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Abstract

We study the McKay correspondence for representations of the cyclic group of order p in
characteristic p. The main tool is the motivic integration generalized to quotient stacks
associated to representations. Our version of the change of variables formula leads to
an explicit computation of the stringy invariant of the quotient variety. A consequence
is that a crepant resolution of the quotient variety (if any) has topological Euler
characteristic p as in the tame case. Also, we link a crepant resolution with a count of
Artin–Schreier extensions of the power series field with respect to weights determined
by ramification jumps and the representation.

1. Introduction

The McKay correspondence generally means, for a finite subgroup G of SLd(C), an equality
between an invariant of the representation G y Cd and an invariant of a crepant resolution of
the quotient variety Cd/G (see [Rei02]). The aim of this paper is to take a step toward the wild
McKay correspondence, that is, the McKay correspondence for a finite subgroup G ⊂ SLd(k)
such that the characteristic of a field k divides the order of G. We will study the simplest possible
case where G is the cyclic group of prime order. Gonzalez-Sprinberg and Verdier [GV85] and
Schröer [Sch09] also worked on the McKay correspondence in the wild case, but on different
aspects.

Our McKay correspondence will be formulated in a similar way to that of Batyrev [Bat99],
which is an equality of an orbifold invariant of the G-variety Cd and a stringy invariant of the
quotient variety. Denef and Loeser [DL02] gave an alternative proof, using the motivic integration
and giving a more direct link between the invariants. We follow this approach with a stacky
language by the author [Yas04, Yas06].

Let k be a perfect field of characteristic p > 0 and G the cyclic group of order p. In this
paper, we will study the McKay correspondence for a finite-dimensional G-representation V. If for
1 6 i 6 p, Vi denotes the indecomposable G-representation of dimension i, then V is decomposed
as V =

⊕l
λ=1 Vdλ , 1 6 dλ 6 p. We define a numerical invariant DV of V by

DV :=
l∑

λ=1

(dλ − 1)dλ
2

.

When DV > p, a stringy motivic invariant of the quotient variety X := V/G, denoted Mst(X),
will be defined in the same way as in [DL02] to be some motivic integral over the arc space of X.
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If X admits a resolution of singularities with simple normal crossing relative canonical divisor,
then the invariant coincides with the one defined with resolution data as in [Bat98, Bat99]. The
following is our main result. For a positive integer j with p - j or for j = 0, we put

shtV (j) :=

l∑
λ=1

dλ−1∑
i=1

⌊
ij

p

⌋
.

Theorem 1.1 (Proposition 6.9 and Corollary 6.19). If DV > p, then

Mst(X) = Ld +
Ll−1(L− 1)(

∑p−1
s=1 Ls−shtV (s))

1− Lp−1−DV
.

When X has a crepant resolution Y −→ X, the theorem shows that DV = p and

[Y ] = Ld + Ll
p−1∑
s=1

Ls−shtV (s).

In particular, Y has topological Euler characteristic p, which is, in characteristic zero, conjectured
by Reid [Rei02] and proved by Batyrev [Bat99]. We will also define the stringy motivic invariant
of the ‘projectivization’ [(X\{0})/Gm] of X and prove that it satisfies the Poincaré duality,
which was originally proved by Batyrev [Bat98] for Q-Gorenstein projective varieties with log
terminal singularities in characteristic zero.

The proof of Theorem 1.1 is based on the motivic integration suitably generalized to the
quotient stack X := [V/G] and the change of variables formula for the morphism X −→ X.
Following [Yas04, Yas06], we will define twisted arcs of X and develop the motivic integration
over the space of them. A twist of a twisted arc comes from an Artin–Schreier extension of
k((t)), that is, a Galois extension of the power series field k((t)) with Galois group G ∼= Z/(p).
Not only do there exist infinitely many distinct twists, but also they are parameterized by an
infinite-dimensional space. This contrasts strikingly the situation in the tame case, where we
have only finitely many twists.

Let J∞X be the arc space of X and J∞X the space of twisted arcs of X . Then the map
φ : X −→X induces a map φ∞ : J∞X −→ J∞X, which is bijective outside measure-zero subsets.
The change of variables formula for φ∞ will be formulated as∫

A
LF dµX =

∫
φ−1
∞ (A)

LF◦φ∞−ord Jacφ−sX dµX

(for details, see Theorem 5.20). Here for γ ∈ J∞X , if j is the ramification jump of the
associated Artin–Schreier extension of k((t)), then sX (γ) := shtV (j). An interesting consequence
of Theorem 1.1 is the following: suppose that k is a finite field, and that Y −→ X is a crepant
resolution. For each finite extension Fq/k with q a power of p, let Nq,j be the number of
Artin–Schreier extensions of Fq((t)) with ramification jump j. Let E0 ⊂ Y be the preimage
of the origin 0 ∈ X. Then we have the following equality (Corollary 6.28, cf. [Ros07]):

]E0(Fq) = 1 +
p− 1

p

∑
j>0, p - j

Nq,j

qshtV (j)
.

This result would provide new insight into the link between the singularity theory and the Galois
theory of local fields.

The paper is organized as follows. In § 2 we construct the moduli space of G-covers of the
formal disk and study its structure. In § 3 we proceed with the study of twisted arcs and jets,
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and their moduli spaces. Section 4 is devoted to introducing the motivic integration over the
space of twisted arcs. Section 5 contains the proof of the change of variables formula, which is
the technical heart of the paper. In § 6 we define stringy invariants and conclude various versions
of the McKay correspondence from the change of variables formula. Finally, in § 7, we make some
remarks on future problems.

1.1 Convention
Throughout the paper, we work over a perfect field k of characteristic p > 0. A k-field means a
field containing k. We set G = Z/(p) and denote by σ the residue class of 1 in G.

2. G-covers of the formal disk

The main objective of this section is to construct the moduli spaces of G-covers of the formal
disk D := Spec k[[t]]. This will be used in the next section in the construction of the moduli
space of twisted arcs.

2.1 G-covers of the formal punctured disk
Let D∗ := Spec k((t)) be the formal punctured disk. We will first examine the set of étale G-covers
of D∗, denoted by G-Cov(D∗). It is classified by the étale cohomology group H1(D∗, G) (see
[Mil80, p. 127]). Then from the Artin–Schreier sequence of étale sheaves,

0 −→ G −→ OD∗
℘:f 7−→fp−f−−−−−−−→ OD∗ −→ 0,

we have
H1(D∗, G) = coker(H0(OD∗)

℘−−→ H0(OD∗)).

Consequently, we have the one-to-one correspondence

G-Cov(D∗)←→
k((t))

℘(k((t)))
.

More explicitly, this correspondence is described as follows: for a k-algebra A and f ∈ A, we
define a ring extension

A[℘−1f ] :=
A[u]

(up − u+ f)

endowed with the G-action by σ(u) = u + 1. Then the G-cover corresponding to the class of
f ∈ k((t)) is

E∗f := Spec k((t))[℘−1f ].

We next describe the set k((t))/℘(k((t))). Given f ∈ k((t)), we denote by fi the coefficient
of ti in f so that f =

∑
i∈Z fit

i with fi = 0 for i� 0.

Lemma 2.1. We have ℘(k[[t]]) = ℘(k) ·1⊕k[[t]] · t. In particular, if k is algebraically closed, then
k[[t]] = ℘(k[[t]]).

Proof. For f ∈ k[[t]], we have

℘(f) =
∑
p - i

−fiti +
∑
p | i

(fpi/p − fi)t
i.

Hence ℘(k[[t]]) ⊂ ℘(k) · 1 ⊕ k[[t]] · t. For the converse, let g ∈ ℘(k) · 1 ⊕ k[[t]] · t. Then we can
inductively choose the coefficients fi of f such that ℘(f) = g as follows. First, take f0 in ℘−1g0.
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If we have chosen f0, f1, . . . , fi−1 such that ℘(f) ≡ g mod ti, then we set either fi := −gi or
fi := fpi/p − gi depending on whether p divides i. This shows the first assertion. The second

assertion follows from the fact that if k is algebraically closed, then ℘(k) = k. 2

Notation 2.2. We put N′ := {j ∈ Z | j > 0, p - j} and N′0 := N′ ∪ {0}.

Lemma 2.3. For f ∈ k((t)), there exists g =
∑

i∈N′0
g−it

−i ∈ k[t−1] ⊂ k((t)) such that f − g ∈
℘(k((t))). Moreover, such gi, i < 0, are uniquely determined and the class of g0 in k/℘(k) is also
uniquely determined.

Proof. From the previous lemma, we may eliminate the terms of positive degrees in f and assume
that fi = 0 for i > 0. Let pi (i > 0) be the largest multiple of p such that f−pi 6= 0 if any. Then

replacing f with f − ℘(f
1/p
−pit

−i), we get that f−pi = 0 without changing fi for i < −pi. (Since

k is perfect, f
1/p
−pi exists in k.) Iterating this procedure, we eventually get a polynomial g of the

desired form.
For the uniqueness, let g′ ∈ k[t−1] have the same property. From the conditions on g and

g′, we have either h := g − g′ ∈ k or −ordh ∈ N′. However, we have h ∈ ℘(k((t))) and every
element of ℘(k((t))) of negative order has order −pn with n a positive integer. Thus we conclude
h ∈ ℘(k). This shows the uniqueness of the lemma. 2

Definition 2.4. Let A be a k-algebra. A representative polynomial over A is a Laurent
polynomial of the form

f =
∑
i∈N′

f−it
−i ∈ A[t−1], f−i ∈ A.

We note that there is no constant term. We denote by RPA the set of representative polynomials
over A.

Lemma 2.3 shows the following proposition.

Proposition 2.5. We have a one-to-one correspondence,

G-Cov(D∗)←→ RPk ×
k

℘(k)
.

In particular, if k is algebraically closed, then

G-Cov(D∗)←→ RPk.

Definition 2.6. Let k̄ be an algebraic closure of k. We say that E∗1 , E
∗
2 ∈ G-Cov(D∗) are

geometrically equivalent and write E∗1 ∼geo E
∗
2 if their complete base changes E∗1 ×̂k k̄ and E∗2 ×̂k k̄

are isomorphic G-covers of D∗ ×̂k k̄ = Spec k̄((t)).

Obviously
G-Cov(D∗)/∼geo←→ RPk.

If k is a finite field, then k/℘(k) has p elements. Hence the quotient map

G-Cov(D∗) −→ G-Cov(D∗)/∼geo

is a p-to-one surjection.

Definition 2.7. We say that E∗ ∈ G-Cov(D∗) is representative if E∗ is isomorphic to E∗f for
f ∈ RPk. We denote the set of representative G-covers of D∗ by G-Covrep(D∗).

1128

https://doi.org/10.1112/S0010437X13007781 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007781


The p-cyclic McKay correspondence via motivic integration

By construction, we have the following proposition.

Proposition 2.8. The composition

G-Covrep(D∗) ↪→ G-Cov(D∗)� G-Cov(D∗)/∼geo

is bijective. Moreover, the right map is p-to-one if k is a finite field.

2.2 The stratification by the ramification jump
The spaces G-Cov(D∗), G-Cov(D∗)/∼geo and RPk are all infinite-dimensional. We will construct
stratifications of them with finite-dimensional strata, which will help to control these spaces.

We say that E∗ ∈ G-Cov(D∗) is trivial if E∗ is the disjoint union of p copies of D∗,
equivalently if E∗ corresponds to 0 by the correspondence in Proposition 2.5. For a non-trivial
E∗ ∈ G-Cov(D∗), let E be the normalization of D := Spec k[[t]] in OE∗ and mE the maximal
ideal of OE . Then G acts on OE/mi

E for all i ∈ N.
Definition 2.9. The ramification jump of E∗ (and of E), denoted by rj(E∗) = rj(E), is defined
as follows. If E is unramified over D, then we put rj(E) = 0. Otherwise rj(E) is the positive
integer j such that the G-action on OE/mi

E is trivial if i 6 j + 1, and non-trivial if i > j + 2.1

We thus have a function
rj : G-Cov(D∗) −→ Z>0.

Proposition 2.10. Let f ∈ k((t)). Suppose that j := −ord f ∈ N′0. (This condition holds in
particular if f is a representative polynomial.) By convention, if f = 0, then we put j = 0. Then
rj(E∗f ) = j. In particular, the function rj takes values in N′0.

Proof. Let L := OE∗f = k((t))[℘−1f ] and g := ℘−1f ∈ L. If j = 0, then OE∗f is isomorphic to

the product of p copies of k((t)) or to k′((t)) for an Artin–Schreier extension k′/k. Hence the
assertion holds. Next we suppose that j > 0 and write j = pq − r, where q and r are integers
with 1 6 r 6 p− 1. If vL denotes the normalized valuation on L, then

vL(g) = −j = −pq + r.

Let l ∈ {1, 2, . . . , p− 1} be such that lr = pc+ 1 for some non-negative integer c. Since

vL(tlq−cgl) = p(lq − c)− lj = (lpq − pc)− lpq + pc+ 1 = 1,

s := tlq−cgl is a uniformizer of L. We now have

σ(s) = tlq−c(g + 1)l = tlq−cgl + ltlq−cgl−1 + (higher-degree terms).

Therefore
σ(s)− s = ltlq−cgl−1 + (higher-degree terms)

and

vL(σ(s)− s) = p(lq − c) + (l − 1)(−pq + r)

= p(lq − c)− lpq + pc+ 1 + pq − r
= pq − r + 1

= j + 1.

This proves the proposition. 2

1 Since OE∗/k((t)) is a cyclic extension of prime degree, the ramification jump is unique and equal in both lower
and upper numberings. See, for instance, [Tho08, § 2].
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For j ∈ N′0, we set

G-Cov(D∗, j) := {E∗ ∈ G-Cov(D∗) | rj(E∗) = j},
G-Covrep(D∗, j) := {E∗ ∈ G-Covrep(D∗) | rj(E∗) = j},

RPk,j := {f ∈ RPk | ord f = −j}.

Proposition 2.11. For j ∈ N′, we have

G-Covrep(D∗, j)←→ G-Cov(D∗, j)/∼geo←→ RPk,j ←→ k∗ × kj−1−bj/pc.

Here b·c denotes the floor function, which assigns to a real number a the largest integer not
exceeding a.

Proof. The left and middle correspondences are clear. We note that

]{i ∈ N′ | i 6 j} = j − bj/pc.

The right correspondence sends
∑

i∈N′,i6j g−it
−i, g−j 6= 0, to (g−i)i∈N′,i<j . 2

Thus, for instance, the infinite-dimensional space G-Covrep(D∗) admits a stratification

G-Covrep(D∗) =
⊔
j∈N′0

G-Covrep(D∗, j),

whose strata are all finite-dimensional.
For later use, we also define G-Cov(D∗,6 j) :=

⋃
j′6j G-Cov(D∗, j′), and similarly for

G-Covrep(D∗,6 j) and RPk,6j . Then

G-Covrep(D∗,6 j)←→ G-Cov(D∗,6 j)/∼geo←→ RPk,6j ←→ kj−bj/pc.

2.3 Moduli spaces of G-covers of D∗

Harbater [Har80, § 2] constructed the coarse moduli space of G-covers of the formal disk D =
Spec k[[t]] when k is algebraically closed.2 He also illustrates with an example why the moduli
space cannot have a universal family [Har80, Remark 2.2]. Since we would like to still have a
‘universal family’ and work over a non-algebraically closed field, we will take a different approach.

In view of his example, to have a universal family, it seems that we need an additional
structure on G-covers. We will take representative polynomials as such a structure, or rather
consider the moduli space of representative polynomials.

For each j, the functor

{affine k-scheme}−→ {set}, SpecA 7−→ RPA,6j

is obviously represented by a scheme isomorphic to Aj−bj/pck , which we denote by RPk,6j . We
can write its coordinate ring explicitly as

B6j := k[xi | i ∈ N′, i 6 j].

2 To be precise, he constructed the coarse moduli space of pointed principal G-covers. In our case where G is
abelian, it is equal to the coarse moduli space of unpointed principal G-covers.
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Then the identity morphism of RPk,6j corresponds to the universal representative polynomial,

funiv
j :=

∑
j′∈N′,j′6j

xj′t
−j′ ∈ RPB6j ,6j .

For j1 6 j2, we have a canonical closed embedding RPk,6j1 ↪→ RPk,6j2 .
Then the functor

{affine k-scheme}−→ {set}, SpecA 7−→ RPA

is represented by the union RPk :=
⋃
j RPk,6j which should be understood as the limit in the

category of ind-schemes [KV04, § 1.1]. In particular, for a k-field K, we have RPK ←→RPk(K).
Readers who are not familiar with ind-schemes can just ignore them as they will not be used
below.

Definition 2.12. A representative family of G-covers of D∗ of ramification jump 6j over an
affine scheme S = SpecA is an étale G-torsor over S×̂D∗ = SpecA((t)) which is isomorphic to
SpecA((t))[℘−1f ] with f ∈ RPA,6j . We denote the set of isomorphism classes of those families
by G-Covrep(D∗,6 j)(S).

The functor

{affine k-scheme} −→ {set}
S 7−→G-Covrep(D∗,6 j)(S)

is represented by a scheme canonically isomorphic to RPk,6j , which is denoted by G-Covrep(D∗,
6 j). We have the universal family of representative G-covers of ramification jump 6j:

E∗,univ
6j := SpecB6j((t))[℘

−1funiv
j ]

��
SpecB6j((t))

��
SpecB6j = G-Covrep(D∗,6 j).

We define
G-Covrep(D∗) :=

⋃
j∈N′0

G-Covrep(D∗,6 j),

which is again regarded as an ind-scheme. For a perfect k-field K, we have a one-to-one
correspondence

G-Covrep(D∗)(K) = G-Covrep(D∗ ×̂kK)←→ G-Cov(D∗ ×̂kK)/∼geo.

The universal family E∗,univ
∞ over G-Covrep(D∗) is defined as the union of E∗,univ

6j .
Putting RPk,j := RPk,6j\RPk,6j−1, we have a stratification RPk =

⊔
j RPk,j . Similarly,

we have G-Covrep(D∗) =
⊔
j G-Covrep(D∗, j). Then for j > 0,

RPk,j
∼= G-Covrep(D∗, j) ∼= Gm × Aj−1−bj/pc

k . (2.1)

For a k-algebra A, the A-points of RPk,j correspond to

RPA,j := {f ∈ RPA,6j | fj ∈ A∗}.
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2.4 The stratified moduli space of G-covers of the formal disk

What we will really need is the moduli space of (ramified) G-covers of the formal non-punctured

disk D = Spec k[[t]]. A G-cover of D means the normalization E of Spec k[[t]] in a G-cover

E∗ −→ D∗. If it exists, such a moduli space should bijectively correspond to the moduli space

of G-covers of D∗ at the level of points. The author does not know so far if such a moduli space

exists. Instead we will construct strata of the hypothetical moduli space, which are sufficient for

application to the motivic integration.

We define G-Covrep(D, j) to be G-Covrep(D∗, j) endowed with a different universal family

constructed as follows. The coordinate ring of this moduli space is Bj := B6j [x
−1
j ]. Then the

universal family of G-Covrep(D∗, j) is written as

E∗,univ
j := SpecBj((t))[℘

−1funiv
j ] −→ SpecBj((t)) −→ G-Covrep(D∗, j).

Let g := ℘−1funiv
j ∈ Bj((t))[℘−1funiv

j ]. With the notation in the proof of Proposition 2.10,

we put s := tlq−cgl. Then s is a uniformizer on each fiber of the projection E∗,univ
j −→

G-Covrep(D∗, j). We define Cj to be the Bj [[t]]-subalgebra of Bj((t))[g] generated by s. Then

SpecCj −→ SpecBj [[t]] is a family of G-covers of D over G-Covrep(D∗, j).

Definition 2.13. We define the moduli space of representative G-covers of D of ramification

jump j, denoted by G-Covrep(D, j), to be SpecBj with the universal family

Euniv
j := SpecCj −→ SpecBj [[t]] −→ G-Covrep(D, j).

2.5 Details of the G-actions on OE∗ and OE

Let 0 6= f ∈ RPk be a representative polynomial of order −j. Let E and E∗ be the corresponding

G-covers of D and D∗ respectively, and let g = ℘−1f ∈ OE∗ . Then OE∗ has a basis 1, g, . . . , gp−1

over k((t)).

Notation 2.14. In what follows, for a k-algebra or module M endowed with a G-action, we

denote by δ the k-linear operator σ − idM on M . For a ∈ N, we denote by M δa=0 the kernel of

δa : M −→M.

Sometimes it is more useful to use δ rather than σ in order to study G-actions.

Lemma 2.15. For any integer i with 1 6 i 6 p−1 and for any 0 6= h ∈ k((t)), we have δi(gih) 6= 0

and δi+1(gih) = 0. Therefore, for each integer a with 0 6 a 6 p, we have

Oδa=0
E∗ =

a−1⊕
i=0

k((t)) · gi.

Proof. We will prove this by induction on i. For i = 1, since σ(g) = g + 1, we have δ(gh) =

h(σ(g)− g) = h and δ2(gh) = δ(h) = 0. For i > 1, we have

σ(gih) = h(g + 1)i = h(gi + igi−1 + · · ·+ ig + 1)

and

δ(gih) = h(igi−1 + · · ·+ ig + 1). (2.2)

Applying δi−1 and δi to this, we obtain the lemma. 2
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Corollary 2.16. We have
OE =

∏
06i<p
−ij+np>0

k · gitn.

Moreover, for each integer a with 0 6 a 6 p, we have

Oδa=0
E =

∏
06i<a
−ij+np>0

k · gitn.

Proof. Let v be the normalized valuation on OE∗ . Then v(gitn) = −ij + np. For every non-
negative integer r, there exists a unique pair (i, n) of integers such that 06 i < p and r =−ij+np.
This proves the first assertion. Then the second follows from the previous lemma. 2

Corollary 2.17. For h ∈ OE with p - vE(h), we have vE(δ(h)) = vE(h)+rj(E). Here vE denotes
the normalized valuation of OE .

Proof. We can write h as a k((t))-linear combination of gi, 0 6 i < p. Then the corollary follows
from (2.2). 2

3. Twisted arcs and jets

To a G-representation V , we will associate the quotient stack X = [V/G] and the quotient variety
X = V/G. The McKay correspondence follows from the change of variables formula of motivic
integrals for the morphism X −→X. To obtain the formula, we need an almost bijection between
the arc spaces of X and X . However, general arcs of X lift to X not as ordinary arcs but as
twisted arcs. In this section, we will construct the spaces of twisted arcs and jets, and examine
their structures. Our use of stacks is not really necessary. However, it puts everything on an
equal footing in the framework of the birational geometry of stacks.

3.1 Ordinary arcs and jets of a scheme
Let X be a variety, that is, a separated scheme of finite type over k. An n-jet of X is a morphism
Spec k[[t]]/(tn+1) −→ X. There exists a fine moduli scheme JnX of n-jets of X, called the n-jet
scheme of X. Thus, for a k-algebra A,

(JnX)(A) = Hom(SpecA[[t]]/(tn+1), X).

There is a natural morphism JnX −→ X, defined by reduction modulo t. Also for n′ > n, we
have a truncation map Jn′X −→ JnX. The projective limit, J∞X := lim

←− JnX, is called the arc
space of X. For every k-field K,

(J∞X)(K) = Hom(SpecK[[t]], X).

We denote the truncation map J∞X −→ JnX by πn.

3.2 A G-representation
From now on, we denote by V a d-dimensional G-representation and suppose that V is
decomposed into indecomposables as

V =
l⊕

λ=1

Vdλ

(
1 6 dλ 6 p,

l∑
λ=1

dλ = d

)
,
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where Va denotes the unique indecomposable G-representation of dimension a. We suppose that
V is non-trivial, that is, (d1, . . . , dl) 6= (1, . . . , 1).

We denote the coordinate ring of the affine space V by

k[x] = k[xλ,i | 1 6 λ 6 l, 1 6 i 6 dλ],

and fix the G-action on it by

σ(xλ,i) =

{
xλ,i + xλ,i+1 (i 6= dλ)

xλ,d (i = dλ).

This is equivalent to saying that

δ(xλ,i) =

{
xλ,i+1 (i 6= dλ)

0 (i = dλ).

(Recall that the operator δ is defined as σ − id.)
Most arguments below can be reduced to the case where V is indecomposable. In that case,

l = 1 and d1 = d. Then we simply write xi = x1,i.

3.3 G-arcs and jets

For 0 6= f ∈ RPk, we define Ef,n to be SpecOEf /m
np+1
Ef

, which is a closed subscheme of Ef . Since

k[[t]]/(tn+1) ⊂ (OE/mpn+1
Ef

)G (the equality does not generally hold), we have a natural morphism

Ef,n −→ Dn := Spec k[[t]]/(tn+1).

If f = 0, then Ef has p connected components and each component is identified with D via the
projection Ef −→ D := Spec k[[t]]. In this case, we just define Ef,n to be the disjoint union of p
copies of Dn.

Definition 3.1. We define a G-arc (respectively, G-n-jet) of V as a G-equivariant morphism
Ef −→ V (respectively, Ef,n −→ V ) for some f ∈ RPk. More generally, for f ∈ RPA,j , let
Ef −→ SpecA[[t]] be the corresponding G-cover and let Ef,n ⊂ Ef be as above. Then we define
a G-arc of V of ramification jump j over A as a G-equivariant morphism Ef −→ V. Two G-arcs
over A are regarded as the same if the associated representative polynomials are the same and
the morphisms are the same. Similarly for G-n-jets. (If f 6= f ′, then two G-n-jets Ef,n −→ V
and Ef ′,n −→ V must always be distinguished, even when there is an isomorphism Ef,n ∼= Ef ′,n
compatible with morphisms to V and Dn.)

Lemma 3.2. For any k-algebra B endowed with a G-action, we have a bijection:

{G-equivariant k-algebra map k[x] −→ B} −→
l∏

λ=1

Bδdλ=0

α 7−→ (α(x1,1), . . . , α(xl,1)).

Proof. Let α : k[x] −→ B be a G-equivariant k-algebra map. Then for every λ and i, we have
α(δ(xλ,i)) = δ(α(xλ,i)). In particular, α(xλ,i) = δi−1(α(xλ,1)) and δdλ(xλ,1) = 0. This shows that
α is determined by α(xλ,1), 1 6 λ 6 l, and the map of the lemma is well defined.

Conversely, if (f1, . . . , fl) ∈
∏l
λ=1B

δdλ=0 is given, then we define a k-algebra map α : k[x] −→
B by α(xλ,i) = δi−1(fλ). We can easily see that α is the unique G-equivariant k-algebra map
with α(xλ,1) = fλ. Hence this construction gives the inverse map. 2
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Proposition 3.3. For each 0 6 n <∞ and for each j ∈ N′0, there exists a fine moduli scheme
JGn,jV of G-n-jets of V of ramification jump j.

Proof. We prove this only when V is indecomposable. We first consider the case j > 0. From the
previous lemma, for a fixed f, G-n-jets Ef −→ V correspond to elements of (OEf /m

np+1
Ef

)δ
d=0.

With the notion as in § 2.5, we have

OEf /m
np+1
Ef

=
⊕

06i<p
06−ij+np6np

k · [gitn].

Then (OEf /m
np+1
Ef

)δ
d=0 is the linear subspace generated by the elements gitn from the basis such

that either i < d or −ij + np + dj > np. If we denote by νn,j the dimension of the subspace,
then G-n-jets are parameterized by kνn,j . This argument can apply to families, in particular, to
the universal family over G-Covrep(D, j). With the notation from § 2.4, let mj ⊂ Cj be the ideal
generated by s. Then G-n-jets over G-Covrep(D, j),

SpecCj/m
np+1
j −→ V,

correspond to elements of the module (Cj/m
np+1
j )δ

d=0, which is isomorphic to B
νn,j
j as a Bj-

module. This shows that the desired moduli space JGn,jV is isomorphic to Aνn,jk ×G-Covrep(D, j).
The case where j = 0 is easier. Then f = 0 and E0,n is the union of p-copies of Dn. We

fix one connected component of E0,n, identify it with Dn and write Dn ↪→ E0,n. Then a G-n-
jet E0,n −→ V is uniquely determined by its restriction to Dn. Conversely, an ordinary n-jet
Dn −→ V uniquely extends to a G-n-jet E0,n −→ V . Therefore we can identify JGn,0V with
JnV. 2

Proposition 3.4. The following hold:

(i) for every n and j, JGn,jV
∼= Amk ×G-Covrep(D, j) for some m;

(ii) for n = 0, JG0,jV
∼= Alk ×G-Covrep(D, j) (j ∈ N′) and JG0,0V = Adk;

(iii) for n′ > n, truncation maps JGn′,jV −→ JGn,jV are induced by a (not necessarily surjective)

linear map Am′k −→ Amk .

Proof. The assertions follow from the proof of the previous proposition. 2

Now the space of G-arcs of ramification jump j, denoted JG∞,jV, is constructed as the

projective limit of JGn,jV, n ∈ Z>0. Hence it is isomorphic to (
∏∞
i=1 A1

k) × G-Covrep(D, j). Let

πn : JG∞,jV −→ JGn,jV denote truncation maps.

Corollary 3.5. For 0 6 n <∞,

πn(JG∞,jV ) ∼=

{
And+l
k ×G-Covrep(D, j) (j ∈ N′)

A(n+1)d
k (j = 0).

Moreover, the truncation map πn+1(JG∞,jV ) −→ πn(JG∞,jV ) is a trivial fibration with fiber Adk.

Proof. The case j = 0 is obvious from JGn,0V = JnV. For j > 0, with the notation as in the

proof of Proposition 3.3, G-n-jets in πn(JG∞,jV ) correspond to elements of the linear subspace of

OEf /m
np+1
Ef

generated by gitn with i < d. This shows the first assertion. The second assertion

follows from the first. 2
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Definition 3.6. For 0 6 n 6 ∞, we put JGn V :=
⊔
j>0 J

G
n,jV. (Here, for each j, JGn,jV is a

connected component of JGn V.)

The following is obvious from the definition.

Corollary 3.7. The truncation maps πn+1(JG∞V ) −→ πn(JG∞V ) are trivial fibrations with fiber
Adk.

3.4 Twisted arcs and jets
Let X be the quotient stack [V/G]. For an algebraically closed k-field K and for a representative
polynomial f ∈ RPK,j , we set

Df := [Ef/G] and Df,n := [Ef,n/G].

Definition 3.8. We define a twisted arc (respectively, twisted n-jet) of X over K as a morphism

Df −→ X (respectively, Df,n −→ X )

which is induced from a G-arc Ef −→ V (respectively, G-n-jet Ef,n −→ V ). We say that two
twisted arcs γ : Df −→ X and γ′ : Df ′ −→ X (over K) are isomorphic if f = f ′ and if two
morphisms γ, γ′ : Df ⇒ X are 2-isomorphic. (Recall that stacks form a 2-category and hence
morphisms between two stacks form a usual category.)

Clearly twisted arcs (jets) are closely related to G-arcs (jets). To each G-arc γ : Ef −→ V ,
we can associate a twisted arc γ̄ : Df −→ X . Conversely, given a twisted arc Df −→ X , then
there exists a G-arc Ef −→ V whose associated twisted arc is the given one.

Proposition 3.9. The set of twisted arcs of X over an algebraically closed k-field K is in
one-to-one correspondence with (JG∞V )(K)/G in such a way that the class of γ ∈ (JG∞V )(K)
corresponds to γ̄. Here G acts on JG∞V by σ(γ) := γ ◦ σ = σ ◦ γ. Similarly, the set of twisted
n-jets of X over K is in one-to-one correspondence with (JGn V )(K)/G.

Proof. Let γi : Ef −→ V (i = 1, 2) be G-arcs such that γ̄ := γ̄1 = γ̄2. We have to show that γ1

and γ2 are in the same G-orbit. Let E := Df×γ̄,X V. Then for each i, there exists an isomorphism
αi : Ef −→ E which fits into the following 2-commutative diagram.

Ef

  

γi

((αi // E //

��

V

��
Df

γ̄ // X

Then γ2 = γ1 ◦ α−1
1 ◦ α2. For G-n-jets, the corresponding assertion holds. All that remains is to

show that α−1
1 ◦ α2 = τ for some τ ∈ G. This will be done in the following lemma in a more

general setting. 2

Lemma 3.10. Let U be a G-scheme and [U/G] the quotient stack with the natural morphism
α : U −→ [U/G]. Suppose that β : U −→ U is an isomorphism such that β ◦ α and α are
isomorphic. Then β = τ for some τ ∈ G.

Proof. Let m : G × U −→ U be the morphism defining the G-action and π : G × U −→ U
the projection. From the definition of quotient stacks, there exists a G-equivariant isomorphism
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ε : G× U −→ G× U making the following diagram commutative.

G× U
π
��

m //

ε

%%

U

U

β
%%

G× U
π
��

m

;;

U

Suppose that ε maps {1} × U onto {τ} × U . If ε′ denotes the restriction of ε to {1} × U and if
we identify {1} × U and {τ} × U with U, then we have the following commutative diagram.

U
1 //

ε′=β ��

U

U

τ
??

This shows that β = ε′ = τ−1. 2

Definition 3.11. We define the space of twisted arcs and twisted n-jets of X as the quotient
schemes

J∞X := (JG∞V )/G and JnX := (JGn V )/G.

Then for 0 6 n 6∞, we write JnX =
⊔
j∈N′0
Jn,jX , where the subscript j indicates ramification

jumps. We define the function
rj : JnX −→ N′0

by rj(γ) := j for γ ∈ Jn,jX .

Remark 3.12. The genuine moduli spaces of twisted arcs or jets must be constructed as stacks
as in [Yas06].

Definition 3.13. For schemes X and Y of finite type, a morphism f : Y −→ X is called a
universal homeomorphism if one of the following equivalent conditions holds:

(i) f is finite, surjective and universally injective;

(ii) for every morphism X ′ −→ X of schemes, the induced morphism Y ×X X ′ −→ X ′ is a
homeomorphism.

We say that two schemes X and Y of finite type are universally homeomorphic if there exists a
universal homeomorphism between them in either direction. For instance, see [NS11, § 3.8] for
more details.

If T is a G-variety and S ⊂ T is a G-stable closed subvariety, then the map S/G −→ T/G
is not a closed embedding but only a universal homeomorphism onto its image. This is why this
notion is necessary below.

We note that the G-action on JGn,jV = Amk × G-Covrep(D, j) is trivial on G-Covrep(D, j)
and linear on Amk . Indeed the linearity follows from the proof of Lemma 2.15. Hence we have the
following fact which is essential to define the motivic measure on J∞X below.

Corollary 3.14. Every geometric fiber of the truncation πn+1(J∞X ) −→ πn(J∞X ) is
universally homeomorphic to the quotient of AdK by some linear G-action with K an algebraically
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closed k-field. Moreover,

π0(J∞,jX ) = J0,jX =

{
Al ×G-Covrep(D, j) (j ∈ N′)
V/G (j = 0).

3.5 Push-forward maps for twisted arcs and jets
Let X := V/G be the quotient variety. Let φ : X −→ X and ψ : V −→ X be the natural
morphisms. For a twisted arc D −→ X , taking the coarse moduli spaces, we get an arc D −→ X.
This defines a push-forward map

φ∞ : J∞X −→ J∞X.

We can see that this is actually a scheme morphism as follows. Let the solid arrows of

E

��

// V

ψ

��
D×̂JG∞V

��

α
// X

JG∞V

be the universal family of G-arcs. Then there exists the dashed arrow α which makes the whole
diagram commutative. This morphism α is a family of arcs of X over JG∞V. From the universality
of J∞X, this induces a morphism JG∞V −→ J∞X. Then we can easily see that this factors through
J∞X = (JG∞V )/G, and obtain the desired morphism J∞X −→ J∞X.

Notation 3.15. From now on, for γ in J∞X or J∞X , we denote by γn its truncation at level n:
γn = πn(γ).

Let γ : D −→ X be a twisted arc and γn : Dn ↪→ D −→ X its truncation at level n. Then we
have an arc φ∞γ : D −→ X and its truncation at level n, (φ∞γ)n : Dn ↪→ D −→ X. This n-jet
of X depends only on γn, hence we have a push-forward map

φn : πn(J∞X ) −→ JnX, γn 7−→ (φ∞γ)n.

We can easily see that this is a scheme morphism and compatible with truncation maps.

Remark 3.16. Unlike the tame case, we do not have a map JnX −→ JnX. This is because Dn

is not the coarse moduli space of Dn.

Let V G ⊂ V be the fixed point locus and Y := [V G/G] ⊂ X . Since we have supposed that V
is non-trivial, φ is proper and birational. Then Y is the exceptional locus of φ. We define J∞Y
to be the subset of J∞X consisting of those twisted arcs that factor through Y. Let Y ⊂ X be
the image of Y. Then the arc space J∞Y of Y is regarded as a subscheme of J∞X.

Proposition 3.17. The map

φ∞ : J∞X\J∞Y −→ J∞X\J∞Y
is bijective.

Proof. We will show that γ ∈ J∞X\J∞Y can be reconstructed from γ̄ := φ∗γ. Let E∗ −→ D∗

be a G-cover obtained as the base change of V −→ X by γ̄|D∗ . If E is the normalization of
D in E∗, then the morphism E∗ −→ V uniquely extends to E −→ V, thanks to the valuative
criterion of properness. This is a G-arc and induces a twisted arc D := [E/G] −→ X . Now it is
straightforward to check that this twisted arc is isomorphic to γ. 2
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4. Motivic integration

In this section we introduce the motivic measure on the space of twisted arcs and define integrals
relative to this. This is mostly a matter of repeating material from the literature [Bat98, DL99,
DL02, Seb04] with a slight modification.

4.1 The Grothendieck ring of varieties and a variant
Let Vark denote the set of isomorphism classes of k-varieties. The Grothendieck ring of varieties
over k, denoted K0(Vark), is the abelian group generated by [Y ] ∈ Vark subject to the following
relation: If Z is a closed subvariety of Y , then [Y ] = [Y \Z] + [Z]. It has a ring structure where
the product is simply defined by [Y ][Z] := [Y × Z]. We denote by L the class [A1

k] of the affine
line.

For our purposes, we also need the following relation.

Condition 4.1. Let f : Y −→ Z be a morphism of varieties. If every geometric fiber of f is
universally homeomorphic to the quotient of AnK with K an algebraically closed k-field by some
linear G-action, then [Y ] = Ln[Z].

Definition 4.2. We define K ′0(Vark) to be the quotient of K0(Vark) by imposing Condition 4.1.

Let A be an abelian group and let χ : Vark −→ A be a map satisfying the following property:
For every variety Z and every closed subvariety Y ⊂ Z, χ(Z) = χ(Z\Y ) +χ(Y ). (Such a map is
called a generalized Euler characteristic.) Then there exists a unique group homomorphism

K0(Vark) −→ A

through which χ factors. Additionally, suppose that for every morphism f : Y −→ Z as in
Condition 4.1, χ(Y ) = χ(Ank)χ(Z). Then there exists a group homomorphism K ′0(Vark) −→ A
which fits into the commutative diagram.

Vark //

%%
χ

��

K0(Vark)

yy

����
K ′0(Vark)

��
A

The maps K
(′)
0 (Vark) −→ A are ring maps if A is a ring and if χ(Y )χ(Z) = χ(Y ×Z) for any Y

and Z.

4.2 Various realizations
4.2.1 Counting rational points. In this paragraph, we suppose that k is a finite field. Then

for a finite extension Fq/k, associating to a variety X the number of Fq-points ]X(Fq), we obtain
a map

]q : Vark −→ Z, X 7−→ ]X(Fq).
This is a generalized Euler characteristic and defines

]q : K0(Vark) −→ Z.

Let k̄ be a fixed algebraic closure of k. For a variety Y over k, we denote by Yk̄ the variety
over k̄ obtained from Y by extension of scalars. Then, fixing a prime l 6= p, we write (compactly
supported) l-adic étale cohomology groups as H i(Yk̄) = H i(Yk̄,Ql) and H i

c(Yk̄) = H i
c(Yk̄,Ql).
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Lemma 4.3. For a G-representation V of dimension d, we have isomorphisms of Gal(k̄/k)-
representations:

H i
c((V/G)k̄)

∼= H i
c(Vk̄)

∼=

{
Ql(−d) (i = 2d)

0 (otherwise).

Proof. In this proof, we omit the subscript k̄. Let W := V G ⊂ V be the fixed point locus and
U := V \W . From the exact G-equivariant sequence

· · · −→ H i
c(U) −→ H i

c(V ) −→ H i
c(W ) −→ H i+1

c (U) −→ · · · (4.1)

we have equivariant isomorphisms

H i
c(U) ∼=


H i
c(V ) (i = 2d)

H i−1
c (W ) (i = 2 dimW + 1)

0 (otherwise).

We claim that H i(U/G) = H i(U)G. Indeed since U −→ U/G is an étale Galois covering, we have
the Hochschild–Serre spectral sequence [Mil80, p. 105, Theorem 2.20],

H i(G,Hj(U,Z/ln))⇒ H i+j(U/G,Z/ln).

Then since ]G = p 6= l, the group cohomology groups H i(G,Hj(Uk̄,Z/ln)) vanish for i 6= 0 and
the spectral sequence degenerates. Hence for each j,

Hj(U,Z/ln)G = Hj(U/G,Z/ln).

Then passing to the limits and tensoring with Ql, we can show the claim.
Now, since the G-action on H2 dimW

c (W ) is trivial, from the Poincaré duality, we have
H i
c(U/G) = H i

c(U) for every i. Let W̄ ⊂ V/G be the image of W. Then the map W −→ W̄
is a universal homeomorphism and hence H i

c(W ) = H i
c(W̄ ) (see, for instance, [NS11, § 4.2]).

From the five lemma, the long exact sequence

· · · −→ H i
c(U/G) −→ H i

c(V/G) −→ H i
c(W̄ ) −→ H i+1

c (U/G) −→ · · ·

is isomorphic to (4.1). In particular, H i
c(V/G) ∼= H i

c(V ) for every i. The lemma follows again
from the Poincaré duality. 2

Lemma 4.4. Let f : Y −→ Z be a morphism as in Condition 4.1. Then we have an isomorphism
of Gal(k̄/k)-representations,

H i
c(Yk̄)

∼= H i
c(Zk̄)⊗Q(−n).

Proof. From the previous lemma and the invariance of étale cohomology under universal
homeomorphisms, we have

Rif!Ql =

{
Ql(−n) (i = 2n)

0 (otherwise),

which proves the lemma. 2

Proposition 4.5. The map ]q factors through K ′0(Vark).

Proof. This follows from the previous lemma and the Lefschetz trace formula. 2
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4.2.2 Poincaré polynomials. The Poincaré polynomial of a smooth proper variety X is

P (X;T ) =
∑
i

(−1)ibi(X)T i ∈ Z[T ].

Here bi(X) = dimH i(Xk̄). Following Nicaise [Nic11, Appendix], we generalize this to any variety.
Indeed there exists a map

P : K0(Vark) −→ Z[T ],

and for a variety X we simply write P ([X]) as P (X). Making the variable T explicit, we also
write it as P (X;T ). Two important properties of the generalized Poincaré polynomial are as
follows. Firstly, for a variety X, the degree of P (X) equals twice the dimension of X. Secondly,
P (X; 1) equals the topological Euler characteristic

etop(X) :=
∑
i

dimH i
c(Xk̄).

Proposition 4.6. The map P factors through K ′0(Vark).

Proof. Let f be a morphism Z −→ Y as in Condition 4.1. We need to show that P (Z) =
P (Y )T 2n. Let A ⊂ k be a finitely generated Fp-subalgebra such that f is obtained from an
A-morphism fA : ZA −→ YA by extension of scalars. Let a : SpecFq −→ SpecA be a general
closed point. Let Ya be the fiber of Y −→ SpecA over a, and similarly for Za. Then from [Nic11],
P (Y ) = P (Ya) and P (Z) = P (Za). Moreover, P (Ya) is computed from the weight filtrations on
H i
c(Ya ×Fq F̄q). Similarly for P (Za). From Lemma 4.4,

P (Z) = P (Za) = P (Ya)T
2n = P (Y )T 2n.

This proves the proposition. 2

4.3 Localization and completion
We need to further extend our modified Grothendieck ring K ′0(Vark). We first consider its
localization by L, M′ := K ′0(Vark)[L−1]. Then we define its dimensional completion M̂′ as
follows. Let FmM′ be the subgroup of M′ generated by [X]Li with dimX + i < −m. Then
{FmM′}m∈Z is a descending filtration of M′. We define

M̂′ := lim
←−M

′/FmM′.

This inherits the ring structure and the filtration from M′. For later use, we define a norm ‖ · ‖
on M̂′ by

‖ · ‖ : M̂′ −→ R>0

a 7−→ ‖a‖ := 2−n,

where n := sup{m | a ∈ FmM̂′}.
Let M̄′ be the image of M′ in M̂′ and consider the following subring of M̂′:

M̂′0 := M̄′
[

1

1− L−n

∣∣∣∣ n ∈ Z>0

]
.

Every element a ∈ M̂′0 has the expression

a = b+ bL−n + bL−2n + · · · = b

1− L−n
(4.2)
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for some b ∈ M̄′ and n > 0. In this paper, every explicitly computed element of M̂′ actually lies
in M̂′0.

The map P : K ′0(Vark) −→ Z[T ] extends to

P : M̂′ −→ Z((T−1))

and we have

P (M̂′0) ⊂ Z
[
T, T−1,

1

1− T−n

∣∣∣∣ n ∈ Z>0

]
⊂ Z(T ).

For a ∈ M̂′0, if the rational function P (a;T ) has no pole at T = 1, then we define the topological
Euler characteristic of a by

etop(a) := P (a; 1) ∈ Q.

For a variety X, we have etop([X]) = etop(X).
When k is a finite field contained in Fq, we can easily see that the map ]q uniquely extends

to the ring map M′ −→ Q. This map further descends to M̄′ −→ Q,3 which we still denote by
]q. Then, for a ∈ M̂′0 expressed as in (4.2), we put

]q(a) := ]q(b) + ]q(b)q
−n + ]q(b)q

−2n + · · · = ]q(b)

1− q−n
∈ Q.

Note that the first expression as a series converges in R and coincides with the second expression.
This is also independent of the expression of a, since, for another expression

a =
b′

1− L−n′

with n | n′, there exists a polynomial f(L−1) in L−1 with integer coefficients such that b′ =
b · f(L−1) and 1− L−n′ = (1− L−n)f(L−1). For a variety X, we have ]q([X]) = ]X(Fq).

4.4 Motivic integration over a variety
We briefly review the motivic integration over singular varieties. The original reference for the
theory in characteristic zero is [DL99]. For the positive characteristic case, see [Seb04].

Let X be a reduced k-variety of pure dimension d.

Definition 4.7. A subset C ⊂ J∞X is called a cylinder if for some 0 6 n <∞, πn(C) ⊂ JnX
is a constructible subset and C = π−1

n (πn(C)). A subset C ⊂ J∞X is called stable if, for some
0 6 n < ∞, πn(C) ⊂ JnX is a constructible subset and, for all n′ > n, the map πn′+1(C) −→
πn′(C) is a piecewise trivial fibration with fiber Adk. For a stable subset C ⊂ J∞X, we define its
measure by

µX(C) := [πn(C)]L−nd ∈ M̂′ (n� 0).

Remark 4.8. In some literature, the value of measure and hence all computations following it
differ by a factor Ld.

3 Indeed, by the realization map of M̂′ to the completed Grothendieck ring K̂0(MR(Gal(k̄/k),Ql)) of mixed Galois
representations constructed in the same way as in [Yas06, pp. 728–730], the subring M̄′ maps to the non-completed
Grothendieck ring K0(MR(Gal(k̄/k),Ql)), which is a subring of the completed one. Then we can compose the
map M̄′ −→ K0(MR(Gal(k̄/k),Ql)) with the map K0(MR(Gal(k̄/k),Ql)) −→ Q defined by the alternating trace
of the Frobenius action, and obtain the desired map.
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Definition 4.9. For an ideal sheaf I ⊂ OX , we define a function

ord I : J∞X −→ Z>0 ∪ {∞}
γ 7−→ length k[[t]]/γ−1I.

The Jacobian ideal sheaf JacX ⊂ OX of X is defined to be the dth Fitting ideal of the sheaf
of differentials, ΩX/k. This defines a closed subscheme supported on the singular locus. For a
cylinder C ⊂ J∞X and for each e ∈ N, the subset C ∩ (ord JacX)−1(e) is stable, and we define

µX(C) :=

∞∑
e=0

µX(C ∩ (ord JacX)−1(e)).

This indeed converges in M̂′.

Definition 4.10. A subset C ⊂ J∞X is measurable if for any ε ∈ R>0, there exists a sequence
of cylinders, C0(ε), C1(ε), . . . , such that

C∆C0(ε) ⊂
⋃
i>1

Ci(ε)

and ‖µX(Ci(ε))‖ < ε for all i > 1. Here ∆ denotes the symmetric difference. If we can take
C0(ε) ⊂ C, we call C strongly measurable.

We define the measure of a measurable subset C ⊂ J∞X by

µX(C) := lim
ε−→0

µX(C0(ε))

with C0(ε) as above. This converges and the limit is independent of the choice of C0(ε).

Definition 4.11. Let A ⊂ J∞X be a subset and F : A −→ Z∪{∞} a function on it. We say that
F is measurable if every fiber F−1(n) is measurable. We say that F is exponentially integrable4

if:

(i) F is measurable;

(ii) F−1(∞) has measure zero; and

(iii) for every ε > 0, there exist at most finitely many n ∈ Z such that ‖µX(F−1(n))‖ > ε.

For an exponentially integrable function F : J∞X ⊃ A −→ Z ∪ {∞}, the integral of LF is
defined as ∫

A
LF dµX :=

∑
n∈Z

µX(F−1(n))Ln ∈ M̂′.

4.5 Motivic integration over the quotient stack X
Let V be a d-dimensional non-trivial G-representation and X := [V/G]. The following arguments
contain a lot of repetition from the previous subsection and from the literature. However, we
have to pay attention to slight differences coming from the fact that the space of twisted arcs,
J∞X , is a projective limit of inductive limits of varieties, while J∞X is only a projective limit.

Definition 4.12. A subset C ⊂ JnX is called constructible if it is a constructible subset of
Jn,6jX for some j ∈ N. A subset C ⊂ J∞X is called a cylinder if for some n, πn(C) is
constructible and C = π−1

n (πn(C)).

4 In the literature, −F is called exponentially integrable when the same condition holds.
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For a cylinder C, we define its measure by

µX (C) := [πn(C)]L−nd ∈ M̂′ (n� 0).

This is well defined from Corollary 3.14.

Definition 4.13. A subset C ⊂ J∞X is measurable if for any ε ∈ R>0, there exists a sequence
of cylinders, C0(ε), C1(ε), . . . , such that

C∆C0(ε) ⊂
⋃
i>1

Ci(ε)

and ‖µX (Ci(ε))‖ < ε for all i > 1. If we can take C0(ε) ⊂ C, then we say that C is strongly
measurable.

We define the measure of a measurable subset C ⊂ J∞X by

µX (C) := lim
ε−→0

µX (C0(ε)).

We can show that the limit is independent of the choice of C0(ε) in the same way as the proof
of [Bat98, Theorem 6.18] using the following lemma.

Lemma 4.14. Let C and Ci, i ∈ N, be cylinders in J∞X . If C ⊂
⋃
i∈NCi, then for some m ∈ N,

we have C ⊂
⋃m
i=0Ci.

Proof. The proof follows that of [Seb04, Lemma 4.3.7]. Suppose that C ⊂ J∞,6jX . Then,
replacing Ci with Ci ∩ J∞,6jX , we may suppose also that Ci ⊂ J∞,6jX . Then since J∞,6jX
is affine and hence quasi-compact, the lemma follows from the quasi-compactness of the
constructible topology [GD71, § 7, Proposition 7.2.13]. 2

We now define measurable and exponentially integrable functions defined on subsets of
J∞X , and the integral of an exponentially integrable function in the exactly same way as in
Definition 4.11. Following [Yas04, Yas06], we define the order function associated to an ideal
sheaf on X as follows.

Definition 4.15. For a coherent ideal sheaf I ⊂ OX and for a twisted arc γ : D −→ X , we
define a function ord I : J∞X −→ (1/p)Z∪{∞} as follows: Let E

α−→ D −→ D be the associated
G-cover of D. Then

ord I(γ) :=
1

p
· length

(
OE

(γ ◦ α)−1I

)
.

If Y is the closed substack of X defined by the ideal sheaf I, then we write ord I also as ordY.

4.6 Some technical results
Here we collect technical results on the measurability and integrability which will be needed
below.

Lemma 4.16. Let Y ⊂ X be a closed substack. Then for every n ∈ (1/p)Z>0 and for every j ∈ N′0,
(ordY)−1(n) ∩ J∞,jX is a cylinder.

Proof. Let n′ := dne, where d·e is the ceiling function. Let

E
γ //

ξ

��

V

JGn′,jV
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be the universal G-n′-jet of ramification jump j. Then we consider the coherent sheaf F :=
ξ∗(γ

∗OY) over JGn′,jV. From the semicontinuity,

W := {x ∈ JGn′,jV | lengthF ⊗ κ(x) > pn}

is a closed subset. Let W̄ be the image of W in Jn′,jX . Then

(ordY)−1(> n) ∩ J∞,jX = π−1
n (W̄ ),

which is a cylinder. Hence (ordY)−1(n) ∩ J∞,jX is also a cylinder. 2

Lemma 4.17. Let Y ⊂ X be a closed substack of positive codimension. Then the subset J∞Y :=
(ordY)−1(∞) of J∞X is measurable and has measure zero.

Proof. For any ε > 0, we choose n, j and ni (i > j) so that n� j � 0 and ni1 � ni2 (i1 > i2).
Then

(J∞Y)∆((ordY)−1(> n) ∩ J∞,6jX )

⊂ ((ordY)−1(> n) ∩ J∞,6jX ) ∪
⋃
i>j

((ordY)−1(> ni) ∩ J∞,iX ).

This shows the lemma. 2

Definition 4.18. We define a subsemiring N ⊂ M̂′ by

N :=

{∑
i∈N

[Xi]Lni ∈ M̂′
∣∣∣∣ Xi ∈ Vark, lim

i−→∞
dimXi + ni = −∞

}
.

(Notice that there is no minus sign in the above series.)
We need this semiring for a technical reason. In fact, motivic measures and motivic integrals

take values in N (or its variant added with L1/r, defined below).

Lemma 4.19. For a, b ∈ N , we have that ‖a+ b‖ = max{‖a‖, ‖b‖}.

Proof. Let us write a =
∑

i∈N[Xi]Lni and put n := max{dimXi+ni | i ∈ N}. Then ‖a‖ = 2n. This
fact proves the lemma. (In the semiring N , we can avoid difficulties coming from cancellation of
terms.) 2

Lemma 4.20. For i, j ∈ N, let aij ∈ N . Then the following are equivalent:

(i) for every i, limj−→∞ ‖aij‖ = 0 and limi−→0 ‖
∑

j∈N aij‖ = 0;

(ii) for every j, limi−→∞ ‖aij‖ = 0 and limj−→0 ‖
∑

i∈N aij‖ = 0;

(iii) for every ε > 0, there exist at most finitely many pairs (i, j) ∈ N2 such that ‖aij‖ > ε.

Moreover, if one of the above conditions holds, then∑
i,j∈N2

aij =

∞∑
i=0

∞∑
j=0

aij =

∞∑
j=0

∞∑
i=0

aij .

Proof. Following the definition, we can translate the first condition as follows: for every ε > 0
and every i, there exist at most finitely many j with ‖aij‖ > ε, and for every ε′, there exist at
most finitely many i with ∥∥∥∥ ∞∑

j=0

aij

∥∥∥∥ = max{‖aij‖ | j ∈ N} > ε′.
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(The equality above follows from the previous lemma.) Then this is equivalent to the third

condition. We can similarly prove the equivalence of the second and third. 2

Proposition 4.21. Let Ai, i ∈ N, be mutually disjoint subsets of J∞X and let A :=
⊔∞
i=0Ai.

Let F : A −→ Z ∪ {∞} be a function such that for every i, F |Ai is measurable. Then F is

exponentially integrable if and only if for every i, F |Ai is exponentially integrable and

lim
i−→0

∥∥∥∥∫
Ai

LF dµX
∥∥∥∥ = 0.

Moreover, if this is the case, then∫
A
LF dµX =

∞∑
i=0

∫
Ai

LF dµX .

Proof. To prove the ‘if’ part, we can easily see that

lim
i−→∞

‖µX (F−1(n) ∩Ai)‖ = 0.

It follows that F−1(n) =
⊔
i F
−1(n) ∩ Ai is measurable. From the previous lemma, we conclude

that F is exponentially integrable.

We now turn to the ‘only if’ part. Obviously F |Ai is exponentially integrable. Then the

assertion that

lim
i−→0

∥∥∥∥∫
Ai

LF dµX
∥∥∥∥ = 0

follows from the previous lemma.

The last assertion also follows from the previous lemma. 2

Lemma 4.22. Let F : J∞X ⊃ A −→ Z∪ {∞}. Then F is exponentially integrable if and only if

there exist measurable subsets Ai, i ∈ N such that:

(i) A =
⊔
i∈NAi;

(ii) A0 has measure zero;

(iii) F has a finite constant value on each Ai, i > 0, and

lim
i−→∞

‖µX (Ai)LF (Ai)‖ = 0.

Proof. The ‘only if’ part is obvious. Suppose that there exist such measurable subsets Ai. Then

for each n ∈ Z ∪ {∞},
F−1(n) =

⊔
F (Ai)=n

Ai.

Then by assumption, F is exponentially integrable on F−1(n) and

lim
n−→∞

∥∥∥∥∫
F−1(n)

LF dµX
∥∥∥∥ = 0.

From Lemma 4.20, F is exponentially integrable. 2
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Lemma 4.23. Let C ⊂ J∞X be a strongly measurable subset and F : C −→ Z ∪ {∞} an
exponentially integrable function. Let C0(ε), ε ∈ R>0 as in Definition 4.13. Then∫

C
LF dµX = lim

ε−→0

∫
C0(ε)

LF dµX .

Proof. We see that

lim
ε−→0

∥∥∥∥∫
C\C0(ε)

LF dµX
∥∥∥∥ = 0.

Now the lemma follows from the obvious equality∫
C
LF dµX =

∫
C\C0(ε)

LF dµX +

∫
C0(ε)

LF dµX . 2

4.7 Adding fractional powers of L
In applications, we often consider functions on arc spaces with fractional values. For this reason,
we need to add fractional powers of L to Grothendieck rings. For a positive integer r, we put

M′1/r :=M′[L1/r] =M′[x]/(xr − L).

Then its dimensional completion M̂′1/r is defined similarly. Now for an exponentially integrable
function

F : J∞X (or J∞X ) ⊃ A −→ 1

r
Z ∪ {∞},

its integral
∫
A LF dµX (or

∫
A LF dµX ) is defined as an element of M̂′1/r.

If r divides r′, then we can identify M̂′1/r with a subring of M̂′1/r′ . Then the values of
measures and integrals are independent of which ring we consider. Therefore, in what follows,
we will not make the value ring explicit.

4.8 Motivic integration on G-Covrep(D)
For a constructible subset C of G-Covrep(D,6 j), we define its measure simply as

ν(C) := [C] ∈ M̂′.

Let F : G-Covrep(D) −→ Z be a function which is constant on each stratum G-Covrep(D, j).
Then we write F (G-Covrep(D, j)) as F (j). Suppose that

lim
j−→∞

F (j) + j − bj/pc = −∞.

Then we define the integral of LF by∫
G-Covrep(D)

LF dν =
∑
j∈N′0

ν(G-Covrep(D, j))LF (j)

= (L− 1)L−1
∑
j∈N′0

Lj−bj/pc+F (j).

Proposition 4.24. Let (J∞X )0 be the preimage of the origin by the projection J∞X −→ X .
Let π : J∞X −→ G-Covrep(D) be the projection. Then we have∫

G-Covrep(D)
LF dν =

∫
(J∞X )0

LF◦π dµX .

Proof. From Corollary 3.14, the preimage of J0,jX −→ X of the origin is isomorphic to
G-Covrep(D, j). The proposition follows from this. 2
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5. The change of variables formula

We keep the notation from the previous section: V is a non-trivial G-representation, X = [V/G]

and X = V/G. In this section, we will prove the change of variables formula for the map φ∞ :

J∞X −→ J∞X, which enables us to express integrals on J∞X as ones on J∞X, and vice versa.

5.1 Preliminary results

Definition 5.1. Let S = k[x] be the coordinate ring of V and R := SG that of X. The Jacobian

ideal Jacψ ⊂ S of the quotient map ψ : V −→ X is defined as the zeroth Fitting ideal of the

module of differentials, ΩV/X . This defines a coherent ideal sheaf on X , which we call the Jacobian

ideal of φ : X −→ X and denote it by Jacφ ⊂ OX .

Lemma 5.2. Let f =
∑

i>r ait
i ∈ k[[t]], ar 6= 0, be a power series of order r and let f−1 =∑

i>−r bit
i ∈ k((t)) be its inverse. Then the negative part,

∑−1
i=−r bit

i, of f−1 depends only on

the class of f in k[[t]]/(t2r).

Proof. The classes of t−rf and trf−1 in k[[t]]/(tr) are mutual inverses. The negative part of f−1

depends only on the class of trf−1 in k[[t]]/(tr). Then it depends only on the class of t−rf in

k[[t]]/(tr) and depends only on the class of f in k[[t]]/(t2r). 2

Proposition 5.3. There exists a constant c > 2 depending only on V such that if γ, γ′ ∈ J∞X
and if φnγn = φnγ

′
n for some n with

n > c · ord Jacφ(γ),

then γ and γ′ have the same associated G-covers of D.

Proof. From Lemmas 6.17 and 6.29 below, Jacψ is generated by elements of R, say f1, . . . , fl ∈ R.

Set γ̄ := φ∞γ and f̃i := γ̄∗fi ∈ k[[t]]. Then e := ord Jacφ(γ) is equal to the minimum of ord f̃i,

say ord f̃1. Let Sf1 and Rf1 be localizations of S and R by f1. Then SpecSf1 −→ SpecRf1 is an

étale G-cover and we have

Sf1 = Rf1 [℘−1(g/fm1 )]

for some g ∈ R and m > 0. Then the G-cover E∗ −→ D∗ associated to γ is given by

OE∗ = k((t))[℘−1(g̃/f̃1
m

)],

with g̃ := γ̄∗g. Hence E∗ is determined by the negative part of the Laurent power series g̃/f̃1
m

.

From the previous lemma, the negative part of (f̃1)−m is determined by f̃m1 modulo t2me. The

terms of g̃ of degree at least me do not contribute to the negative part of g̃/f̃1
m

. This shows

that E∗ depends only on φnγn if n > 2me. The proposition follows. 2

Proposition 5.4. Let c be a constant as in the previous proposition. Then there exists a

constant c′ > 0 depending only on X such that for γ, γ′ ∈ J∞X , if we put e := ord Jacφ(γ)

and if φ∞γn = φ∞γ
′
n for some n with

n > max{ce, c′ · ord JacX(φ∞γ)},

then γn−e = γ′n−e.
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Proof. Let γ̃, γ̃′ ∈ JG∞V be liftings of γ, γ′, respectively. From the previous proposition, γ and
γ′ have the same G-cover E of D. Fixing an isomorphism E ∼= Spec k[[s]], we can think of γ̃, γ̃′

as elements of the ordinary arc space J∞V of V. Let c′ be the constant cX in [Seb04, Lemme
7.1.1]. Then there exists β ∈ J∞V such that φ∞β = φ∞γ̃′ and βpn−pe = γ̃pn−pe. (Here γ̃ is now
considered as an element of J∞V and so γ̃pn is the image of γ̃ by J∞V −→ JpnV , which is the
same as the image of γ̃ by JG∞V −→ JGn V .) The equality φ∞β = φ∞γ̃′ shows that β is actually a
G-arc and in the same G-orbit as γ̃′. Then the equality βpn−pe = γ̃pn−pe implies γn−e = γ′n−e. 2

We can rephrase the proposition as the following corollary.

Corollary 5.5. Let γ ∈ J∞X , e := ord Jacφ(γ) and e′ := ord JacX(φ∞γ). Let c and c′ be
positive constants as above. Then if n > max{ce, c′e′}, then φ−1

n (φnγn) is included in the fiber
of πn(J∞X ) −→ πn−e(J∞X ) over γn−e.

Corollary 5.6. Let C ⊂ J∞X be a cylinder with C ∩ (ord Jacφ)−1(∞) = ∅. Then φ∞(C) ⊂
J∞X is a stable subset.

Proof. From Lemma 4.14, without loss of generality, we may suppose that the functions ord Jacφ
and ordφ−1JacX take constant values, say e and e′, on C. Let n ∈ N be such that C is a cylinder
at level n and n > max{ce, c′e′}. Then from the previous corollary, φ∞(C) is a cylinder at level
n+ e. Moreover, since the function ord JacX is constant on it, φ∞(C) is stable. 2

Corollary 5.7. If C ⊂ J∞X is a (strongly) measurable subset, then so is φ∞(C).

Proof. If φ∞(C)\J∞Y is strongly measurable, so is φ∞(C). Hence we may suppose that C is
disjoint from J∞Y. Then, let Ci(ε) ⊂ J∞X be cylinders as in Definition 4.13. Replacing Ci(ε),
i > 0, with their intersections with (ordY)−1(n) ∩ J∞,jX , n ∈ N, j ∈ N′0, we may suppose that
Ci(ε) are all disjoint from J∞Y. Then from the previous corollary, φ∞(Ci(ε)) are cylinders as
well. Moreover, we can easily see that

‖µX (Ci(ε))‖ > ‖µX(φ∞(Ci(ε)))‖.

This shows that φ∞(C) is strongly measurable. 2

5.2 The key dimension count
The essential part in the proof of the change of variables formula is counting the dimension of
φ−1
n (φnγn) for n� 0. To do this, we will follow Looijenga’s argument [Loo02].

5.2.1 Identifying φ−1
n (φnγn) with a certain Hom module. For simplicity, we first suppose

that V is indecomposable and that the G-action on the coordinate ring k[x] = k[x1, . . . , xd] is
given by σ(xi) = xi + xi+1 (i < d) and σ(xd) = xd. Let γ, γ′ ∈ J∞X be such that φnγn = φnγ

′
n

for n > max{ce, c′e′} with the notation as above. Then we can choose their liftings β, β′ ∈ JG∞V
such that βn−e = β′n−e. Let E be the G-cover of D associated with β and β′. Then β∗ and (β′)∗

induce the same S-module structure on m
(n−e)p+1
E /m

2(n−e)p+2
E . Since np + 1 6 2(n − e)p + 2, it

induces an S-module structure on Mn,e := m
(n−e)p+1
E /mnp+1

E . Then the induced map

β∗ − (β′)∗ : S −→Mn,e

is a k-derivation and corresponds to an S-linear map

ΩS/k −→Mn,e
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and an OE-linear map
∆β,β′ : β∗ΩS/k −→Mn,e,

which are G-equivariant. Moreover, from the construction,

∆β,β′(dx1) ∈M \
n,e := Im((m

(n−e)p+1
E )δ

d=0 −→Mn,e).

Let Fn,e,β be the fiber of the map πn(JG∞V ) −→ πn−e(J
G
∞V ) over βn−e. Let

Hom\
OE (β∗ΩS/k,Mn,e) := {α ∈ HomOE (β∗ΩS/k,Mn,e) | α is G-equiv. and α(dx1) ∈M \

n,e}.
Then we have an injection

Fn,e,β −→ Hom\
OE (β∗ΩS/k,Mn,e)

β′n 7−→∆β,β′ .

Since a G-equivariant map α is determined by α(dx1), Hom\
OE (β∗ΩS/k,Mn,e) is identified with

M \
n,e. Comparing the dimensions, we conclude that Fn,e,β is identified with M \

n,e and with

Hom\
OE (β∗ΩS/k,Mn,e).

Consider the exact sequence

0 −→ Hom\
OE (β∗ΩS/R,Mn,e) −→ Hom\

OE (β∗ΩS/k,Mn,e) −→ HomOE ((ψ ◦ β)∗ΩR/k,Mn,e),

where Hom\
OE (β∗ΩS/R,Mn,e) is the preimage of Hom\

OE (β∗ΩS/k,Mn,e) in HomOE (β∗ΩS/R,Mn,e).
Then β and β′ have the same image in JnX if and only if ∆β,β′ maps to 0 ∈ HomOE ((ψ◦β)∗ΩR/k,
Mn,e). This shows the following proposition.

Proposition 5.8. The fiber of the map Fn,e,β −→ JnX over φnγn is identified with

Hom\
OE (β∗ΩS/R,Mn,e). Hence φ−1

n (φnγn) is universally homeomorphic to the quotient of

Hom\
OE (β∗ΩS/R,Mn,e) by some G-linear action. In particular,

[φ−1
∗ (φ∗γn)] = [Hom\

OE (β∗ΩS/R,Mn,e)] ∈ M̂′.

When V is decomposable, we define Hom\
OE (β∗ΩS/k,Mn,e) to be the submodule of

HomOE (β∗ΩS/k,Mn,e) consisting of those G-equivariant maps α with α(dxλ,1) ∈ M \
n,e, 1 6

λ 6 l. Then we similarly define Hom\
OE (β∗ΩS/R,Mn,e). Now Proposition 5.8 holds also in the

decomposable case by the same reasoning.

5.2.2 Counting the dimension of Hom\
OE (β∗ΩS/RMn,e): the indecomposable case. We now

suppose that V is indecomposable. The decomposable case will be discussed in the next
subsection. To count the dimension of Hom\

OE (β∗ΩS/R,Mn,e), we have to know the precise
structure of the module β∗ΩS/R. It is the quotient of a free module β∗ΩS/k =

⊕
iOE ·dxi by the

submodule Im((ψ ◦ β)∗ΩR/k −→ β∗ΩS/k). Then we first note that the submodule is generated

by G-invariant elements. Let ω =
∑d

i=1 ωidxi ∈ β∗ΩS/k be G-invariant. Then

σ(ω) =
d−1∑
i=1

σ(ωi)(dxi + dxi+1) + σ(ωd)dxd

= σ(ω1)dx1 +
d∑
i=2

(σ(ωi−1) + σ(ωi))dxi

= ω.

Hence σ(ω1) = ω1 and σ(ωi−1) + σ(ωi) = ωi, i > 2.
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Notation 5.9. For an abelian group M endowed with a G-action, we define an operator δ− on
M by

δ− := σ−1 − idM = −σ−1δ.

Then ωi−1 = δ−(ωi) and ω1 is G-invariant. Furthermore, this is equivalent to

ωi = δd−i− (ωd) and δd−(ωd) = 0.

Notation 5.10. For f ∈ Oδd=0
E , we define a G-invariant element ωf ∈ β∗ΩS/k by

ωf :=
d∑
i=1

δd−i− (f) · dxi.

We note that if h ∈ k[[t]], then we have

ωhf = h · ωf .

As before, we write OE∗ = k((t))[℘−1f ] and put g := ℘−1f. Then 1, g, . . . , gp−1 form a basis
of OE∗ as a k((t))-vector space. Hence every f ∈ OE∗ is uniquely written as f =

∑p−1
λ=0 f

(λ),

f (λ) ∈ k((t)) · gλ. Suppose that δd−(f) = 0, or equivalently that f (λ) = 0 for λ > d. Then from
Lemma 2.15, we have

ωf =

d∑
i=1

( ∑
λ>d−i

δd−i− (f (λ))

)
dxi.

Lemma 5.11. There exists an OE-basis ωf1 , . . . , ωfd of Im((ψ ◦ β)∗ΩR/k −→ β∗ΩS/k) such that

f
(d−i)
i 6= 0 and f

(λ)
i = 0, λ > d − i. Namely for every 1 6 i 6 d, the terms of dxi′ , i

′ < i, in ωfi
vanish, hence we have

ωf1
ωf2

...
ωfd−1

ωfd

 =


δd−1
− (f1) δd−2

− (f1) . . . δ−(f1) f1

δd−2
− (f2) . . . δ−(f2) f2

. . .
...

...
δ−(fd−1) fd−1

fd




dx1

dx2
...

dxd−1

dxd

 .

Proof. The proof is more or less standard linear algebra. Since OE is a PID and β∗ΩS/R is a
torsion module, there exists a basis of Im((ψ ◦ β)∗ΩR/k −→ β∗ΩS/k) consisting of d elements,

say ωf1 , . . . , ωfd . For some i, f
(d−1)
i 6= 0, say f

(d−1)
1 6= 0. Moreover, we may and shall suppose

that f
(d−1)
1 has the least order among non-zero f

(d−1)
i . Then replacing fi, i > 2 with fi − gif1

for suitable gi ∈ k[[t]], we may suppose that f
(d−1)
i = 0 for i > 2. Repeating this procedure for

ωfi , i > 2, we may suppose that f
(d−2)
2 6= 0 and f

(d−2)
i = 0, i > 3. Repeating this, we eventually

get a basis of the expected form. 2

Lemma 5.12. Let f1, . . . , fd be as above. Then

ord Jacφ(γ) =
1

p

d∑
i=1

vE(δd−i− (fi)).
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Proof. Since Fitting ideals are compatible with pullbacks, the ideal, γ−1Jacφ = β−1Jacψ ⊂ OE ,
is equal to the zeroth Fitting ideal of β∗ΩS/R. This module is isomorphic to the cokernel of a

map OdE −→ OdE defined by the matrix
δd−1
− (f1) δd−2

− (f1) . . . δ−(f1) f1

δd−2
− (f2) . . . δ−(f2) f2

. . .
...

...
δ−(fd−1) fd−1

fd

 .

Now, by the definition of Fitting ideals, β−1Jacψ is the determinant of the matrix and equal to∏d
i=1 δ

d−i(fi). Hence

lengthOE/γ−1Jacφ =
d∑
i=1

vE(δd−i− (fi)),

which proves the lemma. 2

Definition 5.13. Suppose that V is an indecomposable G-representation of dimension d. Then
we define the shift number of j ∈ N′0 with respect to V to be

shtV (j) :=
d−1∑
i=1

⌊
ij

p

⌋
.

Proposition 5.14. Let the assumption be as in Corollary 5.5. Additionally we suppose that
V is indecomposable (although this assumption will be removed in the next subsection). Then

φ−1
n (φnγn) is universally homeomorphic to the quotient of Ae+shtV (j)

k by some linear G-action.

Proof. Let Mn := OE∗/mnp+1
E and let M \

n ⊂ Mn be the image of Oδd=0
E∗ =

⊕d−1
i=0 k((t))gi.

Then M \
n,e ⊂ M \

n and we can identify Hom\
OE (β∗ΩS/R,Mn,e) with the similarly defined

Hom\
OE (β∗ΩS/R,Mn). Indeed since β∗ΩS/R has length pe, every OE-linear map β∗ΩS/R −→Mn

has its image in Mn,e. Therefore we may count the dimension of Hom\
OE (β∗ΩS/R,Mn) instead.

This trick will make the following arguments easier.
Let ωf1 , . . . , ωfd be as in Lemma 5.11. Then

Hom\
OE (β∗ΩS/R,Mn) = {α ∈ Hom\

OE (βΩS/k,Mn) | α(ωfi) = 0 (i = 1, . . . , d)}.

Identifying Hom\
OE (β∗ΩS/k,Mn) with M \

n, we can identify Hom\
OE (β∗ΩS/R,Mn) with the set of

h ∈M \
n satisfying

δd−1
− (f1) δd−2

− (f1) . . . δ−(f1) f1

δd−2
− (f2) . . . δ−(f2) f2

. . .
...

...
δ−(fd−1) fd−1

fd




h
δ(h)

...
δd−2(h)
δd−1(h)

 = 0 mod mnp+1
E . (5.1)

Let us write h =
∑d−1

λ=0 h
[λ]gλ, h[λ] ∈ k((t)), such that if we write h[λ] =

∑
i h

[λ]
i t

i, then h
[λ]
i = 0

for i with

pi− jλ > np

(
⇔ i > n+

⌊
jλ

p

⌋)
.

1152

https://doi.org/10.1112/S0010437X13007781 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007781


The p-cyclic McKay correspondence via motivic integration

Then

δd−i(h) =
d−1∑
λ=d−i

δd−i(gλ) · h[λ].

We note that vE(δd−i(gd−i)) = 0. From the bottom row of (5.1),

fd · δd−1(gd−1) · h[d−1] = 0 mod mnp+1
E .

Hence the coefficients h
[d−1]
i of h

[d−1]
i are zero for i such that

vE(fd) + ip 6 np

(
⇔ i 6 n− vE(fd)

p

)
.

The other vE(fd)/p+ b(d− 1)j/pc coefficients,

h
[d−1]
i , n− vE(fd)

p
< i 6 n+

⌊
(d− 1)j

p

⌋
,

can take arbitrary values. Suppose now that h[d−1], . . . , h[d−l] are fixed. Then we consider the

(l + 1)th row from the bottom of equation (5.1),

δl−(fd−l) · δd−l−1(gd−l−1) · h[d−l−1] + (fixed terms) = 0 mod mnp+1
E .

The left-hand side is the image of ωfd−l by the G-equivariant map α ∈ HomOE (β∗ΩS/k,Mn) with
dx1 7−→ h. In particular, it is G-invariant for any h. Hence the equality holds for at least one
choice of h[d−l−1] ∈ k((t)). Indeed we can choose h[d−l−1] as

− (fixed terms)

δl−(fd−l) · δd−l−1(gd−l−1)
∈ k((t))

with coefficients of degree greater than n+ bj(d− l− 1)/pc eliminated. (This is the point where

we use the trick of replacing Mn,e with Mn.) Once a solution exists, then the equation uniquely

determines the coefficients h
[d−l−1]
i of h[d−l−1] for i such that

vE(δl−(fd−l)) + ip 6 np

(
⇔ i 6 n−

vE(δl−(fd−l))

p

)
.

The other vE(δl−(fd−l))/p+ b(d− l − 1)j/pc coefficients,

h
[d−l−1]
i , n−

vE(δl−(fd−l))

p
< i 6 n+

⌊
(d− l − 1)j

p

⌋
can take arbitrary values. Hence the solution space of (5.1) has dimension

d−1∑
l=0

(
vE(δl−(fd−l))

p
+

⌊
(d− l − 1)j

p

⌋)
= e+ shtV (j).

We have completed the proof. 2
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5.2.3 Counting the dimension of Hom\
OE (β∗ΩS/RMn,e): the decomposable case. We gener-

alize the shift number to the decomposable case in the following definition.

Definition 5.15. Suppose that V =
⊕l

λ=1 Vdλ . Then we define the shift number of j ∈ N′0 with
respect to V to be

shtV (j) :=
l∑

λ=1

shtVdλ (j) =
l∑

λ=1

dλ−1∑
i=1

⌊
ij

p

⌋
.

With this definition, Proposition 5.14 holds also in the decomposable case. Now we sketch
how the above arguments can be generalized to this case. Let

k[x] = k[xλ,i | 1 6 λ 6 l, 1 6 i 6 dλ]

be the coordinate ring of V as in § 3.2. Then Im((ψ ◦ β)∗ΩR/k −→ β∗ΩS/k) is again generated
by G-invariant elements. A G-invariant element of β∗ΩS/k is of the form

ωf :=
∑
λ

∑
i

δdλ−i− (fλ) dxi

for some

f = (f1, . . . , fl) ∈
l∏

λ=1

Oδ
dλ
− =0

E .

Then we can generalize Lemma 5.11 as follows.

Lemma 5.16. There exists a basis of Im((ψ ◦ β)∗ΩR/k −→ β∗ΩS/k),

ωfλ,i (1 6 λ 6 l, 1 6 i 6 dλ),

such that the terms of dxλ′,i′ in ωfλ,i vanish either if λ′ < λ or if λ′ = λ and i′ < i .

Proof. The proof is almost the same as that of Lemma 5.11. We use induction on l. We first
take any basis ωfλ,i . Next we eliminate the dx1,1 terms of ωfλ,i with (λ, i) 6= (1, 1), suitably
replacing the fλ,i. Then we eliminate the dx1,2 terms of ωfλ,i with (λ, i) 6= (1, 1), (1, 2). Repeating
this procedure d1 times, we get a basis such that ωf1,i , 1 6 i 6 d1, satisfy the condition of the
assertion. Applying the assumption of induction to ωfλ,i , λ > 2, we prove the lemma. 2

Once the above lemma is proved, the rest of arguments in the indecomposable case work also
in the decomposable case.

Proposition 5.17. The assertion of Proposition 5.14 holds without the assumption that V is
indecomposable.

5.3 The change of variables formula
Definition 5.18. We define a function sX on J∞X as the composition shtV ◦ rj:

sX : J∞X
rj−→ N′0

shtV−−→ Z.

Lemma 5.19. Let A ⊂ J∞X be a cylinder. Then the function −ord Jacφ − sX on φ−1
∞ (A) is

exponentially measurable and∫
φ−1
∞ (A)

L−ord Jacφ−sX dµX = µX(A).

Proof. Let Y ⊂ X be the exceptional locus of φ : X −→ X. Then there exists a stratification
φ−1
∞ (A)\J∞Y =

⊔
i∈NBi such that:
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(i) for every i, Bi is a cylinder; and

(ii) for every i, the functions ord Jacφ, ordφ−1JacX and rj are constant on Bi.

From Lemma 5.6, for every i > 0, φ∞(Bi) is a cylinder. Let n := −ord Jacφ(Bi)− sX (Bi). Then
from Propositions 5.14 and 5.17, µX (Bi)Ln = µX(φ∞(Bi)). Hence

µX(A) =
∑
i

µX(φ∞(Bi)) =
∑
i

∫
Bi

L−ord Jacφ−sX dµX .

Now the lemma follows from Proposition 4.21. 2

Theorem 5.20 (The change of variables formula, cf. [DL02, Yas04, Yas06]). Let A ⊂ J∞X be a
strongly measurable subset and let B =

⊔
iBi ⊂ J∞X be a countable disjoint union of strongly

measurable subsets Bi such that B = φ−1
∞ (A). (For instance, if A is a cylinder, then B = φ−1

∞ (A)
satisfies this condition.) Let F : J∞X ⊃ A −→ (1/r)Z∪ {∞} be a measurable function. Then F
is exponentially integrable if and only if the function F ◦φ∞−ord Jacφ−sX on B is exponentially
integrable. Moreover, if this is the case, then we have∫

A
LF dµX =

∫
B
LF◦φ∞−ord Jacφ−sX dµX .

Proof. Using Proposition 4.21, we will reduce the situation to an easier one step by step.

(i) We may suppose that B is disjoint from J∞Y. From Lemma 4.17, J∞Y is measurable and
of measure zero. Also J∞Y is measurable and of measure zero. Moreover, Bi\J∞Y and A\J∞Y
are strongly measurable. Therefore we may replace B with B\J∞Y, and A with A\J∞Y.

(ii) We may suppose that B is strongly measurable. From Corollary 5.7, for each i, φ∞(Bi)
is strongly measurable. From Proposition 4.21, it is enough to prove the theorem for B = Bi and
A = φ∞(Bi).

(iii) We may suppose that B is a cylinder and A is stable. Let B0(ε) ⊂ B be cylinders as
in Definition 4.13. Then for a sequence εi ∈ R>0, i ∈ N, with limi−→∞ εi = 0, B\

⋃
i∈NB0(εi) is

measurable and has measure zero. Its image in A is also measurable and has measure zero. Hence
it is enough to prove the theorem for B = B0(εi) and A = φ∞(B0(ε)). As we have supposed that
B is disjoint from J∞Y, B0(εi) is also disjoint from J∞Y. Hence φ∞(B0(ε)) is stable.

(iv) We may suppose that the functions ord Jacφ, ordφ−1JacX and rj are constant on B. We
take the stratification B =

⊔
iBi of B with respect to the values of these functions. Then the

stratification has only finite strata. It suffices to show the theorem for B = Bi and A = φ∞(Bi).

Now we fix n ∈ (1/r)Z ∪ {∞}. Then C := F−1(n) is measurable. Let Ci(ε) be as in
Definition 4.13. For every i and ε, we can take Ci(ε) ⊂ A. Let e := ord Jacφ(B) and s := sX (B).
Then

µX (φ−1
∞ (Ci(ε))) = µX(Ci(ε))L−e−s.

This shows that

lim
ε−→0

µX (φ−1
∞ (C0(ε))) = µX (φ−1

∞ (C)).

Hence ∫
C
LF dµX = µX(C)Ln

= lim
ε−→0

µX(C0(ε))Ln

1155

https://doi.org/10.1112/S0010437X13007781 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007781


T. Yasuda

= lim
ε−→0

µX (φ−1
∞ (C0(ε)))Ln−e−s

= µX (φ−1
∞ (C))Ln−e−s

=

∫
φ−1
∞ (C)

LF◦φ∞−ord Jacφ−sX dµX .

Now the theorem follows again from Proposition 4.21. 2

6. Stringy invariants and the McKay correspondence

In this section, we will define stringy invariants as certain motivic integrals. Then we will obtain
several versions of the McKay correspondence, which are consequences of the change of variables
formula above. We still suppose that V is a non-trivial G-representation, X = V/G and X =
[V/G].

6.1 Stringy invariants of stringily Kawamata log terminal pairs

Let ωX be the canonical sheaf of X, which is defined as the double dual of
∧d ΩX/k. Since R is

a UFD (see, for instance, [CW11, Theorem 3.8.1]), in particular, X is 1-Gorenstein. Namely ωX
is invertible. The ω-Jacobian ideal JacωX ⊂ OX of X is defined by the equality

Im

( d∧
ΩX/k −→ ωX

)
= JacωX · ωX .

Remark 6.1. It is known that if X is a local complete intersection, then JacX = JacωX . In our
setting, this is the case only when V is isomorphic to V2 ⊕ V ⊕d−2

1 , V ⊕2
2 ⊕ V ⊕d−4

1 or V3 ⊕ V ⊕d−3
1 .

Indeed, X is a hypersurface in these cases (see, for instance, [CW11]). Otherwise X is not even
Cohen–Macaulay from [ES80].

In [Bat98, Bat99], Batyrev introduced stringy invariants for Kawamata log terminal pairs
in characteristic zero. To define these, he used the resolution of singularities. However, we are
working in positive characteristic and it is not yet known that a resolution of singularities always
exists. Therefore, following Denef and Loeser [DL02], we will define the stringy invariant as an
integral on J∞X.

Definition 6.2. Let Z =
∑m

i=1 aiZi be a formal Q-linear combination of closed subschemes
Zi ( X. Then we define a function

ordZ :=

m∑
i=1

ai · ordZi : J∞X −→ Q ∪ {∞}.

Here we suppose that ordZ takes the constant value ∞ on the measure-zero subset⋃m
i=1(ordZi)

−1(∞). We say that the pair (X,Z) is stringily Kawamata log terminal if the
function ordZ + ord JacωX on J∞X is exponentially integrable. If this is the case, we define its
stringy motivic invariant by

Mst(X,Z) :=

∫
J∞X

LordZ+ord JacωX dµX .

Then we define the stringy Poincaré function by

Pst(X,Z) = P (Mst(X,Z)) ∈
∞⋃
r=1

Z((T−1/r)).
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Let f : Y −→ X be a proper birational morphism with Y smooth. Then we define the
canonical divisor of f , denoted Kf , to be the divisor such that

Im(f∗ωX −→ ωY ⊗K(Y )) = OY (−Kf ) · ωY .

Here K(Y ) denotes the function field of Y. This divisor has support in the exceptional locus of
f. We define the pullback f∗Z of Z by f as the formal linear combination

∑m
i=1 ai · f−1Zi of the

scheme-theoretic preimages f−1Zi ⊂ Y.

Proposition 6.3. With the notation as above, we have

Mst(X,Z) = Mst(Y, f
∗Z −Kf ).

Proof. Since
f−JacωX · OY (−Kf ) = Jacf ,

we have
f−1ord JacωX − ord Jacf = −ordKf .

The proposition follows from this and the change of variables formula for varieties in positive
characteristic [Seb04]. 2

Corollary 6.4. Suppose thatKf−f∗Z is a simple normal crossing divisor written as
∑m

i=1 aiEi,
ai ∈ Q, with Ei prime divisors. Then (X,Z) is stringily Kawamata log terminal if and only if
for every i, ai > −1. Moreover, if this is the case, then

Mst(X,Z) = Mst(Y, f
∗Z −Kf ) =

∑
I⊂{1,...,m}

[E◦I ]
∏
i∈I

L− 1

L1+ai − 1
, where E◦I :=

⋂
i∈I

Ei

∖⋃
i/∈I

Ei.

Proof. The corollary follows from the previous proposition and the explicit computation of
motivic integrals (see, for instance, [Cra04]). 2

Definition 6.5. Let (X,Z) be a pair as above. Let f : Y −→X be a proper birational morphism
such that Y is normal and f∗Z is a Cartier divisor. Let E be a prime divisor on Y . Then the
canonical divisor Kf of f is similarly defined on the smooth locus of Y (and extends to Y as a
Weil divisor). The discrepancy of (X,Z) at E, denoted a(E;X,Z), is defined to be the coefficient
of E in the divisor Kf − f∗Z. We say that (X,Z) is Kawamata log terminal if for every Y and
E as above, a(E;X,Z) > −1.

Proposition 6.6. If (X,Z) is stringily Kawamata log terminal, then it is Kawamata log
terminal. Additionally, if there exists a resolution f : Y −→ X with Kf − f∗Z a simple normal
crossing Q-Cartier divisor, then the converse is also true.

Proof. For the first assertion, let f : Y −→ X and E be as in Definition 6.5. Let U ⊂ Y be an
open dense subset such that

(Kf − f∗Z)|U = a(E;X,Z) · E|U .

Then from the change of variables formula in [Seb04], ord f∗Z−ordKf is exponentially integrable
on J∞U. Hence a(E;X,Z) > −1. This shows that (X,Z) is Kawamata log terminal.

The second assertion follows from Corollary 6.4. 2

Next we will define stringy invariants of stacky pairs.
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Definition 6.7. Let Z =
∑m

i=1 aiZi be a formal Q-linear combination of closed substacks Zi (
X . Then we define a function

ordZ :=

m∑
i=1

ai · ordZi : J∞X −→ Q ∪ {∞}.

We say that the pair (X ,Z) is stringily Kawamata log terminal if the function ordZ − sX on
J∞X is exponentially integrable. If this is the case, we define its stringy motivic invariant by

Mst(X ,Z) :=

∫
J∞X

LordZ−sX dµX .

6.2 An explicit formula for Mst(X )

Definition 6.8. For a G-representation V =
⊕l

λ=1 Vdλ , we put

DV :=
l∑

λ=1

(dλ − 1)dλ
2

=
l∑

λ=1

dλ−1∑
i=1

i ∈ N.

Proposition 6.9. The pair (X , 0) is stringily Kawamata log terminal if and only if DV > p.
Moreover, if this is the case, then

Mst(X ) := Mst(X , 0) = Ld +
Ll−1(L− 1)(

∑p−1
s=1 Ls−shtV (s))

1− Lp−1−DV
.

Proof. For an integer s with 1 6 s 6 p− 1 and a non-negative integer n, we have

shtV (np+ s) =

l∑
λ=1

dλ−1∑
i=1

(
in+

⌊
is

p

⌋)

=

( l∑
λ=1

(dλ − 1)dλ
2

)
n+

l∑
λ=1

dλ−1∑
i=1

⌊
is

p

⌋
=DV · n+ shtV (s).

Hence we have

Mst(X ) =

∫
J∞X

L−sX dµX

=
∑
j∈N′0

µX (J∞,jX )L−shtV (j)

= Ld +
∑
j∈N′

[Alk ×G-Covrep(D, j)]L−shtV (j)

= Ld +
∑
j>0

(L− 1)Ll+j−1−bj/pc−shtV (j)

= Ld + (L− 1)Ll−1
p−1∑
s=1

∞∑
n=0

L(p−1−DV )n+s−shtV (s).

This converges if and only if DV > p. Now the formula of the proposition easily follows. 2

Corollary 6.10. If DV = p, then

Mst(X ) = Ld + Ll
p−1∑
s=1

Ls−shtV (s) ∈ Z[L].
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Proof. The equality is a direct consequence of the previous proposition. Moreover, in this case,

shtV (s) 6
s

p

l∑
λ=1

dλ−1∑
i=1

λ =
s

p
DV = s.

Hence Mst(X ) ∈ Z[L]. 2

Definition 6.11. When DV > p, we define the stringy Euler number of X by

est(X ) := etop(Mst(X )).

(See § 4.3.)

Corollary 6.12. If DV > p, then

est(X ) = 1 +
p− 1

DV − p+ 1
.

In particular, if DV = p, then est(X ) = p.

Proof. Obvious. 2

In the following, we compute Mst(X ) in several cases.

Example 6.13. Suppose that V = V ⊕lp . Then shtV (s) = l(s − 1)(p − 1)/2 (see, for instance,
[GKP89, p. 94]). Hence

Mst(X ) = Ld + (L− 1)Ll−1
p−1∑
s=1

Ls−l(s−1)(p−1)/2

1− Lp−1−lp(p−1)/2
.

In the following cases, we have DV = p.

Example 6.14. If p = 3 and V = V3, then Mst(X ) = L3 + 2L2.

Example 6.15. If p = 2 and V = V ⊕2
2 , then Mst(X ) = L4 + L3.

Example 6.16. If V = V ⊕p2 , then

Mst(X ) = L2p + Lp(Lp−1 + Lp−2 + · · ·+ L) = L2p + L2p+1 + · · ·+ Lp+1.

6.3 The McKay correspondence
We say that V has reflections if the fixed point locus V G has codimension one. A non-trivial
G-representation V has reflection if and only if V ∼= V2 ⊕ V ⊕d−2

1 .

6.3.1 The no reflection case.

Lemma 6.17. Suppose that V has no reflection. Then φ−1JacωX = Jacφ.

Proof. Since the quotient map ψ : V −→ X is étale in codimension one, ψ∗ωX = ωV , and the
lemma follows. 2

Corollary 6.18. Let Z =
∑

i aiZi be a formal Q-linear combination of closed subschemes
Zi ( X. Then (X,Z) is stringily Kawamata log terminal if and only if so is (X , φ∗Z). Moreover,
if this is the case, then

Mst(X,Z) = Mst(X , φ∗Z).

1159

https://doi.org/10.1112/S0010437X13007781 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007781


T. Yasuda

Proof. From the change of variables formula and the previous lemma, we have

Mst(X,Z) =

∫
J∞X

LordZ+ord JacωX dµX =

∫
J∞X

Lordφ∗Z−sX dµX = Mst(X , φ∗Z). 2

Corollary 6.19. The pair (X, 0) is stringily Kawamata log terminal if and only if DV > p.
Moreover, if this is the case, then

Mst(X) = Mst(X ).

Proof. This follows from the previous corollary and Proposition 6.9. 2

Remark 6.20. In particular, if DV > p, then X has only canonical singularities. Namely all
discrepancies are non-negative. On the other hand, from [Yas12], X does not satisfy a closely
related property, strong F-regularity.

Corollary 6.21 (The p-cyclic McKay correspondence). Suppose that V has no reflection and
that there exists a crepant resolution f : Y −→ X. Then the following hold:

(i) Mst(X ) = [Y ];

(ii) DV = p;

(iii) etop(Y ) = p.

Proof. For the first assertion, we have

Mst(X ) = Mst(X) = [Y ].

Then, in particular, X is stringily Kawamata log terminal. Hence d > p. Also from the first
assertion, we have

est(X ) = etop(Y ),

which is an integer. Now the second and third assertions follow from Corollary 6.12. 2

Remark 6.22. The third assertion of Corollary 6.21 does not hold if we replace V with a non-
linear G-action on Spec k[[x1, . . . , xd]]. For instance, let 0 ∈ X be either an E2

8 -singularity in
characteristic two, an E1

6 -singularity in characteristic three, or an E1
8 -singularity in characteristic

five (for the notation, see [Art77]). Then X is the quotient of Spec k[[x, y]] by a G-action such that
the associated covering Spec k[[x, y]] −→ X is étale outside 0. The minimal resolution of X is a
crepant resolution. (Indeed from [Lip69, Theorem 4.1] and [Băd01, Corollary 4.19], the blow-up
of X at the singular point has only rational double points. Hence discrepancies at the exceptional
curves are zero.) However, the topological Euler characteristic of the minimal resolution is not p.

Example 6.23. Suppose that V = V3. If we suppose that G acts on the coordinate ring k[x, y, z]
of V, by x 7−→ x, y 7−→ −x+ y, z 7−→ x− y + z, then the invariant subring is

k[x, y, z]G = k[x,Ny, Nz, d],

where d = y2 + xz − xy, Ny =
∏
g∈G g(y), Nz =

∏
g∈G g(z) (see [CW11, Theorem 4.10.1]). In

particular, X is a hypersurface. In an abuse of notation, we let x,Ny, Nz, d correspond to variables
X,Y, Z,W , respectively. Then according to computations with Macaulay2 [GS] for small primes
p, the defining equation of X seems to be

2XpZ +W p − Y 2 +

(p+1)/2∑
i=2

(−1)iCi−1X
2(p−i)W i.
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Here Ci denotes the ith Catalan number modulo p. The author does not know if this equation
is known.

Now suppose that p = 3. Then the equation becomes

−X3Z +W 3 − Y 2 +X2W 2 = 0.

If k is algebraically closed, then by a suitable coordinate transformation, X is defined by

Z2 +X3 + Y 4 +X2Y 2 + Y 3W = 0.

This equation defines the compound E1
6 -singularity as studied by Hirokado et al. [HIS13]. The

blow-up X1 of X along the singular locus is singular along a line. Then the blow-up Y of X1

along the singular locus is now smooth and a crepant resolution of X. Moreover, the exceptional
locus of Y −→ X is a simple normal crossing divisor with two irreducible components, say
E1 ∪ E2. Then the Ei are universally homeomorphic to A1

k × P1
k and E1 ∩ E2

∼= A1
k. Therefore

[Y ] = L3 + 2L2, which agrees with our previous computation in Example 6.14.

Example 6.24. Suppose that p = 2 and V = V2 ⊕ V2. Using the description of the invariant
subring in [CW11, Theorem 1.12.1], we can see that X is a hypersurface defined by

W 2X + V 2Y + VWZ + Z2.

By direct computation, the blow-up Y of X along the singular locus is a crepant resolution, and
its exceptional locus is universally homeomorphic to A2

k × P1
k. Therefore

Mst(X) = [Y ] = L4 + L3,

which coincides with Example 6.15.

In fact, as the following corollary shows, the last two examples are essentially the only
examples in dimension up to 4 where X has a crepant resolution.

Corollary 6.25. Suppose that V is of dimension up to 4 and has no reflection. Then the
following are equivalent:

(i) X has a crepant resolution;

(ii) DV = p;

(iii) one of the following holds:

(a) p = 2 and V ∼= V2 ⊕ V2;

(b) p = 3 and V ∼= V3;

(c) p = 3 and V ∼= V3 ⊕ V1.

Proof. Since V has no reflection, V is isomorphic to either V3, V2 ⊕ V2, V3 ⊕ V1 or V4. Then an
easy computation shows that (ii) and (iii) are equivalent. From Corollary 6.21, (i) implies (ii).
The converse follows from the examples above. 2

Corollary 6.26. Suppose that V has no reflection. Let f : Y −→ X be a crepant resolution
and E0 := f−1(0). Then, in the notation of § 4.8, we have∫

G-Covrep(D)
L−shtV dν = [E0].
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Moreover, if k is a finite field, then for each finite extension Fq/k, we have

]E0(Fq) =
∑
j∈N′0

]G-Covrep(D, j)(Fq)
qshtV (j)

.

Proof. We have ∫
G-Covrep(D)

L−shtV dν =

∫
(J∞X )0

L−sX dµX

=

∫
π−1
0 (0)

Lord JacωX dµX

=

∫
π−1
0 (E0)

1 dµY

= [E0].

This shows the first assertion. Then the second assertion is obtained by applying the counting-

points realization ]q. 2

Example 6.27. Let k = F2 and V = V ⊕2
2 . Let Y −→X be a crepant resolution as in Example 6.24.

Then E0 = P1
k and for each finite extension Fq/F2, ]E0(Fq) = q + 1. On the other hand,

∑
j∈N′0

]G-Covrep(D, j)(Fq)
qshtV (j)

= 1 +

∞∑
n=0

G-Covrep(D, 2n+ 1)(Fq)
qshtV (2n+1)

= 1 +
∞∑
n=0

(q − 1) · q−n

= 1 + q.

The second assertion of Corollary 6.26 will be slightly differently formulated in terms of

Artin–Schreier extensions of k((t)). We have

]G-Covrep(D, j)(Fq) =
1

p
]G-Cov(D ×k Fq, j).

Let Nq,j be the number of Galois extensions of Fq((t)) in a fixed algebraic closure k((t)) of k((t))

with ramification jump j. Then for j ∈ N′, we have

]G-Cov(D ×k Fq, j) = (p− 1)Nq,j .

The factor p − 1 comes from p − 1 choices of isomorphism of G to the Galois group. Hence we

have the following corollary.

Corollary 6.28. With the same notation as above, we have

]E0(Fq) = 1 +
p− 1

p

∑
j∈N′

Nq,j

qshtV (j)
.
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6.3.2 The reflection case. Next we consider the case where V has reflections. We write the
coordinate ring of V as S = k[x, y, z1, . . . , zd−2] with the G-action given by

σ(x) = x+ y,

σ(y) = y,

σ(zi) = zi.

Then

R := SG = k[xp − xyp−1, y, z1, . . . , zd−2].

(See, for instance, [CW11, Theorem 1.11.2].) Thus X is again an affine d-space; in particular, it

is smooth.

Lemma 6.29. We have Jacψ = (yp−1) ⊂ S.

Proof. From the explicit generators above of R, the module ΩS/R is isomorphic to the cokernel

of the map Sd −→ Sd represented by the Jacobian matrix
−yp−1

(1− p)xyp−2 1
1

. . .
1

.

Hence by definition, Jacψ is generated by its determinant −yp−1, which proves the lemma. 2

The fixed point locus V G is defined by the ideal (y) ⊂ S. We define Y to be the quotient

stack [V G/G], which is a closed reduced substack of X , and define Y to be the image of Y on

X, which is defined by (y) ⊂ R.

Corollary 6.30. Suppose that V has reflections. Let Z =
∑
aiZi be a formal Q-linear

combination of closed subschemes Zi ( X. Then (X,Z) is stringily Kawamata log terminal

if and only if so is (X , φ∗Z + (1− p)Y). Moreover, if this is the case, then

Mst(X,Z) = Mst(X , φ∗Z + (1− p)Y).

In particular, for a < 1,

Mst(X, aY ) = Mst(X , (a+ 1− p)Y).

Proof. In this case, since X is smooth, JacωX = R. Hence

Mst(X,Z) =

∫
J∞X

LordZ dµX

=

∫
J∞X

Lordφ∗Z−ord Jacφ−sX dµX

=

∫
J∞X

Lordφ∗Z−ord (p−1)Y−sX dµX

=Mst(X , φ∗Z + (1− p)Y). 2
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Example 6.31. We suppose that V = V2. From Corollary 6.4, for a < 1, we have

Mst(X, aY ) =
L2 − L

1− La−1
.

On the other hand, for a < 2 − p, we can compute Mst(X , aY) from the definition as follows.
First, we have

Mst(X , aY) =

∫
J∞,0X

Lord aY dµX +
∑
j>0

∫
J∞,j

Lord aY−sX dµX

=
L2 − L

1− La−1
+
∑
j∈N′

∫
J∞,j

Lord aY−sX dµX .

Now we compute the second term. Let us fix E ∈ G-Covrep(D, j)(k̄), and for G-arcs γ : E −→ V
we denote associated twisted arcs by γ̄. Then, with the notation as in § 2.5, those G-arcs γ :
E −→ V with ordY(γ̄) = n correspond, by γ 7−→ γ∗(x), to

k̄[[t]]× k̄∗ · gtn ×
∏
m>n

k̄ · gtm,

provided that np− j > 0. Otherwise there is no such G-arc. Hence for np > j,

µX ((ordY)−1(n) ∩ J∞,jX ) = (L− 1)Ln+1+bj/pc × (L− 1)Lj−1−bj/pc

= L−n+j(L− 1)2.

Hence ∑
j∈N′

∫
J∞,jX

Lord aY−sX dµ=
∞∑
n=1

∑
j∈N′

µX ((ordY)−1(n) ∩ J∞,jX )Lan−bj/pc

=
∞∑
n=1

∑
j∈N′
j<np

L(a−1)n+j−bj/pc(L− 1)2.

Then, putting j = rp+ i (0 6 r < n, 0 < i < p), we continue:

= (L− 1)2
∞∑
n=1

(p−1∑
i=1

n−1∑
r=0

L(a−1)n+rp+i−r
)

= (L− 1)2
∞∑
n=1

p−1∑
i=1

L(a−1)n+i 1− Ln(p−1)

1− Lp−1

= (L− 1)L
∞∑
n=1

L(a−1)n(Ln(p−1) − 1)

= (L− 1)L
(

La+p−2

1− La+p−2
− La−1

1− La−1

)
.

As expected, we now have

Mst(X , aY) =
L2 − L

1− La−1
+ (L− 1)L

(
La+p−2

1− La+p−2
− La−1

1− La−1

)
=

L2 − L
1− La+p−2

.
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Remark 6.32. For the pair (X , aY) being stringily Kawamata log terminal, the coefficient a must

be negative. In particular, (X , 0) is not stringily Kawamata log terminal, and its stringy invariant

Mst(X ) is not defined in this paper. However, stringy invariants should be generalized beyond

log terminal singularities to some extent, as Veys [Vey04] confirmed for surface singularities in

characteristic zero. Then, it appears meaningful to claim, for instance, that

Mst(X , aY) =
L2 − L

1− La+p−2
and est(X , aY) =

2

2− a− p
,

unless a+ p− 2 = 0. In this way, we would be able to relate weighted counts of Artin–Schreier

extensions of k((t)) to stringy invariants of singularities even when DV < p.

6.4 Pseudo-projectivization and the Poincaré duality

Batyrev proved that the stringy invariant of a log terminal projective variety in characteristic

zero satisfies the Poincaré duality. We will obtain a similar result for the ‘projectivization’ of

our quotient variety X.

Let Gm = Spec k[t±] be the multiplicative group scheme over k. We have natural Gm-actions

on V and X, which are compatible with the quotient map V −→ X. Moreover, the action

on V commutes with the G-action, inducing a Gm × G-action on V. Let W1 and W2 be the

quotient stacks [(V \{0})/Gm × G] and [(X\{0})/Gm], respectively. The former is a smooth

Deligne–Mumford stack and isomorphic to [P(V )/G]. The latter is not a variety but a (singular)

Artin stack with finite stabilizers. Indeed, from the following lemma, the Gm-action on X\{0}
have non-reduced stabilizers Spec k[t]/(tp − 1) ⊂ Gm at singular points.

Lemma 6.33. Let W ⊂ V be the fixed point locus of the G-action and W̄ ⊂ X its image. Then

the morphism W −→ W̄ is isomorphic to the Frobenius morphism of W.

Proof. We prove only the indecomposable case. Let k[x1, . . . , xd] be the coordinate ring of V

with the G-action as in § 3.2. Then W is defined by x2 = · · · = xd = 0. Hence the coordinate ring

k[W̄ ] of W̄ is identified with the image of k[x1, . . . , xd]
G on k[x1] = k[x1, . . . , xd]/(x2, . . . , xd). We

can easily see that x1 6∈ k[W̄ ]. On the other hand, xp1, the image of the norm of x1, is in k[W̄ ].

Since k[W ] is purely inseparable over k[W̄ ], we have k[W̄ ] = k[xp1], which shows the lemma. 2

The stacksW1 andW2 have the same coarse moduli space X̄ = (V \{0})/Gm×G. Moreover,

W1 and W2 have open dense subsets isomorphic to (V \V G)/Gm and are birational. Since the

morphisms X\{0} −→W1 and X\{0} −→W2 are Gm-torsors, it seems natural to define stringy

invariants of W1 and W2 as follows.

Definition 6.34. We define the stringy motivic invariant of W1 and W2 by

Mst(W1) = Mst(W2) :=
Ld − Ll

L− 1
+ (Mst(X)− (Ld − Ll))

Ll − 1

Ll(L− 1)
.

Let W denote either W1 or W2.

Proposition 6.35. Suppose that DV > p. Then

Mst(W) =
Ld − 1

L− 1
+

(Ll − 1)(
∑p−1

s=1 Ls−shtV (s))

L(1− Lp−1−DV )
.
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Proof. We have

Mst(W) =
Ld − Ll

L− 1
+

(
Ld +

Ll−1(L− 1)(
∑p−1

s=1 Ls−shtV (s))

1− Lp−1−DV
− (Ld − Ll)

)
Ll − 1

Ll(L− 1)

=
Ld − 1

L− 1
+

(Ll − 1)(
∑p−1

s=1 Ls−shtV (s))

L(1− Lp−1−DV )
. 2

Proposition 6.36 (Poincaré duality). Let us write Mst(W) as Mst(W;L) to clarify that it is a
rational function in L. Then we have

Mst(W;L−1)Ld−1 = Mst(W;L).

Proof. The first term of the expression in Proposition 6.35 equals [Pd−1
k ], which obviously satisfies

the Poincaré duality. For the second term, substituting L−1 for L and multiplying by Ld−1, we
obtain

(L−l − 1)(
∑p−1

s=1 LshtV (s)−s)

L−1(1− L−p+1+DV )
Ld−1 =

(Ll − 1)(
∑p−1

s=1 LshtV (s)−s)Lp+d−l−DV
L(1− Lp−1−DV )

.

Then the Poincaré duality follows from the following equations: for 1 6 s 6 p− 1,

shtV (p− s)− (p− s) + p+ d− l −DV = s+

( l∑
λ=1

dλ−1∑
i=1

i+

⌊
− is
p

⌋)
+ d− l −DV

= s+

( l∑
λ=1

dλ−1∑
i=1

−
⌊
is

p

⌋
− 1

)
+ d− l

= s− shtV (s). 2

7. Remarks on future problems

7.1 Generalizations
This study should be a toy model for the wild McKay correspondence. The following are possible
directions of generalization.

(i) General groups and non-linear actions. If we similarly define twisted arcs, then the almost
bijection between twisted arcs of X and arcs of X should be valid in general. Looking at
Harbater’s work [Har80], we should be able to construct the spaces of twisted arcs or jets at
least for p-groups, whether their detailed structure can be understood or not. As explained in
Remark 6.22, the non-linear case will be quite different from the linear case even in dimension
two. Some non-linear action appears as the projectivization of a linear one. Then we may apply
some results in the linear case to such cases.

(ii) General local fields. Sebag [Seb04] generalized the motivic integration to formal schemes
over a discrete valuation ring. Replacing k((t)) with a general local field along this line, we might
be able to get, for instance, a result on weighted counts of Galois extensions of the local field.

(iii) General proper birational morphisms of general Deligne–Mumford stacks. We proved
the change of variables formula only for the morphism [V/G] −→ V/G. However, ultimately, it
should be generalized to an arbitrary proper birational morphism of Deligne–Mumford stacks
(with a mild finiteness condition). It was obtained in [Yas06] when the morphism is tame and
stacks are smooth.
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7.2 Other related problems
As we saw in Corollary 6.21, if there exists a crepant resolution of X, then DV = p. From
Corollary 6.25, the converse holds in dimension up to 4. What about higher dimensions? The
only known examples of crepant resolutions of X are Examples 6.14 and 6.15. For instance, if
V = V ⊕p2 , then from Example 6.16, Mst(X) = L2p +Lp · [Pp−1]. This seems to suggest that there
exists a crepant resolution Y −→ X such that the exceptional locus is universally homeomorphic
to Apk × Pp−1

k .
In characteristic zero, the McKay correspondence is proved at the derived category

level [BK04, BKR01, CI04, Kaw05]. However, from [Yi94], the skew group algebra k[x]∗G always
has infinite global dimension in the wild case. Then, if there exists something like the derived
wild McKay correspondence, then what would replace the derived category of k[x] ∗G-modules?
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