THE DIVIDED CENTRAL DIFFERENGES OF ZERO

L. CARLITZ and JOHN RIORDAN

1. Put

$$
\begin{equation*}
S_{r}(m)=\sum_{n=1}^{m} n^{2 \tau+1}, \quad T_{r}(m)=\sum_{n=1}^{m} n^{2 \tau+2} . \tag{1}
\end{equation*}
$$

In a recent paper (4), Lohne showed that

$$
\begin{align*}
& S_{r}(m)=\sum_{s=1}^{r+1} \frac{K_{\tau s}}{2 s} \frac{(m+s)!}{(m-s)!} \tag{2}\\
& T_{r}(m)=\frac{2 m+1}{2} \sum_{s=1}^{r+1} \frac{K_{r s}}{2 s+1} \frac{(m+s)!}{(m-s)!} \tag{3}
\end{align*}
$$

where the coefficients $K_{r s}$ are positive integers and form a numerical triangle defined by

$$
\begin{gather*}
K_{r 1}=K_{r, r+1}=1 \tag{4}\\
K_{r+1, s}=K_{r, s-1}+s^{2} K_{r s} . \tag{5}
\end{gather*}
$$

Tambs Lyche (7) showed that

$$
\begin{equation*}
K_{r s}=\sum_{t=2}^{s}(-1)^{s+t} \frac{2 t^{2}\left(t^{2 r}-1\right)}{(s-t)!(s+t)!} \quad(s \geqslant 2) \tag{6}
\end{equation*}
$$

Formulas (2) and (3) closely resemble the well-known expressions for power sums in terms of Stirling numbers of the second kind, namely

$$
\sum_{n=1}^{m} n^{\tau}=\sum_{s=1}^{\tau} \frac{1}{s+1} A_{r s} \frac{(m+1)!}{(m-s)!} \quad(r \geqslant 1)
$$

where the Stirling numbers $A_{r s}$ are defined by $A_{00}=1$ and

$$
\begin{equation*}
A_{r 1}=A_{r r}=1, \quad A_{r+1, s}=A_{r, s-1}+s A_{r s} \tag{7}
\end{equation*}
$$

It is accordingly of some interest to see how the coefficients $K_{r s}$ and $A_{r s}$ are related.

From either (2) or (3) we get (Lohne's defining relation)

$$
\begin{equation*}
m^{2 r+1}=\sum_{s=1}^{r+1} K_{r s} \frac{(m+s-1)!}{(m-s)!} \tag{8}
\end{equation*}
$$

This can be rewritten as

$$
\begin{align*}
m^{2 r+2} & =\sum_{s=1}^{r+1} K_{r s} m^{2}\left(m^{2}-1^{2}\right) \ldots\left(m^{2}-(s-1)^{2}\right) \tag{9}\\
& =\sum_{s=1} K_{r s} m^{[2 s]}
\end{align*}
$$

[^0]the last using the notation of Steffensen (6) for central factorials, defined by (6, p. 8)
$$
m^{[n]}=m(m+n / 2-1)(m+n / 2-2) \ldots(m-n / 2+1)
$$

Equation (9) may be taken as the starting point. Note first its resemblance to

$$
m^{r}=\sum_{s=0}^{\tau} A_{r s} m(m-1) \ldots(m-s+1)
$$

Next, since

$$
m^{2} m^{[2 s]}=m^{[2 s+2]}+s^{2} m^{[2 s]},
$$

equation (5) follows at once. For a general expression for $K_{r s}$, introduce the central difference δ :

$$
\delta f(x)=f(x+1 / 2)-f(x-1 / 2)
$$

and note that

$$
\delta x^{[n]}=n x^{[n-1]}
$$

Then for any polynomial $f(x)$ (6, p. 13)

$$
f(x)=\sum_{s=0} x^{[s]} \delta^{s} f(0) / s!.
$$

Used with equation (9), this shows that

$$
\begin{equation*}
K_{r s}=\delta^{2 s} 0^{2 r+2} /(2 s)!; \tag{10}
\end{equation*}
$$

in words, the $K_{r s}$ are the divided central differences of zero, of even order. Written out, (10) is the same as
(10a)

$$
\begin{aligned}
K_{r s} & =\frac{1}{(2 s)!} \sum_{t=0}^{2 s}(-1)^{t}\binom{2 s}{t}(s-t)^{2 r+2} \\
& =\frac{2}{(2 s)!} \sum_{t=0}^{s}(-1)^{t}\binom{2 s}{t}(s-t)^{2 r+2}
\end{aligned}
$$

the second form by symmetry. The second form is similar to (6) and their equivalence is readily verified. We remark that the Stirling numbers $A_{\text {rs }}$ are the divided (ordinary) differences of zero.

Finally, the following results are immediate consequences of (9):

$$
\begin{gathered}
\sum_{s=1}^{r+1}(-1)^{s}((s-1)!)^{2} K_{r s}=0 \\
\sum_{s=1}^{r+1}(-1)^{s-1}\left(1+1^{2}\right)\left(1+2^{2}\right) \ldots\left(1+(s-1)^{2}\right) K_{r s}=(-1)^{r} .
\end{gathered}
$$

2. Turn now to generating functions. First, using (10a),

$$
\sum_{r=0}^{\infty} K_{\tau s} \frac{x^{2 r+2}}{(2 r+2)!}=\frac{1}{(2 s)!} \sum_{t=0}^{2 s}(-1)^{t}\binom{2 s}{t}\left(\frac{e^{x(s-t)}+e^{-x(s-t)}}{2}-1\right)
$$

so that

$$
\begin{equation*}
\sum_{r=0}^{\infty} K_{r s} \frac{x^{2 r+2}}{(2 r+2)!}=\frac{1}{(2 s)!}\left(e^{\frac{1}{2} x}-e^{-\frac{1}{2} x}\right)^{2 s} \quad(s \geqslant 1) \tag{11}
\end{equation*}
$$

Then from (11)

$$
\begin{equation*}
\sum_{r=0}^{\infty} \sum_{s=1}^{\infty} K_{r s} \frac{x^{2 r+2} y^{2 s}}{(2 r+2)!}=\cosh \left(2 y \sinh \frac{1}{2} x\right)-1 \tag{12}
\end{equation*}
$$

These results may be compared with

$$
\begin{equation*}
\sum_{r=0}^{\infty} A_{r s} x^{r} / r!=\left(e^{x}-1\right)^{s} / s!, \quad \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} A_{r s} x^{r} y^{s} / r!=\exp \left(y\left(e^{x}-1\right)\right) \tag{13}
\end{equation*}
$$

Again, returning to (4) and (5), and writing

$$
K_{s}(x)=\sum_{r=0}^{\infty} K_{r s} x^{\tau}
$$

it is evident that

$$
\begin{aligned}
\left(1-s^{2} x\right) K_{s}(x) & =x K_{s-1}(x) \\
K_{1}(x) & =(1-x)^{-1}
\end{aligned}
$$

so that

$$
\begin{equation*}
K_{s}(x)=x^{s-1} /(1-x)\left(1-2^{2} x\right) \ldots\left(1-s^{2} x\right) \tag{14}
\end{equation*}
$$

which may be compared with (3, p. 175; 5, p. 43)

$$
\begin{equation*}
\sum_{r=0}^{\infty} A_{r s} x^{r}=x^{s} /(1-x)(1-2 x) \ldots(1-s x) \tag{15}
\end{equation*}
$$

The generating functions lead to relations of the numbers as follows. First, by (11) and (13),

$$
\sum_{r=1}^{\infty} K_{r-1, s} \frac{x^{2 r}}{(2 r)!}=e^{-s x} \sum_{r=0}^{\infty} A_{r, 2 s} \frac{x^{r}}{r!},
$$

which implies

$$
\begin{align*}
K_{r-1, s} & =\sum_{j=0}^{2 r}(-1)^{j}\binom{2 r}{j} s^{j} A_{2_{r-j, 2 s}} \tag{16}\\
A_{r, 2 s} & =\sum_{2 j \leqslant r}\binom{r}{2 j} s^{r-2 j} K_{j-1, s} \tag{17}
\end{align*}
$$

and, incidentally,

$$
0=\sum_{j=0}^{2 r+1}(-1)^{j}\binom{2 r+1}{j} s^{j} A_{2 r+1-j, 2_{s}} .
$$

Next, by (14) and (15),

$$
\sum_{r=0}^{\infty} K_{r s} x^{2 r+2}=(-1)^{s} \sum_{r=0}^{\infty} A_{r s} x^{r} \sum_{t=0}^{\infty} A_{t s}(-x)^{t}
$$

so that

$$
\begin{equation*}
K_{r-1, s}=\sum_{t=s}^{2 r-s}(-1)^{s+t} A_{t s} A_{2 r-t, s} \tag{18}
\end{equation*}
$$

3. For relations with Bernoulli numbers, we recall that

$$
\int_{n=1}^{m-1} n^{r}=\left(B_{r+1}(m)-B_{r+1}\right) /(r+1),
$$

where $B_{k}(x)$ is the Bernoulli polynomial of degree $k\left(B_{k}(0)=B_{k}\right)$. Thus by (1)

$$
S_{r}(m)=m^{2 r+1}+\left(B_{2 r+2}(m)-B_{2 r+2}\right) /(2 r+2)
$$

Comparing this with (2) we get

$$
\sum_{s=1}^{r+1} \frac{K_{r s}}{2 s}\left(m^{2}-1\right) \ldots\left(m^{2}-(s-1)^{2}\right)(m+s)=m^{2 r}+\frac{B_{2 r+2}(m)-B_{2 r+2}}{(2 r+2) m}
$$

Since

$$
B_{k}(x)=\sum_{s=0}^{k}\binom{k}{s} B_{k-s} x^{s},
$$

we find, equating coefficients of m,

$$
\begin{equation*}
(2 r+1) B_{2 r}=\sum_{s=1}^{r+1}(-1)^{s-1}((s-1)!)^{2} s^{-1} K_{\tau s} \tag{19}
\end{equation*}
$$

which may be compared with the corresponding representation in Stirling numbers (5, p. 45)

$$
B_{r}=\sum_{s=0}^{r}(-1)^{s} s!(s+1)^{-1} A_{r s}
$$

From (19) and (10a) we get the explicit formula

$$
\begin{equation*}
(2 r+1) B_{2 r}=\sum_{s=1}^{r+1} s^{-1} \sum_{t=-s}^{s}(-1)^{t+1} \frac{(s-1)!(s-1)!}{(s-t)!(s+t)!} t^{2++2} \tag{20}
\end{equation*}
$$

Since for $r>0$, both $B_{2 r+1}=0$ and $\delta^{2 s} 0^{2 r+1} /(2 s)!=0$, it follows that

$$
\begin{equation*}
(r+1) B_{r}=\sum_{0<2 s \leqslant r+2} s^{-1} \sum_{t=-s}^{s}(-1)^{t} \frac{(s-1)!(s-1)!}{(s-t)!(s+t)!} t^{r+2} \tag{21}
\end{equation*}
$$

4. The Stirling number polynomials

$$
a_{r}(y)=\sum_{s=0}^{\tau} A_{\tau s} y^{s}
$$

are familiar. They are defined effectively by the second generating function of (13), or by one of its consequences

$$
\begin{equation*}
a_{r+1}(y)=y[a(y)+1]^{r}=\sum_{s=0}^{r}\binom{r}{s} y a_{s}(y) . \tag{22}
\end{equation*}
$$

Put $a_{r}(1)=a_{r}$.

Analogously we define

$$
k_{2 r+2}(y)=\sum_{s=1}^{r+1} K_{r s} y^{2 s}
$$

whose generating function by (12) is

$$
\begin{equation*}
\cosh \left(2 y \sinh \frac{1}{2} x\right)=\sum_{r=0}^{\infty} k_{2 r}(y) x^{2 r} /(2 r)!\quad\left(k_{0}(y)=1\right) \tag{23}
\end{equation*}
$$

It is also convenient to define $k_{2 r+1}(y)$ by

$$
\begin{equation*}
\sinh \left(2 y \sinh \frac{1}{2} x\right)=\sum_{r=0}^{\infty} k_{2 r+1}(y) x^{2 r+1} /(2 r+1)! \tag{24}
\end{equation*}
$$

so that

$$
\begin{equation*}
\exp \left(2 y \sinh \frac{1}{2} x\right)=\sum_{r=0}^{\infty} k_{r}(y) x^{\tau} / r! \tag{25}
\end{equation*}
$$

Since, with $D=d / d x$,

$$
\begin{aligned}
y \sinh \left(2 y \sinh \frac{1}{2} x\right) & =\operatorname{sech} \frac{1}{2} x D \cosh \left(2 y \sinh \frac{1}{2} x\right) \\
& =\operatorname{sech} \frac{1}{2} x \sum_{r=0}^{\infty} k_{2 r+2}(y) \frac{x^{2 r+1}}{(2 r+1)!}
\end{aligned}
$$

and

$$
\operatorname{sech} \frac{1}{2} x=\sum_{r=0}^{\infty} 2^{-2 r} E_{2 r} x^{2 r} /(2 r)!,
$$

where the $E_{2 r}$ are the Euler numbers in the even suffix notation, it follows that

$$
\begin{equation*}
y k_{2 r+1}(y)=\sum_{s=0}^{\tau}\binom{2 r+1}{2 s} 2^{-2 s} E_{2 s} k_{2 r-2 s+2}(y) \tag{26}
\end{equation*}
$$

Differentiation of (25) gives

$$
y \cosh \frac{1}{2} x \exp \left(2 y \sinh \frac{1}{2} x\right)=\sum_{r=0}^{\infty} k_{r+1}(y) x^{r} / r!
$$

and therefore

$$
\begin{equation*}
k_{r+1}(y)=y \sum_{2 s \leqslant r}\binom{r}{2 s} 2^{-2 s} k_{r-2 s}(y), \tag{27}
\end{equation*}
$$

which may be compared with (22).
The first few values of $k_{r}(y)$ are

$$
\begin{array}{lll}
k_{0}(y)=1, & k_{2}(y)=y^{2}, & k_{4}(y)=y^{2}+y^{4}, \\
k_{1}(y)=y, & k_{3}(y)=\frac{1}{4} y+y^{3}, & k_{5}(y)=\frac{1}{16} y+\frac{5}{2} y^{3}+y^{5} .
\end{array}
$$

Now let p be a fixed odd prime. Differentiating (25) p times we get

$$
\begin{equation*}
D^{p} \exp \left(2 y \sinh \frac{1}{2} x\right)=\sum_{r=0}^{\infty} k_{r+p}(y) x^{r} / r! \tag{28}
\end{equation*}
$$

By the formula for derivatives of a composite function (5, p. 35) we find that

$$
D^{p} \exp \left(2 y \sinh \frac{1}{2} x\right)=Y_{p}\left(g_{1}, \ldots, g_{p}\right) \exp \left(2 y \sinh \frac{1}{2} x\right)
$$

with Y_{p} the Bell multivariable polynomial, and

$$
g_{k}=D^{k}\left(2 y \sinh \frac{1}{2} x\right) .
$$

But, see (1),

$$
Y_{p}\left(g_{1}, \ldots, g_{p}\right) \equiv g_{p}+g_{1}^{p} \quad(\bmod p)
$$

and

$$
\begin{aligned}
g_{p} & =y 2^{1-p} \cosh \frac{1}{2} x \equiv y \cosh \frac{1}{2} x \quad(\bmod p), \\
g_{1}{ }^{p} & =y^{p}\left(\cosh \frac{1}{2} x\right)^{p} \equiv y^{p} \quad(\bmod p)
\end{aligned}
$$

Hence

$$
D^{p} \exp \left(2 y \sinh \frac{1}{2} x\right) \equiv\left(D+y^{p}\right) \exp \left(2 y \sinh \frac{1}{2} x\right) \quad(\bmod p)
$$

and by (28) we get

$$
\begin{equation*}
k_{r+p}(y) \equiv k_{r+1}(y)+y^{p} k_{r}(y) \quad(\bmod p) \tag{29}
\end{equation*}
$$

This congruence is of precisely the same form as the congruence satisfied by the $a_{r}(y)$ defined above, namely, see (8),

$$
a_{r+p}(y) \equiv a_{r+1}(y)+y^{p} a_{r}(y) \quad(\bmod p)
$$

It follows that the numbers $k_{r} \equiv k_{r}(1)$ have the same period as the a_{r}; that is, by the result given in (2)

$$
\begin{equation*}
k_{r+P} \equiv k_{r} \quad(\bmod p) \tag{30}
\end{equation*}
$$

where

$$
P=\left(p^{p}-1\right)(p-1)^{-1}
$$

Some further properties of the numbers k_{r} are as follows. First $k_{2 r}$ is integral, while $k_{2 r+1}$ has the denominator $2^{2 r}$. Indeed it follows at once from (27) that

$$
2^{2 \tau} k_{2 \tau+1} \equiv 1 \quad(\bmod 4)
$$

more precisely

$$
2^{2 r} k_{2 r+1} \equiv 1+4 r(2 r-1) \quad(\bmod 16)
$$

To find the residue $(\bmod 4)$ of $k_{2 r}$, it is convenient to define

$$
\begin{equation*}
k_{2 r+2}^{\prime}=\sum_{\substack{s=1 \\ s \text { odd }}}^{r+1} K_{r s} \tag{31}
\end{equation*}
$$

Then by (5)

$$
K_{r s} \equiv K_{r-1, s-1}+K_{r-1, s} \quad(\bmod 4) \quad(s \text { odd })
$$

Summing this over odd s gives

$$
\begin{equation*}
k_{2_{r+2}}^{\prime} \equiv k_{2 r} \quad(\bmod 4) \tag{32}
\end{equation*}
$$

On the other hand

$$
K_{r s} \equiv K_{r-1, s-1} \quad(\bmod 4) \quad(s \text { even })
$$

so that

$$
k_{2 r+2}-k_{2 r+2}^{\prime} \equiv k_{2 r}^{\prime} \quad(\bmod 4)
$$

Using (32) this becomes

$$
\begin{equation*}
k_{2 r+2} \equiv k_{2 r}+k_{2 r-2} \quad(\bmod 4) \tag{33}
\end{equation*}
$$

Iteration of (33) shows that

$$
\begin{equation*}
k_{2 r+12} \equiv k_{2 r} \quad(\bmod 4) \tag{34}
\end{equation*}
$$

Thus the period $(\bmod 4)$ is 12 , and

$$
\left.\begin{array}{rlrl}
k_{12 r} & \equiv 1, & k_{12 r+4} \equiv 2, & k_{12 r+8} \equiv 1, \\
k_{12 r+2} & \equiv 1, & k_{12 r+6} \equiv 3, & k_{12 r+10} \equiv 0 .
\end{array}\right\} \quad(\bmod 4)
$$

This shows that the only even $k_{2 r}$ are those of the form $\mathrm{k}_{6 r+4}$.

References

1. E. T. Bell, Exponential polynomials, Ann. Math., 35 (1934), 258-277.
2. M. Hall, Arithmetic properties of a partition function, Bull. Amer. Math. Soc., 40 (1934), abstract 200.
3. C. Jordan, Calculus of finite differences (New York, 1947).
4. J. Lohne, Potenssummer av de naturlige tall (Power sums of natural numbers), Nord. Mat. Tidskrift, 6 (1958), 155-158.
5. J. Riordan, An introduction to combinatorial analysis (New York, 1958).
6. J. F. Steffensen, Interpolation (Baltimore, 1927).
7. R. Tambs Lyche, Tillegg til for anstaende artikkel (Supplement to the preceding article), Nord. Mat. Tidskrift, 6 (1958), 159-161.
8. J. Touchard, Propriétés de certains nombres recurrents, Ann. Soc. Sc. Bruxelles, A53 (1953), 21-31.

Duke University
Bell Telephone Laboratories

[^0]: Received October 2, 1961. The first author was supported in part by NFS grant G-16485.

