NOTE ON A MATRIX THEOREM OF A. BRAUER
AND ITS EXTENSION

L. S. GODDARD

1. Introduction. In one of his papers on limits for the characteristic roots of a
Matrix, Brauer (1) has stated a theorem, which connects the roots of a given
square matrix 4, with those of a matrix 4* derived from 4 by a certain
process. The proof of this theorem involves a continuity argument and in a
recent paper on the construction of stochastic matrices Hazel Perfect (5)
has given a proof which avoids considerations of continuity. However, her
proof, involving several multiple derivatives (not with respect to the elements
of the matrix), is unnecessarily heavy, and in the present note I give a proof
which is simple, short and avoids both continuity and differentiation.

Two extensions of Brauer’s theorem are then considered. In each matrix
A* is of the form A* = 4 + XK’ where X is an #n X r matrix (# being the
order of 4) whose columns are latent vectors of 4, and K is an arbitrary
n X r matrix. These extensions arise according as the columns of X are
associated with the same latent root of 4, or different roots.

2. Brauer’s theorem. In what follows, symbols in bold type represent
column vectors. A row vector is represented by an attached prime, which is
also used to denote the transpose of a matrix. The unit matrix is denoted by I.
Brauer’s result may be stated as follows:

THEOREM 1. Let the square matrix A of order n have latent roots Ay, ..., A,
with multiplicities my, . .., my; let x be a latent column vector of A associated
with the root \y, and let k be an arbitrary column vector. Then the matrix A* = A +
XK’ has latent roots Ay + K'X, Ay, . . ., N with multiplicities 1, my — 1, mo, ..., m,.

Proof. We have

s

A —dAl=T]a=x)™

1=1

and also Ax = \;x. Now, since xK’ is of rank 1, we have

NI — A% = A\ — 4 — xK'|

I

n
N — 4] — ; Eiay, ..., 800, X 2u1, ..., 2,

where, in the last determinant, we have written ay, ..., a, for the columns of
AN — A.
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If we write 4,;;(\) for the co-factor of the (z,7)th element of N — 4, we
have

IN[— 4% = |\ — 4] — Zlkiz:lxjAji()‘)'
i= J=

Now 4 ;;(A\) is the (4, j)th element of adj(A] — 4). Also, from the well-known
identity

adj(\[ — A) . A\ — 4) = |\ — A|I,
it follows at once that

N —=N)adj(\ — 4) .x = A\ — Ax.
This gives

i A;:(Nx; = x,F(N) (z=1,...,n),
where F(\) = |AI — A|/(A — \1). Hence
NI — A% = NI — 4] — (K'x) F(\)
=A=N—= KA =A)"TTA = M) (=A™

and this proves the theorem.

3. Extensions. The effect of Brauer’s modification of the matrix 4 is to
bring about a ‘‘splitting’’ of the spectrum of latent roots, the new root A\;+k’x
differing from A; by an infinitesimal provided the elements of k are small
quantities of the first order. It is a natural question to ask how far this splitting
process may be carried, and consideration of this question leads to an extension
of Brauer’s theorem.

We begin with the well-known

DEeFINITION. Two square matrices A and B, of the same order n, are said to
possess property P (the Frobenius property) if the characteristic roots of A and
B, say ai,...,a, and By, ..., B, may be so ordered that the characteristic roots
of any polynomial f(A, B) are f(ay, B:) 0= 1,...,n).

It is known (2; 4) that a necessary and sufficient condition that 4 and B

possess property P is that the matrix AB — BA belong to the radical of the
algebra generated over the base field by 4 and B. We shall prove

THEOREM 2. Let A be a square matrix of order n and let B = XK’ where (i)
X is an n X r matrix whose column vectors are characteristic vectors (independent
or otherwise) of A associated with the same latent root \, (ii) K is an arbitrary
n X r matrix. Then A and B have property P.

Proof. 1t is sufficient to prove that f(4, B)(AB — BA) is nilpotent for all
polynomials f(4, B). Write N = AB — BA. Since the column vectors of X
are all characteristic vectors of 4 associated with the root A, we have

AX = \X.
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Thus 4B = (AX)K' =\B, N =AB — BA = B(\I — 4). It follows that
N2 = 0.
Next, NB = 0 and, for the polynomial f(4, B), we have

f(4, B)B = f(\I, B)B, f(4,B)N = f(\I, B)N.
Thus [f(4, B)N)2 = [f(\I, B)N]? = 0.

We now use Theorem 2 to obtain an extension of Brauer’s theorem. Let X
have rank s(s < 7). Then B has at most s non-zero characteristic roots.
Since 4 and B have property P and 4B = AB the non-zero roots of B all
associate with the root N of 4. Now suppose the roots of B are piy, ..., i
(¢ < s, u: # 0) and a zero root of multiplicity # — o; and let the roots of 4
be N\, Ay, . .., A, of multiplicities 7, m, ..., m, respectively. Since the u; all
associate with A we have ¢ < 7. Theorem 2 now leads to

THEOREM 3. If A and B are the matrices occurring in Theorem 2 and f(A, B)

is any polynomial in A and B, then f(\, u;)(1 = 1,..., o) are roots of f(A, B)
and the remaining roots are f(\,0), f(A1, 0),...,f(\; 0) with multiplicities
T — o, My ..., m, respectively.

On putting f(4, B) = A + B and noting that the non-zero roots of XK’
and K'X are the same we obtain

TueorEM 4. If A* = A + XK', where X and K are as defined in Theorem 2,

and if the non-zero roots of K'X are p1, ..., ps (60 < s < 7) then the roots of
A* are p;+AN(@=1,...,0) and \, i, ..., N\, with multiplicities r — o,
mi, . . ., M, respectively.

Another extension of Brauer’s theorem is obtained by taking the columns
of X to be latent vectors of A associated with distinct latent roots Ay, ..., A,
of A. By a proper choice of basis, that is, by a suitable similarity transformation,
4 and X may be simultaneously reduced to the forms

B AA1> _<I,>
A_<OA2 X =1\

where A = diag(A\1, ..., A,) and I, is the unit matrix of order .
If K = (K, K;) where K, is of order 7, we have K'X = K, and

A+ K, A1+K2>

From this there follows:

TuEOREM 5. If A* = A 4+ XK', where the column vectors of the n X r

matrix X are latent vectors of A associated with distinct latent roots Ny, . .., \,
of A, then the numbers e, ..., €, are latent roots of A*, where e, ..., ¢ are
the roots of A + K'X; also, every root of A* other then e, . . ., € is a root of A,

with the same multiplicity.
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4. Matrices having the same characteristic equation. In Theorem 5 let
K be such that
K'X = PTP,

where P is a permutation matrix and 7" is a matrix whose elements ¢, satisfy
by =0 for ¢ <jort;y =0 for 2> j that is, T is lower or upper nilpotent
triangular. Then

A+ K'X = P(P7'AP + T)P.

Now P7!AP is a diagonal matrix and the diagonal of T contains only zeros.
Thus A and A + K’X have the same characteristic equation, and hence, by
Theorem 5, 4 and A 4+ XK’ have this property also.

It is perhaps worth pointing out that this result follows from the following
theorem proved recently (3).

THEOREM. Let A and B be matrices of orders n and r, such that there exists
an n X r matrix X, of rank r, for which AX = XB. If K is any n X r matrix,
then the pair of matrices A, XK' has property P if and only if the pair B, K'X
has this property.

In the case at hand we have AX = XA, that is B = A. Now if K'X =
PTP-! then A and K’X have property P, since P~'AP and T have this
property. Hence by this theorem 4 and XK’ have this property. Since XK’
is nilpotent it follows that A and 4 + XK’ have the same characteristic
equation.

In conclusion, I wish to thank the referee for several suggestions leading to
improved proofs of the various theorems.
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