
BULL. AUSTRAL. MATH. SOC. 54A25, 54C10

VOL. 48 (1993) [69-74]

A NOTE ON BOUNDS OF CARDINAL FUNCTIONS IN
THE CLOSED PREIMAGE

EDWARD S. MILLER

Let X and Y be T\ spaces and / : X —» V be a closed and onto mapping. If a fiber
of the mapping / is defined to be the inverse image of a singleton in the range,
then a bound for the tightness of the domain is the product of the tightness of the
range and the supremum of the tightness of the fibers of / . Similar bounds can
also be shown for the Lindelof degree and the extent of X. Examples are provided
to demonstrate that such results are not possible for open maps. Cellularity and
spread are discussed briefly.

The following result given by Sakai in [3] suggested this line of investigation. The
underlying idea is to weaken the conditions placed on fibers as much as possible and
still be assured that the domain of the closed map is neat.

DEFINITION: [3] A space X is called neat if for every free closed ultrafilter H with
cip on X there is a system (X^, V-,, F^)^ G F such that

(1) r < X(H) and |J X^ = X,

(2) for each 7 G F, V7 is an open collection in X and X-, C UV-,,,
(3) each /-,.: Xy —» Vy is such that if A G [X]^'1' and / 7 \A is injective, then

^ c U /,(»),
XSA

(4) for each 7 e F and x G Xy, 3H G H such that fy(x) n X^ D H = 0.

THEOREM 0 . [3, Theorem 3.7] Let f be a closed map from X onto a closed
complete space Y . If each fiber of f is neat, then X is neat.

The connection to cardinal functions is made through the related result that the
perfect perimage of a compact space is compact. The author observed that in the
proof of this result the finiteness was not essential except in actually achieving the
finite subcover required of the domain. No use is made in the mapping processes. This
led to consideration the Lindelof degree of a space in its guise as a generalisation of
compactness.
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70 E.S. Miller [2]

DEFINITION: [1] The Lindelof Degree L(X) of a space X is inf {K: every open
cover of X has a subcover of cardinality ^ K} + u.

It seems natural to ask if there is a result for arbitrary Lindelof degree which is
analogous to the perfect preimage theorem for compactness. Using Sakai's strategy
of weakening the requirements on the fibers of the mapping, a sharp bound can be
found for the Lindelof degree of the domain of a closed map. This result is preceded by
notational convenience and an easy lemma.

DEFINITION: A collection of sets A is K-complete if every nonempty subcollection
of cardinality less than K has nonempty intersection which belongs to A. A K-
completion of a collection of sets A with the < K intersection property is the set
{n/3 ± 0 : B C A and \A\ < K}.

LEMMA 1 . X has Lindelof degree ^ K if and only if every K+-complete closed
collection has nonempty intersection.

PROOF: If T is a closed A"+-complete collection, let U - {X\F: f e f } . Should
T have empty intersection, U would cover X and so there would be a U' C U with
\U'\^K such that W covers X. Since U covers X, T' = {X\U: U G U'} has empty
intersection. This is a contradiction, since T is if+-complete.

Now let U be an open cover of X with no subcover of cardinality ^ K and T be
the ^ - c o m p l e t i o n of {X\U: U G U}. Then for all nonempty T' C T with \T'\<-K,

r\T' ± 0 and C\F € T\ therefore T is .K^-complete, and we have that OF ^ 0. This
is a contradiction, so U has a subcover of cardinality ^ K. D

THEOREM 2 . If f: X —> Y is a closed map, then

L(X) = sup{L(Y) • L(r({y})): y G Y}.

PROOF: Let K = sup{I,(Y) • £ ( / ^ ( { y } ) ) : y G Y} and let T be a closed K+-
complete collection in X. Then H = {f'(F): F G F) is a closed K+-complete
collection in Y By the preceding lemma, V\H ± 0. Choose any y G OiH; let D =
f~{{y}) E T and T' = {F n D: F G T). If T' is not a Jf+-complete collection in
D, then there is a subcollection C of T with \C'\ < K such that DC' = 0. Thus
there is a C C T with (flC) D £> = 0. Since J7 is A"+-complete, flC G J". But then
j / ^ /~*(nC) G H , a contradiction to y £ DW. Thus ^ ' is a iT+-complete collection
in D and lemma 1 proves C\T' ^ 0. Thus we can conclude that T has nonempty
intersection. The lemma completes the argument that £(X) ^ K.

Let U be an open cover of Y. Then V = {f~{U): U G W} is an open cover of
X, so there is a subcover V ' C V with |V'| ^ X(X). Since V is comprised of inverse
images of elements of U, W = {/~*(V): V G V'} C U and |W'| < £(X). Also L(X)
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[3] Cardinal functions 71

bounds the Lindelof degree of all closed subsets of X; in particular, for any y G Y,

i>(f-({y})) < HX). D
Now that the door has been opened into the realm of cardinal functions, a question

presents itself. Is it possible to prove such a theorem for other cardinal functions? The
answer is yes in the case of extent, a cardinal function closely related to Lindelof degree.

DEFINITION: [1] The extent e(X) of a space X is

sup{|£)| : D is a closed discrete subset of X} -f w.

THEOREM 3 . II f: X -> Y is a closed map, then

e(X) = sup{e(Y) • e(/^({y})): y G Y}.

PROOF: Let K = sup{e(Y) • e(/^({y})): y £ Y}, and let D C X be a
closed and discrete subset. Then /"*(£)) is closed. We now show that f~"(D)
is discrete. For d G f~*(D), D \ f~{{d}) is closed since D is closed and dis-
crete. So /-(£> \ f~({d})) is closed and thus Y \ (f-(D \ /-({<*}))) is open and
/-(JD) D(Y \ (/-(£> \ f~{{d})))) = {d}. Thus /-*(£>) is discrete, and by assumption
\f^(D)\ ^ K. Also D (1 /*"({<*}) is closed and discrete for every d G /"*(!>)• Thus
\D n f~{{d})\ < K for every d G f~{D). Since D = \J{D n /^({d}): d G /^(-D)},
|P | ^ sup{e(D) • e(r({y})): y G D} < sup{e(Y) • e(/-({j/})): y G Y}.

Clearly the extent of a space bounds the extent of closed subsets. Let D C Y be
closed and discrete, and choose any F C /*"(£)) such that \F D f~({d})\ = 1 if and
only if d G D. This F is then closed and discrete. For each x G X, choose 7, C Y
to be open with /(x) G Vx and such that \VX n I>| = 1 if /(x) G i? and \VX n £>| = 0
if f(x) i D. For x G F, \VXDD\ = 1, so | /*-(Vx)nf| = 1; F is discrete. For
x §? /*"(!>) we have \f^~(Vx) D /*"(-D)| = 0, and hence / - (V s ) 0 F = 0. Now let
x G f—(D)\F. Then there is a U open in X with x G U and f~({f(x)})nFC\U = 0 .
So l e n V . J n f n P and f-(Vx)r\U = f~{{f(x)})r\FnU = 0. Thus F must be
closed and |D| = \F\ ^ e(X), so we have sup{e(Y) • e(f~({y})): y G Y} ^ e(X). D

The case of open mappings should also be explored. The journey is short, for one
example is sufficient to show that theorems for open mappings analogous to those stated
above for extent and Lindelof degree cannot be proved.

EXAMPLE 4. An open finite to one map from a space of uncountable extent and Lindelof
degree onto a compact space.

Let A be any uncountable set, and p ^ 2 x A. Let X have as underlying set
(2 x A) U {p} and

{{x}: x G 2 x vl}U{{p}U(({l} xA)\F): F C {1} x A is finite}
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72 E.S. Miller [4]

be a base for the topology on X. Now let Y have as underlying set A U {p}, and a
base for the topology on Y be the collection {{x}: i 6 A}U{X\ i i ' : F 6 |A|<Ii ;}.
Define / : X —» Y by /(p) = p and /((t, x)) = x. The function is at most 2 to 1 and
continuous, since cofinite sets containing p have cofinite sets containing p as inverse
images, and inverse images of any set not containing p are open. Similarly, the image
of any open set in X containing p is cofinite, since the original set must be cofinite
when intersected with {1} x A; any other subset not containing p has open image in
Y.

The space Y is the one point compactification of A with the discrete topology, and
consequently is both compact and has countable extent. The space X, however, has a
closed discrete set of uncountable cardinality, namely {0} x A. U

It was not clear in which direction to turn following the positive result in the case
of extent. However, a positive answer was also found in the case of tightness.

DEFINITION: [1] The tightness t(x, X) of a point x in a space X is inf{if: x £
B =>• there is an A C B with \A\ ^ K and x £ A}. The tightness t(X) of a space X
is sup{<(x, X): x £ X} + w.

THEOREM 5 . If f: X —» Y is a closed map with regular domain X , then

PROOF: Let A C X, and fix x £ A. Then f(x) £ / - ( A ) = / - (A). The
collection V = {£> C / - ( A ) : \D\ ^ <(Y) and f(x) E D} is nonempty. In X, let B =
{B CA: f^(B) = D for some D £ V and |/<~(/~*({a})) n B\ ^ 1 for all a £ X}. For
B e B,iiBnf^(f^({x})) = 0, then f (S) = f-(B) =7) for some D, and cannot
contain f(x), a clear contradiction. So for all B 6 B, Bn/*"(/~'({x})) ^ 0. We show
that x is an element of the closure of C — {p £ f~{f~"{{x})): p € B for some B £ B}.
Assume x £ C. Then there is an open set ! / C X with x £ U and U D C = 0. Thus
a; £ t i n 4 and f(x) £ / - ( P n A ) . Hence there is D £ 2? with £> C /"*(£/• l~l 4 ) , so
there is B £ B with B C { / n A C i a n d I c F , F n C = 0 ; b u t 5 n C ^ 0 , a
contradiction.

Thus we have H C C, with | # | ^ *(/'"(/"'({*}))) such that x £ H. For
each h e H, there is 5 h £ 5 with /i £ B h . Let M = |J Bh. Then |Af| <

t(Y) • sup{<(/*~(/->({i/}))): y £ X}. Let U be an open set, x £ U. Then there is
/i £ H with ft £ U. However, h £ B~h., so Cf f~l Bh ^ 0. Thus {/ n M ^ 0. We conclude
that z £ M, yielding the inequality <(X) ̂  sup{<(Y) • <(/*"({!/})): ! / £ Y } .

Now let y £ V and B C Y" with y £ B. Let z £ /*"({»}); then i £ / " ( 5 ) =
f-(B). Let ^ be a subset of f*~(B) with x £ 3 . Then y £ /""(A) = /~*(A) since / i s
closed, and / - ( A ) C 5 . Since | / ^ (A) | ^ |A|, we have that t(y, Y) ^ t(x, X) ^ t(X).
Therefore, t(Y) ^ t(X), proving equality for t(X) = sup{t(Y) • t{f*~{{y})): y £ Y}. D
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Also following the pattern established earlier, a negative result is found in the case
of an open mapping.

EXAMPLE 6. An open mapping with first countable fibers from a non-countably tight
space onto a first countable space.

Let A be an uncountable set, B be a countably infinite set, and {p} <£ A x B.

Define X to be the space (A x B) U {p} whose basic open sets are {{x}: x £ A X
B} U {{?} U (M x N): M is cocountable in A and N is cofinite in B}. Let Y be the
one point compactification of B with the discrete topology, naming p as the added
point. The mapping defined in a manner similar to the function in Example 6.7 is
easily seen to be open and continuous.

The fibers are clearly first countable. Y is first countable since there are only
countably many cofinite sets in a countable set. X is not countably tight. Let M be
any countable subset of A x B. The point p is not a member of M, since there is
a basic open (cocountable with respect to A) subset of X containing p which misses
M. D

Two cardinal functions which are not so well behaved in the closed preimage are the
related ideas of spread and cellularity. Indeed, strong examples abound which smash
any hope of proving a theorem like Theorems 2, 3, and 5 for spread. Even strengthening
the mappings to projections in the square of a compact space is not enough.

DEFINITION: [1] The spread a(X) of a space X is

sup{|D| : D is a discrete subset of X} + u>.

EXAMPLE 7. A compact space of countable spread whose product with itself has un-
countable spread.

Let X be 2 x I with the lexicographic order topology. X is the union of [0, 1]
with the Sorgenfrey topology and [0, 1] with the reverse Sorgenfrey topology, and thus
has countable spread. However, the product of the Sorgenfrey line with itself has an
uncountable discrete set, namely {(x, y): x + y = 1 and x,y ^ 1}. X2 contains a copy
of this set, and so has uncountable spread. The projection is an open, closed, compact
mapping whose fibers have countable spread. This precludes any theorems of the type
listed above for the spread of a space. U

DEFINITION: [1] The cellularity c(X) of a space X is

sup{|C| : C is an open disjoint collection in X} + w.
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74 E.S. Miller [6]

REMARK. It is independent of the usual axioms whether the product of two compact
spaces of countable cellularity has countable cellularity. Let X be a Suslin Continuum,
the existence of which is guaranteed by axiom 0 • It is known that the product of a
Suslin space with itself is not ccc; however, assuming MA + -<CH it is true that the
product of two ccc spaces is ccc. For complete details, see [2].

Cellularity, too, is very badly behaved. Todorcevic has shown that even under
the best of circumstances, namely in the square of a compact space, cellularity is not
preserved.

THEOREM 8 . [4] TJiere is a compact Hausdorff space X such that c(X2) > c(X).
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