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Representations of the Twisted
Heisenberg–Virasoro Algebra
at Level Zero

Yuly Billig

Abstract. We describe the structure of the irreducible highest weight modules for the twisted Heisen-

berg–Virasoro Lie algebra at level zero. We prove that either a Verma module is irreducible or its

maximal submodule is cyclic.

Introduction

In this paper we study the structure of the irreducible representations for the twisted

Heisenberg–Virasoro Lie algebra L at level zero. This Lie algebra is the universal

central extension of the Lie algebra of differential operators on a circle of order at

most one:
{

f (t)
d

dt
+ g(t)

∣

∣

∣
f , g ∈ C[t, t−1]

}

.

The twisted Heisenberg–Virasoro algebra has an infinite-dimensional Heisenberg

subalgebra and a Virasoro subalgebra. These subalgebras, however, do not form a

semidirect product, but instead, the natural action of the Virasoro subalgebra on

the Heisenberg subalgebra is twisted with a 2-cocycle (see (1.1)–(1.3) for the precise

definition).

The twisted Heisenberg–Virasoro algebra L has been studied by Arbarello et al.

in [ACKP], where a connection is established between the second cohomology of

certain moduli spaces of curves and the second cohomology of the Lie algebra of

differential operators of order at most one. Arbarello et al. also proved that when

the central element of the Heisenberg subalgebra acts in a non-zero way, an irre-

ducible highest weight module for L is isomorphic to the tensor product of an irre-

ducible module for the Virasoro algebra and an irreducible module for the infinite-

dimensional Heisenberg algebra.

The goal of the present paper is to study the case when the central element of the

Heisenberg subalgebra acts trivially (level zero case). It turns out that the picture

in the level zero case is quite interesting and very different from the generic case

of non-zero level. Our main result (Theorem 1 below) states that either the Verma

module itself is irreducible or the irreducible highest weight module is a quotient of

two Verma modules. From this we immediately get the characters of the irreducible

modules for L at level zero.
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Our work is motivated by the representation theory of the toroidal Lie algebras.

In order to have a good representation theory for the toroidal Lie algebras one should

consider the toroidal algebras together with the Lie algebra of vector fields on a torus.

However there are difficulties in representing the toroidal analogue of the Virasoro al-

gebra (see [EM], [FM], [B1], [BBS]). This problem has been resolved in [B2], where

the vertex operator representations for the full toroidal algebra are constructed us-

ing the twisted Heisenberg–Virasoro algebra. It is precisely the level zero modules

that enter in the construction from [B2]. The information about the structure of

the irreducible level zero modules obtained in the present paper is required for the

computation of the characters of the irreducible representations of the toroidal Lie

algebras.

We will denote by Z the set of integers and by N the set of natural numbers

{1, 2, . . . }.

Acknowledgements I am grateful to Victor Kac for bringing the paper [ACKP] to

my attention.

1 Twisted Heisenberg–Virasoro Algebra

We define the twisted Heisenberg–Virasoro algebra L as a Lie algebra with the basis

{L(n), I(n),CL,CLI ,CI | n ∈ Z}

and the Lie bracket given by

[L(n), L(m)] = (n − m)L(n + m) + δn,−m
n3 − n

12
CL,(1.1)

[L(n), I(m)] = −mI(n + m) − δn,−m(n2 + n)CLI ,(1.2)

[I(n), I(m)] = nδn,−mCI ,(1.3)

[L,CL] = [L,CLI] = [L,CI] = 0.

This Lie algebra has an infinite-dimensional Heisenberg subalgebra and a Virasoro

subalgebra intertwined with the cocycle (1.2). The twisted Heisenberg–Virasoro al-

gebra L is the universal central extension of the Lie algebra { f (t) d
dt

+ g(t) | f , g ∈
C[t, t−1]} of differential operators of order at most one. The corresponding projec-

tion is given by L(n) 7→ −tn+1 d
dt

, I(n) 7→ tn. The center of L is four-dimensional and

is spanned by {I(0),CL,CLI ,CI}.

We are using the symbol I because we may think of the infinite-dimensional

Heisenberg algebra as the affinization of gl1(C). In this interpretation I is the identity

matrix.

Introduce a Z grading on L by deg L(n) = deg I(n) = n and degCL = degCLI =

degCI = 0, and decompose L with respect to this grading: L = L− ⊕ L0 ⊕ L+.

Irreducible highest weight representations for L have been studied by Arbarello et

al. in [ACKP], however the case of irreducible representations at level zero, i.e., when

CI acts as zero, was not fully investigated in that paper. It turns out that it is precisely
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this type of representations that is needed for the construction of the modules for

the toroidal Lie algebras in [B2]. The purpose of the present paper is to describe the

structure of the irreducible modules for the twisted Heisenberg–Virasoro algebra at

level zero. We are able to give a complete description (Theorem 1 below) of these

irreducible modules.

We begin by recalling the standard construction of the Verma modules.

Fix arbitrary complex numbers h, hI , cL, cLI , cI . Let C1 be a 1-dimensional L0⊕L+

module defined by L(0)1 = h1, I(0)1 = hI1, CL1 = cL1, CLI 1 = cLI 1, CI1 =

cI 1, L+1 = 0. As usual, the Verma module M = M(h, hI , cL, cLI , cI) is the induced

module

M(h, hI , cL, cLI , cI) = IndL

L0⊕L+
(C1) ∼= U (L−) ⊗ 1.

The module M is Z graded by eigenvalues of the operator L(0) − h Id: M =
⊕∞

n=0 Mn with Mn = {v ∈ M | L(0)v = (n + h)v}.

In order to understand the submodule structure of M, we need to study singular

vectors in M. A non-zero homogeneous vector v in a highest weight L module is

called singular if L+v = 0.

Clearly, the highest weight vector 1 itself is singular, while every proper homoge-

neous submodule of a highest weight module contains a singular vector which is not

a multiple of the highest weight vector.

The key to the submodule structure of M is the determinant formula derived in

[ACKP]. Let us briefly discuss this result.

The Lie algebra L has an anti-involution σ:

σ
(

L(n)
)

= L(−n), σ
(

I(n)
)

= I(−n) − 2δn,0CLI ,

σ(CL) = CL, σ(CI) = CI , σ(CLI) = −CLI .

The Shapovalov form on M is a bilinear form induced by this anti-involution. It has

the invariance property

(xu|v) =

(

u|σ(x)v
)

, x ∈ L, u, v ∈ M,

and normalized by the condition (1|1) = 1.

Clearly, the distinct graded components of M are orthogonal with respect the

Shapovalov form: (Mn|Mk) = 0 for n 6= k. We consider the restriction of the bi-

linear form on each component Mn. If we fix a basis in the space U−n(L−) then we

will get bases in Mn(h, hI , cL, cLI , cI) simultaneously for all h, hI , cL, cLI , cI ∈ C. De-

note by detn the determinant of the Shapovalov form in this basis. Arbarello et al.

established a formula for detn as a function of h, hI , cL, cLI , cI [ACKP, (6.7)]. In the

case when cI = 0, the determinant formula greatly simplifies. Here we present this

reduction. Define the numbers p2(n) by the generating series

∞
∑

n=0

p2(n)qn
=

∏

k≥1

(1 − qk)−2,

and let

(1.4) ϕr =

(

hI − (1 + r)cLI

)(

hI − (1 − r)cLI

)

, r ∈ N.
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Then

(1.5) detn(h, hI , cL, cLI) = Kn

∏

1≤s≤r≤n
1≤rs≤n

ϕp2(n−rs)
r,s ,

where

ϕr,s =

{

ϕrϕs, for r 6= s,

ϕr, for r = s,

and Kn is a non-zero constant independent of h, hI , cL, cLI (in the notations of [ACKP]

take ha = hI − cLI , c3 = icLI , ca = cI = 0).

2 Structure of the Irreducible L Modules at Level Zero

The main result of the paper is the following:

Theorem 1 Let cI = 0 and cLI 6= 0.

(a) If hI/cLI /∈ Z or hI/cLI = 1 then the L module M = M(h, hI , cL, cLI , 0) is irre-

ducible.

(b) If hI/cLI ∈ Z \ {1} then M(h, hI , cL, cLI , 0) possesses a singular vector v ∈ Mp,

where p = | hI

cLI
− 1|. The factor-module

L = L(h, hI , cL, cLI , 0) = M(h, hI , cL, cLI , 0)/U (L−)v

is irreducible and its character is

char L = (1 − qp)
∏

j≥1

(1 − q j)−2.

Proof Let us give a proof of part (a). Clearly, if there exists a singular vector v ∈
Mn for some n > 0 then detn = 0. Then the determinant formula (1.5) implies

that ϕm = 0 for some m ∈ N. It follows from (1.4) that hI/cLI = 1 ± m. We

conclude that if hI/cLI /∈ Z or hI/cLI = 1 then the Verma module M does not possess

a singular vector other than a vector of the highest weight. Thus the Verma module

M is irreducible in this case. This completes the proof of part (a) of Theorem 1.

To prove part (b), we will consider two cases: 1 − hI/cLI ∈ N and hI/cLI − 1 ∈ N.

The proof in both cases is essentially the same, so we will treat them in parallel.

Let us first outline the main idea of the proof. The Lie algebra L has infinitely

many Heisenberg subalgebras

(2.1) 〈L(n), I(−n), I(0) − (n + 1)CLI〉n6=0,

with the Lie bracket

[L(n), I(−n)] = n
(

I(0) − (n + 1)CLI

)

.

https://doi.org/10.4153/CMB-2003-050-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2003-050-8


Representations of the Twisted Heisenberg–Virasoro Algebra at Level Zero 533

The central element I(0) − (n + 1)CLI acts on M = M(h, hI , cL, cLI , 0) in a non-zero

way precisely when hI/cLI 6= 1 + n. Thus in our case among the Heisenberg sub-

algebras (2.1), there will be one with a degenerate action on M, and the rest will

act non-degenerately. We will exhibit a relation between the action of these Heisen-

berg subalgebras and certain formal operations of taking partial derivatives in M (see

Lemma 3 below). The rest of the argument is reminiscent of the classical proof of

irreducibility of a polynomial algebra as a module over a Heisenberg Lie algebra.

We will organize the proof of part (b) in a sequence of several lemmas. For the

rest of the paper we fix p = 1 − hI/cLI ∈ N (resp. p = hI/cLI − 1 ∈ N).

From (1.4) we get that ϕr = −c2
LI(r− p)(r+ p). Thus ϕp = 0, while ϕr 6= 0 for r 6=

p, and it follows from the determinant formula (1.5) that detp = 0, while detp−1 6= 0.

This implies the existence of a singular vector v ∈ Mp. Our goal is to show that

the submodule V generated by this singular vector is the maximal submodule in M.

To prove this, we need to study the properties of the singular vector v and of the

submodule V .

Consider the following Poincaré–Birkhoff–Witt basis in M = U (L−)1:

(2.2) {I(−m1) · · · I(−mk)L(−n1) · · · L(−ns)1},

where m1 ≥ · · · ≥ mk > 0, n1 ≥ · · · ≥ ns > 0.

Note that the subalgebra L− has one more Z grading by I-degree:

L− = (L−)I
0 ⊕ (L−)I

1,

where I-degree of L(−n) is 0, and I-degree of I(−n) is 1. We place a superscript I in

the notation of the graded component in order to distinguish the grading by I-degree

from the standard grading by the ordinary degree. This new grading on L− induces

a Z grading on U (L−) and also on the Verma module M = U (L−)1:

M =

∞
⊕

j=0

MI
j .

The I-degree of a monomial in (2.2) is k.

For a non-zero element w ∈ M we will denote by w its lowest non-zero homoge-

neous component with respect to I-degree:

w = w + terms of higher I-degree.

We define on M the operations of formal partial derivatives ∂
∂I(−m)

, ∂
∂L(−n)

. We set

∂I(− j)

∂I(−m)
= δ jm,

∂L(− j)

∂I(−m)
= 0,

∂

∂I(−m)
1 = 0,

∂I(− j)

∂L(−n)
= 0,

∂L(− j)

∂L(−n)
= δ jn,

∂

∂L(−n)
1 = 0,

and then define their action on monomials (2.2) by the Leibnitz rule. Finally, we

extend these to M by linearity. Clearly, these operations are not canonical and depend

on our choice of the basis.
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Lemma 2 Let w ∈ MI
k and let n > 0. Then

(a) I(n)w ∈ MI
k ⊕ MI

k+1,

(b) L(n)w ∈ MI
k−1 ⊕ MI

k.

The proof of this lemma is a simple application of the Poincaré–Birkhoff–Witt

argument and is left as an exercise.

We will also need the following subspace in M:

I = Span{I(−m1) · · · I(−mk)1 | m1 ≥ · · · ≥ mk > 0}.

The next lemma exhibits the relation between the action of the Heisenberg subal-

gebras (2.1) and the formal partial derivatives.

Lemma 3 Let w be a non-zero vector in M expanded in the basis (2.2), and denote by

k the I-degree of its lowest component w.

(a) Suppose that w /∈ I. Let n be the smallest integer such that L(−n) occurs as a factor

in one of the terms of w. Then the part of I(n)w of the I-degree k is given by

(2.3) n
(

hI + (n − 1)cLI

) ∂w

∂L(−n)
.

(b) Suppose that w ∈ I, w /∈ C1. Let m be the maximal integer such that I(−m) occurs

as a factor in one of the terms of w. Then the part of L(m)w of the I-degree k − 1 is

given by

(2.4) m
(

hI − (m + 1)cLI

) ∂w

∂I(−m)
.

Proof Let us prove claim (a). By Lemma 2 (a), the part of I(n)w of I-degree k comes

from I(n)w. Let

x = I(−m1) · · · I(−mk)L(−n1) · · · L(−ns)1

be one of the monomials occurring in w. It is sufficient to establish the claim of the

lemma for such a monomial. By our assumption, n1 ≥ · · · ≥ ns ≥ n. We have

I(n)x =

s
∑

i=1

I(−m1) · · · I(−mk)L(−n1) · · · [I(n), L(−ni)] · · · L(−ns)1.

If ni > n, we have [I(n), L(−ni)] = nI(−ni + n), and the I-degree of the corre-

sponding term will be k + 1, so such terms will not contribute to the part of I(n)x of

I-degree k.

If ni = n, then we have [I(n), L(−n)] = n
(

I(0) + (n − 1)CLI

)

, and so the con-

tribution of these terms is n
(

hI + (n − 1)cLI

)

∂x
∂L(−n)

. Combining these two cases, we

obtain claim (a).
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Let us now prove (b). By Lemma 2 (b), the part of L(m)w of I-degree k− 1 comes

from L(m)w. Let

y = I(−m1) · · · I(−mk)1

be one of the monomials occurring in w. It is sufficient to establish the claim for such

a monomial. By our assumption, m ≥ m1 ≥ · · · ≥ mk. We have

L(m)y =

k
∑

i=1

I(−m1) · · · [L(m), I(−mi )] · · · I(−mk)1.

If m > mi then [L(m), I(−mi)] = miI(m−mi), and the corresponding term vanishes

since all I’s commute and I(m − mi)1 = 0 when m − mi > 0.

If m = mi , then [L(m), I(−m)] = m
(

I(0) − (m + 1)CLI

)

, and the contribution

of these terms will yield m
(

hI − (m + 1)cLI

) ∂y
∂I(−m)

. The proof of the lemma is now

complete.

Note that the factor
(

hI +(n−1)cLI

)

in (2.3) vanishes only when p = 1−hI/cLI ∈

N and n = p. The factor
(

hI − (m + 1)cLI

)

in (2.4) is zero when p = hI/cLI − 1 ∈ N

and m = p. The partial derivatives ∂w
∂L(−n)

in (2.3) and ∂w
∂I(−m)

in (2.4) are non-zero

since by our assumptions w involves L(−n) in (a) and I(−m) in (b).

In the following lemma we describe the decomposition of the singular vector v ∈
Mp by I-degree.

Lemma 4 The module M possesses a singular vector v ∈ Mp with v = L(−p)1 (resp.

v = I(−p)1).

Proof We have already established the existence of a singular vector v ∈ Mp. Denote

the I-degree of v by k. Let us reason by contradiction and assume that v is not a

multiple of L(−p)1 (resp. I(−p)1). If v /∈ I, we apply Lemma 3 (a), and find n ∈ N

such that I(n)v 6= 0 (note that in case p = 1 − hI/cLI ∈ N we have n 6= p due to our

assumption that v is not a multiple of L(−p)1). This contradicts to the fact that v is

a singular vector. If v ∈ I then we also get a contradiction in a similar way. We apply

Lemma 3 (b) to find m ∈ N such that L(m)v 6= 0 (note that in case p = hI/cLI − 1,

we have m 6= p due to our assumption that v is not a multiple of I(−p)1). Hence v

must be a multiple of L(−p)1 (resp. I(−p)1) and we rescale v so that v = L(−p)1

(resp. v = I(−p)1).

Remark In fact it is possible to show that in the case when p = hI/cLI − 1 ∈ N, the

singular vector v belongs to Mp ∩ I.

Example

(i) If hI/cLI = 0 then v =

(

L(−1) + h
cLI

I(−1)
)

1 is a singular vector of degree 1 in

M(h, hI , cL, cLI , 0).

(ii) If hI/cLI = 2 then v = I(−1)1 is a singular vector of degree 1 in M(h, hI , cL, cLI , 0).
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In order to prove Theorem 1, we need to show that the submodule V = U (L−)v

generated by the singular vector v ∈ Mp is the maximal submodule in M. To achieve

this, we will need the following two corollaries to Lemma 4.

Corollary 5 Let w be a non-zero vector in the submodule V = U (L−)v, written in

the basis (2.2). Then there exist terms in w, containing the factor L(−p) (resp. I(−p)).

Proof Let w = uv, where u ∈ U (L−). Since the universal enveloping algebra U (L−)

has no zero divisors, we have that w = u v. However by Lemma 4, v = L(−p)1 (resp.

v = I(−p)1). Thus w = uL(−p)1 (resp. w = uI(−p)1). Using the fact that the

graded algebra gr U (L−) associated with the universal enveloping algebra U (L−)

is isomorphic to a polynomial algebra, we conclude that all the terms in w of the

maximal length (length of a monomial in (2.2) is s + k) will contain a factor L(−p)

(resp. I(−p)). Thus we obtain the claim of Corollary 5.

Corollary 6 The images of the vectors

(2.5) {I(−m1) · · · I(−mk)L(−n1) · · · L(−ns)1},

where m1 ≥ · · · ≥ mk > 0, n1 ≥ · · · ≥ ns > 0, ni 6= p (resp. mi 6= p), form the basis

of the factor module M/V .

Proof By Corollary 6, the vectors (2.5) are linearly independent modulo V . The

character of the subspace in M spanned by these vectors coincides with the character

of the factor module

char M/V = (1 − qp) char U (L−).

Thus the images of the vectors (2.5) under the projection M → M/V form the basis

of M/V .

The next lemma is equivalent to the claim of part (b) of Theorem 1. Our argument

here will be quite similar to the one used in Lemma 4.

Lemma 7 Let w ∈ M. If L+w ⊂ V then w ∈ C1 ⊕V .

Proof Without the loss of generality we may assume that w is homogeneous. Also

the statement of the lemma will not change if we add to w a vector from V . Applying

Corollary 6, we may thus assume that w is a linear combination of vectors (2.5). We

need to show that w ∈ C1.

If w /∈ I, then by Lemma 3 (a) there exists n ∈ N such that the part of I(n)w of the

lowest I-degree is non-zero and belongs to the span of (2.5), because the subspace

spanned by vectors (2.5) is closed under the operations of taking partial derivatives.

However, by the assumption of the lemma, I(n)w ∈ V , which gives us a contradiction

to Corollary 5.

If w ∈ I, w /∈ C1, then by Lemma 3 (b) there exists m ∈ N such that the part of

the lowest I-degree of L(m)w is non-zero and belongs to the span of (2.5). This again
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contradicts to Corollary 5 since L(m)w ∈ V . This leaves us with the only possibility

w ∈ C1 and hence w ∈ C1. The lemma is proved.

Finally, to complete the proof of Theorem 1 (b), we note that by Lemma 7 the only

singular vectors in L = M/V are multiples of the highest weight vector. Thus L is

irreducible.

The formula for the character follows from the obvious equalities

char L = (1 − qp) char U (L−),

and

charU (L−) =

∏

j≥1

(1 − q j)−2.
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