# ON INTEGER MATRICES AND INCIDENCE MATRICES OF GERTAIN COMBINATORIAL CONFIGURATIONS, II: RECTANGULAR MATRICES 

KULENDRA N. MAJINDAR

Introduction. In this paper we establish a connection between rectangular integer matrices and incidence matrices of resolvable balanced incomplete block designs. The definition of these terms has been given in paper I of this series.

Our theorem can be stated as follows:
Theorem 2. Let $A$ be $a v \times b$ matrix with integer elements such that

$$
A^{\prime} A=\left[\begin{array}{cccc}
B_{11} & B_{12} & \ldots & B_{1 r}  \tag{2.1}\\
B_{21} & B_{22} & \ldots & B_{2 r} \\
\ldots & \cdots & \ldots & \cdots \\
B_{r 1} & B_{r 2} & \ldots & B_{r r}
\end{array}\right] .
$$

Here the $B_{i j}$ are $n_{1} \times n_{j}$ matrices $(i, j=1,2, \ldots r) \sum_{i=1}^{r} n_{i}=b$ and
(i) trace of $B_{i i} \leqslant v(i=1,2, \ldots, r)$,
(ii) sum of the elements of $B_{i j}=\tilde{v}(i, j=1,2, \ldots, r)$,
(iii) the square of the length of any row vector of $A$ is odd and the scalar product of any two row vectors of $A$ is $\lambda \neq 0$,
(iv) $r(v r-b) \geqslant b \lambda(v-1)$.

Then $A$ or $-A$ is the incidence matrix for a resolvable b.i.b. design.
Proof. Let $A=\left(a_{i j}\right) \quad(i=1,2, \ldots, v ; j=1,2, \ldots, b)$,

$$
N_{i}=n_{1}+n_{2}+\ldots+n_{i} \quad(i=1,2, \ldots, r)
$$

$N_{0}=0$. The submatrix of $A$ consisting of its $N_{i-1}+1, N_{i-1}+2, \ldots, N_{i}$ th column is denoted by $A_{i}(i=1,2, \ldots, r)$. Let $s_{\nu i}$ be the sum of the elements of the $\nu$ th row of $A_{i}(i=1,2, \ldots, r ; \nu=1,2, \ldots, v)$.

As $\left.B_{i j}=A_{i}{ }^{\prime} A_{j}(i, j)=1,2, \ldots, r\right)$, we have

$$
\left[\begin{array}{llll}
1 & 1 & \ldots & 1
\end{array}\right] B_{i j}\left[\begin{array}{c}
1  \tag{2.2}\\
1 \\
\vdots \\
1
\end{array}\right]=\left[\begin{array}{llll}
1 & 1 & \ldots & 1
\end{array}\right] A_{i} A_{j}\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
1
\end{array}\right]
$$

Received January 28, 1963.
and so by (ii) of the hypothesis

$$
\begin{equation*}
\sum_{\nu=1}^{v} s_{\nu i} s_{\nu j}=\tilde{v} \quad(i, j=1,2, \ldots, r) . \tag{2.3}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\sum_{\nu=1}^{v}\left(s_{\nu i}-s_{\nu j}\right)^{2}=\tilde{v}+\tilde{v}-2 \tilde{v}=0 \tag{2.4}
\end{equation*}
$$

and hence

$$
\begin{equation*}
s_{\nu i}=s_{\nu}, \text { say } \quad(i=1,2, \ldots, r ; \nu=1,2, \ldots, v) \tag{2.5}
\end{equation*}
$$

Also by (i) of the hypothesis,

$$
\begin{align*}
& \sum_{j=N i-1+1}^{N_{i}} a_{i j}{ }^{2}+\sum_{j=N_{i}-1+1}^{N_{i}} a_{2 j}{ }^{2}+\ldots+\sum_{j=N_{i-1}+1}^{N_{i}} a_{v j}{ }^{2} \leqslant v  \tag{2.6}\\
&(i=1,2, \ldots, r)
\end{align*}
$$

None of the $v$ sums on the left can be zero. For, if, say, the first sum vanishes, then

$$
0=\sum_{j=N i-1+1}^{N_{i}} a_{1 j}{ }^{2}=\sum_{j=N_{i}-1+1}^{N_{i}} a_{1 j}=s_{1} .
$$

Now by (1.5) the sum of the elements of the first row of $A$ is zero. But

$$
0=\sum_{i=1}^{b} a_{1 i}=\sum_{i=1}^{b} a_{1 i}^{2} \equiv 1 \quad(\bmod 2),
$$

by (iii) of the hypothesis, and this is a contradiction. Hence (2.6) holds with the equality sign, and thus each of the $v$ sums on the left equals 1 . Hence there is precisely one non-zero element in each row of $A_{i}(i=1,2, \ldots, r)$. This non-zero element can be $\pm 1$. If the element is 1 [is -1 ], then, by (2.5), all the non-zero elements in that row of $A$ are equal to 1 [to -1 ]. Suppose now that $A$ contains both 1 and -1 . Consider three rows of $A$, two of these having their non-zero elements with the same sign and the other having its non-zero elements with the opposite sign. Since the scalar product of any two of these is $\lambda$ by (iii) of the hypothesis and $\lambda \neq 0$, we arrive at a contradiction. Hence all the non-zero elements of $A$ have the same sign. Thus either $A$ or $-A$ have all their non-zero elements equal to 1 . We may assume the former. Then the row sums of $A$ are clearly equal to $r$. Thus $A A^{\prime}$ is a matrix with $r$ along its main diagonal, by (iii) of the hypothesis, and $\lambda$ elsewhere. If $k_{i}$ denotes the sum of the elements of the $i$ th column of $A(i=1,2, \ldots, b)$, then

$$
\begin{equation*}
\sum_{i=1}^{b} k_{i}{ }^{2}=(r+\lambda(v-1)) v \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{b} k_{i}=r v . \tag{2.8}
\end{equation*}
$$

Hence
(2.9) $\sum_{i=1}^{b}\left(k_{i}-k\right)^{2}=(r+\lambda(v-1)) v-k r v=(b \lambda(v-1)-r(v r-b)) v b^{-1}$, where

$$
\begin{equation*}
k=r v b^{-1} . \tag{2.10}
\end{equation*}
$$

Using (iv) of the hypothesis, we infer from (2.9) that all the column sums of $A$ are equal to $k$. It now follows that $v / k=n_{i}=n$, say ( $i=1,2, \ldots, r$ ). Hence the $0-1$ matrix $A$ is an incidence matrix of a resolvable b.i.b. design. This completes the proof.

## Reference

1. R. C. Bose, $A$ note on the resolvability of balanced incomplete block designs, Sankhyā, 6 (1942), 105-110.

Loyola College, Montreal

