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OPERATOR IDEALS AND TENSOR NORMS DEFINED BY A
SEQUENCE SPACE

J.A. LOPEZ MOLINA AND M.J. RIVERA

We study the tensor norm defined by a sequence space ) and its minimal and maximal
operator ideals associated in the sense of Defant and Floret. Qur results extend the
classical theory related to the tensor norms of Saphar [16]. They show the key role
played by the finite dimensional structure of the ultrapowers of A in this kind of
problems.

1. INTRODUCTION

In the definition of the interesting tensor norms of Grothendieck, Saphar and
Lapresté and its associated operator ideals, the £, spaces play a central role. It is quite
natural to try to replace £, for another Banach sequence space A, an idea pointed out in
the seventies for De Grande-De Kimpe 2] and Harksen [6]. However until now this idea
has not gone far probably because the classical theory is dominated by the special prop-
erties of the class of the £? spaces of Lindenstrauss and Pelcziiski, but in more general
cases hidden problems emerge.

In this paper, we study the tensor norm defined by a sequence space X in the sense
of De Grande-De Kimpe and Harksen, and also its maximal and minimal associated
operator ideals, the relations between them and some metric properties of the involved
tensor norms. The main instrument we have to obtain the “expected” results is the
so called “local theory” of Banach spaces, that is, the study of Banach spaces (and
the operators between them) in terms of finite dimensional subspaces, a tool which has
enriched our understanding of Banach spaces in other many aspects.

The notation is standard. All the spaces considered are Banach spaces over the real
field in order to more easily use known results in the theory of Banach lattices. If we wish
to emphasise the space E where a norm is defined we shall write || - ||z. The canonical
inclusion map of a Banach space E into the bidual E" will be denoted by Jg. In general
if E is a subspace of F, the inclusion of E into F is denoted by Ig r. The set of finite
dimensional subspaces of a normed space E will be denoted by FIN(E).
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Concerning Banach lattices we refer the reader to [1]. A linear map T between
Banach lattices E and F is said to be positive if T'(z) > 0 in F forevery z € E,z 2 0
T is called order bounded if T(A) is order bounded in F for every order bounded set A
in E.

Let w be the vector space of all scalar sequences and ¢ its subspace of the sequences
with finitely many non zero coordinates. A sequence space A is a linear subspace of w
containing ¢ provided with a topology finer than the topology of coordinatewise conver-
gence. A Banach sequence space will be a sequence space A provided with a norm which
makes it, a Banach lattice and an ideal in w, that is, such that if |z| < |y| with z € w and
y € A, then z € X and ||z]|x < {lylla- A sectional subspace Sk(}A), k € N, is the topological
subspace of A of those sequences (o) such that a; = 0 for every i > k. Clearly Si())
is 1-complemented in A. A Banach sequence space A will be called regular whenever
the sequence {e;}2, where e; := (J;;); (Kronecker’s delta) forms a Schauder basis in .
Every Banach sequence space A has a solid and regular subspace ), := %* such that ) is
regular if and only if A = )\, (see [9, Lemma 3.3] for example). For technical requisites
of the standard theory of tensor norms (see [3, Criterion 12.2]), given a Banach sequence
space A with the quoted properties in the introduction, from now on it will be supposed
furthermore that || e;]|x = ||ei||xx = 1 for every i € N. The Kéthe dual (or a-dual) A* of a

(=]
sequence space A is defined as the set of scalar sequences (b;) such that 3 |a;b;] converges
i=1
for every (a;) € A. In general, if A is a Banach sequence space, the Kéthe dual AX is a
closed subspace of the Banach dual X'.

We suppose the reader is familiar with the theory of operator ideals and tensor
norms. Of course, the fundamental references about tensor norms and operator ideals
are the books of Defant and Floret (3] and Pietsch [14] respectively.

Given a pair of Banach spaces E and F and a tensor norm «, E ® F represents the
space EQ F endowed with the a-normed topology The completion of EQF is denoted
by E‘®F and the norm of z in E®F by a(z; E ® F). If there is no risk®f mistake we
write a(z) instead of a(z; E® F).

A sequence (£,)%, € EN is said to be strongly A-summable if

ma((z:)) = ||(||ac,.||)“A < o0

and it is said to be weakly A-summable if

ex((zi)) = sup ”( Zn, ' )ll/\ < o0.

lI=ll<
From now on A[E] (respectively A(E)) will denote the space of all strongly (respectively
weakly) A-summable sequences in E endowed with the norm = (-) (respectively £,(-)).
Concerning ultraproducts of Banach spaces the standard paper is [8] and we refer
to it for concrete definitions. We only set the notation we shall use. Let D be a non
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empty index set and U a non-trivial ultrafilter in D. Given a family {Xy, d € D} of
Banach spaces, (X,)y denotes the corresponding ultraproduct Banach space. If every
X4, d € D, coincides with a fixed Banach space X the corresponding ultraproduct is
named an ultrapower of X and is denoted by (X),. Remark that if every Xy, d € D
is a Banach lattice, (X4)y has a canonical order which makes it a Banach lattice. If
we have another family of Banach spaces {Yy, d € D} and a family of operators {T,
€ L(X4,Ys), d € D} such that sup IT:l| < oo, then (Ty)y € L{(Xa)u, (Ya)u) denotes the

canonical ultraproduct operator.

The organisation of the paper is the following. Section 2 is devoted to the tensor
norm derived from a Banach sequence space A and a characterisation of the minimal
operator ideal associated (the so called A-nuclear operators) by means of a factorisation
theorem. Section 3 describes the class of the generalised L spaces, denoted £} and
gives some useful properties which allow us the development of the maximal operator
ideal associated to the tensor norm (the ideal of A-integral operators). Finally in section
4 we apply all the results to the study the coincidence between A-nuclear and A-integral
spaces, and we obtain some metric properties of the involved tensor norms.

2. THE TENSOR NORM ASSOCIATED TO A BANACH SEQUENCE SPACE A AND THE
IDEAL OF THE A-NUCLEAR OPERATORS.

Let F and F be Banach spaces. Inspired by the tensor norm g, of Saphar [16], for
all z€ EQ® F we set

9(2) = (L EQ F) = iﬂf{m\(( n)) Exx((¥n)) 1 2= an ® yn}

In general g,(-; E ® F) only is a reasonable quasi norm in £ ® F, see [2, 6]. We

denote EQF the corresponding quasi Banach space.
9
Then we consider the Minkowski functional ¢§(-; E ® F) of the absolutely convex

hull of the unit ball By, := {z € E® F : gi(z) < 1} and it is straightforward that
95(z; E ® F) can be evaluated as

95(2) = g5(z;, EQ F) := 1nf{z T ((%i5) ) s,\x y,] iz = ZZI‘J ®y,J}

i=1 i=1 j=1

Moreover g5 is a tensor norm in the class of Banach spaces less than or equal to g,.
If it is possible as in this case, the series representation of the elements of the

completed tensor products E@F and E@F is a basic tool in the study of the involved
9

g5
operator ideals. In particular (see for instance [2, 16]) if z € E®F there are (z;)%,,
. 2
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€ )\[E) and (%), € X*(F) such that m,((z:)) exx ((%)) < oo and

o0

z = ZIQ@‘_I}".

i=1

Moreover the quasi norm is given by

9x(2) = inf ma((2:)) eax ((wi))

taking the infimum over all such representations of z. In the same way it is easy to see

that every z € EQF can be represented as
(41

o0 o0
1 2= ) 7@y
i=1 j=

where {(z5)2; 7 € N} € A(E], {(45)2, : j € N} € A*(F) and

—

(2) > m((@i) exx ((wg)) <00
ij=1

Moreover, the norm of z in E@F is the infimum of the numbers in (2) over all represen-
tations of type (1). 9i
But g, and g§ are equivalent. In fact if we consider the bilinear and continuous onto
map .
R: )\ [E] x \Y(F) - EQF
28
such that R((z:),(v:)) = Zx, ® y; with quasi norm less or equal than one, by [17] there

exists a unique linear and ¢ontinuous map A, [E) ® X (F) - E®F This map can be
.¢L\

extended to a continuous linear and onto map A, [E]®A" ) — E®F and by the open
mapping theorem, E®F is isomorphic to a quotlent of a Banach space, hence it is a

Banach space. Then the topology defined by g, in E ® F is always normable. Now it is
easy to see that ¢,(-; E® F) and g5(-; E ® F) are equivalent In view of this equivalence,
one is tempted to use the easier gn quasinorm instead of the norm g5, but in the Sections
4 and 5 the g§ norm is necessary.

DEFINITION 1: Let T € L(E,F) be, we say that T is A-absolutely summing if
exist a real number C > 0, such.that for all sequence (z;) in E, with £x((z:)) < o<,

(3) m((T(2))) < Cer((21)

For P,(E, F) we denote the Banach ideal of the A-absolutely summing operators T :
E — F endowed with the topology of the norm II (T) := inf{C > 0 : C satisfies (3)}.
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THEOREM 2. For E, F Banach spaces, (E ® F)I = Py (F, E') isometrically.

PROOF: For T € Pyx(F,E'), for every z = ZZ:E,J ® vy € E®F we define
or: EQF -5 Rby ==l

(or,2) = ZZ (23, T(y55))

i=1 j=1
This definition for ¢r is not dependent on representation of z and it can be seen that
or € (E®F) with |(pr, 2)| < M\« (T)g5(2; E, F) and therefore ||or|| < My« (T).

On the other hand, for ¢ € (E® F) we define T, : F — E' by

ax

(To(y),2) = (p,z2®y) VyeF, z€E

Then, if (3;) € FN such as exx ((:)) < o0, as Bg is weakly dense in Bg», given € > 0
and (6;) € A* with ||(&)|,. < 1, for all i € N there is z; € E such as ||z;|| < 1 and
1T (y)ll < |, z: ® vi)| + €6;. Hence

(17 @ll)

Zm(cp, 5 ® y,)‘ +e

S il &
but mu((n.x, = ” ”771171”)“ < |||, € 1 and exx((3:)) < oo so that 2177:1: ®yi
€ E®F hence B
Izl |, < sup uwm(zjma®m)+e lpllexs (@) +e
) la <1

and since ¢ is arbitrary, it follows that ||(||To(w:)|)]l,« < llelleax((v:)) and My« (T,)
< lleofl 0

We shall now consider the ideal N, of the A-nuclear operators in the sense of Dubin-
sky and Ramanujan introduced previously in [5] in order to deal with a different kind of
problem. Every representation of z € E’®F of the type (1) defines a map T, € L(E, F)

such that ¥z € E,
=22%ww

i=1 j=1
We remark that all these representations of the same z define the same map T,. Let
@Ep : El®F - C(E, F) be defined by ‘I’EF(Z) =T,
9%

DEFINITION 3: Let E, F be Banach spaces. An operator T : E — F is said to be

A- nuclear if T = ®gp(z), for some z € E’@F.

95
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Ni(E, F) denotes the space of the A-nuclear operators T : E — F endowed with the
topology of the norm
S(T) = inf{gf\(z) [/ ®er(z) = T}'

or with the equivalent quasi-norm
N,\(T) = inf{g,\(z) / QEF(Z) = T}

For every pair of Banach spaces E and F, (N,\(E, F),Nf\) is a component of the
minimal Banach operator ideal (A, N5) associated to the tensor norm g§.
We have the following characterisation of A-nuclear operators:
THEOREM 4. Let E and F be Banach spaces and let T be an operator in L(E, F).
Then the following statements are equivalent: .
(1) T is A-nuclear.
(2) T factors continuously in the following way:

T
E F

loo

where B is a diagonal multiplication operator defined by a positive sequence

(b,) € Ar.
Furthermore N,(T) = inf{||C|| || B||||All}, taken over all such factorisa-
tions.
(3) T factors continuously in the following way:
T
E F
A C
£oo[ oo} B &[A]

where B is a diagonal multiplication operator defined by a positive sequence
(b:) € &[A).
Furthermore N§(T) = inf{||C|| ||B]| ||All}, taken over all such factorisations.

PROOF: (2) = (1). Assume we have a factorisation T = C B A as in the diagram.
Put 7} := A'(e;). Then for every i € N A(z) = ((z},z)),. Suppose that B((u;))

https://doi.org/10.1017/50004972700036273 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700036273

{7 Operator ideals 505
= (biu;)®2,. Then ||B|| < ||(b,-)]|’\. Let C(e;) = y; for every 1 € N. Then

Y (8:) € A

IC (ﬂ,)” sup_ Zlﬂ;(ynyﬂ ICI| (B

il <t 4

We obtain that T = ®gp(z) with z = Zzb T;® Y € E’®F hence T € N(E, F) and
NA(T) < llAlIBIHICl- =
( )=>(2). Assume T is A-nuclear. Given € > 0, there is a representation

T= Z zi ® y; such that ()2, € M [E'), (1:)2, € M*(F) and

NA(T) +& = ma((=3)) exx ((:))-

Indeed we can suppose that £xx ((:)) = 1 and N(T Z m((zi;))-

Let A: E — £, be given by A(z) := ((z};, z)/||z} ||)1_1 whxch is linear and continuous
with [|A]| <

Let B : em — A be given by B((M)) = (Ay [lz)%,. Then ”(B(A,-))‘L
< O NA=DN, = 1]l ma((z})) and hence B is linear and continuous with
18Il < ma((25)-

Finally let C : A — F be given by C((,B,-)) = i B; y;- C is linear and continuous

i=1
with [[C(89)]| = sup 348 16¥) < Bl xe () = |89, andt then 1 <1
Clearly we have T = C B A and

NA(T) + & 2 m((23) exx () = Al IBIIHCII-

Since € > 0 is arbitrary the implication is proved.
The proof of (1)<=>(3) is similar using the norm N¥. 0

3. A-INTEGRAL OPERATORS.

The Banach ideal of A-integral operators (Zy,I,) is the maximal operator ideal as-
sociated to the tensor norm g5 in the sense of Defant and Floret [3], or equivalently the
maximal Banach operator ideal associated to the ideal of the A-nuclear operators in the
sense of Pietsch [14]. From (3], for every pair of Banach spaces E and F, an operator
T:E - F is Mintegral if and only if /T € (E ® F)

(s5)
We remark that if £, F are Banach spa.ces,lwe can define the finitely generated

tensor norm g4 such that g\(z; M ® N) = sup{l (z w)l ta(ws M ® N') < 1},
M € FIN(E),N € FIN(F). Clearly ¢, = (g%), but we also remark that E’®F’
(and not E' @ F' ) is an isometric subspace of (E@ F) see [3, 15.3]. s

9

9
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Define I,(T) to be the norm of Jr T considered as an element of the topological

dual of E@ F’. We remark that I,(T") = I,(Jr T') because F’ is complemented in F".
9
The following example of an A-integral operator is essential for the next purpose of

the paper which is to characterise A-integral operator by a factorisation theorem.

THEOREM 5. Let (Q,%, u) be a measure space and let A be a Banach sequence
space with a regular predual Banach sequence space A. Then every order bounded
operator S : Loo(p) — €1[)] is A-integral with I,(S) = ||S||-

PROOF: By hypothesis, the linear span 7 of the set {e;;, ¢, j € N} is dense in ¢o[A].
Then by the representation theorem of maximal operator ideals (see [3, 17.5]) and the
density lemma ({3, Theorem 13.4]) we only have to show that S € (L (1) ®T)

Given z € Ly (p ®T and € > 0, let X and Y be finite dimensional subspaces of

Lo(p)and T respectlvely such that z€ X ® Y and
(4) Az X®Y) < gi\(2 Loo() @ T) + €.
Let {g,}™, be a basis for Y and let k,t € N be such that

Vig<s<m g, = ch.ﬂ]et]

i=1 j=1

Then
VIfEX, V1<s<m(S fog)=(f5g))
k t k t
<fv (chsu) ezJ > = <f ®chxab eabyzzs’(eij) ®eij>-
i=1 j=1 a=1 p=1 i=1 j=1

Then if U denotes the tensor

t
U=3"Y S'e) ®eyj € Loo(w) ® &[N,
i=1l j=1
by bilinearity we get
VzeX®Y, (z,8) = (U,z2).

Given v > 0, for every 1 < i < k, 1 < j < t thereis fi; € Loo(p) such that |} f;]l <1
and ||S'(ei;)]| < ‘(S’(e,-j), f,-j)‘ + v. Then f = sup fi; lies in the closed unit ball

1gigk,1€j<t
of Loo(pt). On the other hand, ¢;[)] is a dual lattice and hence it is order complete. By

the Riesz-Kantorovich theorem (see [1, Theorem 1.13] for instance), the modulus |S| of
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the operator S exists in £(Le(g), &41[)]). By the lattice properties of ¢,[A] we have that

kot
E”" (C)) Z Z”S (es5) ||e‘, = ’ZZ”S'(%')” €i;
i=1 1 j=1 i=1 j=1 LA
kot
< ZZ|<Sl(eij)yfij> eil|  +y[DD ey
i=1 j=1 &) i=1 j=1 oy
kot
< ZZ‘(S fz] et]> €ij +v Zzeﬁ
i=1 j=1 4 i=1 j=1 4
t
< ZZ(IS(LJ I eu> oSS
=1 j=1 i=1 j=1 4y
kot kot
< ZE<|S| |fs_1 >e,_7 +v Zeij
“Wi=1 j=1 i i=1 j=1 a
kot kot
<S5 ) e+ 3D e
i=1 j=1 & i=1 j=1 txP\]
= istasn|| S Ses]|  <hisiioS e
b [)'] i=l j=1 4[x i=1 j=1 &
Moreover for every 1 € i<k
EA'((eij = ||(ﬂ )”A<1 z (el_‘)y ﬂa ) ezJ j €5 <L

Hence, denoting by Ix and Iy the correspondmg inclusion maps into L. (u) and £;[}]
respectively, we have

[8.2)] = (U, 2| = |, ((Ix) ® (1)) ()]
< EU;XQ®Y) g,\(((fx)' ® (Iy)) (=) X' ® Y’)
< (gf\(U; Lo ® 44[A)) +e) ’(Z'Loo(u)® (el[,\])’)

<g(zL el[,\] (gm (e:)) e,,))+s)
>3e, +o)

< (s L) ® (&) ) (sl + »

/

and v being arbitrary

1(5,2)] < g4 (2 Leola) ® (&) ) (S]] + ¢).
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Finally, by the arbitrariness of ¢ we get
(5,2)] < 94 (2 Lool) @ (&[X)') NS

But from [1, Theorem 1.10],

11(xa) = sup{|S(£)], If| < xa}

and as A is order continuous

sl = 1St xa)l| = sup{[l|s()| 1 < 1} = s

Then S is A—integral with I,(S) < ||S||. But as (Z,,I,) is a Banach operator ideal,
1Sl € IA(S), hence I,(S) = ||S]}. 1]

COROLLARY 6. Let (2,%, 1) be a measure space and n,k € N. Then every
operator T : Loo(p) — Sn(6)[Sk(N)] satisfies that I,(T) = |T|\.

PROOF: The results follows easily from the Theorem 5, because every operator
T : Loo(pt) = Sa(€1)[Sk(X)] is order bounded and S,(1){Sk(})] is reflexive hence order
continuous. 0

To get our best results the structure of finite dimensional subspaces of the relevant
Banach sequence space A and so its behaviour under ultraproducts will be crucial. For
this goal we introduce the following definition:

DEFINITION 7: Given a Banach sequence space )\, we say that a Banach space X
is £29 space if there exists a real constant ¢ > 0 such that for every finite dimensional
subspace F' of X, there is a section S,(A) of A and linear operators u : F — S,()\) and
v : S,()) = X such that |jul|||v]] € cand vu = Ipx.

The following definition was introduced by Pelczynnski and Rosenthal [13] in 1975.

DEFINITION 8: A Banach space X has the uniform projection property if there is
a b > 0 such that for each natural number n there is 2 natural number m(n) such that for
every n-dimensional subspace M C X there exists a k-dimensional and b-complemented
subspace Z of X containing M with k < m(n).

REMARK 9.

(1) The constant b of the above definition is called a uniform projection prop-
erty of X, and in this case we also say that X has the b-uniform projection
property. If X has the b-uniform projection property for every b > B we
say that X has the B*-uniform projection property

(2) The class of Banach spaces with the uniform projection property is quite
large and includes, for example the reflexive Orlicz spaces, see [10]. In
particular they have the 1*-uniform projection property,
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(3) The Bochner space L,(u, E) has the b-uniform projection property if E
does, see 1 < p < oo, [8].
(4) It is known that the uniform projection property is stable under ultrapow-
ers, see [8].
The next proposition is more or less obvious, see [15].
PrOPOSITION 10. Let )\ be a regular Banach sequence space. Then
(a) X isa LM space, for every ¢ > 1.
(b) Complemented subspaces of L9 spaces are L) spaces.
And the results of the following also are proved in [15].

PROPOSITION 11. If A is a regular Banach sequence space satisfying the b-
uniform projection property, then every ultrapower of A, is a [Z";'g space for every 8 > b.

For our next theorem we need a very deep technical result of Lindenstrauss and

Tzafriri [10] which gives us a kind of “uniform approximation” of finite dimensional
subspaces by finite dimensional sublattices in Banach lattices.

LEMMA 12. Lete >0andn € N be fixed. There is a natural number h(n, €) such
that for every Banach lattice X and every subspace F C X of dimension dim(F) = n
there are h(n,€) disjoints elements {z;, 1 <i < h(n,¢)} and an operator A from F into
the linear span G of {2, 1 <i < h(n,e)} such that

VzeF|A(z)-z| <elizll.

THEOREM 13. Let ) be a regular Banach sequence space with the uniform projec-
tion property and let E and F' be Banach spaces. The following statements are equivalent:

(1) TeI,\(E,F).
(2) JgT factors continuously in the following way:

Je T
E FII
A c

where X is an L9 space. Furthermore the norm I5(T) is equivalent to
inf{||C|| | BI| |||}, taken over all such factorisations.

(3) JFT factors continuously in the following way:

https://doi.org/10.1017/50004972700036273 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700036273

510 J.A. Lépez Molina and M.J. Rivera {12)

Jr T

E FII
A C
Leo(n) B X

where X is an ultrapower of {,[\] and B is a lattice homomorphism. Fur-
thermore I,(T) is equivalent to inf{}|C||||B|| ||All}, taken over all such
factorisations.

PRrROOF: (1)=(3) We define the set
D:={(M,N): M € FIN(E),N € FIN(F')}

where FIN(Y) is the set of finite dimensional subspace of a Banach space Y, endowed
with the natural inclusion order

(Ml,Nl) < (MQ,NQ) < M] C MQ, Nl C Ng.

For every (My, Ny) € D, R(My, Np) = {(M, N) e D : (My,Ng) C (M, N)} and R
= {R(M,N),(M,N) € D}. R is filter basis in D, and according to Zorn’s lemma, let
D be an ultrafilter on D containing R. If d € D, M; and N, denote the finite dimen-
sional subspaces of E and F’ respectively so that d = (Mg, N;). For every d € D, if 2

€ My® Nu, JrTien, € (M,, ® Nd) Md®Nd = N3(Mg, N3). Then from Theorem

4 of characterisation of A- nuclear operators, JpT| MenN, factors as

JrTimyen,
M, |Mg®Ng Né
Aq ) Cq
Coo[ oo B AN

where B, is a positive diagonal operator and ||A4l|||Ball[|Call € N§(Timuen,) + €
= I,\(T1M4®N4) +¢. Then

| Aall | Ball ICall < Ix(Timeen) +€ S Ta(T) + €

‘Without loss of generality we can suppose that |44l = ||C4l] = 1. We define
We : E = (My)p such that Wg(z) = (z4)p so that 25 = z if £ € My and 74 = 0 if
z ¢ My. In the same way we define Wg, : F' — (Ny)p such that W (a) = (ag)p so that
ag = aifa € Ngand ag = 0 if a ¢ N4. Then we have the following commutative diagram:
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JeT
E F”
Wi 2
M)p ———~ (N! No)p)
(Ma)p TrTman)s L) 7 ((Na)p)
(Ad)p (Ca)p

(ZOO[eW])DTd)D— (&™) p

n
where I is the canonical inclusion map. As from [10] ((El [/\,])D) is a 1-complemented

subspace of some ultrapower ((el[)"])v)u which is another ultrapower (&[)]),, with
projection @, the result follows with A = (Ag)p, B = ((Ba4)p)” which is a lattice ho-
momorphism, C = Ppu (Wg I(Cy)p)"Q, where Ppun is the projection of F in F", and
X = (21[/\])“1, having in mind that as (£w[fw)), is an abstract M-space, there is a mea-

sure space such that L (1) = ((Eoo [Zm])D)”, where the equality means that the spaces
are lattice isometric.

(3)==(2): It is straightforward.

(2)=(1) We only have to see that B is a A-integral operator, or a little bit more,
that every operator B : G — X, where G is an abstract M-space and X is an L8[
space, is A-integral and I,(B) < c ||B|| for some ¢ > 0 .

By the representation theorem of maximal operator ideals (see [3, 17.5]), we only
need to show that Jx B € (G ®y X')'.

Given z € G ® X’ and ¢ > 0, let M C G and N C X' be finite dimensional

subspaces and let z = Z fi ® =} be a fized representation of z with f; € M and z; e N,
=1
1=1,2,...,s,nsuch that

H(z;GR®X') < g\ (M ON) L g\(:G® X') + ¢

By Lemma 12 we find a finite dimensional sublattice M; of G and an operator 4; : M
— M, so that
VfeM, ||A(f) - fl| <elfll-

Then, if idg denotes the identity map on G we have
> (B A(f:), )

=1
)|

S (T(ide - A(f:), z)| +

i=1

n n
<ellBIY_ £l I=il +
i=1 i=1

I(JxB z I

(B(f. x| <

i=1
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Put X; := B(M;). By hypothesis X is an L& space, hence there are ¢ > 0,
nk € N, u: X1 = Sa(6)[Sk())] and v : Sn(41)[Sk(A)] = X such that Ix, x = v u
and |u]| ||vl] € ¢. We denote X, = v u(X;) which is a finite dimensional subspace of X
containing X, and Ix, x, = v u. Let K5 : X' — X} = X'/ X3 be the canonical quotient
map. Then

n

S {(B(a(f).a) =Y <1x,x2 (43(5), aleD)

i=1

<qu (A1(£2)), Ka(z >

n

S Al @ Kalz) )
=1

with i Af) @ Ka(z)) € My ® (sn(el)[sk(x)])' and u B : My — S,(6:)[Se()].

Since M, is a reflexive abstract M-space it is lattice isometric to some Lo, (1) space,
hence from corollary 6 this map is A-integral with Iy(u B) < ||u|| {|B}]. Then

—Z(uB ),V Ka(a}))
~(uB

n

Z <B(A1 (£) xi> =

i=1

<u B, i A(fi) @ K2($§)>‘

<D B) (S A 8 Kalel) M@ 5V

=1
< ulll|Bflg; (41 ® v'K2)(2); My ® Sk(X))
< el IBI A W'l Kl ga(z; M ® N)
< (1 +e€)cl|Bll gi(z; M ® N)
S (1 +&)c||Bll (95(2;G ® X') +¢)

and by the arbitrariness of £ > 0 we obtain

(JxB.2)] < c|B| g(z: G ® X) 0

4. ON THE COINCIDENCE OF A-NUCLEAR AND A-INTEGRAL OPERATORS.

The following new formulation of the Theorem 13 for Banach sequence spaces having
finite cotype and satisfying the uniform projection property is needed in our setting:

THEOREM 14. Let A be a Banach sequence space having the uniform projection
property and finite cotype. For every pair of Banach spaces E and F, the following
statements are equivalent:
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(1) T eI\E,F).

(2) There exists a o-finite measure space (O, 8,v) and an order continuous
Kdthe function space K(v) which is an L8™9 space, such that JrT factors
continuously in the following way:

Jr T
FII
A C
La(¥) = Kw)

where B is a multiplication operator for a positive function of K(v). Furthermore L,(T)
is equivalent to inf{||C|| || B|| ||Al|}, taking the infimum over all such factors.

PROOF: We start from the Theorem 13. As ) has finite cotype from {12] it implies
that £,[)\,;] has the same property, hence every ultrapower of £;[),] is order continu-
ous (Henson and Moore, (7, 4.6]). From [11, Theorem 1.a.9] every ultrapower of £;[),]
can be decomposed into an unconditional direct sum of a family of mutually disjoint
ideals {Xs,h € H} having a positive weak unit, and then from [11, 1.b.14], as ev-
ery Xy is order isometric to a K6the space of functions defined on a probability space
(On, Shy ), (£a[Ar]),, is order isometric to a Kéthe function space K(v*) over a mea-
sure space (O', S, »'). Hence we can substitute (£[)]),, for K(v!) in the Theorem 13.

o0

But if we denote z := B(xq) where z = ) y,, with y5, € Xj, for every ¢ € N, then

i=1

B (Loo(u)) is contained in the unconditional direct sum of {Xp,,7 € N} which is order
isometric to a Kothe function space K(v) over a o-finite measure space (O, S,v) which
is 1-complemented in K(v'), and hence it is an L& space.

Finally, as K(v) is order complete, g := sup B(f) exists in K(v). Then the opera-

Loo(n)

tors B; : Lo (1) = Loo(v) and By : Loo(v) — K(v), such that B, (f)(w) := B(f)(w)/g(w),
for all f € Loo(), w € O with g(w) # 0 and By(f)(w) = 0 otherwise, and
By(h)(w) := g(w)h(w) for all b € Ly(v), w € O, satisfy that B = BB, and B, is
a multiplication operator for a positive element g € K(v). 0

We introduce a new operator ideal, which is contained in the ideal of the A-integral
operators.

DEFINITION 15: Let ) be a Banach sequence space having finite cotype and sat-
isfying the uniform projection property. We say that T € L(E, F) is strictly M-integral
if exist a o-finite measure space (O, S, v) and an order continuous Kéthe function space
K(v) which is an £4™9 space, such that T factors continuously in the following way:
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K(v)

Lo(v) B

where B is a multiplication operator for a positive function of K{v).

We denote by SI,(E, F) the set of the strictly A-integral operators between E and F
which is a closed subspace of Z,(E, F) and SI§(T) = I\(T) for every T € SI,\(E,F).
It is clear that if F is a dual space, or it is complemented in its bidual space, then
SI,\(E,F)=1I,(E,F).

THEOREM 16. Let A be a Banach sequence space having the uniform projection
property and finite cotype, and let E and F be Banach spaces such that E' satisfies the
Radon-Nikodym property. Then N,(E, F) = SI,(E, F).

PRrOOF: Let T € SI,(E, F).

(a) We suppose that B is an multiplication operator for a function g € K(v) with
support the set D, and D has finite measure. We denote vp the restriction of v to D.

As (xpA) : E = Le(vp), then (xpA)' : (Leo(vp)) — E' and the restriction
(xpA) T1,wp): L1(vp) = E'. Thus, for every z € E and f € L,(vp)

(z, (xpA) (f)) = (xpA(z), f) = /;XDA(I)fd(VD)-

As E' has the Radon-Nikodym property, applying {4, Theorem III(5)], we have that
{xpA) has a Riesz representation, so there exists a function ¢ € Lo, (vp, E’) such that
for every f € Ly(vp)

(o) () = [ 1odevo).
D
Then, for every z € E, we have that xpA(z)(t) = (¢(t), z), vp-almost everywhere in D,
and then B{xpA)(z) =< g&é(:),z >, vp-almost everywhere in D. We denote g¢ this last
operator, and we can consider it as an element in K{vp, E').

As the simple functions are dense in K(vp, E'), g¢ can be approximated by a se-
quence of simple functions (S;)2;.

mg
We suppose Sk = ) 7},X4,,, where {4; : i =1,...,m} is a family of v-measurable
Jj=1
sets of 2 pairwise disjoint. For each k € N, we can interpret Sy as a map S; : E — K(v)

mg
such that Si(z) = z < I;‘j,z > Xa; With norm less or equal than the norm of S; in
K(v, E'). =t
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Obviously for all k¥ € N, Si is A-nuclear because it has finite range, but we need to
evaluate its A-nuclear norm N (Sk) which coincides with it A-integral norm I, (Sy).
Let S} : E = Loo(v) be such that

Sp(z) = Z (e, gﬁ) X As;

" k]

and let S? : Lo (v) = K(v) be such that
m;
SE(F) =D sl Fxas-
j=1

Then it is easy to see that ||S}[| < 1, ||S2|| < ||Sk|lx@w.e) and Sk = SZ Si. But as K(v)
is an £L49 space, from the Theorem 13, there is X > 0 such that N§(S?) = I,(S?)
< K |ISEl < K (|Sklixc@,e, hence N§(Sk) < K [|Skllxqw.e-

Then, as (Sk)32, converges in K(vp,E’), it can be also considered as a Cauchy
sequence in N, (E, K(vp)), and as this space is complete, (Sk)2, converges to g¢, that
is to say, g¢ € Na(E,K(vp)). Therefore, g¢ = BxpA is A-nuclear and so T is also
A-nuclear with.

(b) If g is any element of X(v), g can be approximated in norm by means of a
sequence (t,)32,; of simple functions with support having finite measure, and therefore
by a), the sequence T,, = CB; A is a Cauchy sequence in N,(E, F) converging to T in
L(E,F), and then T € N,(E, F). 0

As consequence of the former result and of the factorisation Theorems 14 and 4, we
obtain the following metric properties of g§ and gj.

THEOREM 17. If) has finite cotype and satisfies the uniform projection property,
then g\ is a totally accessible tensor norm. ’

PROOF: As g) is finitely generated, it is sufficient to prove that the map F' ®, E
— Py« (E', F"), is an isometry
In fact, let z = Z E Y:;®7i; € F®g E, and let H, € Py« (E', F") be the canonical

=1 j=1
map associated to z, that is to say,

H,(z') Z Z(xu, )i

i=1 j=1

forallz’ € E', con H, € L(E',F) C L(E',F").
Applying the (3, Theorem 15.5] for @ = g}, the Theorem 2, and the equality (g»)"
= ¢§ since g§ finitely generated, we have that the inclusion

F ® Eo (F' R E) Py (E', F").

% 9%
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is an isometry, and therefore by the in [3, Proposition 12.4] we obtain
(_
I (H,) = ¢\(2; F ® E) < gi(3; F ® E).

On the other hand, given N, a finite dimensional subspace of F such that z
€ N @ E, so there exists a function V € (N E)' = I,(N, E’) such that I,(V) < 1 and

9 E2N
gi(z; N® E) = (2, V). Clearly enough V € SI,(N, E') = I,(N, E’) because E’ is a dual
space, and V', being finite dimensional, has the Radon-Nikodym property. Therefore by
Theorem 16, V € N,y(N, E') and by Theorem 4, given £ > 0, there is a factorisation V

in the way
v
N FE
A C
eoo[eoo} B el [/\r]

such that {|C|| |Bl [|All S N§(V) +e=L(V) +e < 1+e.
As f£[lx] has the extension metric property, (to see {14, Proposition 1, C.3.2]),
A can be extended to a continuous map A € L(F, £w|lw)) such that [|A|| = [|Al|. By

— oo 00
Theorem 4 again, W := CBA is in N)(F, E), so there is a representation w =: 3 > yi:
®zi; € F’?E’ of W verifying ==l
A

> mn (U)eax ((2h;)) S N§(W) + e < |ICIIBI|[A]] + € < 1+ 2.
i=1

Then, ¢\(z; F® F) < ¢\(z; N ® E) = (2,V) = (2, W) it follows that
g\(z; F ® E) < g5(w) I (H,) < (1 + 2e)I < (H,)

thus ¢} (z; F ® E) < I1,«(H,), and the equality is obvious. 0

COROLLARY 18. If ) has finite cotype and satisfies the uniform projection prop-
erty, then g5 is an accesible tensor norm.

PROOF: It is a direct consequence of the former theorem and of [3, Proposition
15.6}.
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