sisted of 17 males (mean age 58.3 \pm 18.8 years) and 13 females (68.7 \pm 12.6 years). The basic disease of CGS was predominantly acute myocardial infarction in 20 patients (66.7%), followed by arrhythmia in three patients (18.0%), congestive heart failure in five patients (16.7%), and myocarditis and valvular disease in one patient (3.3%). The involved organs were the lung in 26 (86.7%) patients, liver in 24 patients (80%), and kidneys in 16 patients (53.3%), respectively. Nine patients were found to have the complication of Disseminated Intravascular Coagulation (DIC). The mortality rate was 43%.

Conclusion: The mortality rate is higher in the patient group with severe organ injury. A tendency also was evident, indicating that the larger the number of involved organs, the higher the mortality rate.

202

Active Compression-Decompression in CPR

Schou J, Kubler J, Scherb M, Deklerk J Department of Anaesthesia Lorrach, Germany

A new therapeutic principle in cardiopulmonary resuscitation (CPR) recently has been described. Alternate ("active") compression and decompression (ACD) is applied by means of a special device (Ambu CardioPump).¹ The intermittent negative pressure permits four possible improvements of CPR: 1) Increase of "cardiac output" due to suction of blood into the thoracic cage before the next compression closes venous valves; 2) Decrease in central venous pressure facilitates cerebral perfusion (which under conventional CPR nearly may cease); 3) Increased pulse amplitude in aorta implies better coronary perfusion, and thus may facilitate the response to various resuscitation measures; and 4) According to the principles of high-frequency ventilation, small tidal volumes improve alveolar gas exchange.

The first prehospital experiences with this device are presented. The need to deviate from the recommendations concerning compression- and ventilation-rates, suggested by the American Heart Association, soon was realized.² These guidelines could not foresee the completely altered cardiopulmonary dynamics obtained with ACD.

Using a compression rate of 40–60/minute (min) and a ventilation rate of 4/min (while maintaining oxygen supply to the tube between positive-pressure ventilations), a good peripheral pulsation, enabling reliable pulse oximetry, was achieved in a preliminary prehospital study. No patients obtained less than 92% oxygen saturation. This study is continuing and its results will be presented.

References

- Cohen TJ, et al: Active compression-decompression: A new method of cardiopulmonary resuscitation. JAMA 1992;267:2916–2941.
- American Heart Association: Standards and guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiac care (ECC). JAMA 1986;255: 2905–2973.

203

Active Compression-Decompression Resuscitation: Effect on the Left Ventricular Volume and Transmitral Flow

Tucker KJ, Cohen TJ, Redberg RF, Schiller NB, et al Cardiopulmonary Resuscitation Working Group University of California, San Francisco San Francisco, California, USA

Introduction: Recently, cardiopulmonary resuscitation (CPR) incorporating active compression and decompression (ACD) of the chest has been demonstrated to improve hemodynamics in an animal model.

Hypothesis: This study was designed to test the hypothesis that ACD-CPR would increase transmitral flow and end-decompression left ventricular volume (LVV) when compared to standard manual CPR.

Methods: The ACD device was applied mid-sternum in five consecutive patients (3 male, age 44 \pm 18.5 years) and compared sequentially (in random order) to standard CPR. Both techniques were performed at 80 compressions/minutes, 1.5–2.0 inch compression depth, and a 50% duty cycle. Transesophageal echocardiographic data obtained in each patient during both CPR techniques included: velocity time-integral (VTI) of transmitral pulse-wave doppler recordings and two-dimensional images of left ventricle in long axis. With each CPR technique, planimetry volume measurements of the left ventricle were obtained at end-compression (EC) and end-decompression (ED) and the difference expressed as the stroke volume (SV).

Results:				
CPR	EC (ml)	ED (ml)	SV (ml)	VTI
Standard	49.7 ±9.3	69.4 ±10.8	17.6 ±5.2	7.8 ±2.3
ACD	48.6 ±8.5	81.3 ±12.5*	32.6 ±6.8*	15.8 ±4.3*
* <i>p</i> <.01				

Conclusions: Improved transmitral flow, end-decompression left ventricular volume, and stroke volume are seen with active compression-decompression resuscitation suggesting a biphasic cardiothoracic cycle of flow. Active decompression of the chest is an important adjunct to standard CPR.