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OPERATOR IDEALS AND TENSOR NORMS DEFINED BY A
SEQUENCE SPACE

J.A. LOPEZ MOLINA AND M.J. RIVERA

We study the tensor norm defined by a sequence space A and its minimal and maximal
operator ideals associated in the sense of Defant and Floret. Our results extend the
classical theory related to the tensor norms of Saphar [16]. They show the key role
played by the finite dimensional structure of the ultrapowers of A in this kind of
problems.

1. INTRODUCTION

In the definition of the interesting tensor norms of Grothendieck, Saphar and
Lapreste and its associated operator ideals, the tp spaces play a central role. It is quite
natural to try to replace lv for another Banach sequence space A, an idea pointed out in
the seventies for De Grande-De Kimpe [2] and Harksen [6]. However until now this idea
has not gone far probably because the classical theory is dominated by the special prop-
erties of the class of the £ p spaces of Lindenstrauss and Pelczriski, but in more general
cases hidden problems emerge.

In this paper, we study the tensor norm defined by a sequence space A in the sense
of De Grande-De Kimpe and Harksen, and also its maximal and minimal associated
operator ideals, the relations between them and some metric properties of the involved
tensor norms. The main instrument we have to obtain the "expected" results is the
so called "local theory" of Banach spaces, that is, the study of Banach spaces (and
the operators between them) in terms of finite dimensional subspaces, a tool which has
enriched our understanding of Banach spaces in other many aspects.

The notation is standard. All the spaces considered are Banach spaces over the real
field in order to more easily use known results in the theory of Banach lattices. If we wish
to emphasise the space E where a norm is defined we shall write || • | |£. The canonical
inclusion map of a Banach space E into the bidual E" will be denoted by JE- In general
if E is a subspace of F, the inclusion of E into F is denoted by IE,F • The set of finite
dimensional subspaces of a normed space E will be denoted by FIN(E).

Received 16th December, 2003
This work was partially supported by the MCYT and FEDER project BFM2001-2670.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/04 SA2.00+0.00.

499

https://doi.org/10.1017/S0004972700036273 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700036273


500 J.A. Lopez Molina and M.J. Rivera [2]

Concerning Banach lattices we refer the reader to [1]. A linear map T between
Banach lattices E and F is said to be positive if T(x) ^ 0 in F for every x e E, x ^ 0.
T is called order bounded if T(A) is order bounded in F for every order bounded set A
in E.

Let UJ be the vector space of all scalar sequences and tp its subspace of the sequences
with finitely many non zero coordinates. A sequence space A is a linear subspace of u>
containing tp provided with a topology finer than the topology of coordinatewise conver-
gence. A Banach sequence space will be a sequence space A provided with a norm which
makes it a Banach lattice and an ideal in u>, that is, such that if |x| ^ \y\ with x € w and
y 6 A, then x € A and \\x\\x ^ \\y\\x- A sectional subspace Sk(X),k € N, is the topological

subspace of A of those sequences (a{) such that a, = 0 for every i ^ k. Clearly Sk(X)
is 1-complemented in A. A Banach sequence space A will be called regular whenever
the sequence {ei}~j where e, := (<Sy)j (Kronecker's delta) forms a Schauder basis in A.
Every Banach sequence space A has a solid and regular subspace Ar :— Tpx such that A is
regular if and only if A = Ar (see [9, Lemma 3.3] for example). For technical requisites
of the standard theory of tensor norms (see [3, Criterion 12.2]), given a Banach sequence
space A with the quoted properties in the introduction, from now on it will be supposed
furthermore that \\ei\\\ — ||ej||xx = 1 for every i e N . The Kothe dual (or a-dual) Ax of a

oo

sequence space A is defined as the set of scalar sequences {bCj such that £} \o-ih\ converges

for every (a*) € A. In general, if A is a Banach sequence space, the Kothe dual Ax is a
closed subspace of the Banach dual A'.

We suppose the reader is familiar with the theory of operator ideals and tensor
norms. Of course, the fundamental references about tensor norms and operator ideals
are the books of Defant and Floret [3] and Pietsch [14] respectively.

Given a pair of Banach spaces E and F and a tensor norm a, E(%) F represents the
a

space E <g> F endowed with the a-normed topology. The completion of E(£)F is denoted
by E(&F, and the norm of z in £ 0 F by a(z; E ® F). If there is no risk°of mistake we

a a

write a(z) instead of a(z; E ® F).
A sequence (in)J°=1 € EN is said to be strongly A-summable if

< oo
A

and it is said to be weakly A-summable if

ex({Xi)):= sup | | f | (x n ,x ' ) | ) | | <oo .

From now on X[E] (respectively X(E)) will denote the space of all strongly (respectively

weakly) A-summable sequences in E endowed with the norm TT>(-) (respectively £>(•))•

Concerning ultraproducts of Banach spaces the standard paper is [8] and we refer

to it for concrete definitions. We only set the notation we shall use. Let D be a non
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empty index set and U a non-trivial ultrafilter in D. Given a family {Xd, d e D} of
Banach spaces, (Xd)u denotes the corresponding ultraproduct Banach space. If every
Xi, d e D, coincides with a fixed Banach space X the corresponding ultraproduct is
named an ultrapower of X and is denoted by {X)u. Remark that if every Xd, d € D
is a Banach lattice, {Xd)u has a canonical order which makes it a Banach lattice. If
we have another family of Banach spaces {Yd, d 6 D} and a family of operators {Td

e C{Xd, Yd), deD} such that sup ||Td|| < co, then (Td)u € £({Xd)u, {Yd)u) denotes the
d£D

canonical ultraproduct operator.
The organisation of the paper is the following. Section 2 is devoted to the tensor

norm derived from a Banach sequence space A and a characterisation of the minimal
operator ideal associated (the so called A-nuclear operators) by means of a factorisation
theorem. Section 3 describes the class of the generalised £* spaces, denoted £*>s and
gives some useful properties which allow us the development of the maximal operator
ideal associated to the tensor norm (the ideal of A-integral operators). Finally in section
4 we apply all the results to the study the coincidence between A-nuclear and A-integral
spaces, and we obtain some metric properties of the involved tensor norms.

2. T H E TENSOR NORM ASSOCIATED TO A BANACH SEQUENCE SPACE A AND THE

IDEAL OF THE A-NUCLEAR OPERATORS.

Let E and F be Banach spaces. Inspired by the tensor norm gp of Saphar [16], for
all 2 € E <g> F we set

„)) : z = ^2 x" ® 2/« f •
n=l '

In general g\{-\E ® F) only is a reasonable quasi norm in E ® F, see [2, 6]. We
denote E(g)F the corresponding quasi Banach space.

Then we consider the Minkowski functional g\{-\E®F) of the absolutely convex
hull of the unit ball Bgx := {z € E <g> F : gx(z) ^ l} and it is straightforward that
gc

x(z: E <S> F) can be evaluated as

f n

:= mil £
*• t = l

•= 9\{z\ E®F):= mil £ TTA((iy)) sx, ((yy)) : z =

Moreover gc
x is a tensor norm in the class of Banach spaces less than or equal to gx.

If it is possible as in this case, the series representation of the elements of the
completed tensor products E$t)F and E(£)F is a basic tool in the study of the involved

9\ Si _
operator ideals. In particular (see for instance [2, 16]) if z 6 E(QF, there are ( z , ) ^ ,

9x
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<E XT{E] and (yO*i 6 *X(F) such that 7rA((i,-)) £A* ((%)) < °° and

Moreover the quasi norm is given by

gx{z) =

taking the infimum over all such representations of z. In the same way it is easy to see
that every z € E(&F can be represented as

where { ( z y ) £ i ; * € N} C Ar[£], { (y y )£ x : j € N} C A*(F) and

(2)

Moreover, the norm of z in E(QF is the infimum of the numbers in (2) over all represen-

tations of type (1). 9*

But gx and g\ are equivalent. In fact if we consider the bilinear and continuous onto

map

R:Xr[E]x Ax(F)-+

oo

such that R((xi), (yO) = J^x, ® yt with quasi norm less or equal than one, by [17] there

exists a unique linear and*~continuous map A r [ £ ] 0 A x ( F ) —> E®F. This map can be

extended to a continuous linear and onto map \T[E](Q\X(F) -* E®F, and by the open
. T gx

mapping theorem, E<$$F is isomorphic to a quotient of a Banach space, hence it is a
gx

Banach space. Then the topology defined by gx in E ® F is always normable. Now it is
easy to see that gx{-\ E ® F) and gc

x{-\ E <g> F) are equivalent In view of this equivalence,
one is tempted to use the easier gx quasinorm instead of the norm gx, but in the Sections
4 and 5 the g\ norm is necessary.

DEFINITION 1: Let T e C{E,F) be, we say that T is A-absolutely summing if

exist a real number C > 0, such that for all sequence (z$) in E, with ex((ii)) < oc,

(3)

For Vx(E, F) we denote the Banach ideal of the A-absolutely summing operators T :

E -> F endowed with the topology of the norm nA(T) := inf{C ^ 0 : C satisfies (3)}.
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[5] Operator ideals 503

THEOREM 2 . For E, F Banach spaces, (E <g> F) - Px* (F, E') isometrically.
v 91 f

n U
PROOF: For T € VX*(F,E'), for every z = £ Z > i j <8> Vij € £ ® F we define

t=l j=\

This definition for tpr is not dependent on representation of z and it can be seen that

<pr e (E<g)F\ with |<^r, r ) | ^ UXx(T)gc
x(z;E,F) and therefore \\<PT\\ ^ IlAx(T).

E 0 F j we define TV:F —v E' by

(Ln(y).x) ^ (ip. x ® y/ V w £ r , x € ^

Then, if (yi) € F N such as eAx ((&•)) < co, as J5s is weakly dense in Bs", given e > 0

and (Si) € Ax with ||(<$i)||AX < 1, for all i 6 N there is x{ € E such as ||xi|| ^ 1 and

IÎ V(2/t)ll ^ \(<P>xi ®y:)| +£*i- Hence

^ sup
i = l

but Vh^faxi)) = \\[\\T}iXi\\)\\ < IK'fcJlL. ^ l a n d £A»((yz)) < oo so that £ ^ 2
.—. I' "h>. i=l

e E(g)F, hence

1(11 (̂̂ )11)11^ ^ sup^lMl^f^ifcii®^ +£ ̂  \\<p\\ex*{(Vi))+e

and since e is arbitrary, it follows that ||(||^v»(2/«)||)||Ax ^ llvlkAx((y:)) and n>
D

We shall now consider the ideal N\ of the A-nuclear operators in the sense of Dubin-
sky and Ramanujan introduced previously in [5] in order to deal with a different kind of
problem. Every representation of z € E'QQF of the type (1) defines a map T2 e £(E,F)
such that Vi € E, 9l

Tz(x):=JT1£(x'ij,x)yij.
« = 1 7 = 1

We remark that all these representations of the same z define the same map Tz. Let

$EF • E'®F -> C(E, F) be defined by $BF(Z) •= Tz.
9l

DEFINITION 3: Let E, F be Banach spaces. An operator T : E -> F is said to be
A- nuclear if T = $EF(Z), for some z € E'(
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Afx(E, F) denotes the space of the A-nuclear operators T : E -> F endowed with the
topology of the norm

NC
X(T) :=int{gi(z) / *EF(z) =T}

or with the equivalent quasi-norm

NA(T) := mi{gx(z) / *EF(Z) = T}.

For every pair of Banach spaces E and F, (Afx(E,F),I<lx) is a component of the
minimal Banach operator ideal (M\,NX) associated to the tensor norm g^.

We have the following characterisation of A-nuclear operators:

THEOREM 4 . Let E and F be Banach spaces and let T be an operator in C{E, F).
Then the following statements are equivalent:

(1) T is X-nuclear.

(2) T factors continuously in the following way:

T

where B is a diagonal multiplication operator defined by a positive sequence

(bi) € Ar.

Furthermore NA(T) = inf{||C|| | |B|| ||A||}, taJcen over all such factorisa-

tions.

(3) T factors continuously in the following way:

T

where B is a diagonal multiplication operator defined by a positive sequence

(bi) € ^{Xr}.

Furthermore NA(T) = inf{||C|| | |£ | | \\A\\}, taken over all such factorisations.

P R O O F : (2) = » (1). Assume we have a factorisation T — C B A as in the diagram.

Put x\ :- A'(ei). Then for every i G N A(x) = ((o;-1i))"1. Suppose that B((ui))
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[7] Operator ideals 505

= {biUi)°lv Then | |£ | | ^ ||(&0||v Let C(e{) = Vi for every i € N. Then

= sup

We obtain that T = $EF{Z) with z = E E 6 ^ ® 2A € F/(g)F, hence T € U{E,F) and

(1)=>(2). Assume T is A-nuclear. Given e > 0, there is a representation

T = £ A ® » such that (*{)£i € Ar[F'], (y^Si € AX(F) and

OO

Indeed we can suppose that £Ax ((yi)) = 1 and NA(T) + e ^ ]T) 7rA((iJj-)).
t=i

Let A : E —> £„, be given by A(x) :— ((x^, i ) / | | i i | | ) ~ 1 which is linear and continuous

with \\A\\ < 1.

Let B : lx Ar be given by B((A0) := (Ay Then | | | A

IKIIXJ| |) |IA = IK^*)IL 7r*((1*)) an<^ hence B is linear and continuous with

OO

Finally let C : A —> F be given by C((/?j)) := ^ ft j/j. C is linear and continuous

with |c((ft)) | | = sup £ ( A yuy') ^ ||(A,)||A eA«((tt)) = ||(ft)||A
 a n d t h e n HCII < L

II II ||y'||$li=l

Clearly we have T = C B A and
NA(T) + £ ^ **((*{)) £Ax ((%))

Since e > 0 is arbitrary the implication is proved.

The proof of (l)^=4-(3) is similar using the norm NA. D

3. A-INTEGRAL OPERATORS.

The Banach ideal of A-integral operators (IA>IA) is the maximal operator ideal as-

sociated to the tensor norm <?A in the sense of Defant and Floret [3], or equivalently the

maximal Banach operator ideal associated to the ideal of the A-nuclear operators in the

sense of Pietsch [14]. From [3], for every pair of Banach spaces E and F, an operator

T : E -¥ F is A-integral if and only if JFT € (E (g) F') .
V (slY '

We remark that if E, F are Banach spaces, we can define the finitely generated

tensor norm g'x such that g'x{z;M ® N) := sup| | (z ,u;) | : g\{w\M' ® N') ^ l\,

M € FIN(E),N € FIN(F). Clearly g'x = (gc
x)', but we also remark that £'<g)F'

(and not £" <g) F ' ) is an isometric subspace of (E<g)F) , see [3, 15.3]. Si
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506 J.A. Lopez Molina and M.J. Rivera [8]

Define I A ( ^ ) to be the norm of Jp T considered as an element of the topological
dual of E®F'. We remark that IA(T) = 1X(JF T) because F' is complemented in F'".

si
The following example of an A-integral operator is essential for the next purpose of

the paper which is to characterise A-integral operator by a factorisation theorem.

THEOREM 5 . Let (f2, E, fj.) be a measure space and let X be a Banach sequence

space with a regular predual Banach sequence space A. Then every order bounded

operator S : IOO(M) -»• ti[X\ is A-integra7 with IX(S) = \\S\\.

PROOF: By hypothesis, the linear span T of the set {ey, i, j e N} is dense in Co[A].

Then by the representation theorem of maximal operator ideals (see [3, 17.5]) and the

density lemma ([3, Theorem 13.4]) we only have to show that S e (LOO(M) ® 7") .

Given z 6 £«>(/-0 <2>T and e > 0, let X and Y be finite dimensional subspaces of

Looifj.) and T respectively such that z € X <3>Y and

(4) 9x(z;X®Y)^g'x(z;Loo(ti)®T)+e.

Let { g j ^ ! be a basis for Y and let k,t € N be such that

k t

i=i j=\

Then

= 0' (E E C>V) S'^)) = 0 ® E Ec^ ̂  E E

Then if U denotes the tensor

k t

i=i j=\

by bilinearity we get

Given i/ > 0, for every l ^ i ^ k , l ^ j ^ t there is /y 6 Loo(^) such that ||/y-|| ^ 1

and | |S ' (ey) | | ^ | (5 ' ( ey ) , /y ) | + v. Then / := sup /„• lies in the closed unit ball
I I i$i$jt,i$i^t

of .LOO(M)- On the other hand, t\\\\ is a dual lattice and hence it is order complete. By
the Riesz-Kantorovich theorem (see [1, Theorem 1.13] for instance), the modulus \S\ of
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the operator 5 exists in £(Loo(/i),^1[A]). By the lattice properties of £i[A] we have that

k t , i * t i ,

t= l j =

I t= i j = i

>=1 .7=1

H*i [A]

|
i = l j=

Moreover for every 1 ̂  i ^ A;

ey)) = sup
ll(0)IU 1 7=1

Hence, denoting by Jx and Iy the corresponding inclusion maps into
respectively, we have

gi(U;X

and

g'Az.LM ® (̂ [A])') (^^(^(ey)) £A-((e0)) + e)
^t=i '

and v being arbitrary
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Finally, by the arbitrariness of e we get

But from [1, Theorem 1.10],

and as A is order continuous

IIISIH = | | |S| (Xn)|| = sup{ | |5( / ) | | | , Il/H ^ l } =

Then S is A—integral with I\{S) ^ ||5||. But as (Z\,Ix) is a Banach operator ideal,
| |5| | ^ IA(5), hence IA(5) = ||5||. ' D

COROLLARY 6 . Let (Q, E,fj.) be a measure space and n,k € N. Tien every

operator T : Loo(p) -> Sn{£i) [Sk(\j] satisfies that IA(T) = ||T||.

P R O O F : The results follows easily from the Theorem 5, because every operator
T : L^n) -» Sn(£i)[Sfc(A)] is order bounded and Sn(£i)[S*(A)] is reflexive hence order
continuous. D

To get our best results the structure of finite dimensional subspaces of the relevant
Banach sequence space A and so its behaviour under ultraproducts will be crucial. For
this goal we introduce the following definition:

DEFINITION 7: Given a Banach sequence space A, we say that a Banach space X
is C*'9 space if there exists a real constant c > 0 such that for every finite dimensional
subspace F of X, there is a section 5n(A) of A and linear operators u : F —> Sn(A) and
v : Sn(A) -» X such that ||u|| ||u|| ^ c and v u = IF,x-

The following definition was introduced by Pelczyhnski and Rosenthal [13] in 1975.

DEFINITION 8: A Banach space X has the uniform projection property if there is
a b > 0 such that for each natural number n there is a natural number m(n) such that for
every n-dimensional subspace M C X there exists a fc-dimensional and 6-complemented
subspace Z of X containing M with k ^ m(n).

REMARK 9.

(1) The constant b of the above definition is called a uniform projection prop-
erty of X, and in this case we also say that X has the 6-uniform projection
property. If X has the fr-uniform projection property for every b > B we
say that X has the B+-uniform projection property

(2) The class of Banach spaces with the uniform projection property is quite
large and includes, for example the reflexive Orlicz spaces, see [10]. In
particular they have the l+-uniform projection property,
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(3) The Bochner space Lp(n, E) has the 6-uniform projection property if E
does, see 1 ^ p ^ co, [8].

(4) It is known that the uniform projection property is stable under ultrapow-
ers, see [8].

The next proposition is more or less obvious, see [15].

PROPOSITION 1 0 . Let A be a regular Banach sequence space. Then

(a) A is a C*'9 space, for every c > 1.

(b) Complemented subspaces of C*'9 spaces are £*'9 spaces.

And the results of the following also are proved in [15].

PROPOSITION 1 1 . If A is a regular Banach sequence space satisfying the b-
uniform projection property, then every ultrapower of Ar is a C^'9 space for every /3 > b.

For our next theorem we need a very deep technical result of Lindenstrauss and
Tzafriri [10] which gives us a kind of "uniform approximation" of finite dimensional
subspaces by finite dimensional sublattices in Banach lattices.

LEMMA 1 2 . Let e > 0 and n € N be fixed. There is a natural number h(n, e) such
that for every Banach lattice X and every subspace F C X of dimension dim(F) = n
there are h(n, e) disjoints elements {zi, 1 ^ i < h(n, e)} and an operator A from F into
the linear span G of {zi, 1 ^ i ^ h(n, e)} such that

THEOREM 1 3 . Let A be a regular .Banach sequence space with the uniform projec-

tion property and let E and F be Banach spaces. The following statements are equivalent:

(1) TeIx(E,F).

(2) JpT factors continuously in the following way:

JFT

where X is an £*»W>9 space. Furthermore the norm Ix(T) is equivalent to

inf{||C|| | |B| | \\A\\}, taken over all such factorisations.

(3) JpT factors continuously in the following way:
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E
JFT

where X is an ultrapower of £i[\] and B is a lattice homomorphism. Fur-
thermore IA(T) is equivalent to inf{||C|| | |£ | | \\A\\}, taken over all such
factorisations.

PROOF: (1)=>(3) We define the set

D := {(M,N) : M € FIN{E),N G FIN(F')}

where FIN(Y) is the set of finite dimensional subspace of a Banach space Y, endowed
with the natural inclusion order

(M2,/V2) M2 C N2.

For every {MQ,N0) € D, R{M0,N0) := {{M,N) € D : {M0,N0) C (M,N)} and U
= {/?(M, TV), (M,N) € D}. ~R is filter basis in D, and according to Zorn's lemma, let
V be an ultrafilter on D containing 7£. If d G D, Md and Nd denote the finite dimen-
sional subspaces of E and F' respectively so that d = {Md, Nj). For every d € D, if z

€ Md ® Nd, JFTlMd<2Nd 6 (Md <S> Nd)' = M^ ® 7V̂  = ^ ( M d , 7V )̂. Then from Theorem
»i PA

4 of characterisation of A-nuclear operators, JpT\Md®Nd factors as

where Bd is a positive diagonal operator and \\Ad

= l\{T\Md®Nd) +£• Then

i|| 11Crf +

Without loss of generality we can suppose that ||i4d|| = ||C<f|| = 1. We define
WE • E -»• {Md)v such that WE(x) = (xd)v so that xd = x if x G Md and i<i = 0 if
x £ Md. In the same way we define WFi : F' —> {Nd)v such that WF>(a) = (ad)x5 so that
ad = a if a e Nd and ad = 0 if a ^ A ĵ. Then we have the following commutative diagram:

https://doi.org/10.1017/S0004972700036273 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700036273


[13] Operator ideals 511

E

WE

(Md)v

{Ad)v

JFT
F"

W'F,

(Kh

(Cd)t

d)V

where / is the canonical inclusion map. As from [10] ( ( A M ) P ) is a 1-complemented

subspace of some ultrapower ( ( ^ I M ) ^ ) which is another ultrapower (^i[Ar])w with

projection Q, the result follows with A = (Ad)v, B = ((Bd)v) which is a lattice ho-
momorphism, C = PF""(WF,I(Cd)z>)"Q, where Pf»« is the projection of F"" in F", and
X = (h[X\)u ' having in mind that as (^oo^ooDp is an abstract M-space, there is a mea-

' / \ "
sure space such that Lx{n) = ((^oo^oo])^) , where the equality means that the spaces
are lattice isometric.

(3)=->(2): It is straightforward.
(2)=*-(l) We only have to see that B is a A-integral operator, or a little bit more,

that every operator B : G —> X, where G is an abstract M-space and X is an Cll^iS

space, is A-integral and I\(B) ^ c | |S | | for some c > 0 .
By the representation theorem of maximal operator ideals (see [3, 17.5]), we only

need to show that Jx B € (G <E>g'x X')'.

Given z € G ® X' and e > 0, let M C G and N C X' be finite dimensional
n

subspaces and let z = £2 ft ® x\ be a fixed representation of z with ft € M and x\ e N,
t=i

i = 1,2,..., s, n such that

g'x(z; g'x(z; M ® N) ^ g'x(z; G ® X1) + e.

By Lemma 12 we find a finite dimensional sublattice Mi of G and an operator Ax : M

-> Mi so that

v/eM, Û CO-Zll 1̂1/11-
Then, if idc denotes the identity map on G we have

|

I i = l t = l i=\

i=\
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Put Xi := B(Mi). By hypothesis X is an CtlW>9 space, hence there are c > 0,
n,k € N, u : Xl ->• SB(*i)[S*(A)] and v : ^ ( ^ [ S ^ A ) ] -> X s u c h that 7Xl,x = v u
and ||u|| \\v\\ ^ c. We denote X2 = v u(Xi) which is a finite dimensional subspace of X
containing X\ and Ixi,Xj = v u. Let K2 : X' —> X'2 = X'/X% be the canonical quotient
map. Then

1=1

with
t = i

i) «8«' K2(i;) € Mx ® (5n(€!)[Sfc(A)])' and u B : Mx ^ SI,(

Since Mi is a reflexive abstract M-space it is lattice isometric to some L
hence from corollary 6 this map is A-integral with l\(u B) ^ ||u|| | |B||. Then

space,

i = i »=i

B) g'Jf2Mfi)®v' K2{x'i)-M1 ®Sk(\))

< HI ||B|| Mill IH|||Jf2|| g'x(z;M®N)

^(l + e)c\\B\\g'x(z;M®N)

<{l + e)c\\B\\(g'x(z;G®X')+e)

and by the arbitrariness of e > 0 we obtain

\{JxB,z)\^c\\B\\g'x(z;G®X')

4. O N THE COINCIDENCE OF A-NUCLEAR AND A-INTEGRAL OPERATORS.

The following new formulation of the Theorem 13 for Banach sequence spaces having
finite cotype and satisfying the uniform projection property is needed in our setting:

THEOREM 14 . Let X be a Banach sequence space having the uniform projection
property and Bnite cotype. For every pair of Banach spaces E and F, the following
statements are equivalent:
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(1) TeIx(E,F).

(2) There exists a a-hnite measure space (O, S, u) and an order continuous

Kothe function space K(v) which is an Ctl^>9 space, such that JFT factors

continuously in the following way:

JFT

where B is a multiplication operator for a positive function ofK{v). Furthermore h(T)

is equivalent to inf{||C|| | |B|| \\A\\}, taking the inSmum over all such factors.

PROOF: We start from the Theorem 13. As A has finite cotype from [12] it implies
that £\[Xr] has the same property, hence every ultrapower of ^i[Ar] is order continu-
ous (Henson and Moore, [7, 4.6]). From [11, Theorem l.a.9] every ultrapower of £j[Ar]
can be decomposed into an unconditional direct sum of a family of mutually disjoint
ideals {Xh,h € H} having a positive weak unit, and then from [11, l.b.14], as ev-
ery Xh is order isometric to a Kothe space of functions defined on a probability space
(Gh,Sh,vh), (£i[K])u is order isometric to a Kothe function space K.(i/1) over a mea-
sure space (01,<S1,i>1). Hence we can substitute (^i[Ar])w for K(vx) in the Theorem 13.

oo

B u t if w e d e n o t e z := B { x u ) w h e r e z = £ y h i w i t h y h i € X h i f o r e v e r y i e N , t h e n
i=l

B(Loo(/i)) is contained in the unconditional direct sum of {Xhi,i € N} which is order
isometric to a Kothe function space K(u) over a a-finite measure space ( 0 , 5 , v) which
is 1-complemented in /C^1), and hence it is an £'iW.9 space.

Finally, as K{y) is order complete, g := sup B(f) exists in K(v). Then the opera-

tors Bi : LM -> Lx{v) and B2 : L^u) -4 K(v), such that Bi(/)(w) := B{f){u)/g(u),
for all / € LOO(AO> W € ° w i t h 5(w) ^ ° a n d BiU)iu) = ° otherwise, and
B2(h)(uj) := g{u)h{u) for all h € Lx{v), LJ e O, satisfy that B = B2Bl and B2 is
a multiplication operator for a positive element g € K.(v). D

We introduce a new operator ideal, which is contained in the ideal of the A-integral
operators.

DEFINITION 15: Let A be a Banach sequence space having finite cotype and sat-
isfying the uniform projection property. We say that T € £(E, F) is strictly X-integral
if exist a a-finite measure space (O, S, v) and an order continuous Kothe function space
JC(u) which is an JC* 1 !^ space, such that T factors continuously in the following way:
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where B is a multiplication operator for a positive function of K.{v).

We denote by Slx (E, F) the set of the strictly A-integral operators between E and F
which is a closed subspace of IX(E,F) and SIC

X(T) = 1X{T) for every T € SIX{E,F).
It is clear that if F is a dual space, or it is complemented in its bidual space, then
SIX(E,F)=IX(E,F).

THEOREM 16 . Let X be a Banach sequence space having the uniform projection
property and finite cotype, and let E and F be Banach spaces such that E' satisfies tie
Radon-Nikodym property. Then MX{E, F) = SIX(E, F).

PROOF: Let T e S1X{E, F).

(a) We suppose that B is an multiplication operator for a function g € K(v) with

support the set D, and D has finite measure. We denote vD the restriction of v to D.

As (XD-A) : E —> L^VD), then [XDA)' : (AJO^D))' -*• E' and the restriction
(XDA)' \Li{uDy- Li(yD) -> E'. Thus, for every x € E and / €

(x, (x^)'(/)> = <Xo-4(x),/> = [ XDA(x)fd(uD).
JD

As £ ' has the Radon-Nikodym property, applying [4, Theorem 111(5)], we have that
(XD-4) ' has a Riesz representation, so there exists a function <f> 6 LOO(I/D,E') such that
for every / G Li(i/D)

(XoA)'(f) = [ f4>d(uD).
JD

Then, for every x € E, we have that Xc>l(x)(t) = (<#(t),x), ^-almost everywhere in D,

and then B(xo-4)(2:) = < gd>(-),x >, ^-almost everywhere in D. We denote p<£ this last
operator, and we can consider it as an element in K{VQ,E').

As the simple functions are dense in K.(vD,E'), g<j> can be approximated by a se-
quence of simple functions (Sk)^=i-

We suppose S* = X) x'kjXAkl, where {A^ : i = 1 , . . . , m} is a family of ^-measurable
>=i

sets of Q pairwise disjoint. For each k € N, we can interpret S* as a map S* : E -> /C(J/)

such that S*(x) = $3 < x'ki,x > XAkj with norm less or equal than the norm of S* in

https://doi.org/10.1017/S0004972700036273 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700036273


[17] Operator ideals 515

Obviously for all k € N, 5* is A-nuclear because it has finite range, but we need to
evaluate its A-nuclear norm N$(Sfc) which coincides with it A-integral norm IA(S*)-

Let Si: E -> L^v) be such that

an \ ST" (x'kj'x)

and let Sk : L^v) -¥ K{v) be such that

Then it is easy to see that \\Sl\\ ^ 1, ||Sj?|| ^ IISfclkKE') and Sk = S^ S£. But as K{v)
is an Ctl^'9 space, from the Theorem 13, there is K > 0 such that N£(S|) = IA(S|)
< K \\Sl\\ ^ K | | 5 f c | k ( ^ ) , hence NA(5fc) < K \\Sk\\K{l/tEI).

Then, as (Sk)kLi converges in K,(yD,E'), it can be also considered as a Cauchy
sequence in N\(E,K(VD)), and as this space is complete, (5*)^.! converges to g<p, that
is to say, g<j> € N\(E,K,(VD))- Therefore, g<j> = B\DA is A-nuclear and so T is also
A-nuclear with.

(b) If g is any element of K.(v), g can be approximated in norm by means of a
sequence (tn)^=1 of simple functions with support having finite measure, and therefore
by a), the sequence Tn = CBtnA is a Cauchy sequence in M\{E, F) converging to T in
C(E, F), and then T e MX(E, F). U

As consequence of the former result and of the factorisation Theorems 14 and 4, we
obtain the following metric properties of g^ and g'x.

THEOREM 17 . If A has Unite cotype and satisfies t ie uniform projection property,
then g'x is a totally accessible tensor norm.

PROOF: AS g'x is finitely generated, it is sufficient to prove that the map F <8yx E
^ V\x (E1, F"), is an isometry.

n li

In fact, \etz=J2J2 Vij®Xij 6 F®g'x
 E> a n d l e t H* € ?>>* (E'>F") b e t h e canonical

t=i>=i
map associated to z, that is to say,

for all x' € E', con Hz e C{E\ F) c C(E', F").

Applying the [3, Theorem 15.5] for a = g'x, the Theorem 2, and the equality (g\)"

= gx since gx finitely generated, we have that the inclusion

F {
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is an isometry, and therefore by the in [3, Proposition 12.4] we obtain

TIAx (Hz) = Z(z; F®E)< g'x(z;F®E).

On the other hand, given N, a finite dimensional subspace of F such that z
€ N <g) E, so there exists a function V € {N(g) E)' = IX{N, E') such that IX(V) ^ 1 and

g'x{z; N®E) = (z, V). Clearly enough V 6 SIX(N, E') = IX(N, E') because E' is a dual
space, and TV, being finite dimensional, has the Radon-Nikodym property. Therefore by
Theorem 16, V € M\{N,E') and by Theorem 4, given e > 0, there is a factorisation V
in the way

V
N

such that ||C|| ||fl|| ||i4|| ^ N<(V) + e = IX{V) + e < 1 + e.

As ôo[̂ oo] has the extension metric property, (to see [14, Proposition 1, C.3.2]),

A can be extended to a continuous map A € £(^,^00(^00]) such that ||A|| = ||J4||. By
00 00

Theorem 4 again, W :— CBA is in NX(F,E'), so there is a representation w =:

^ € F'QE1 of W verifying i = l j = 1

si

00

V ^ ((y'A)ex* (MA) ^ NUW) + e ^ \\C\\ \\B\\ \\A\\ + e < 1 + 2e.
z_<

Then, ^ ( 2 ; F ® E) ^ 5^(z; N ® E) = (z, V) = (z, W) it follows that

g'x(z: F®E)^ gc
x(w)Ilx* (H2) < (1 + 2£)n,x (Hx)

thus g'x{z; F <8> E) ^ UXx {Hz), and the equality is obvious. D

COROLLARY 1 8 . If\ has finite cotype and satisfies t ie uniform projection prop-

erty, then g\ is an accesible tensor norm.

PROOF: It is a direct consequence of the former theorem and of [3, Proposition

15.6]. •
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