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Turbulence in the flow of fluid through a pipe can be suppressed by buoyancy forces.
As the suppression of turbulence leads to severe heat transfer deterioration, this is an
important and undesirable phenomenon in both heating and cooling applications. Vertical
flow is often considered, as the axial buoyancy force can help drive the flow. With
heating measured by the buoyancy parameter C, our direct numerical simulations show
that shear-driven turbulence may either be completely laminarised or it transitions to a
relatively quiescent convection-driven state. Buoyancy forces cause a flattening of the
base flow profile, which in isothermal pipe flow has recently been linked to complete
suppression of turbulence (Kühnen et al., Nat. Phys., vol. 14, 2018, pp. 386–390),
and the flattened laminar base profile has enhanced nonlinear stability (Marensi et al.,
J. Fluid Mech., vol. 863, 2019, pp. 50–875). In agreement with these findings, the
nonlinear lower-branch travelling-wave solution analysed here, which is believed to
mediate transition to turbulence in isothermal pipe flow, is shown to be suppressed by
buoyancy. A linear instability of the laminar base flow is responsible for the appearance
of the relatively quiescent convection driven state for C � 4 across the range of Reynolds
numbers considered. In the suppression of turbulence, however, i.e. in the transition from
turbulence, we find clearer association with the analysis of He et al. (J. Fluid Mech., vol.
809, 2016, pp. 31–71) than with the above dynamical systems approach, which describes
better the transition to turbulence. The laminarisation criterion He et al. propose, based
on an apparent Reynolds number of the flow as measured by its driving pressure gradient,
is found to capture the critical C = Ccr(Re) above which the flow will be laminarised or
switch to the convection-driven type. Our analysis suggests that it is the weakened rolls,
rather than the streaks, which appear to be critical for laminarisation.
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1. Introduction

Most energy systems rely on fluids to transfer heat from one device to another to facilitate
power generation, provision of heating or production of chemicals. Flows are often forced
through channels or arrays of pipes taking heat away from the surfaces. In a nuclear reactor,
for example, the reactions occur within the fuel pins, which are cooled by flow of coolant
through the channels formed by arrays of fuel pins to maintain their temperature within a
specific limit as well as transferring energy to the steam generators. In an isothermal flow,
the volume flux is driven by an externally applied pressure gradient, and the flow is referred
to as ‘forced’. In a vertical configuration, however, buoyancy resulting from the lightening
of the fluid close to the heated wall can provide a force that partially or fully drives the
flow, referred to as mixed or natural convection, respectively. When heat flux is very high,
we can have a ‘supernatural’ state of flow, where the buoyancy is sufficiently strong that a
reversed pressure gradient may be necessary to limit or maintain a constant volume flux.
Under certain conditions (e.g. the Boussinesq approximation) an upward heated flow may
be considered equivalent to a downward flow cooled at the boundary (Appendix A).

Mixed convection is of significant importance to engineering design and safety
considerations and as such extensive research has been carried out to develop engineering
correlations (Jackson, Cotton & Axcell 1989; Yoo 2013), turbulence models (Kim, He
& Jackson 2008; Bae 2016) and a better understanding of the physical flows (You, Yoo
& Choi 2003). A particularly interesting physics is that the flow, at a Reynolds number
where shear-driven turbulence is ordinarily observed, in the presence of buoyancy may be
partially or fully laminarised, or becomes a convection-driven turbulent flow (i.e. natural
convection, referred to above). Heat transfer may be significantly impaired under such
conditions. He, He & Seddighi (2016) (hereinafter referred to as HHS) modelled the effect
of buoyancy using a prescribed body force, with linear or step radial dependence, without
solving the energy equation. They attributed the suppression of turbulence to a reduction in
the apparent Reynolds number of the flow, as measured by the pressure gradient required
to drive the flow. Thus, the forced flow is compared with the unforced ‘equivalent pressure
gradient’ (EPG) reference flow.

Meanwhile, in ordinary (isothermal) pipe flow, Kühnen et al. (2018), observed
relaminarisation attributed to flattening of the base flow profile. The idea of flattening was
first suggested by Hof et al. (2010) who showed that when two puffs were triggered too
close to each other, the downstream puff would collapse due to the flattened streamwise
velocity profile induced by the upstream puff. In the experiments of Kühnen et al. (2018)
the flattening was introduced by a range of internal and boundary flow manipulations and
a full collapse of turbulence was obtained for Reynolds numbers up to 40 000. Marensi,
Willis & Kerswell (2019) showed the complement effect, i.e. the enhanced nonlinear
stability of the laminar flow. They found that the minimal seed (smallest amplitude
disturbance) for transition is ‘pushed out’ from the laminar state to larger amplitudes when
the base flow is flattened, thus implying that a flattened base profile is more stable than the
parabolic profile. Here, buoyancy forces also have a flattening effect and turbulence may
be partially or fully suppressed. Furthermore, early experimental observations (Hanratty,
Rosen & Kabel 1958; Kemeny & Somers 1962; Scheele & Hanratty 1962) and subsequent
linear (Yao 1987a,b; Yao & Rogers 1989; Chen & Chung 1996; Su & Chung 2000)
and weakly nonlinear (Rogers & Yao 1993; Khandelwal & Bera 2015) stability analyses
suggested that, for sufficiently large heating, the flow becomes unstable and transitions to
a new non-isothermal equilibrium state characterised by large-scale regular motions. In
agreement with the experiments, the linear theory showed that this instability can occur
at low Reynolds number (below 100) and for Re > 50 the critical value of the Rayleigh

919 A17-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

37
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.371


Suppression of turbulence in a vertical heated pipe

number is almost independent of Re (Yao 1987a). The first azimuthal mode was found
to be the least stable (Yao 1987a; Su & Chung 2000), consistent with the double-spiral
patterns observed experimentally (Hanratty et al. 1958) and the instability was linked
to the inflectional velocity profile in the buoyancy-assisted case. As suggested by Su &
Chung (2000), a competition between different mechanisms – driven by either shear or
convection – thus exists, and understanding its effect on the nature of the flow is the object
of our study.

In particular, in this work, we are interested in whether a flow is turbulent or laminar
under certain heating conditions and when a turbulent flow may be laminarised or vice
versa under the influence of buoyancy. We address this question for a vertically heated
pipe, initially in the dynamical systems context through linear stability and by investigating
how travelling wave solutions are affected by the buoyancy force. Next, the nature of the
laminarisation is considered. In isothermal flow at transitional Reynolds numbers, the
shear-driven state is known to be metastable – the probability of laminarisation follows
a Poisson process with a laminarisation rate that depends on the Reynolds number. In
any practical setting, where a pipe is of finite length, its length affects the probability
of turbulence surviving to the end of a pipe. Hence a range of Reynolds numbers for
transition are quoted, typically between 2000 and 2300. Therefore, we do not attempt to
quantify the full statistical nature of the transition in the heated case, but instead we focus
on the phenomenological-based EPG analysis of HHS. Through the above approaches, i.e.
linear stability, nonlinear travelling wave (TW) and EPG analyses, we aim to elucidate the
physical mechanisms underlying the buoyancy-suppression of turbulence, illustrating the
bistability nature of such flows.

1.1. Nonlinear dynamical systems view
In subcritical wall-bounded shear flows, turbulence arises despite the linear stability of the
laminar state (Schmid & Henningson 2001; Drazin & Reid 2004). The implication is that
the observed transition scenario can only be triggered by finite amplitude disturbances.
In the last 30 years our understanding of transition to turbulence in such flows has
greatly benefited from a fully nonlinear geometrical approach which adopts concepts
from the dynamical systems theory. In this view, the flow is analysed as a huge (formally
infinite-dimensional) dynamical system in which the flow state evolves along a trajectory
in a phase space populated by various invariant solutions, TWs and periodic orbits
(POs). Nonlinear TW solutions were first discovered numerically in the early 1990s for
plane Couette flows (Nagata 1990) and in the 2000s for pipe flows (Faisst & Eckhardt
2003; Wedin & Kerswell 2004; Pringle & Kerswell 2007). Since then, partly thanks to
the advances in our computational and experimental capabilities, a growing amount of
evidence has been collected for their dynamical importance (see reviews : Kerswell (2005),
Eckhardt et al. (2007), Kawahara, Uhlmann & van Veen (2012) and Graham & Floryan
(2021)). These solutions, often referred to as ‘exact coherent states’ (ECSs), are believed
to act as organising centres (Waleffe 2001) in phase space, in the sense that, when the flow
state approaches them, spatio-temporally organised patterns (streaks and streamwise rolls)
are observed (Hof et al. 2004; Kerswell & Tutty 2007).

ECSs are finite-amplitude non-trivial solutions disconnected from the laminar state and
enter via saddle-node bifurcations as the flow rate is increased. Some solutions, typically
those of higher spatial symmetry, exist at flow rates much below that at which transition
is usually observed (Pringle, Duguet & Kerswell 2009). ECSs are linearly unstable,
although with only a few unstable directions. They may be divided into ‘upper-branch’
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and ‘lower-branch’ states, depending on whether they are associated with a high or
low friction factor. Lower-branch solutions are representative of the laminar–turbulent
boundary – the so called ‘edge of chaos’ (Itano & Toh 2001; Schneider & Eckhardt 2006)
– which separates initial conditions that lead to turbulence from those that decay and
relaminarise. The edge comes closest to the laminar equilibrium at the ‘minimal seed’ for
transition (Kerswell 2018). Lower-branch solutions are believed to mediate the transition
to turbulence (Duguet, Willis & Kerswell 2008; Schneider, Eckhardt & Yorke 2007), while
some upper-branch solutions are embedded in the turbulent attractor and are representative
of the turbulent dynamics (Avila et al. 2013; Budanur et al. 2017).

Here, we are interested in studying how TW solutions are affected by the buoyancy force
in a vertical heated pipe, and, in analysing their dynamics, we aim to elucidate the physical
mechanisms underlying the buoyancy-suppression of turbulence. The transition between
regimes is first investigated using linear stability in § 3.2, followed by analysis of TWs in
§ 3.3.

1.2. Equivalent pressure gradient analysis of HHS
Rather than simulating a temperature field, to reduce complexity HHS considered a fixed
radially dependent axial body force that models the buoyancy force, and applied this to
isothermal flow. Conventionally, heated flows are compared with the isothermal (unforced)
flow at equivalent flow rate (EFR), but HHS observed better comparison with flows at
the equivalent pressure gradient. In particular, after careful analysis, they observed that
adding the radially dependent force does not alter the turbulent viscosity of an unforced
flow driven by the same pressure gradient (see figure 10 therein). The unforced EPG flow
is therefore a reference flow for cases with the extra radially dependent forcing.

Note that in a fixed mass-flux calculation, the pressure gradient reduces in response
to driving from the buoyancy. Given a heated flow at a particular Reynolds number
Re (defined in terms of the mass flux), to determine the Reynolds number of the EPG
flow, one must split the mass flux into contributions from the pressure gradient and
from the buoyancy. The former component determines the ‘apparent Reynolds number’
Reapp of the EPG flow. Laminarisation of the body forced flow is observed to occur
when its Reapp is consistent with the Re at which laminarisation occurs in isothermal
flow.

Further details of the analysis are provided in § 3.4 and HHS prediction is compared
with a suite of simulations in § 3.5.

2. Formulation

Consider a vertically aligned circular pipe of diameter D, with the flow of fluid upwards.
We model a short pipe section of length L (figure 1a) and let {u(x, t), p(x, t), T(x, t)}
be the velocity, pressure and temperature fields, respectively. The fluid has kinematic
viscosity ν, density ρ, volume expansion coefficient γ and thermal diffusivity κ . Under
the Boussinesq approximation, density variations are ignored except where they appear
in terms multiplied by the acceleration due to gravity, g ẑ, leading to the governing
equations

∇ · u = 0, (2.1)
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Figure 1. (a) Schematic of the flow configuration. A pipe section of length L and radius R is considered. The
pipe is vertically aligned in the gravity field g and the fluid inside it is driven upwards by an externally applied
pressure gradient and by buoyancy. The latter results from the lightening of the fluid close to the heated wall.
We assume that the temperature at the wall Tw remains constant in the pipe section. (b) Laminar velocity
profiles (2.11a,b) for increasing values of C, as indicated by the arrows. Red dashed line, C = 0 (isothermal
profile); light grey to black lines, C = 3, 5, 7.5, 10.

∂u
∂t

+ u · ∇u = − 1
ρ

∇p + ν ∇2u + 1
ρ

(1 + β) dzP ẑ + γ g(T − Tref )ẑ, (2.2)

∂T
∂t

+ u · ∇T = κ ∇2T − ε, (2.3)

where Tref is a reference temperature, defined in the following subsection, and dzP is the
pressure gradient for laminar flow with bulk velocity Ub. We suppose that Ub is fixed,
in which case β(u) adjusts to maintain fixed bulk velocity. We also suppose that the
temperature of the wall, Tw, and the bulk temperature, Tb, are fixed. The latter is achieved
by including a uniform heat sink ε(t) which adjusts to maintain the fixed bulk value, Tb. For
such a flow, we can introduce axial periodicity, so that ε(t) may be considered equivalent
to the rate at which heat absorbed by the fluid would otherwise be carried out of the section
of pipe. (Spatial periodicity limits the domain over which wall friction is averaged, which
can lead to unrealistic fluctuations (mean-square variations from the time average) in the
bulk velocity. We therefore assume constant flux.)

For laminar flow, the flow is purely axial so that radial heat transport is purely
conductive. If ε0 is the heating rate for the laminar case, then the observed quantity
Nu := ε̄/ε0 is the Nusselt Number, where the overbar (•) denotes time average.

2.1. Non-dimensionalisation
Given the temperature at the wall Tw and the bulk temperature Tb, we put 	T = 2(Tw −
Tb) and take a reference temperature Tref = Tw − 	T = 2Tb − Tw = Tc, where Tc is the
centreline temperature for the case of laminar flow. (The choice for Tref does not influence
the flow, since the constant γ gTref could be absorbed into the pressure gradient.) We
introduce the dimensionless temperature Θ = (T − Tc)/	T . Let the pipe radius R = D/2
be the length scale and the isothermal laminar centreline velocity 2Ub be the velocity scale.
The corresponding time scale is thus R/(2Ub). Hereafter, all variables are dimensionless
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except ε(t) which always appears in the dimensionless ratio ε/ε0, i.e. the instantaneous
Nusselt number. Non-dimensionalising with these scales, for the temperature equation we
find

∂Θ

∂t
+ u · ∇Θ = κ

2UbR
∇2Θ − εR

2Ub	T
. (2.4)

For the laminar case, Θ = Θlam = r2, we find

0 = κ

2UbR
· 4 − ε0R

2Ub	T
, i.e. 	T = ε0R2

4κ
. (2.5)

Plugging this 	T back into (2.4), we obtain the dimensionless temperature equation

∂Θ

∂t
+ u · ∇Θ = 1

Re Pr
∇2Θ − 4

Re Pr
ε

ε0
, (2.6)

where Re := UbD/ν is the Reynolds number and Pr := ν/κ is the Prandtl number. For the
momentum equation we find

∂u
∂t

+ u · ∇u = −∇p + 1
Re

∇2u + 4
Re

(1 + β)ẑ + γ g	TR
(2Ub)2 Θ ẑ. (2.7)

The coefficient of the buoyancy term can be written

γ g	TR

4U2
b

= 1
4

γ g(Tw − Tb)D3

ν2
ν2

U2
bD2

= 1
4

Gr Re−2, (2.8)

where Gr := γ g(Tw − Tb)D3/ν2 is the Grashof number. Although the Grashof number
is in common use, from Gr it is difficult to judge the magnitude of the buoyancy force
relative to the pressure gradient of the laminar flow for this particular configuration. We
therefore write the dimensionless momentum equation as

∂u
∂t

+ u · ∇u = −∇p + 1
Re

∇2u + 4
Re

(1 + β + CΘ)ẑ, (2.9)

where C measures the buoyancy force relative to the force that drives the laminar
isothermal shear flow,

C = Gr/(4 Re2)

4/Re
:= Gr

16 Re
. (2.10)

The laminar velocity and laminar temperature profiles for this configuration are

Ulam(r) =
(

1 − r2
)

+ C
(

1
3

r2 − 1
4

r4 − 1
12

)
, Θlam(r) = r2, (2.11a,b)

and the no-slip and fixed-temperature boundary conditions at r = 1 are

u = 0, Θ = 1, (2.12a,b)

respectively, while periodic boundary conditions are applied in the streamwise direction.
The laminar velocity profiles for different C are shown in figure 1(b). The isothermal
pipe flow is recovered for C = 0 (no buoyancy force) and Pr = 0 (temperature diffuses
immediately), with the parabolic laminar profile U0 = 1 − r2.

919 A17-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

37
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.371


Suppression of turbulence in a vertical heated pipe

For a statistically steady flow, Reynolds averaging is both time averaging and cylindrical
surface averaging, where the latter is denoted as

〈(•)〉(r) := 1
2πL

∫ L

0

∫ 2π

0
(•) dθ dz. (2.13)

Turbulent fluctuations are calculated as deviations from the mean components of the flow,
i.e. {u′(x, t), Θ ′(x, t)} := {u(x, t), Θ(x, t)} − {〈ū〉(r), 〈Θ̄〉(r)}.

2.2. Numerics
Simulations were carried out using the Openpipeflow solver (Willis 2017), modified to
include timestepping of the temperature field and the buoyancy term in the momentum
equation. A variable q(r, θ, z) is discretised using a non-uniform grid in the radial direction
with points clustered near the wall and Fourier decompositions in the azimuthal and
streamwise directions, namely

q(r, θ, z) =
∑

k<|K|

∑
m<|M|

qkm(rn) exp(iαkz + mpmθ) n = 1, . . . , N (2.14)

where α = 2π/L is the streamwise wavenumber and mp determines the azimuthal
periodicity (mp = 1 for no discrete rotational symmetry). Radial derivatives are evaluated
using central finite differences with a nine-point stencil. At Re = 5300, in an L = 5D long
pipe we use a spatial resolution of (N × M × K) = (64 × 96 × 96), which ensures a drop
of at least four orders of magnitude in the amplitude spectra and provides the correct value
for the friction factor, as reported in the literature (Eggels et al. 1994). Following the 3/2
dealiasing rule, variables are evaluated on an N × 3M × 3K grid in physical space. A
second-order predictor–corrector scheme is employed for temporal discretisation, and a
fixed timestep of 0.01 is used. This is sufficient to ensure that the time discretisation error
is no larger than the spatial discretisation error (measured by the corrector and spectra,
respectively) and corresponds to a Courant–Friedrichs–Lewy (known as CFL) number of
approximately 0.2–0.25.

Data for simulations for various Gr = 16 Re C and constant Re = 5300, Pr = 0.7 are
shown in figure 2. There is good agreement with numerical data (You et al. 2003) and
experimental data (Steiner 1971; Carr, Connor & Buhr 1973; Parlatan, Todreas & Driscoll
1996).

2.3. Travelling wave solutions
In order to apply dynamical systems theory, the discretised momentum and temperature
equations are formulated as an autonomous dynamical system (Viswanath 2007; Willis,
Cvitanović & Avila 2013),

dX
dt

= F (X ; p), (2.15)

where X is the vector of dependent variables, here X = (u, Θ), and p is the vector
of parameters of the system, p = (Re, C). The simplest solution is an equilibrium,
which satisfies F (X ; p) = 0. For pipe flow, the only equilibrium solution is the laminar
solution. Travelling wave solutions satisfy X (x, t) = g(ct) X (x, 0), where here g(l) applies
a streamwise shift by l, and c is the phase speed. Travelling waves are also known as
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Figure 2. Change in Nu flux, normalised by that for turbulent ‘forced convection’ (C → 0), as a function
of Bo = 8 × 104 (8Nu Gr)/(Re3.425Pr0.8). Data from simulations at Re = 5300, Pr = 0.7 and various Gr =
16 Re C. The upper and lower branches correspond to flow in shear-driven and convection-driven states,
respectively.

‘relative’ equilibrium solutions, as they are steady in a comoving frame. They therefore
satisfy

G(X (0), l, T) = g(−l)X (T) − X (0) = 0, (2.16)

for some vector (X , l, T), and hence can be calculated via a root solving method. The
most popular method at present is the Newton–Krylov method. (Note that in addition to
(2.16), two extra constraints are required to match the extra unknowns l, T – see Viswanath
(2007).) Time-dependent POs may also be calculated by this method. Typically POs
originate via a Hopf bifurcation off a TW, but are not discussed further in this work.
Stability of the solutions is calculated using the Arnoldi method to solve the eigenvalue
problem

eσT dX = g(−l)(X 0 + dX )(T) − X 0(0), (2.17)

where σ is the growth rate and the operator on the right-hand side is linearised about
the TW X 0 by taking ||dX || � ||X 0||. (Numerical performance is improved by replacing
X 0(0) with g(−l)X 0(T) in (2.17).)

The Newton–Krylov and Arnoldi solver, already available as a utility of Openpipeflow
(Willis 2017), were integrated with the timestepping code described in § 2.2 for heated
pipe flow.

3. Results and discussion

All results presented herein pertain to the case Pr = 0.7 and constant volume flux. This
relatively low Prandtl number is a reasonable starting choice for the applications we
are interested in, where most gasses have Pr ≈ 0.7, e.g. CO2. In large-scale cooling
applications using liquid metal, Pr is much smaller. Cases where Pr > 1 (e.g. Pr = 7
for water) are more expensive numerically due to a need for higher resolution for the
temperature field.
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Figure 3. Energy of the streamwise-dependent component of the flow. Here Re = 2500, L = 5D, Pr = 0.7 for
a range of C (values reported in the legend). Intermediate values of C destabilise the turbulence, or even cause
immediate relaminarisation.

3.1. Direct numerical simulations
Simulations were performed in a pipe of length L = 5D for a range of Reynolds
numbers to study the effect of the buoyancy parameter C. Results are first shown for a
relatively low Reynolds number, Re = 2500. Figure 3 shows complete relaminarisation
of transitional turbulence in response to the introduction of buoyancy for intermediate
values of C = O(10−1) − O(1). Relaminarisation events are revealed by monitoring the
energy of the streamwise-dependent component of the flow, denoted E3D, which shows a
rapid decay when the flow relaminarises, E3D → 0 and ε(t)/ε0 → 1. At larger C � O(10),
turbulent fluctuations are not completely suppressed. Instead a convection-driven flow is
set up, which becomes stronger as C is increased.

At Re = 5300 the effect of buoyancy is found to be slightly different – turbulence is not
observed to undergo complete relaminarisation, but instead transitions directly to a weak
convection-driven state. Figure 4 shows simulations with C = O(1)–O(10). The buoyancy
causes suppression of the turbulence and therefore a drop in ε(t)/ε0, so that the Nusselt
number Nu = ε̄/ε0 reduces substantially. The corresponding velocity and temperature
mean profiles, 〈uz〉(r) and 〈Θ〉(r), are shown in figure 4(b,c) together with the laminar
profiles at C = 0 for comparison. Cases where turbulence is suppressed exhibit a flattened
base velocity profile.

The case for C = 7.5 is shown for longer time in figure 5(a). The shear-driven turbulent
state is metastable only, and around t ≈ 2000 turbulence is more suppressed as there is
a switch to the more quiescent convection-driven state. As C is increased further the
buoyancy starts to drive a more turbulent convection-driven state. For these cases the
velocity profile is more ‘M-shaped’ as seen in figure 5(b).

The convective state at Re = 5300 and C = 7.5 is visualised in figure 6 together with
the metastable shear-driven turbulent state. When comparing the deviations from the
isothermal laminar profile (see figure 6a–d), both the shear and convective states show
a deceleration in the core and acceleration close to the wall, with the convective states
showing very smooth and almost z- and θ -independent contour levels. Deviations from
the mean profile (see figure 6e–h), however, reveal that the convective state has larger and
more elongated flow structures compared with the shear-driven turbulence. In both types
of visualisation it is clear that the small-scale turbulent eddies are strongly suppressed in
the convection-driven flow.
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Figure 4. Here Re = 5300, L = 5 D, Pr = 0.7, resolution 64 × 96 × 96. (a) Non-dimensional instantaneous
heat flux, Nu = ε/ε0 for different values of C, as indicated in the legend. (b,c) Snapshots of mean streamwise
velocity 〈uz〉(r) and temperature 〈Θ〉(r) profiles at t = 1000 for the same values of C shown at the top. The
thick light-grey lines correspond to the laminar profiles (2.11a,b) with C = 0.
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Figure 5. Parameters as in figure 4 but for larger C (values reported in the legend). (a) Non-dimensional
instantaneous heat flux, Nu = ε/ε0. The initial transients (t ≈ 100–200) are omitted for all trajectories and the
curves corresponding to C � 12.5 are shifted in time by an arbitrary offset, for clarity only. (b) Snapshots of
the mean streamwise velocity profiles 〈uz〉(r) for the same values of C shown in panel (a). All the snapshots
are taken at t = 1000. For C = 7.5 an additional snapshot (solid grey line with dots) is shown corresponding
to t = 7500 (marked with a grey dot on the corresponding trajectory in panel (a)). The thick light-grey line in
panel (b) corresponds to the laminar streamwise velocity profile (2.11a) with C = 0.

Figure 7 shows the type of state seen in simulations: laminar flow (L), shear-driven
turbulence (S) and convection-driven flow (C), for a range of Re and C. The initial
condition for each simulation was a previously calculated shear-driven state at similar
Re. (This is except for Re � 2000 and C > 3, where it is clear that the shear-driven
state decays immediately, i.e. only the convective state could be supported, and hence
the initial condition was of convection type.) For each simulation it is relatively easy
to distinguish between the shear- and convection-type flows, since the former shows far
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Figure 6. Isolevels of streamwise velocity perturbation for (a,c,e,g) the shear-driven turbulence and (b,d, f,h)
the convective state at Re = 5300, C = 7.5 and t = 1000, t = 7500, respectively. (The corresponding
streamwise velocity profiles at these times were shown in 5b.) Plots in panels (a–d) show deviations from the
isothermal laminar profile U0 = 1 − r2, while plots in panels (e–h) show deviations from the mean profile
〈uz〉(r). Dark/light regions correspond to slow/fast streaks. Ten contours are used between the maximum
and minimum values, corresponding to (a–d) u − U0 ∈ [−0.4, 0.3], (e,g) u′ ∈ [−0.2, 0.1] and ( f,h) u′ ∈
[−0.1, 0.08]. The arrows in the r − θ cross-sections (c,d,g,h) indicate the cross-sectional velocity components,
multiplied by a factor of two for the shear turbulence (c,g) and five for the convective state (d,h), for visualisation
reasons only. The r − θ cross-sections (c,d,g,h) are taken at z = 0 while the r − z sections are taken at θ = π/2.

more chaotic time series and higher heat flux. The case for C = 7.5 in figure 5(a) shows
this difference, and also that multiple behaviours are possible at the same parameters for
significant periods of time. The shear-driven state is marked if observed for �1000 time
units. (It is stable or at least metastable with a long expected lifetime.) A relaminarisation
is marked if the energy of the streamwise component of the flow drops below 10−5.
Overall, figure 7 indicates that as C (or Gr) increases, a larger Re is needed in order
to drive shear turbulence, or, equivalently, as Re increases, shear-driven states persist to
larger C. For C � 4 simulations suggest that a convective instability kicks in, roughly
independently of the Reynolds number over this range. In between, it is possible to
completely relaminarise flow up to Re ≈ 3500, but at larger Re the progression is as in
figure 5 – from a shear-driven turbulent state to a weak convection-driven state, then to a
more turbulent convection-driven state as C is increased.

In the following sections we determine whether the boundaries of stability observed in
figure 7 are consistent with linear stability of the laminar flow, analysis of TW solutions
and the viewpoint of HHS.

3.2. Linear stability analysis
As the transition to shear-driven turbulence in isothermal flow occurs in the absence of a
linear instability, this section relates to the transition to convection-driven flow states, in
particular with respect to loss of stability of the modified laminar base profile (2.11a,b)
for non-zero C. Linear stability of mixed-convection pipe flow has been studied by Yao
(1987a) and Su & Chung (2000), where the model differs slightly in the boundary
condition and form of the heat sink. Our figure 2 suggests these differences make little
difference to transition, however, we check for consistency with the nonlinear results of
§ 3.1.
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Figure 7. Regions of laminar (L) flow, shear-driven (S) turbulence and convection-driven (C) flow. Points
where multiple behaviours are observed are marked with a slight offset in Re. Simulations are initiated with a
previously calculated shear-driven state at similar Re, except for the region Re � 2000 and C > 3 where the
shear-driven state decays immediately and hence simulations are started with a convection-driven state.

As our code uses Fourier expansions in the periodic dimensions, to calculate the
eigenfunctions and stability of the base flow (2.11a,b) we need simulate only using a
few Fourier modes. The Arnoldi method is employed to accelerate convergence and to
access eigenvalues beyond the leading one. Linear stability analysis is performed for
azimuthal wavenumbers m = 0, 1, 2 and two streamwise wavenumbers α = 0.628 and
α = 1.7 (commensurate with the pipe lengths L = 5D and L = 1.85D used in our direct
numerical simulations (DNS) study of § 3.1 and in the TW analysis of § 3.3).

The neutral curves, where the growth rate Re(σ ) = 0, are shown in figure 8. As expected
(and as also reported by Yao (1987a) and Su & Chung (2000)), the first azimuthal mode
is found to be the least stable, it corresponds to the spatially largest mode and is the only
mode that can exhibit flow across the axis. (The axisymmetric mode m = 0 is included
in the numerical calculations for stability of the m = 1 mode, but we have not observed
instability of m = 0 type.) As shown in figure 8, the m = 1 mode exhibits a fairly complex
dependence on C, while it is only weakly affected by the axial wavenumber. Indeed,
the first branch for α = 0.628 almost coincides with that for α = 1.7 and the other two
branches (not shown) are slightly shifted to the right. Consistent with the linear stability
of isothermal pipe flow, the critical Reynolds number approaches infinity as C → 0 for
any m.

Consistent with the appearance of the convective state found in simulation (figure 7),
at C ≈ 4 a linear instability appears, roughly independent of Re for most of the range
considered. The corresponding laminar profiles for C = 3–10 are shown in figure 1(b).
For C > 4 the profiles present an ‘M-shape’ (independent of Re, see (2.11a,b)), which
becomes increasingly more pronounced as C increases. The difference at the centreline is
more than 80 % for C = 10. The profile at C = 3 is flatter than the parabolic (isothermal)
profile, with a centreline difference of almost 30 %, but does not have any inflection point.
Therefore, in agreement with previous experimental and theoretical studies (Scheele &
Hanratty 1962; Yao 1987a; Su & Chung 2000), our analysis suggests that the linear
instability of buoyancy-assisted pipe flow is linked to the inflectional velocity profiles
occurring at sufficiently large heating and it is almost independent of Re.
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Figure 8. Linear stability analysis for α = 1.7, k = 1 (L = 1.85D) (solid lines). In the main figure, m = 1; in
the inset, m = 2. The axisymmetric mode is included in the m = 1 analysis (i.e. m = 0 and ±1), but instability
of this mode is not observed. The first branch (for m = 1) is also shown for the case α = 0.628 (dashed line).
The neutral curves delimit regions where the flow is linearly stable (S) or unstable (U). The dotted vertical line
indicates the value of C (C = 5) at which the growth rate is shown in figure 9 as a function of Re.

Figure 8 also shows that, for C � 4, a region of restabilisation is observed as Re is
increased. This is also evidenced in figure 9, which shows a region of negative Re(σ ) for
1450 < Re < 6200 at C = 5. Isosurfaces of streamwise vorticity for the eigenfunctions
corresponding to the two neutral points where Re(σ ) becomes positive (Re ≈ 400 and
6200) are also shown in the insets of figure 9. For the larger Reynolds number, Re ≈
6200, the eigenfunction looks like it is spiralling in the centre and resembles the ‘spiral’
solution found by Senoo, Deguchi & Nagata (2012), although their visualised solutions are
nonlinear.

3.3. Continuation from TWN4L

To better understand the effect of buoyancy, we perform a nonlinear analysis, starting from
a known TW in isothermal pipe flow (C = Gr = 0) and continuing the solution to larger
values. A vast repertoire of TWs has now been compiled in isothermal pipe flows (Budanur
et al. 2017). For our purpose, we decided to focus on a fundamental solution, labelled
TWN4L (Pringle et al. 2009), which is highly symmetric (satisfying both shift-reflect and
shift-rotate symmetries) and characterised by relatively smooth continuation branches in
order to aid the numerical continuation. In Willis et al. (2013), the lower branch of this
solution was found to lie on the boundary between the laminar state and turbulence in
a ‘minimal flow unit’. Localised solutions bifurcate off this class of solutions (Chantry,
Willis & Kerswell 2014) and are found to mediate transition in extended domains (Avila
et al. 2013; Budanur & Hof 2017).

Following Willis, Short & Cvitanović (2016) we start with the ‘minimal flow unit’ at
Reynolds number Re = 2500 with domain (r, θ, z) = [0, 1] × [0, π/2] × [0, 2π/1.7], i.e.
mp = 4 and α = 1.7 in (2.14). For isothermal flow (C = Gr = 0), the phase speed of
TWN4L is c = 0.61925. The isothermal TW was first reconverged at Pr = 0.7 using the
Newton solver. A parametric continuation in C to non-zero values was then performed
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Figure 9. Growth rate versus Reynolds number from linear stability analysis at α = 1.7, k = 1 (L = 1.85D),
m = 1 and C = 5 (corresponding to the dotted vertical line in figure 8). Insets: streamwise vorticity
(blue/yellow are 30 % of the min/max value) close to the two neutral points (Re ≈ 400 and 6200).
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Figure 10. Continuation in C (or Gr) from N4L at Re = 2500. (a) Phase speed c versus C (or Gr), (b) Nu versus
C (or Gr). Filled circles indicate the points along the continuation at which the mean streamwise velocity and
temperature profiles are shown in figure 11.

(figure 10) for fixed Re, Pr and α. We were able to continue the isothermal solution from
C = 0 around positive C and find that it connects with the upper branch at C = 0, then
beyond to C ≈ −40. (Negative C corresponds to a downward cooled flow – see Appendix
A.) As a check, we verified that the values of c = 0.52575 and Nu = 2.378 at C = 0 on
the upper branch, as well as the mean profiles, matched those of the previously known
upper-branch isothermal solution TWN4U with Pr = 0.7.

In figure 10(b) it is seen that from C = 0 to C = 6 the Nusselt number Nu increases
by approx 0.75. By comparison, along the upper branch, over the large range C = 6 to
C = −40, it increases by only a further 1.25. Relatively speaking, the lower branch is
rapidly pushed back towards the upper branch over the increase in C and is suppressed
altogether for C > 7.5. The mean velocity and temperature profiles at different points
along the continuation are shown in figure 11. Observe that the profile in the near-wall
region, where rolls and streaks occur, is similar at the saddle-node point to that of the
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Figure 11. Mean streamwise velocity (a) and temperature (b) profiles at the points along the continuation from
N4L (Re = 2500) marked in figure 10 (SN: saddle node, LB/UB: lower/upper branch). The temperature profiles
for C = 0 and C = 2 on the lower branch are indistinguishable.
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Figure 12. Cross-sections of streamwise velocity (a) and temperature (b) perturbations (deviations from the
isothermal laminar flow) for the N4L TW at Re = 2500 and C = 7.4 (saddle node). Ten contours are used
between the maximum and minimum. The arrows in the left graph indicate the cross-sectional velocities.

isothermal upper branch solution. Figure 12(a) shows these rolls (arrows) and streaks
(contours) in cross-sections of the velocity perturbation at the saddle-node point. The
corresponding temperature perturbation field (‘thermal streaks’) is shown on the right.
Similar to its isothermal counterpart, the TW is characterised by fast streaks located near
the pipe wall and slow streaks in the interior. The core shows a strongly decelerated region
relative to the laminar (isothermal) profile and thus the profile must become steeper at the
wall to preserve the mass flux. The difference from the isothermal TWN4L, however, is
less marked in the near-wall region than it is in the core.

Continuations were also performed at Re = 2000 and 3000, after reconverging the
isothermal TWN4L at these Reynolds numbers. Results are shown in figure 13. The TW
survives to larger C as the Reynolds number increases (the saddle-node point of each
curve moves to larger C as Re increases). This is consistent with the shear turbulence
region in figure 7 persisting to larger C as Re is increased. The saddle-node bifurcations
at each Re occur at much larger values of C than those at which suppression of turbulence
was observed in the DNS. For example, at Re = 2500 the saddle-node bifurcation occurs
at C ≈ 7.5, while in figure 7 shear-turbulence survives only for C � 1. This is not so
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Figure 13. Continuation in C from N4L for increasing values of Re. The curve for Re = 2500 is the same as
that shown in figure 10(b).
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Figure 14. Times series of (a) total dissipation Dtot (normalised by the laminar isothermal value D0 =
2πLz| − 2| = 4πLz) and (b) energy of the streamwise-dependent modes E3d for simulations started from the
lower-branch TW solutions at Re = 3000, α = 1.7 with C = 0 and C = 4. The TW is perturbed by adding
∓0.001 (w1 + 0.01w2) (denoted as ‘upper’ and ‘opposite’ directions) where w1 and w2 are the first (leading)
and second eigenvectors. Shooting in the ‘upper’ direction leads to turbulence for C = 0, while the flow goes
back to laminar when perturbed in the opposite direction. For C = 4 both directions end up at the laminar
point.

surprising, considering that in isothermal pipe flows the lowest Re at which the N4L
TW solution is found, i.e. Re = 1290 (Pringle et al. 2009), is much below the commonly
observed value for transition in experiments (Re ≈ 1800–2300). Furthermore, it should be
taken into account that only one TW solution is analysed here – it cannot capture the entire
phenomenon of turbulence suppression in a heated pipe flow, although is found to capture
some of the fundamental characteristics.

Figure 14 shows that, while the lower branch solution for Re = 3000 is on the edge
of an attractor for shear-driven turbulence at C = 0, this is no longer the case for C =
4. Shear-driven turbulence does not survive in the heated case, although shooting in the
upper direction for C = 4 does still produce a short turbulent transient. In particular, large
amplification of the initial disturbance still occurs in the heated case, but the self-sustaining
mechanism appears to be disrupted.
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To summarise this section, we have observed that a known TW solution of the
isothermal pipe flow is suppressed by buoyancy and that it is connected to the transition
to turbulence. The observations are consistent with destabilisation of the shear-driven
turbulent state, but at this stage another approach is required to forge an approximate
quantitative link with the transition from turbulence.

3.4. Calculation of the apparent Reynolds number of HHS
In § 1.2, where we gave a brief overview of HHS, the (isothermal) EPG flow was identified
as a useful reference case for heated flows. To calculate the apparent Reynolds number of
the EPG reference flow, one must determine the contribution to the mass flux from the
buoyancy force that would have been induced in a fixed pressure-gradient flow. Here we
summarise the key points of the analysis of HHS and apply them to a selected example
case from our data. (The interested reader is referred to §§ 3.3 and 3.5 of HHS for a
detailed derivation.) In the following section we relate HHS analysis to the phase diagram
determined from the simulations of § 3.1.

The analysis starts by decomposing the body-force influenced flow (i.e. the total flow)
into a pressure-driven flow of equivalent pressure gradient (the EPG reference flow) and a
perturbation flow due to the body force,

u(x, t) = u†(x, t) + u f (x, t), (3.1)

where the superscripts † and f denote the EPG and the body-force perturbation driven
flows, respectively. In contrast to the conventional view, HHS observe that adding a
non-uniform (radially dependent) streamwise body force to a flow initially driven only by
a pressure gradient, does not alter its turbulent mixing characteristics and in particular
the turbulent viscosity remains approximately the same. From this point of view, the
body-force influenced flow behaves in the same way as the EPG flow and relaminarisation
occurs when the Reynolds number Reapp of this ‘apparent’ flow drops below a certain
threshold where turbulence cannot be sustained any more. Given the difficulties discussed
in § 1 to uniquely define a critical Reynolds number for transition, we decided to follow
HHS and select a nominal value of 2300, as quoted in many engineering textbooks (see e.g.
White 1979). By writing the bulk velocity Ub of the EPG flow as the difference between
that of the total flow and of the body-force perturbation driven flow, i.e. U†

b = 0.5 − U f
b ,

the above relaminarisation criterion can be expressed as

Reapp := Re(1 − 2 U f
b ) < 2300. (3.2)

To determine U f
b , the following expression was derived by integrating three times the

Reynolds-averaged z-momentum equation of the body-forced perturbation flow:

U f
b := Re

⎡
⎢⎢⎢⎣1

2

∫ 1

0
(1 − r2)f (r) r dr︸ ︷︷ ︸

I1

+
∫ 1

0
rR f

uv(r) r dr︸ ︷︷ ︸
I2

⎤
⎥⎥⎥⎦ , (3.3)

where R f
uv(r) := 〈(u′

zu′
r)

f 〉 is the Reynolds shear stress due to the perturbation flow
induced by the body force f (r). The first integral of (3.3), I1 := 1

2

∫ 1
0 (1 − r2)f (r) r dr,

represents the direct contribution of the body force (which is assisting the flow), while the
second integral, I2 := ∫ 1

0 rR f
uv(r) r dr, corresponds to the turbulent contribution related to
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Figure 15. Application of HHS’s relaminarisation criterion (3.3) in the case C = 2 and Re = 3000.
(a) Temperature profile shifted by 〈Θ̄〉∣∣r=0; (b) the corresponding pressure gradient.

the body-force perturbed flow. The Reynolds stress term R f
uv of the body-force perturbed

flow is related to that of the total (Ruv) and EPG (R†
uv) flows by using the decomposition

(3.1) and is approximated by introducing the eddy viscosity concept,

R f
uv(r) = Ruv(r) − R†

uv(r) = νt

Re
dUz

dr
− ν

†
t

Re
dU †

z

dr
, (3.4)

where Uz(r) := 〈(uz)〉, U †
z (r) := 〈(uz)†〉 and νt and ν

†
t are the eddy viscosities of the total

and EPG flows, respectively. Under the assumption that νt = ν
†
t , we obtain

R f
uv(r) = − ν

†
t

Re
dU f

z

dr
, (3.5)

where the perturbation flow U f
z (r) := 〈(uz) f 〉 due to the imposed body force is obtained

by integrating the Reynolds-averaged z-momentum equation

0 = 1
r

d
dr

[
r

Re

(
(1 + ν

†
t )

dU f
z

dr

)]
+ f , (3.6)

provided that the EPG flow (and hence ν
†
t ) is known. Equations (3.5) and (3.6) correspond

to (3.6) and (3.7) of HHS and the reader is referred their §§ 3.3 and 3.5 for a detailed
derivation.

Here, we apply the criterion for relaminarisation (3.2) proposed by HHS to our model
for a vertical heated pipe. The radially dependent body force is f0 = (4C/Re)〈Θ̄〉(r). Since
the body force in HHS is zero at the axis, we shift the temperature profile by its value at
the axis 〈Θ̄〉∣∣r=0 and absorb this constant into the pressure gradient (see figure 15). This
leads to the body force

f1(r) = (4C/Re)
[〈Θ̄〉 − 〈Θ̄〉∣∣r=0

]
(3.7)

and a fixed-pressure Reynolds number

Rep = Re
[
(1 + β) + C 〈Θ̄〉∣∣r=0

]
. (3.8)

Initially, we consider the simulation with C = 2 and Re = 3000 for which it is observed
that Rep = 4252.71. By inserting f = f1 in I1 we obtain ReI1 = 0.12. To calculate I2 we
need to evaluate the EPG flow in order to obtain ν

†
t (r) and hence the Reynolds stress term
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Figure 16. Eddy viscosity (a) of the EPG flow and Reynolds shear stress (b) of the body-force perturbed flow
in the case C = 2 and Re = 3000. The eddy viscosity is calculated following an approach similar to Willis
et al. (2010), as summarised in Appendix B. Once ν

†
t is known, R f

uv(r) is calculated using (3.5), together with
(3.6).

R f
uv(r) via (3.5) and (3.6). By definition, Re†

p = Rep. In an approach similar to Willis,
Hwang & Cossu (2010), summarised in Appendix B, the eddy viscosity ν

†
t (r) of the EPG

reference flow is calculated using an expression originally suggested by Cess (1958), see
(B2). The resulting eddy viscosity is shown in figure 16(a). By substituting ν

†
t in (3.6) we

can invert for dU f
z /dr which plugged into (3.5) gives us the Reynolds stress R f

uv(r) (see
figure 16b). Finally, by inserting the latter in the second integral of (3.3) we obtain ReI2 =
0.0405. Putting everything together, (3.3) gives U f

b = ReI1 + ReI2 = 0.12 + 0.0405 ≈
0.16. Then, using (3.2), Reapp = Re(1 − 2U f

b ) = 2040 < 2300, i.e. the flow is expected to
relaminarise. This value obtained for the apparent Reynolds number is reasonable, since
relaminarisation occurs after approximately 400 time units (see figure 15b).

3.5. HHS prediction of phase diagram and nonlinear dynamics
We now consider the general case of a flow at Re with heating C, while introducing a
number of approximations to simplify the analysis.

Firstly, the case discussed in § 3.4 (C = 2 and Re = 3000) suggests that ReI1 has a
significantly greater contribution than ReI2 in determining the body-force perturbation
flow. This is found to be generally true for the cases considered herein, as well as those
discussed in HHS, and hence we omit the term ReI2 for simplicity below. The perturbation
flow due to the body force can thus be evaluated as

U f
b ≈ ReI1 = 1

2
Re
∫ 1

0
(1 − r2)f (r) r dr = 2C

∫ 1

0
(1 − r2)

[〈Θ̄〉 − 〈Θ̄〉∣∣r=0

]
dr, (3.9)

where (3.7) has been used for f (r).
Secondly, figure 4(c) shows that the temperature mean profiles are remarkably similar

in all turbulent shear-driven flows (i.e. ignoring the laminar or convection driven flow
states), as far as the integral part of the right-hand side of (3.9) is concerned, despite that
the values of the Nu (proportional to the gradient at the wall) are necessarily quite different
for different cases. For the case Re = 5300, C = 3.75, for the left-hand side of (3.9) we
obtain ReI1 = 0.164. By applying the above assumption,

U f
b ≈ ReI1 = 0.164

3.75
C = 0.04C. (3.10)
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Let Reapp=2300 to find the critical C for flow laminarisation, that is,

Re(1 − 2U f
b ) = Re(1 − 0.08C) = 2300 (3.11)

or

Ccr,1 = 12.5
(

1 − 2300
Re

)
. (3.12)

For C � Ccr,1 we expect to see rapid transition from the shear-driven turbulent state to the
convective state. Noting C = Gr/(16Re), the above can be expressed as a critical Grashof
number

Grcr,1 = 200(Re − 2300). (3.13)

Let us now consider the opposite scenario in which the flow under heating C is either
laminar or convection driven. Figure 4(c) shows that the temperature profiles in such flows
are significantly different from those in a turbulent shear-driven flow, and generally with
a much thicker thermal boundary layer, and hence a greater buoyancy force. Consider the
extreme case when the radial heat transfer is purely due to conduction and the temperature
distribution is given by 〈Θ̄〉 = r2. The buoyancy-driven perturbation flow is therefore

U f
b ≈ ReI1 = 2C

∫ 1

0
(1 − r2) r2 dr = C

6
. (3.14)

Then a second critical C = Ccr,2 can be evaluated,

Ccr,2 = 6
(

1 − 2300
Re

)
, (3.15)

below which the flow is expected to transition to the shear-driven turbulent flow. To put it
another way, it is predicted that metastability of the shear-driven turbulent state should not
be observed for C � Ccr,2, so that the turbulent state is stable. Between Ccr,1 and Ccr,2 the
shear-driven state is expected to be metastable, so that this or a convective state may be
observed. In terms of the Grashof number,

Grcr,2 = 96(Re − 2300). (3.16)

Equations (3.12) and (3.15) are plotted on the Re–C graph in figure 17 together with all
DNS results already presented in figure 7. The data of figure 7 was obtained starting from
shear-driven turbulent states. Some additional simulations were performed at Re = 5300
starting from convection-driven states and are reported in figure 17 using hollow symbols,
with a slight offset in Re for visualisation reasons. Note that in an Re–Gr graph, (3.13) and
(3.16) are straight lines (see the inset in figure 17).

Considering a series of DNS runs for a fixed Re, for example Re = 5300, but increasing
C values (heating) starting from C = 0, (3.12) gives the critical C = Ccr,1 above which
the flow will be laminarised or switch to convection driven. On the other hand, starting
from a large C when the flow is laminarised or convective, (3.15) predicts a critical C =
Ccr,2 below which the flow will be turbulent when sufficient disturbances are provided in
the DNS. As Ccr,1 is larger than Ccr,2 for a given Re, there is an overlap in the possible
state of flow, and consequently there is a hysteresis region in which the flow may or may
not be laminarised, depending on the initial flow of the simulation (or experiment). As a
result, the Re–C plane can be divided into three regimes by the curves representing the
two equations, i.e. turbulent shear-driven flow (regime I), convection-driven or laminar
flow (regime III) and regime II in which either of the above may happen dependent on the
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Figure 17. Regions of laminar (L) flow, shear-driven (S) turbulence and convection-driven (C) flow, as in
figure 7, together with (3.12) and (3.15) and the linear stability stability curve (dashed red curve in figure 8).
Initial conditions are a shear-driven turbulent state, except for the hollow symbols at Re = 5300 which are
started with a convection driven state, and similarly cases towards the bottom-right, where it is clear that the
shear-driven state decays immediately.

2.75

2.50

2.25

2.00

1.75
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1.50

1.25

1.00

0 2 4 6 8

C
10 12

Shear IC

Conv IC

14 16

Figure 18. Nusselt number versus C for simulations started with shear and convection initial conditions
(ICs) at Re = 5300. The magenta and cyan vertical lines correspond to the critical buoyancy parameters
Ccr,1 and Ccr,2 given by (3.12) and (3.15), respectively. For values of C � Ccr1 (C � Ccr2 ) the shear-driven
(convection-driven) state is not supported and correspondingly the upper (lower) branch is plotted with a dashed
semitransparent line.

initial flow. Note that for the Reynolds number range considered here, the linear stability
curve (showed as a dashed grey line in figure 7) is always to the right of Ccr,2, i.e. Ccr,2 <

CLS. The two curves cross at Re ≈ 6000 (not shown), which means that, for Re < 6000
the convective flow is always linearly stable if C < Ccr,2. Hence, below Re ≈ 6000, shear
driven turbulence may be observed for C < CLS.

A plot showing the phase transitions for the fixed Reynolds number Re = 5300 is
provided in figure 18, where the Nusselt number is displayed as a function of C for
simulations started with either shear-driven or convection-driven states. The two critical
C at this Reynolds number, Ccr,1 = 7.1 and Ccr,2 = 3.4, are indicated with vertical lines
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Figure 19. Three-dimensional visualisations of low (blue) and high (yellow) speed streaks in the isothermal
(a), heated (b) and EPG (c) flows. Isosurfaces of turbulent streamwise velocity normalised by the corresponding
apparent friction velocity u′

z/uτp = ±4.

in figure 18. Starting from an unheated (C = 0) turbulent flow, applying a low heating
(C � 7), we observe that the flow remains turbulent over the entire period of simulation
(t = 2000). The dynamics thus sits on the upper branch shown in figure 18. As C is
increased, the lifetime of shear-turbulence drops below 2000 time units for C � 7.5 and
turbulence only survives for less than 500 time units at C = 10. It then switches to the
convection-type flow. This behaviour is marked in figure 18 by plotting the upper-branch
curve with a dashed line for C � 7.5 until it crosses the lower-branch at C = 12.5. At
this value of C, indeed, the switch to the convective flow appears to be immediate.
Now, starting from this convection-driven flow and applying a lower C, the flow remains
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Figure 20. Three-dimensional visualisations of vortical structures in the isothermal (a), heated (b) and EPG
(c) flows. Isosurfaces of streamwise vorticity fluctuations normalised by the corresponding apparent friction
velocity ω′

z/uτp = ±35.

convection-driven turbulent for C � 3.8, or relaminarises for C � 3.8. This value of C
corresponds to the onset of the linear instability, which is responsible for the kink in
Nu as C is decreased. Our previous analysis predicts that for flows on the left of (3.15),
their Reapp is greater than 2300, hence they may be prone to transition to turbulence
subject to sufficient disturbances. Correspondingly, the lower-branch curve in figure 18
is plotted with a dashed line for C < Ccr,2 = 3.4 to indicate that in practice (e.g. in a
laboratory experiment) the flow would become shear-driven turbulent again. However, as
previously discussed, at this Reynolds number, Ccr,2 < CLS. Bistability (between shear or
convection driven states) is thus observed for 3.8 � C � 7.5. The latter value is in very
good agreement with the threshold Ccr,1 = 7.1 predicted above.
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Figure 21. The r.m.s. velocity fluctuations as a function of wall-normal distance y = 1 − r. (a) Here u′
θ , a

measure of ‘rolls’, are suppressed as C increases, while (b) u′
z a measure of ‘streaks’, are little changed. (c)

Rolls for the C = 5 case correspond closely to its EPG counterpart, while the heated case has slightly stronger
streaks.

In figures 19 and 20 the turbulent structures of the isothermal and heated flows at
Re = 5300, C = 0 and 5, are compared with those of the EPG reference flow. The latter
was computed by performing a DNS with fixed pressure gradient such that Re†

p = Rep =
10898.7. The flow structures – streaks and vortices – are visualised as isosurfaces of
streamwise velocity and streamwise vorticity fluctuations, normalised by the apparent
friction velocity based on the pressure gradient component of the wall shear stress only,
u∗
τp, where the asterisk ∗ denotes a dimensional quantity here. The resulting apparent

friction Reynolds number is Reτp := u∗
τpR∗/ν∗ = Re†

τ = 147.6.
Comparison between the isothermal and heated flows show that the streaks are relatively

unaffected, while vortices are significantly weakened. Our interpretation is that while the
streaks are responsible for the saturation of the nonlinearity of the flow, via nonlinear
normality of the mean flow (Waleffe 1995), it is relatively ‘easy’ to produce streaks. Note
that the mean axial flow for these cases is almost identical (figure 4), and at the end of
§ 3.3 large initial amplifications of disturbances remains possible in the heated case. It is
observed that weaker vortices in the heated case are sufficient to produce saturated streaks
of the same amplitude. Thus, vortices are more important in the sense that criticality for
transition appears to occur when the vortices are too weak. Comparing now the heated
flow with the EPG flow, consistent with the observations of HHS (see their figure 19),
it can be seen that the streaks in the heated flow are typically stronger than in the EPG
flow, while the vortices are of similar strength. In figure 21 we plot root mean square
(r.m.s.) velocity fluctuations. Axial perturbations (figure 21a) are not strongly affected by
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the heating, while the cross-flow components (figure 21b) are significantly suppressed.
(The plot for u′

r is very similar to that shown for u′
θ .) In figure 21(c) it is seen that the

heated and EPG flow have very similar cross-components, while axial perturbations in the
heated case are slightly stronger than in the EPG flow. These results are consistent with
observations from the three-dimensional visualisations of figures 19 and 20, and likewise
suggest that it is the weakening of rolls rather than streaks that appear to be responsible
for laminarisation.

4. Conclusions

In this paper we have studied the flow of fluid through a vertically aligned heated pipe
using DNS, linear stability and nonlinear TW solution analyses. The flow is driven
by an externally applied pressure gradient and aided by the buoyancy resulting from
the lightening of the fluid close to the heated wall. Direct numerical simulations were
performed for a range of Reynolds numbers Re and buoyancy parameters C, where the
latter measures the magnitude of the buoyancy force relative to the pressure gradient of
the laminar isothermal shear flow, At relatively low Re � 3500 turbulence is completely
suppressed (relaminarised) by buoyancy and as C is increased convection starts driving a
relatively quiescent flow. For larger Re, instead, the shear-driven turbulent flow transitions
directly to the convection-driven state. Consistent with the appearance of the convective
state observed in simulations, a linear instability was found at C ≈ 4, roughly independent
of Re for most of the range considered. The result of increasing C can be compared with
that of increasing polymer concentration, or Weissenberg number Wi, which is known to
have a drag reducing effect on turbulent flows (Virk et al. 1967). Similar to our phase
diagram (figure 7), a region of relatively quiescent flow has been reported for a certain
range of Re and Wi (Choueiri, Lopez & Hof 2018; Lopez, Choueiri & Hof 2019), although
the underlying physical mechanism (elastoinertial instability) is clearly very different from
the one studied here (convection driven).

Cases where turbulence is suppressed exhibit a flattened mean streamwise velocity
profile. In agreement with recent observations by Kühnen et al. (2018) and Marensi
et al. (2019) on the effect of flattening, we found that states that mediate turbulence
(lower-branch TW solutions) are ‘pushed out’ from the laminar state, i.e. as C increases, a
larger perturbation amplitude or larger Re are required to drive shear turbulence until, for
sufficiently large C, the TW is suppressed altogether.

Finally, we used the relaminarisation criterion recently proposed by HHS, based on
an ‘apparent Reynolds number’ of the flow, to predict the critical C = Ccr,1(Re) above
which the flow will be laminarised or switch to the convection-driven type. This apparent
Reynolds number is based on an apparent friction velocity associated with only the
pressure force of the flow (i.e. excluding the contribution of the body force/buoyancy).
Bistability between shear or convection-driven states was found to occur in the region
4 � C � Ccr,1 where the flow may or may not be laminarised depending on the initial
flow of the simulation or experiment.

Comparison of the turbulent flow structures (rolls and streaks) with those of two
reference flows – the flow of equivalent pressure gradient and that of equivalent mass flux
– suggests that near criticality for relaminarisation the vortices, rather than the streaks, are
more important in the sense that criticality for transition occurs when the vortices are too
weak. This picture is not straightforward to reconcile with the interpretation of Kühnen
et al. (2018), where relaminarisation is attributed to reduced ability to produce streaks in
the presence of the flattened base profile. In the heated case, the base velocity profile does
not appear to change significantly while shear-driven turbulence is present. Thus it appears
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unlikely that transient growth of streaks is affected by the heating. Indeed, laminarisation
occurs despite little suppression of the streaks. The experiments of Kühnen et al. (2018) are
slightly different, however, in that the various flow manipulations they introduce do change
the base profile of the flow. In that case it is correct that transient growth will be affected,
although we conjecture that it is the suppression of the vortices due to suppression of the
streaks that is responsible for laminarisation in that case. Their numerical experiments
in the presence of a force are very similar to the calculations here and of HHS. In that
case we expect the mechanism we have described to be more clearly responsible for the
laminarisation.
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Appendix A. Link between upward-heated and downward-cooled cases

Consider the axial force from the pressure gradient and buoyancy terms in (2.9). Ignoring
the factor 4/Re that multiplies all terms, let

1 + β + CΘ = 1 + β̃ + C̃ Θ̃, (A1)

with C > 0 for the upward heated case on the left-hand side. Let the right-hand side
represent the downward cooled case, taking Θ̃ = 1 − Θ so that Θ̃ is coolest on the
boundary (Θ̃ = 1 − r2 for the laminar case). Put C̃ = −C < 0, as buoyancy due to
positive temperature variations oppose the pressure gradient. (Cooling, however, aids the
downward flow.) Substituting in (A1) we find β̃ = β + C, i.e. the systems differ only by a
known offset in the pressure gradient required to maintain volume flux.

Appendix B. Turbulent base flow and eddy viscosity

The turbulent mean flow profile for a pipe may be written U = U( y)ẑ, where y = 1 − r is
the dimensionless distance from the boundary wall and r is the radial coordinate. Applying
the Boussinesq eddy viscosity to model for the turbulent Reynolds-stresses, the streamwise
component of the Reynolds-averaged momentum conservation reads

1
Re

(
1
r

+ ∂r

)
(νT∂rU) = ∂zP, (B1)

where the total effective viscosity is νT( y) = 1 + νt( y) and νt is the eddy-viscosity,
normalised such that νT(0) = 1, i.e. the kinematic value is attained at the wall.

To calculate νt it is convenient to use the expression originally suggested for pipe flow
by Cess (1958), later used for channel flows by Reynolds & Tiederman (1967) and then by
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Suppression of turbulence in a vertical heated pipe

many others (Butler & Farrell 1993; Del Alamo & Jimenez 2006; Pujals et al. 2009),

νt( y) = 1
2

⎧⎨
⎩1 + κ2R̂2B̂

9

(
2y − y2

)2 (
3 − 4y + 2y2

)2
[

1 − exp

(
−yR̂

√
B̂

A+

)]2
⎫⎬
⎭

1/2

− 1
2
.

(B2)

Here, R̂ = Re/2, B̂ = 2B, with B = −∂zP being the averaged streamwise pressure
gradient. The parameters A+ = 27 and κ = 0.42 have been chosen to fit the more recent
observations of McKeon, Zagarola & Smits (2005).

For the calculation of § 3.4, the (apparent) pressure gradient B and (apparent) Rep are
known. The mass flux Re of (B1) is not yet known, and we wish to determine νt. An initial
estimate for Re is obtained from the approximation of Blasius (1913), which may be written

Rep = 0.0791
16

Re1.75. (B3)

Then, (B2) can be used to calculate νt(r), but we must check consistency with (B1). The
latter equation can be inverted for U(r), and, as it has been non-dimensionalised with the
same scales of § 2.1, the mean velocity Ub = 2

∫ 1
0 U(r) r dr should be 0.5. It will not be

exactly so, as Re (for the given ∂zP) has only been estimated. A better estimate is given by
Re := (0.5/Ub) Re, so that νt can be recalculated and iteratively improved.
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