NOTE ON A MATRIX THEOREM OF A. BRAUER AND ITS EXTENSION

L. S. GODDARD

1. Introduction. In one of his papers on limits for the characteristic roots of a Matrix, Brauer (1) has stated a theorem, which connects the roots of a given square matrix A, with those of a matrix A^{*} derived from A by a certain process. The proof of this theorem involves a continuity argument and in a recent paper on the construction of stochastic matrices Hazel Perfect (5) has given a proof which avoids considerations of continuity. However, her proof, involving several multiple derivatives (not with respect to the elements of the matrix), is unnecessarily heavy, and in the present note I give a proof which is simple, short and avoids both continuity and differentiation.

Two extensions of Brauer's theorem are then considered. In each matrix A^{*} is of the form $A^{*}=A+X K^{\prime}$ where X is an $n \times r$ matrix (n being the order of A) whose columns are latent vectors of A, and K is an arbitrary $n \times r$ matrix. These extensions arise according as the columns of X are associated with the same latent root of A, or different roots.
2. Brauer's theorem. In what follows, symbols in bold type represent column vectors. A row vector is represented by an attached prime, which is also used to denote the transpose of a matrix. The unit matrix is denoted by I. Brauer's result may be stated as follows:

Theorem 1. Let the square matrix A of order n have latent roots $\lambda_{1}, \ldots, \lambda_{s}$ with multiplicities m_{1}, \ldots, m_{s}; let x be a latent column vector of A associated with the root λ_{1}, and let k be an arbitrary column vector. Then the matrix $A^{*}=A+$ $\mathbf{x} \mathbf{k}^{\prime}$ has latent roots $\lambda_{1}+\mathbf{k}^{\prime} \mathbf{x}, \lambda_{1}, \ldots, \lambda_{s}$ with multiplicities $1, m_{1}-1, m_{2}, \ldots, m_{s}$.

Proof. We have

$$
|\lambda I-A|=\prod_{i=1}^{s}\left(\lambda-\lambda_{i}\right)^{m_{i}}
$$

and also $A \mathbf{x}=\lambda_{1} \mathbf{x}$. Now, since $\mathbf{x k}^{\prime}$ is of rank 1 , we have

$$
\begin{aligned}
\left|\lambda I-A^{*}\right| & =\left|\lambda I-A-\mathbf{x} \mathbf{k}^{\prime}\right| \\
& =|\lambda I-A|-\sum_{i=1}^{n} k_{i}\left|\mathbf{a}_{1}, \ldots, \mathbf{a}_{i-1}, \mathbf{x}, \mathbf{a}_{i+1}, \ldots, \mathbf{a}_{n}\right|
\end{aligned}
$$

where, in the last determinant, we have written $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}$ for the columns of $\lambda I-A$.

Received August 26, 1954; in revised form May 3, 1955.

If we write $A_{i j}(\lambda)$ for the co-factor of the (i, j) th element of $\lambda I-A$, we have

$$
\left|\lambda I-A^{*}\right|=|\lambda I-A|-\sum_{i=1}^{n} k_{i} \sum_{j=1}^{n} x_{j} A_{j i}(\lambda)
$$

Now $A_{j i}(\lambda)$ is the (i, j) th element of $\operatorname{adj}(\lambda I-A)$. Also, from the well-known identity

$$
\operatorname{adj}(\lambda I-A) \cdot(\lambda I-A)=|\lambda I-A| I
$$

it follows at once that

$$
\left(\lambda-\lambda_{1}\right) \operatorname{adj}(\lambda I-A) \cdot \mathbf{x}=|\lambda I-A| \mathbf{x}
$$

This gives

$$
\sum_{j=1}^{n} A_{j i}(\lambda) x_{j}=x_{i} F(\lambda) \quad(i=1, \ldots, n)
$$

where $F(\lambda)=|\lambda I-A| /\left(\lambda-\lambda_{1}\right)$. Hence

$$
\begin{aligned}
\left|\lambda I-A^{*}\right| & =|\lambda I-A|-\left(\mathbf{k}^{\prime} \mathbf{x}\right) F(\lambda) \\
& =\left\{\lambda-\lambda_{1}-\left(\mathbf{k}^{\prime} \mathbf{x}\right)\right\}\left(\lambda-\lambda_{1}\right)^{m_{2}-1}\left(\lambda-\lambda_{2}\right)^{m_{2}} \ldots\left(\lambda-\lambda_{s}\right)^{m_{\mathbf{t}}}
\end{aligned}
$$

and this proves the theorem.
3. Extensions. The effect of Brauer's modification of the matrix A is to bring about a "splitting'" of the spectrum of latent roots, the new root $\lambda_{1}+\mathbf{k}^{\prime} \mathbf{x}$ differing from λ_{1} by an infinitesimal provided the elements of \mathbf{k} are small quantities of the first order. It is a natural question to ask how far this splitting process may be carried, and consideration of this question leads to an extension of Brauer's theorem.

We begin with the well-known
Definition. Two square matrices A and B, of the same order n, are said to possess property P (the Frobenius property) if the characteristic roots of A and B, say $\alpha_{1}, \ldots, \alpha_{n}$ and $\beta_{1}, \ldots, \beta_{n}$ may be so ordered that the characteristic roots of any polynomial $f(A, B)$ are $f\left(\alpha_{i}, \beta_{i}\right)(i=1, \ldots, n)$.

It is known $(2 ; 4)$ that a necessary and sufficient condition that A and B possess property P is that the matrix $A B-B A$ belong to the radical of the algebra generated over the base field by A and B. We shall prove

Theorem 2. Let A be a square matrix of order n and let $B=X K^{\prime}$ where (i) X is an $n \times r$ matrix whose column vectors are characteristic vectors (independent or otherwise) of A associated with the same latent root λ, (ii) K is an arbitrary $n \times r$ matrix. Then A and B have property P.

Proof. It is sufficient to prove that $f(A, B)(A B-B A)$ is nilpotent for all polynomials $f(A, B)$. Write $N=A B-B A$. Since the column vectors of X are all characteristic vectors of A associated with the root λ, we have

$$
A X=\lambda X
$$

Thus $A B=(A X) K^{\prime}=\lambda B, N=A B-B A=B(\lambda I-A)$. It follows that $N^{2}=0$.

Next, $N B=0$ and, for the polynomial $f(A, B)$, we have

$$
f(A, B) B=f(\lambda I, B) B, \quad f(A, B) N=f(\lambda I, B) N
$$

Thus $[f(A, B) N]^{2}=[f(\lambda I, B) N]^{2}=0$.
We now use Theorem 2 to obtain an extension of Brauer's theorem. Let X have rank $s(s \leqslant r)$. Then B has at most s non-zero characteristic roots. Since A and B have property P and $A B=\lambda B$ the non-zero roots of B all associate with the root λ of A. Now suppose the roots of B are $\mu_{1}, \ldots, \mu_{\sigma}$ ($\sigma \leqslant s, \mu_{i} \neq 0$) and a zero root of multiplicity $n-\sigma$; and let the roots of A be $\lambda, \lambda_{1}, \ldots, \lambda_{t}$ of multiplicities $\tau, m_{1}, \ldots, m_{t}$ respectively. Since the μ_{i} all associate with λ we have $\sigma \leqslant \tau$. Theorem 2 now leads to

Theorem 3. If A and B are the matrices occurring in Theorem 2 and $f(A, B)$ is any polynomial in A and B, then $f\left(\lambda, \mu_{i}\right)(i=1, \ldots, \sigma)$ are roots of $f(A, B)$ and the remaining roots are $f(\lambda, 0), f\left(\lambda_{1}, 0\right), \ldots, f\left(\lambda_{t}, 0\right)$ with multiplicities $\tau-\sigma, m_{1}, \ldots, m_{t}$ respectively.

On putting $f(A, B)=A+B$ and noting that the non-zero roots of $X K^{\prime}$ and $K^{\prime} X$ are the same we obtain

Theorem 4. If $A^{*}=A+X K^{\prime}$, where X and K are as defined in Theorem 2, and if the non-zero roots of $K^{\prime} X$ are $\mu_{1}, \ldots, \mu_{\sigma}(\sigma \leqslant s \leqslant r)$ then the roots of A^{*} are $\mu_{i}+\lambda(i=1, \ldots, \sigma)$ and $\lambda, \lambda_{1}, \ldots, \lambda_{t}$ with multiplicities $\tau-\sigma$, m_{1}, \ldots, m_{t} respectively.

Another extension of Brauer's theorem is obtained by taking the columns of X to be latent vectors of A associated with distinct latent roots $\lambda_{1}, \ldots, \lambda_{r}$ of A. By a proper choice of basis, that is, by a suitable similarity transformation, A and X may be simultaneously reduced to the forms

$$
A=\left(\begin{array}{ll}
\Lambda & A_{1} \\
0 & A_{2}
\end{array}\right), X=\binom{I_{r}}{0}
$$

where $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ and I_{r} is the unit matrix of order r.
If $K=\left(K_{1}, K_{2}\right)$ where K_{1} is of order r, we have $K^{\prime} X=K_{1}$ and

$$
A+X K^{\prime}=\left(\begin{array}{cc}
\Lambda+K_{1} & A_{1}+K_{2} \\
0 & A_{2}
\end{array}\right)
$$

From this there follows:
Theorem 5. If $A^{*}=A+X K^{\prime}$, where the column vectors of the $n \times r$ matrix X are latent vectors of A associated with distinct latent roots $\lambda_{1}, \ldots, \lambda_{r}$ of A, then the numbers $\epsilon_{1}, \ldots, \epsilon_{\tau}$ are latent roots of A^{*}, where $\epsilon_{1}, \ldots, \epsilon_{r}$ are the roots of $\Lambda+K^{\prime} X$; also, every root of A^{*} other then $\epsilon_{1}, \ldots, \epsilon_{r}$ is a root of A, with the same multiplicity.
4. Matrices having the same characteristic equation. In Theorem 5 let K be such that

$$
K^{\prime} X=P T P^{-1}
$$

where P is a permutation matrix and T is a matrix whose elements $t_{i j}$ satisfy $t_{i j}=0$ for $i \leqslant j$ or $t_{i j}=0$ for $i \geqslant j$, that is, T is lower or upper nilpotent triangular. Then

$$
\Lambda+K^{\prime} X=P\left(P^{-1} \Lambda P+T\right) P^{-1}
$$

Now $P^{-1} \Lambda P$ is a diagonal matrix and the diagonal of T contains only zeros. Thus Λ and $\Lambda+K^{\prime} X$ have the same characteristic equation, and hence, by Theorem 5, A and $A+X K^{\prime}$ have this property also.

It is perhaps worth pointing out that this result follows from the following theorem proved recently (3).

Theorem. Let A and B be matrices of orders n and r, such that there exists an $n \times r$ matrix X, of rank r, for which $A X=X B$. If K is any $n \times r$ matrix, then the pair of matrices $A, X K^{\prime}$ has property P if and only if the pair $B, K^{\prime} X$ has this property.

In the case at hand we have $A X=X \Lambda$, that is $B=\Lambda$. Now if $K^{\prime} X=$ $P T P^{-1}$ then Λ and $K^{\prime} X$ have property P, since $P^{-1} \Lambda P$ and T have this property. Hence by this theorem A and $X K^{\prime}$ have this property. Since $X K^{\prime}$ is nilpotent it follows that A and $A+X K^{\prime}$ have the same characteristic equation.

In conclusion, I wish to thank the referee for several suggestions leading to improved proofs of the various theorems.

References

1. A. Brauer, Limits for the characteristic roots of a matrix IV: Applications to stochastic matrices, Duke Math. J., 19 (1952), 75.
2. M. P. Drazin, J. W. Dungey, and K. W. Gruenberg, Some theorems on commutative matrices, J. Lond. Math. Soc., 26 (1951), 221.
3. L. S. Goddard and H. Schneider, Pairs of matrices with a non-zero commutator, Proc. Cambridge Phil. Soc., 51 (1955).
4. N. H. McCoy, On the characteristic roots of matrix polynomials, Bull. Amer. Math. Soc., 42 (1936), 592.
5. H. Perfect, Methods of constructing certain stochastic matrices, Duke Math. J., 20 (1953), 395.

King's College, Aberdeen

