e., they are entire functions
with no zeros. Moreover, a stronger statement, with the aid of Borel’s lemma, can be
formulated in this situation as the second part ofheorem 1.2. To deal with themore
general situation; i.e., allowing the entire functions f i and g j having zeros, we need to
use a general version of theNavanlinna secondmain theorem (seeheorem 2.5)with
a ramiûcation term to derive an estimatewith truncated counting function. his part
of the argument onlyworks for the complex case, since the corresponding result in the
number ûeld situation is a special case of the yet to be provenVojta’s conjecture ([11]).

2 Preliminaries

Now let us recall some notation, deûnitions, and basic results in Nevanlinna theory.
Refer to [5] or [8] for details.

Let f be ameromorphic function, and let z ∈ C be a complex number. Denote

vz( f ) ∶= ordz( f ), v+z ( f ) ∶= max{0, vz( f )}, v−z ( f ) ∶= −min{0, vz( f )}.

Let n f (∞, r) denote the number of poles of f in {z ∶ ∣z∣ ≤ r}, counting multiplicity.
he counting function of f at∞ is deûned by
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N f (∞, r) ∶= ∫
r

0

n f (∞, t) − n f (∞, 0)
t

dt + n f (∞, 0) log r

= ∑
0<∣z∣≤r

v−z ( f ) log ∣
r
z
∣ + v−0 ( f ) log r.

hen the counting function N f (a, r) for a ∈ C is deûned as

N f (a, r) ∶= N1/( f−a)(∞, r).

he proximity function m f (∞, r) is deûned by

m f (∞, r) ∶= ∫
2π

0
log+ ∣ f (re iθ)∣

dθ
2π
,

where log+ x = max{0, log x} for x ≥ 0. For any a ∈ C, the proximity function
m f (a, r) is deûned by

m f (a, r) ∶= m1/( f−a)(∞, r).

he characteristic function is deûned by

Tf (r) ∶= m f (∞, r) + N f (∞, r).

It satisûes the inequalities Tf g(r) ≤ Tf (r) + Tg(r) + O(1) and Tf+g(r) ≤ Tf (r) +
Tg(r)+O(1) for any entire functions f and g. It also satisûes the First Main heorem
as follows.

heorem 2.1 Let f be a non-constant meromorphic function on C. hen for every
a ∈ C and for any positive real number r,

m f (a, r) + N f (a, r) = Tf (r) + O(1),

where O(1) is independent of r.

he above theorem can be deduced from the following version of Jensen’s formula.

heorem 2.2 Let f be a meromorphic function on {z ∶ ∣z∣ ≤ r} that is not the zero
function. hen

∫

2π

0
log ∣ f (re iθ)∣

dθ
2π

= N f (r, 0) − N f (r,∞) + log ∣c f ∣,

where c f is the leading coeõcient of f expanded as Laurent series in z, i.e., f = c f zm+⋅ ⋅ ⋅

with c f ≠ 0.

For a holomorphicmap f ∶ C→ Pn(C),we take a reduced formof f = ( f0 , . . . , fn);
i.e., f0 , . . . , fn are entire functions on C without common zeros. he Nevanlinna–
Cartan characteristic function Tf(r) is deûned by

Tf(r) = ∫
2π

0
log ∥f(re iθ)∥

dθ
2π
,

where ∥f(z)∥ = max{∣ f0(z)∣, . . . , ∣ fn(z)∣}. his deûnition is independent, up to an
additive constant, of the choice of the reduced representation of f . From the deûnition
of the characteristic functions, we can derive the following proposition.
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Proposition 2.3 ([8, heorem A3.1.2]) Let f = ( f0 , . . . , fn) ∶ C → Pn(C) be a
linearly non-degenerate holomorphic curve (i.e., the image of f is not contained in any
proper linear subspaces) of a reduced form. hen

Tf j/ f i (r) + O(1) ≤ Tf(r) ≤
n

∑
j=0

Tf j/ f0(r) + O(1).

Let H be a hyperplane in Pn(C)(n > 0) and let a0X0 + ⋅ ⋅ ⋅ + anXn be a linear
form deûning it. Let P = [x0 ∶ ⋅ ⋅ ⋅ ∶ xn] ∈ Pn(C) ∖ H be a point. heWeil function
λH ∶ Pn(C) ∖H → R is deûned as

λH(P) = − log
∣a0x0 + ⋅ ⋅ ⋅ + anxn ∣

max{∣x0∣, . . . , ∣xn ∣}
.

his deûnition depends on a0 , . . . , an , but only up to an additive constant and is in-
dependent of the choice of homogeneous coordinates for P. he proximity function
of f with respect to H is deûned by

mf(H, r) = ∫
2π

0
λH( f(re iθ))

dθ
2π

.

Let nf(H, r) (resp. n(Q)f (H, r)) be the number of zeros of a0 f0 + ⋅ ⋅ ⋅ + an fn in the disk
∣z∣ ≤ r, counting multiplicity (resp. ignoring multiplicity bigger than Q ∈ N). he
integrated counting function with respect to H is deûned by

Nf(H, r) = ∫
r

0

nf(H, t) − nf(H, 0)
t

dt + nf(H, 0) log r,

and the Q-truncated counting function with respect to H is deûned by

N(Q)f (H, r) = ∫
r

0

n(Q)f (H, t) − n(Q)f (H, 0)
t

dt + n(Q)f (H, 0) log r.

he following general secondmain theoremwith ramiûcation term is due toVojta
([10,heorem 1]).

heorem 2.4 Let f ∶ C → Pn(C) be a holomorphic curve whose image is not
contained in any proper subspaces and let ( f0 , . . . , fn) be a reduced form of f . Let
H1 , . . . ,Hq be arbitrary hyperplanes in Pn(C). Denote by W(f) the Wronskian of
f0 , . . . , fn . hen for any ε > 0, we have

∫

2π

0
max

K
∑
k∈K

λHk( f(re
iθ
))
dθ
2π

+ NW(f)(0, r) ≤exc (n + 1 + ε)Tf(r),

where themaximum is taken over all subsets K of {1, . . . , q} such that Hk (k ∈ K) are in
general position and ≤exc means the estimate holds except for r in a set of ûnite Lebesgue
measure.

We also need the following inequality with truncated counting functions.
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Lemma 2.5 ([8, Lemma A3.2.1]) Let f ∶ C → Pn(C) be a holomorphic curve whose
image is not contained in any proper subspaces and let ( f0 , . . . , fn) be a reduced form
of f . Let H1 , . . . ,Hq be the hyperplanes in Pn in general position. hen

q

∑
j=1

Nf(H j , r) − NW(f)(0, r) ≤
q

∑
j=1

N(n)f (H j , r).

Finally, we recall the following results of Green [3] (or see [5, Chapter VII, heo-
rem 4.1]) and Borel [1] (or see [5, Chapter VII,heorem 1.1]).

Lemma 2.6 Let f0 , . . . , fn be entire functions with no common zeros satisfying

f k0 + ⋅ ⋅ ⋅ + f
k
n = 0.

Suppose none of the f i is 0. Deûne an equivalence relation: i ∼ j iff f i/ f j is constant. If
k ≥ n2, then for each equivalence class S, we have

∑
i∈S
f ki = 0.

Lemma 2.7 Let f0 , . . . , fn be units satisfying

f0 + ⋅ ⋅ ⋅ + fn = 0.

Deûne an equivalence relation: i ∼ j iff f i/ f j is constant. hen for each equivalence
class S, we have

∑
i∈S
f i = 0.

3 Proof of the Main Theorem

Our proof is based on themethod used to show [2, Proposition 2.1]. As mentioned in
the introduction, we need extra work in order to cover the non-units case.

Proof of Theorem1.2 Assume that f1 , . . . , f l , g1 , . . . , gm are entire functions such that
f i11 ⋅ ⋅ ⋅ f i ll g j1

1 ⋅ ⋅ ⋅ g
jm
m isnot constant for anynon-trivial index set (i1 , . . . , i l , j1 , . . . , jm) ∈

Zl+m . Suppose that

q(n) ∶=
F(n)
G(n)

=
a0 + a1 f n1 + ⋅ ⋅ ⋅ + a l f nl
b0 + b1gn

1 + ⋅ ⋅ ⋅ + bm gn
m

is an entire function for inûnitely many n. Since

max
1≤i≤l

Tf i (r) ≍ max
1≤ j≤m

Tg j(r),

there exist two positive constants a, b such that

a max
1≤ j≤m

Tg j(r) ≥ max
1≤i≤l

Tf i (r) ≥ b max
1≤ j≤m

Tg j(r).

By the pigeonhole principle, there exists a subset R of R+, of inûnite Lebesgue mea-
sure, such that max1≤ j≤m Tg j(r) = Tgk(r) for r ∈ R and for some k ∈ {1, . . . ,m}. By
rearranging the indices, we can assume that k = 1. hus,

Tf i (r) ≤ max
1≤i≤l

Tf i (r) ≤ a max
1≤ j≤m

Tg j(r) = aTg1(r)
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for 1 ≤ i ≤ l and r ∈ R. Without loss of generality, we can assume that a > 1. hen for
r ∈ R,

Tf i (r) ≤ aTg1(r), 1 ≤ i ≤ l , and Tg j(r) ≤ aTg1(r), 1 ≤ j ≤ m.(3.1)

Fix two positive integers s, t that will be determined later. Let

G1(n) = G(n) − b1gn
1 .

hen

(3.2) G1(n)sq(n) = F(n)(
s−1

∑
k=0

(
s
k
)G(n)s−1−k

(−b1gn
1 )

k
) + (−b1gn

1 )
sq(n).

We will use the following notation throughout the proof. Denote

c ∶= (c2 , . . . , cm) ∈ (Z≥0)m−1 and d ∶= (d1 , . . . , dm) ∈ (Z≥0)m .

Let ∣c∣ ∶= c2 + ⋅ ⋅ ⋅ + cm and ∣d∣ = d1 + ⋅ ⋅ ⋅ +dm . We use the graded lexicographic order to
arrange the index sets c ∈ (Z≥0)m−1 and d ∈ (Z≥0)m ; i.e., ci ≻ c j if and only if ∣ci ∣ > ∣c j ∣

or ∣ci ∣ = ∣c j ∣ and the le�-most nonzero entry of ci − c j is positive. Let gnc2
2 ⋅ ⋅ ⋅ gncm

m be
abbreviated to α(n)c and gnd1

1 ⋅ ⋅ ⋅ gndm
m to β(n)d. For each ci with ∣ci ∣ ≤ t, we deûne

(3.3) φc i ∶= (G1(n)sq(n) − F(n)(
s−1

∑
k=0

G(n)s−1−k
(−b1gn

1 )
k
))α(n)c i .

Note that the number of such φc is

M = (
m − 1 + t
m − 1

).

Observe that every φc i is a linear combination of α(n)cq(n) where ∣c∣ ≤ t + s and of
the forms β(n)d f ni with ∣d∣ ≤ s + t and 0 ≤ i ≤ l (letting f0 = 1). hus the number of
such forms α(n)cq(n) is

N1 ∶= (
m − 1 + t + s

m − 1
).

Suppose that the number of d with ∣d∣ ≤ t + s − 1 is N2. Denote N ∶= N1 + (l + 1)N2.
Deûne x i(n) ∶= α(n)c i q(n) for i = 1, . . . ,N1 and xN1+iN2+ j(n) ∶= f ni β(n)

d j for
i = 0, . . . , l , and j = 1, . . . ,N2. Since G(n) has a non-zero constant term, the graded
lexicographic order imposed on d implies that d1 = (0, . . . , 0) ∈ Zm . hen the x i(n)
can be expressed as

x(n) ∶ = (x1(n), . . . , xN(n))

= (α(n)c1q(n), . . . , α(n)cN1 q(n), 1, β(n)d2 , . . . , β(n)dN2 ,

f n1 , f
n
1 β(n)

d2 , . . . , f nl β(n)
dN2 ) .

(3.4)

We note that x(n) is a holomorphicmap from C to PN−1 and (x1(n), . . . , xN(n)) is
a reduced form, since x1(n), . . . , xN(n) are entire functions and xN1+1(n) = 1. More-
over, we claim that this map is not contained in any proper linear subspace if n is
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suõciently large. If the claim does not hold for a large enough n, there exist constants
u1 , . . . , uN1 , v0,1, v0,2 , . . . , v l ,N2 in C that are not all zero such that

N1

∑
i=1

u iα(n)c i q(n) +
l

∑
i=0

N2

∑
j=1

v i , jβ(n)d j f ni = 0,

and hence
N1

∑
i=1

u iα(n)c i (a0 + a1 f n1 + ⋅ ⋅ ⋅ + a l f nl )

+ (
l

∑
i=0

N2

∑
j=1

v i , jβ(n)d j f ni )(b0 + b1g
n
1 + ⋅ ⋅ ⋅ + bm gn

m) = 0.

(3.5)

If v0,1 , . . . , v l ,N2 are all zero, then by Lemma 2.6, for n ≥ (l + 1)2N2
1 , there exist two

distinct terms f ni α(n)
c j and f ni′ α(n)

c j′ such that their quotient

f ni α(n)
c j

f ni′ α(n)
c j′

= f ni f
−n
i′ α(n)

c j−c j′

is a constant, which contradicts the assumption that f i11 ⋅ ⋅ ⋅ f i ll g j1
1 ⋅ ⋅ ⋅ g

jm
m is not con-

stant for any non-trivial index set (i1 , . . . , i l , j1 , . . . , jm) ∈ Zl+m . herefore, the set
{d ∶ v i , j ≠ 0 for some 0 ≤ i ≤ l} is non-empty and it contains a maximal ele-
ment with respect to the graded lexicographic order, denoted by dk . hen v i ,k ≠ 0
for some 0 ≤ i ≤ l . Expanding (3.5), we ûnd the coeõcient of f ni β(n)

dk gn
1 is v i ,k ≠ 0.

By Lemma 2.6 again, there exists another term with nonzero coeõcient in (3.5), say
f ni′ β(n)

dk′ gn
j′ or f

n
i′ α(n)

ck′ , such that

f ni β(n)
dk gn

1

f ni′ β(n)dk′ gn
j′

or
f ni β(n)

dk gn
1

f ni′ α(n)ck′

is a constant for n ≥ n1 ∶= (l + 1)2(N1 + N2(m + 1))2. However, the ûrst quotient
is not constant, since the graded lexicographic order associated with the index set of
β(n)dk gn

1 is bigger than the one with β(n)dk′ gn
j′ ; the second quotient is not constant

either, since α(n)ck′ is a product of powers of g2 , . . . , gm .
Wewill now construct a set of hyperplanes in order to applyheorem 2.4. We ûrst

let

H i ∶= {X i−1 = 0} for i = 1, . . . ,N

be the coordinate hyperplanes in PN−1. Next we observe that, as G1(n) = b0 + b2gn
2 +

b3gn
3 + ⋅ ⋅ ⋅ + bm gn

m with b0 ≠ 0, the graded lexicographic order imposed on the c and
the choice of the x i(n) give the following expression of ϕc i for 1 ≤ i ≤ M:

(3.6) φc i = b
s
0x i(n) + A i , i+1x i+1(n) + ⋅ ⋅ ⋅ + A i ,NxN(n)

for some A1,2 , . . . ,AM ,N ∈ C. hen we let

(3.7) HN+i ∶ bs
0X i−1 + A i , i+1X i + ⋅ ⋅ ⋅ + A i ,NXN−1 = 0, for i = 1, . . . ,M
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be hyperplanes according to the expression (3.6) of ϕc i . It is clear that the hyperplanes
HM+1 , . . . ,HN+M in PN−1 are in general position. In addition, (3.2) and (3.3) implies
that

(3.8) φc i = (−b1gn
1 )

sq(n)α(n)c i = (−b1)sx i(n)g sn
1

for i = 1, . . . ,M.
Now we can apply heorem 2.4, the general secondmain theorem, to the linearly

non-degeneratemap x(n) with the hyperplanes H1 , . . . ,HN+M . hen for any ε > 0,

(3.9) ∫

2π

0
max

J
∑
j∈J

λH j(x(n)(re
√−1θ

))
dθ
2π

+ NW(0, r) ≤exc (N + ε)Tx(n)(r),

where J runs over the subsets of {1, . . . ,N +M} such that the hyperplanes H j( j ∈ J)
are in general position andW is theWronskian of the reduced form of x(n) in (3.4).

We now proceed to derive a lower bound for the le�-hand side of (3.9). For any
meromorphic function ξ, denote

∣ξ∣r ,θ ∶= ∣ξ(re
√−1θ

)∣.

For the holomorphicmap x(n) and the hyperplanes H1 , . . . ,HN+M ,we claim that the
following inequality holds:

(3.10) max
J
∑
j∈J

λH j(x(n)(re
√−1θ

)) ≥ M log+
1

∣g1∣
sn
r ,θ

+
N

∑
i=1

log
1

∣x i(n)∣r ,θ
+ N log ∥x(n)∥r ,θ + O(1),

where J runs over the subsets of {1, . . . ,N +M} such that the hyperplanes H j( j ∈ J)
are in general position and

∥x(n)∥r ,θ ∶= max
1≤i≤N

{∣x i(n)∣r ,θ}.

For θ ∈ S+r ∶= {θ ∶ ∣g1∣r ,θ ≥ 1}, we consider

N

∑
i=1

λH i(x(n)(re
√−1θ

)) =
N

∑
i=1

log
1

∣x i(n)∣r ,θ
+ N log ∥x(n)∥r ,θ .

Since H1 , . . . ,HN are in general position and log+(1/∣g1∣r ,θ) = 0 for θ ∈ S+r , it implies
(3.10). For θ ∈ S−r ∶= {θ ∶ ∣g1∣r ,θ < 1}, we consider

N

∑
i=1

λHM+i(x(n)(re
√−1θ

))

=
M

∑
i=1

log
∥x(n)∥r ,θ

∣φc i ∣r ,θ
+

N

∑
i=M+1

log
∥x(n)∥r ,θ

∣x i(n)∣r ,θ

=
M

∑
i=1

log
∣x i(n)∣r ,θ
∣φc i ∣r ,θ

+
N

∑
i=1

log
1

∣x i(n)∣r ,θ
+ N log ∥x(n)∥r ,θ

= M log+
1

∣g1∣
sn
r ,θ

+
N

∑
i=1

log
1

∣x i(n)∣r ,θ
+ N log ∥x(n)∥r ,θ + O(1),

(3.11)
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where the last equality follows from (3.8). Since the hyperplanes HM+1 , . . . ,HN+M are
in general position, (3.11) implies the inequality (3.10) as well. Integrating (3.10) over
dθ from 0 to 2π, we derive from heorem 2.2 and the deûnition of the proximity and
characteristic functions that

∫

2π

0
max

J
∑
j∈J

λH j(x(n))
dθ
2π

≥ Mmg sn
1
(0, r) −

N

∑
i=1

Nx i(n)(0, r) + NTx(n)(r) + O(1)

= MTg sn
1
(r) −MNg sn

1
(0, r) −

N

∑
i=1

Nx i(n)(0, r) + NTx(n)(r) + O(1)

= MTg sn
1
(r) −

N

∑
i=1

Nx(n)(HM+i , r) + NTx(n)(r) + O(1),

(3.12)

where the second equation follows by heorem 2.1, and the last one is due to the
identiûcation

Ng sn
1
(0, r) + Nx i(n)(0, r) = Nx i(n)g sn

1
(0, r) = Nx(n)(HN+i , r)

by (3.6), (3.7), and (3.8) for i = 1, . . . ,M . We now use Lemma 2.5 to obtain the fol-
lowing inequality:

(3.13)
N

∑
i=1

Nx(n)(HM+i , r) − NW(0, r) + O(1) ≤
N

∑
i=1

N(N−1)
x(n) (HM+i , r).

Putting together (3.9), (3.12), and (3.13), we conclude that

(3.14) MTg sn
1
(r) −

N

∑
i=1

N(N−1)
x(n) (HM+i , r) ≤exc εTx(n)(r) + O(1).

Since the inequality holds except for r ∈ R+ in a set of ûnite Lebesgue measure, we
can assume that it holds for all r ∈ R by shrinking R. By the property of characteristic
function, it is easy to obtain

Tx i(n)(r) ≤ a(s + t)Tgn
1
(r) + Tq(n)(r) for 1 ≤ i ≤ N1 ,

Tx i(n)(r) ≤ a(s + t + 1)Tgn
1
(r) for N1 + 1 ≤ i ≤ N .

hen by Proposition 2.3, (3.1), and (3.4), for r ∈ R, we have

Tx(n)(r) ≤
N

∑
j=1

Tx j(n)(r)

≤ N(s + t + 1)aTgn
1
(r) + N1(TF(n) + TG(n)) + O(1)

≤ N(s + t + 1)aTgn
1
(r) + N1a(l +m)Tgn

1
(r) + O(1)

= a(N(s + t + 1) + N1(l +m))Tgn
1
(r) + O(1).

(3.15)
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On the other hand, for r ∈ R, we have
N

∑
i=1

N(N−1)
x(n) (HM+i , r)

≤ N(N − 1)(
l

∑
i=1

N f i (0, r) +
m

∑
j=1

Ng j(0, r)) + N1Nq(n)(0, r) + O(1)

≤ N(N − 1)(
l

∑
i=1

Tf i (r) +
m

∑
j=1

Tg j(r)) + N1NF(n)(0, r) + O(1)

≤ N(N − 1)a(l +m)Tg1(r) + N1TF(n)(r) + O(1)

≤
N(N − 1)(l +m)a

n
Tgn

1
(r) + N1(Tf n1 (r) + ⋅ ⋅ ⋅ + Tf nl (r)) + O(1)

≤ (aN1 l +
N(N − 1)(l +m)a

n
)Tgn

1
(r) + O(1).

(3.16)

Combining (3.14), (3.15), and (3.16), for r ∈ R, we have

(3.17) (Ms − N1al −
N(N − 1)(l +m)a

n
)Tgn

1
(r) ≤exc

εa(N(s + t + 1) + N1(l +m))Tgn
1
(r) + O(1).

Finally, we will choose our s, t, and ε to derive a contradiction from the above in-
equality. First, we ûx s > al . Since

Ms = s(
m − 1 + t
m − 1

) =
s

(m − 1)!
tm−1

+ o(tm−1
)

and

N1al = al(
m − 1 + t + s

m − 1
) =

al
(m − 1)!

tm−1
+ o(tm−1

)

can be regarded as polynomials in t, bothwith degrees m−1, and inwhich the leading
coeõcient ofMs is larger than the one for aN1 l , there exists a suõciently large integer
t such that Ms > N1al . hen we can choose ε satisfying

0 < ε <
Ms − aN1 l

a(N(s + t + 1) + N1(l +m))
.

Consequently, since g1 is nonconstant, Tg1(r) is not bounded, and we can deduce
from (3.17) that

n ≤ n0 ∶=
N(N − 1)(l +m)a

Ms − aN1 l − εa(N(s + t + 1) + N1(l +m))
.

In conclusion, if
f i11 ⋅ ⋅ ⋅ f i ll g j1

1 ⋅ ⋅ ⋅ g
jm
m

is not constant for any non-trivial index set (i1 , . . . , i l , j1 , . . . , jm) ∈ Zl+m , then the
ratio F(n)/G(n) is not an entire function for n > max{n0 , n1}, where n1 = (l + 1)2

(N1 + N2(m + 1))2 is the number to assure that x(n) is linearly non-degenerate for
n ≥ n1. ∎
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For the second part ofheorem 1.2, we ûrst notice that the expression for x(1) in
(3.4) is not contained in any proper linear subspace, by Borel’s lemma (Lemma 2.7) if
f1 , . . . , f l , g1 , . . . , gm are units. Next, the condition that f1 , . . . , f l , g1 , . . . , gm are units
implies that the counting function in (3.16) is just zero. In this case, (3.17) becomes

(3.18) MsTg1(r) ≤exc εa(N(s + t + 1) + N1(l +m))Tg1(r) + O(1).

Finally, let ε satisfy

0 < ε <
Ms

a(N(s + t + 1) + N1(l +m))
.

Since g1 is nonconstant, for all r large enough, we have

MsTg1(r) ≥ εa(N(s + t + 1) + N1(l +m))Tg1(r) + O(1),

which contradicts (3.18).
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