Canad. Math. Bull. Vol. 46 (3), 2003 pp. 441-456

An Inductive Limit Model for the *K*-Theory of the Generator-Interchanging Antiautomorphism of an Irrational Rotation Algebra

P. J. Stacey

Abstract. Let A_{θ} be the universal C^* -algebra generated by two unitaries U, V satisfying $VU = e^{2\pi i \theta} UV$ and let Φ be the antiautomorphism of A_{θ} interchanging U and V. The K-theory of $R_{\theta} = \{a \in A_{\theta} : \Phi(a) = a^*\}$ is computed. When θ is irrational, an inductive limit of algebras of the form $M_q(C(\mathbb{T})) \oplus M_{q'}(\mathbb{R}) \oplus M_q(\mathbb{R})$ is constructed which has complexification A_{θ} and the same K-theory as R_{θ} .

1 Introduction

It was shown in [6] and later, with a simplified proof, in [7] that the irrational rotation algebra A_{θ} , generated by unitaries U, V with $VU = e^{2\pi i \theta} UV$, can be written as an inductive limit of algebras of the form $M_q(C(\mathbb{T})) \oplus M_{q'}(C(\mathbb{T}))$, where $C(\mathbb{T})$ denotes the algebra of continuous complex-valued functions on the unit circle \mathbb{T} and $M_q(C(\mathbb{T}))$ denotes the algebra of $q \times q$ matrices with entries in $C(\mathbb{T})$. It was subsequently shown by Walters in [14], with a simplified proof given by Boca in [2], that the algebras $M_q(C(\mathbb{T})) \oplus M_{q'}(C(\mathbb{T}))$ can be chosen to be invariant under the flip given by $U \to U^*, V \mapsto V^*$. Similar results were obtained in [13] for the antiautomorphisms given by $U \mapsto U, V \mapsto V^*$ and $U \mapsto -U, V \mapsto V^*$, but it was shown that the other naturally occurring antiautomorphism Φ , given by $\Phi(U) = V$ and $\Phi(V) = U$, does not admit such a decomposition.

A similar situation obtains for the period 4 (Fourier) automorphism given by $U \mapsto V$ and $V \mapsto U^*$. It was shown in [12] that there is no inductive limit decomposition of Elliott-Evans type which is invariant under this automorphism. However in [16] Walters raised the possibility of an invariant inductive limit decomposition using algebras of the form $M_q(C(\mathbb{T})) \oplus M_q(C(\mathbb{T})) \oplus M_{q'} \oplus M_q$. He produced an inductive limit decomposition of A_θ using such algebras and an order 4 automorphism σ of A_θ compatible with the decomposition and with the same induced map on $K_1(A_\theta)$ as the Fourier automorphism.

In this paper the construction of [16] is slightly modified to obtain an inductive limit decomposition invariant under an antiautomorphism of period 2 with the same effect on $K_1(A_\theta)$ as Φ . In this setting it is possible to obtain a more detailed agreement between the two antiautomorphisms by showing that the *K*-theories of the

Received by the editors December 10, 2001; revised October 29, 2002.

AMS subject classification: 46L35, 46L80.

[©]Canadian Mathematical Society 2003.

associated real algebras are identical. It is straightforward to calculate the *K*-theory of the inductive limit, but not immediately clear how to compute the *K*-theory of $R_{\theta} = \{a \in A_{\theta} : \Phi(a) = a^*\}$ since it has no (obvious) cross product structure. The calculation, which occupies most of this paper, is achieved by combining a standard exact sequence for real C^* -algebras with the exact sequence for real C^* -algebras produced in [11]. Walters, in [15], has calculated, for a dense G_{δ} set of real parameters θ , the *K*-theory of the analogous fixed point algebra of the Fourier automorphism, but his methods are different from (and more difficult than) those employed here.

2 Computing the *K*-Theory of R_{θ}

As a first step in the calculation of $K_0(R_\theta)$, it will be shown that Boca's construction from [3] produces a projection p in R_θ with trace θ . The features of this construction which are required to show this will now be described.

For each $r \in \mathbb{R}$ let $e(r) = e^{2\pi i r}$ and let β be the Heisenberg cocycle on \mathbb{R}^2 , defined by $\beta((x, y), (x', y')) = e(xy')$. Let D be the lattice $\{\sqrt{\theta}(n_1, n_2) : n_1, n_2 \in \mathbb{Z}\}$ and let $D^{\perp} = \{\frac{1}{\sqrt{\theta}}(m_1, m_2) : m_1, m_2 \in \mathbb{Z}\}$ (defined so that $D^{\perp} = \{z \in \mathbb{R}^2 : \beta(z, w) = \beta(w, z) \text{ for all } w \in D\}$). In accordance with page 278 of [9], choose the Haar measures on D, D^{\perp} to assign each point the masses $\sqrt{\theta}$, 1 respectively. Then define the twisted group algebras $C^*(D, \beta)$ and $C^*(D^{\perp}, \overline{\beta})$ as the C^* -completions of $L_1(D, \beta)$ and $L_1(D^{\perp}, \overline{\beta})$ with the multiplications

$$(fg)(w) = \int_D f(w')g(w - w')\beta(w', w - w') \, dw' \quad \text{for } w \in D$$
$$(fg)(z) = \int_{D^\perp} f(z')g(z - z')\overline{\beta(z', z - z')} \, dz' \quad \text{for } z \in D^\perp$$

and the involutions $f^*(w) = \beta(w, w)\overline{f(-w)}$ for $w \in D$ and $f^*(z) = \overline{\beta(z, z)f(-z)}$ for $z \in D^{\perp}$.

The Schwartz space $S(\mathbb{R})$ is a $C^*(D, \beta) - C^*(D^{\perp}, \overline{\beta})$ bimodule under the actions defined, for $a \in S(D)$, $b \in S(D^{\perp})$ and $h \in S(\mathbb{R})$, by

$$(ah)(s) = \sqrt{\theta} \sum_{(x,y)\in D} a(x,y)h(s+x)e(sy)$$
$$(hb)(s) = \sum_{(x,y)\in D^{\perp}} b(x,y)h(s-x)e(y(x-s))$$

Furthermore it becomes a $C^*(D,\beta) - C^*(D^{\perp},\bar{\beta})$ equivalence bimodule under the $C^*(D,\beta)$ and $C^*(D^{\perp},\bar{\beta})$ valued inner products \langle , \rangle_D and $\langle , \rangle_{D^{\perp}}$ defined for $f,g \in S(\mathbb{R})$ by

$$\langle f,g\rangle_D(x,y) = \int_{\mathbb{R}} f(s)\overline{g(s+x)}e(-sy) \, ds$$
$$\langle f,g\rangle_{D^{\perp}}(x,y) = \int_{\mathbb{R}} \overline{f(s)}g(s+x)e(sy) \, ds.$$

If $f \in S(\mathbb{R})$ is defined by $f(s) = e^{-\pi s^2}$ and $0 < \theta < 0.948$, then $\langle f, f \rangle_{D^{\perp}}$ is invertible and

$$p = \left\langle f\langle f, f \rangle_{D^{\perp}}^{-1/2}, f\langle f, f \rangle_{D^{\perp}}^{-1/2} \right\rangle_{D}$$

defines a projection p in $C^*(D, \beta)$ with $\tau_D(p) = \theta$, where τ_D is the unique normalised trace on $C^*(D, \beta) \cong A_{\theta}$. Using the isomorphism between A_{θ} and $A_{1-\theta}$ it follows that for all θ either p or 1 - p is a projection in A_{θ} with trace θ .

Let J, \mathcal{F} be the bounded invertible operators on $L_2(\mathbb{R})$ defined for $f \in S(\mathbb{R})$ by $(Jf)(s) = \overline{f(s)}$ and $(\mathcal{F}f)(s) = \int_{\mathbb{R}} f(x)e(-xs) dx$ and let $F = J\mathcal{F}$, so $(Ff)(s) = \int_{\mathbb{R}} \overline{f(x)}e(xs) dx$. *F* is an invertible antilinear operator on $L_2(\mathbb{R})$ and therefore $\Phi(a) = F^{-1}a^*F$ defines an antiautomorphism of $B(L_2(\mathbb{R}))$.

Lemma 2.1 Φ restricts to the involutory antiautomorphism of $C^*(D, \beta)$ which interchanges the canonical unitary generators.

Proof It suffices to show that $\Phi(\chi_{(\sqrt{\theta},0)}) = \chi_{(0,\sqrt{\theta})}$ and $\Phi(\chi_{(0,\sqrt{\theta})}) = \chi_{(\sqrt{\theta},0)}$, where χ_d is the characteristic function of $\{d\}$ for $d \in D$. Let $h \in S(\mathbb{R})$ and $s \in \mathbb{R}$. Then

$$\left(F\Phi(\chi_{(\sqrt{\theta},0)})h\right)(s) = (\chi_{(\sqrt{\theta},0)}^*Fh)(s) = (\chi_{(-\sqrt{\theta},0)}Fh)(s)$$
$$= \sqrt{\theta}(Fh)(s - \sqrt{\theta}) = \sqrt{\theta} \int_{\mathbb{R}} \overline{h(x)}e(x(s - \sqrt{\theta})) dx$$

whereas

$$(F\chi_{(0,\sqrt{\theta})}h)(s) = \int_{\mathbb{R}} \overline{(\chi_{(0,\sqrt{\theta})}h)(x)}e(xs) \, dx$$
$$= \sqrt{\theta} \int_{\mathbb{R}} e(-\sqrt{\theta}x)\overline{h(x)}e(xs) \, dx$$

Thus $F\chi_{(0,\sqrt{\theta})} = F\Phi(\chi_{(\sqrt{\theta},0)})$, so $\chi_{(0,\sqrt{\theta})} = \Phi(\chi_{(\sqrt{\theta},0)})$. A similar calculation gives $\chi_{(\sqrt{\theta},0)} = \Phi(\chi_{(0,\sqrt{\theta})})$.

Proposition 2.2 If $0 < \theta < 1$ then R_{θ} contains a projection p with trace θ .

Proof By Lemma 2.1 and the preceding remarks it suffices to show that pF = Fp where $p = \langle f \langle f, f \rangle_{D^{\perp}}^{-1/2}$, $f \langle f, f \rangle_{D^{\perp}}^{-1/2} \rangle_D$ and $f(s) = e^{-\pi s^2}$. It is shown in [3] that $\mathcal{F}p = p\mathcal{F}$, so it suffices to show that Jp = pJ.

For $h \in S(\mathbb{R})$ and $s \in \mathbb{R}$,

$$(h\langle f, f \rangle_{D^{\perp}})(s) = \sum_{(x,y) \in D^{\perp}} \langle f, f \rangle_{D^{\perp}}(x, y)h(s - x)e(y(x - s))$$
$$= \sum_{(x,y) \in D^{\perp}} \int_{\mathbb{R}} f(t)f(t + x)e(ty) dt h(s - x)e(y(x - s))$$

Thus

$$(h\langle f, f \rangle_{D^{\perp}} J)(s) = \sum_{(x,y) \in D^{\perp}} \int_{\mathbb{R}} f(t) f(t+x) e(-ty) dt \overline{h(s-x)} e(-y(x-s))$$
$$= (hJ\langle f, f \rangle_{D^{\perp}})(s).$$

It follows in turn that $J\langle f, f \rangle_{D^{\perp}} = \langle f, f \rangle_{D^{\perp}} J$, $J\langle f, f \rangle_{D^{\perp}}^{-1/2} = \langle f, f \rangle_{D^{\perp}}^{-1/2} J$ and $f\langle f, f \rangle_{D^{\perp}}^{-1/2} J = f J \langle f, f \rangle_{D^{\perp}}^{-1/2} = f \langle f, f \rangle_{D^{\perp}}^{-1/2}$. Putting $g = f \langle f, f \rangle_{D^{\perp}}^{-1/2}$, a calculation for $\langle g, g \rangle_D$ similar to that given above for $\langle f, f \rangle_{D^{\perp}}$ then shows that Jp = pJ, as required.

The principal tool used to calculate the *K*-theory of R_{θ} will be two exact sequences, which both rely on the *K*-theoretic maps $\alpha_i : K_i(A_{\theta}) \to K_i(A_{\theta})$, where α is the antilinear automorphism defined by $\alpha(x) = \Phi(x^*)$. The proof of Proposition 2.7 in III of [8] shows that, when $r_i : K_i(A_{\theta}) \to K_i(R_{\theta})$ and $c_i : K_i(R_{\theta}) \to K_i(A_{\theta})$ arise from the maps $r(x + iy) = \begin{pmatrix} x & -y \\ y & x \end{pmatrix}$ and the inclusion c(x) = x, then $r_i \circ c_i = 2$ id and $c_i \circ r_i = id + \alpha_i$.

Although the principal interest of this paper is in the case of irrational θ , the calculation of the *K* theory of R_{θ} can be carried out for both rational and irrational θ simultaneously if the complexification map $c_0: K_0(R_{\theta}) \to K_0(A_{\theta})$ is shown to be a surjection.

Proposition 2.3 The complexification map $c_0: K_0(R_\theta) \to K_0(A_\theta)$ is a surjection.

Proof When θ is irrational, then $K_0(A_\theta)$ is generated by [1] and [*p*] for any projection *p* in A_θ with trace θ . Thus the result follows from Proposition 2.2.

When $\theta = p/q$ with (p,q) = 1 then, as shown for example in [4], A_{θ} is isomorphic to

$$\left\{ \begin{array}{l} f \in C([0,1]^2, M_q) : f(\lambda, 1) = W_1 f(\lambda, 0) W_1^* \text{ for all } 0 \le \lambda \le 1, \\ f(1, \mu) = W_2 f(0, \mu) W_2^* \text{ for all } 0 \le \mu \le 1 \end{array} \right\},\$$

where M_q denotes the algebra of $q \times q$ complex matrices (with q = 1 when $\theta = 1$) and W_1 and W_2 are two particular $q \times q$ matrices. Let $e \in R_{\theta}$ be the Boca projection with trace $\frac{1}{q}$ and note that, by continuity, the usual normalised trace of $e(\lambda, \mu)$ is equal to $\frac{1}{q}$ for each $(\lambda, \mu) \in [0, 1]^2$. Thus *e* is a full projection in R_{θ} , so that $eR_{\theta}e$ is stably isomorphic (as a real C^* -algebra) to R_{θ} . Since $eR_{\theta}e$ is isomorphic to

$$R_1 = \{ f \in C([0,1]^2, \mathbb{C}) : f(\lambda, 1) = f(\lambda, 0), f(1,\mu) = f(0,\mu),$$
$$f(\lambda,\mu) = \overline{f(\mu,\lambda)} \text{ for all } \lambda, \mu \},$$

it suffices to prove the result when θ has any fixed value, such as $\frac{1}{2}$.

As observed in [17], the arguments for the irrational case apply also when $\theta = \frac{p}{q}$ to show that $K_0(R_\theta)$ is generated by [1] and [f] where f is a Rieffel projection with trace $\frac{1}{q}$. Thus, if $\theta = \frac{1}{2}$ and e is a Boca projection with trace $\frac{1}{2}$ then [e] = a[1] + (1 - 2a)[f] for some $a \in \mathbb{Z}$, from which it follows that $c_0(K_0(R_\theta)) \supseteq \mathbb{Z} \times (1 - 2a)\mathbb{Z}$ and $c_0r_0(K_0(A_\theta)) \supseteq 2\mathbb{Z} \times 2(1 - 2a)\mathbb{Z}$, so det(id $+\alpha_0) = \det(c_0r_0) \neq 0$. The only possibilities for an order 2 automorphism α_0 of \mathbb{Z}^2 are $\pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \pm \begin{pmatrix} 1 & 0 & -1 \\ 0 & -1 \end{pmatrix}$ and $\begin{pmatrix} a & b \\ c & -a \end{pmatrix}$ with $a^2 + bc = 1$. The only one of these for which det(id $+\alpha_0) \neq 0$ is id. Hence $c_0r_0 = 2$ id and $c_0(K_0(R_\theta)) \supseteq 2\mathbb{Z}^2$. When combined with $c_0(K_0(R_\theta)) \supseteq \mathbb{Z} \times (1 - 2a)\mathbb{Z}$, this gives $c_0(K_0(R_\theta)) = \mathbb{Z}^2$, as required.

Proposition 2.4 For any $\theta \leq \theta \leq 1$, the maps $\alpha_i \colon K_i(A_\theta) \to K_i(A_\theta)$ are periodic of period 4. The matrices defining the corresponding automorphisms of \mathbb{Z}^2 are

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad when \ i \equiv 0 \pmod{4}$$
$$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \quad when \ i \equiv 1 \pmod{4}$$
$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \quad when \ i \equiv 2 \pmod{4}$$
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad when \ i \equiv 3 \pmod{4}$$

Proof For any complex C^* -algebra A let $SA = C_0(\mathbb{R}, A)$ and let $\theta_A : K_1(A) \to K_0(SA)$ and $\beta_A : K_0(A) \to K_1(SA)$ be the isomorphisms defined in Theorem 8.2.2 and Definition 9.1.1 of [1]. The isomorphism θ_A commutes with the maps produced by either a linear or antilinear automorphism of A. When α is an antilinear automorphism, let $\tilde{\alpha}$ be the associated antilinear automorphism of $C(S^1, \operatorname{GL}_n(A^+))$ and note that when $f_e: z \mapsto ze+(1-e)$ (where e is a projection in A) then $\tilde{\alpha}(f_e): z \mapsto \bar{z}\alpha(e) + (1-\alpha(e))$. Thus $\tilde{\alpha}(f_e) = f_{\alpha(e)}^{-1}$ and so, when τ is the inverse map in $K_1(SA)$, the following diagram commutes.

$$\begin{array}{ccc} K_0(A) & & & & \\ & & & \\ \beta_A & & & & \\ K_1(SA) & & & \\ & & & \\ & & & \\ \hline & & & \\ & &$$

It follows that, under the Bott isomorphism $\theta_{SA}\beta_A$ between $K_0(A)$ and $K_2(A)$, the following diagram commutes, where τ is the inverse map.

$$\begin{array}{ccc} K_0(A) & & & & & \\ & & & & \\ \theta_{SA}\beta_A & & & & & \\ K_2(A) & & & & \\ & & & & \\ & & & & \\ \end{array} \xrightarrow{\alpha_2 \circ \tau} & K_2(A) \end{array}$$

It remains to establish the matrices for $\alpha_0: K_0(A_\theta) \to K_0(A_\theta)$ and $\alpha_1: K_1(A_\theta) \to K_1(A_\theta)$. The second is immediate from $\alpha(U) = V^*$ and $\alpha(V) = U^*$, where U, V are the unitary generators of A_θ . In the first case it has already been shown in the rational case that $\alpha_0 = \text{id}$. When θ is irrational, let p be a projection in R_θ given by Proposition 2.3. Then [1] and [p] generate $K_0(A_\theta)$ and $(cr)(1) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $(cr)(p) = \begin{pmatrix} p & 0 \\ 0 & p \end{pmatrix}$, so id $+\alpha_0 = 2$ id on $K_0(A_\theta)$ and hence $\alpha_0 = \text{id}$.

The first exact sequence used to determine the *K*-theory of R_{θ} will be based on the results of [11]. The first step is to compute the *K*-theory of the real C^* -algebra $C_{\theta} = A_{\theta} \times_{\alpha} \mathbb{Z}$ using the real Pimsner-Voiculescu sequence.

Proposition 2.5 For any $0 \le \theta \le 1$, let $C_{\theta} = A_{\theta} \times_{\alpha} \mathbb{Z}$ where $\alpha(x) = \Phi(x^*)$ for each $x \in A_{\theta}$. Then

$$K_i(C_{\theta}) \cong \mathbb{Z}^3 \quad when \ i \equiv 0, \ 1 \pmod{4},$$

 $K_i(C_{\theta}) \cong \mathbb{Z} \quad when \ i \equiv 3 \pmod{4},$

and

$$K_i(C_\theta) \cong \mathbb{Z}_2^2 \times \mathbb{Z} \quad when \ i \equiv 2 \pmod{4}$$

Proof The real Pimsner-Voiculescu sequence in this case is

$$\cdots \longrightarrow K_0(A_{\theta}) \underset{\mathrm{id} - \alpha_0}{\longrightarrow} K_0(A_{\theta}) \longrightarrow K_0(C_{\theta}) \longrightarrow K_7(A_{\theta}) \longrightarrow \cdots$$

From Proposition 2.4, id = α_i when $i \equiv 0 \pmod{4}$ so, starting with $K_0(A_\theta)$ we obtain

$$0 \longrightarrow \mathbb{Z}^{2} \longrightarrow K_{0}(C_{\theta}) \longrightarrow \mathbb{Z}^{2} \xrightarrow[\left(1 \ -1 \ 1\right)]{} \mathbb{Z}^{2} \longrightarrow K_{7}(C_{\theta}) \longrightarrow \mathbb{Z}^{2}$$
$$\xrightarrow{2 \text{ id}} \mathbb{Z}^{2} \longrightarrow K_{6}(C_{\theta}) \longrightarrow \mathbb{Z}^{2} \xrightarrow[\left(1 \ 1 \ 1\right)]{} \mathbb{Z}^{2} \longrightarrow K_{5}(C_{\theta}) \longrightarrow \mathbb{Z}^{2} \longrightarrow 0$$

The initial portion gives $0 \to \mathbb{Z}^2 \to K_0(C_\theta) \to \{(n, n) : n \in \mathbb{Z}\} \to 0$, so $K_0(C_\theta) \cong \mathbb{Z}^3$. The next part gives $0 \to \mathbb{Z}^2/\{(n, -n) : n \in \mathbb{Z}\} \to K_7(C_\theta) \to \ker(2 \operatorname{id}) \to 0$, yielding $K_7(C_\theta) \cong \mathbb{Z}$.

Finally, the portions $0 \to \mathbb{Z}^2 \xrightarrow{2 \text{ id}} \mathbb{Z}^2 \longrightarrow K_6(C_\theta) \longrightarrow \{(n, -n) : n \in \mathbb{Z}\} \to 0$ and $0 \to \mathbb{Z}^2/\{(n, n) : n \in \mathbb{Z}\} \to K_5(C_\theta) \to \mathbb{Z}^2 \to 0$ yield $K_6(C_\theta) \cong \mathbb{Z}_2^2 \times \mathbb{Z}$ and $K_5(C_\theta) \cong \mathbb{Z}^3$. The periodicity of period 4 established in Proposition 2.4 completes the proof.

It follows from Propositions 2.2(ii) and 2.3 of [11] that C_{θ} is isomorphic to

$$C_{\theta} = \left\{ f \in C([0,1], M_2(A_{\theta})) : f(1) = \hat{\alpha}(f(0)), \\ f(t) = (\Psi \hat{\alpha}) (f(1-t)^*) \text{ for each } 0 \le t \le 1 \right\}$$

where

$$\hat{\alpha} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & -b \\ -c & d \end{pmatrix}$$

and

$$\Psi\begin{pmatrix}a&b\\c&d\end{pmatrix} = \begin{pmatrix}\Phi(d)&\Phi(b)\\\Phi(c)&\Phi(a)\end{pmatrix}.$$

For each $f \in C_{\theta}$, $f(0) = (\Psi \hat{\alpha}) (f(1)^*) = \Psi (f(0))^*$ and $f(\frac{1}{2}) = (\Psi \hat{\alpha}) (f(\frac{1}{2}))^*$. By Proposition 2.4 of [11] it follows that the evaluation map at $\frac{1}{2}$ has image isomorphic to $R_{\theta} \otimes \mathbb{H}$ and the evaluation map at 0 has image isomorphic to $R_{\theta} \otimes M_2(\mathbb{R}) \cong$ $M_2(R_{\theta})$. Thus, using *I* to denote [0, 1], there is an exact sequence

$$0 \to C_0(I, M_2(A_\theta)) \to C_\theta \to M_2(R_\theta) \times (R_\theta \otimes \mathbb{H}) \to 0.$$

The associated K-theoretic long exact sequence

$$(2.1) \qquad \cdots \to K_{n+1}(A_{\theta}) \to K_n(C_{\theta}) \to K_n(R_{\theta}) \times K_{n+4}(R_{\theta}) \to K_n(A_{\theta}) \to \cdots$$

is one of the tools which will be used to calculate the *K*-theory of R_{θ} . The other is the sequence, described in Theorem 1.4.7 of [10],

(2.2)

$$\cdots \longrightarrow K_n(R_\theta) \xrightarrow[c_n]{} K_n(A_\theta) \longrightarrow K_{n-2}(A_\theta) \xrightarrow[r_{n-2}]{} K_{n-2}(R_\theta) \longrightarrow K_{n-1}(R_\theta) \longrightarrow \cdots$$

in which the middle map from $K_n(A_\theta)$ to $K_{n-2}(A_\theta)$ is the Bott isomorphism.

It follows from (2.1) and Proposition 2.5 that each group $K_n(R_\theta)$ is finitely generated. The following lemma gives some more detailed information.

Lemma 2.6 For any $0 \le \theta \le 1$, there exist $a_1, \ldots, a_7 \in \mathbb{N} \cup \{0\}$ such that

$$\begin{split} & K_0(R_\theta) \cong \mathbb{Z}^2 \times \mathbb{Z}_2^{a_0}, \qquad K_1(R_\theta) \cong \mathbb{Z} \times \mathbb{Z}_2^{a_1}, \\ & K_2(R_\theta) \cong \mathbb{Z}_2^{a_2}, \qquad K_3(R_\theta) \cong \mathbb{Z} \times \mathbb{Z}_2^{a_3}, \\ & K_4(R_\theta) \cong \mathbb{Z}^2 \times \mathbb{Z}_2^{a_4}, \qquad K_5(R_\theta) \cong \mathbb{Z} \times \mathbb{Z}_2^{a_5}, \\ & K_6(R_\theta) \cong \mathbb{Z}_2^{a_6}, \qquad K_7(R_\theta) \cong \mathbb{Z} \times \mathbb{Z}_2^{a_7}. \end{split}$$

Proof For i = 2, 6 then, by Proposition 2.4, $c_i r_i = id + \alpha_i = 0$. Using $r_i c_i = 2$ id it follows that $2r_i(\mathbb{Z}^2) = r_i c_i r_i(\mathbb{Z}^2) = 0$ and therefore $4K_i(R_\theta) = 2r_i c_i K_i(R_\theta) \subseteq 2r_i(\mathbb{Z}^2) = 0$. Hence $c_i : K_i(R_\theta) \to \mathbb{Z}^2$ is the zero map and so $2K_i(R_\theta) = r_i c_i K_i(R_\theta) = 0$, showing that $K_i(R_\theta)$ is a 2-torsion group and, being finitely generated, it is therefore of the required form.

From (2.2) there is an exact sequence

$$\cdots \longrightarrow K_0(R_\theta) \xrightarrow[c_0]{} \mathbb{Z}^2 \xrightarrow[r_6]{} K_6(R_\theta)$$
$$\longrightarrow K_7(R_\theta) \xrightarrow[c_7]{} \mathbb{Z}^2 \xrightarrow[r_5]{} K_5(R_\theta) \longrightarrow K_6(R_\theta) \xrightarrow[c_6]{} \mathbb{Z}^2 \longrightarrow \cdots$$

P. J. Stacey

Part of this gives $\mathbb{Z}_{2}^{a_{6}} \longrightarrow K_{7}(R_{\theta}) \longrightarrow \mathbb{Z}^{2} \longrightarrow K_{5}(R_{\theta}) \longrightarrow \mathbb{Z}_{2}^{a_{6}} \longrightarrow 0$. From Proposition 2.4 $c_{5}r_{5} = \operatorname{id} + \alpha_{5} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$ so either ker $(r_{5}) = \{0\}$ or ker $(r_{5}) \cong \mathbb{Z}$. If ker $(r_{5}) = \{0\}$ then Im $(c_{7}) = 0$ contradicting $c_{7}r_{7} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. Thus ker $(r_{5}) =$ Im $(c_{7}) \cong \mathbb{Z}$, from which it follows that both $K_{5}(R_{\theta})$ and $K_{7}(R_{\theta})$ are of the form $\mathbb{Z} \times F_{i}$ for some finite groups F_{5}, F_{7} . Then $c_{5}(F_{5}) = c_{7}(F_{7}) = 0$ and hence $2F_{5} = r_{5}c_{5}F_{5} = 0$ and $2F_{7} = r_{7}c_{7}F_{7} = 0$, showing that both $K_{5}(R_{\theta})$ and $K_{7}(R_{\theta})$ have the required forms. A similar argument applies to $\mathbb{Z}_{2}^{a_{2}} \longrightarrow K_{3}(R_{\theta}) \longrightarrow \mathbb{Z}_{2}^{a_{2}} \longrightarrow 0$, producing the result for $K_{1}(R_{0}) \longrightarrow \mathbb{Z}_{2}^{a_{2}} \longrightarrow 0$,

producing the result for $K_1(R_\theta)$ and $K_3(R_\theta)$.

The portion $\mathbb{Z}_{2}^{a_{6}} \xrightarrow{\mathbb{Z}^{2}} \mathbb{Z}^{2} \xrightarrow{r_{4}} K_{4}(R_{\theta}) \xrightarrow{} K_{5}(R_{\theta}) \xrightarrow{} \mathbb{Z}^{2} \xrightarrow{r_{3}} K_{3}(R_{\theta})$ has $\operatorname{Im}(c_{5}) = \operatorname{ker}(r_{3}) \cong \mathbb{Z}$ since $\operatorname{ker}(r_{3}) \cong \mathbb{Z}^{2}$ contradicts $c_{3}r_{3} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ and $\operatorname{Im}(c_{5}) = \{0\}$ contradicts $c_{5}r_{5} = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$. Thus $0 \to \mathbb{Z}^{2} \to K_{4}(R_{\theta}) \to \mathbb{Z} \times \mathbb{Z}_{2}^{a_{5}} \to \mathbb{Z} \to 0$ and so $0 \to \mathbb{Z}^{2} \to K_{4}(R_{\theta}) \to \mathbb{Z}_{2}^{a_{5}} \to 0$ from which it follows that $K_{4}(R_{\theta})$ has the required form. A similar argument works for $K_{0}(R_{\theta})$.

The exact sequence (2.1) will next be used to limit the size of a_0, \ldots, a_7 .

Lemma 2.7 Let a_0, \ldots, a_7 be as defined in Lemma 2.6. Then $a_0 + a_4 \in \{0, 1\}, a_1 + a_5 \in \{0, 1, 2\}, a_2 + a_6 \in \{1, 2, 3\}, a_3 + a_7 = 0.$

Proof The part of the sequence (2.1) starting at $K_7(C_\theta)$ gives

$$\cdots \longrightarrow \mathbb{Z} \xrightarrow{\beta_7} \mathbb{Z}^2 \times \mathbb{Z}_2^{a_3 + a_7} \xrightarrow{\gamma_7} \mathbb{Z}^2 \xrightarrow{\alpha_6} \mathbb{Z}_2^2 \times \mathbb{Z} \xrightarrow{\beta_6} \mathbb{Z}_2^{a_2 + a_6} \xrightarrow{0} \mathbb{Z}^2.$$

If $\operatorname{Im}(\gamma_7) \cong \mathbb{Z}^2$ then $\operatorname{ker}(\beta_6) = \operatorname{Im}(\alpha_6)$ is a torsion group, giving a contradiction to the final part of the sequence. $\operatorname{Im}(\gamma_7) = 0$ is also impossible because α_6 cannot be injective. Hence $\operatorname{Im}(\gamma_7) \cong \mathbb{Z}$ and so $\operatorname{Im}(\beta_7) = \operatorname{ker}(\gamma_7) \cong \mathbb{Z} \times \mathbb{Z}_2^{a_3+a_7}$, which forces $a_3 + a_7 = 0$. The previous part of the sequence (2.1) gives

$$\longrightarrow \mathbb{Z}^3 \xrightarrow[\beta_0]{} \mathbb{Z}^4 \times \mathbb{Z}_2^{a_0+a_4} \xrightarrow[\gamma_0]{} \mathbb{Z}^2 \xrightarrow[\alpha_7]{} \mathbb{Z} \xrightarrow[\beta_7]{} \mathbb{Z}^2$$

and, from $\operatorname{Im}(\alpha_7) = \ker \beta_7 = 0$ it follows that $\operatorname{Im}(\gamma_0) = \mathbb{Z}^2$ and hence $\operatorname{Im}(\beta_0) = \ker(\gamma_0) \cong \mathbb{Z}^2 \times \mathbb{Z}_2^{a_0+a_4}$, from which it follows that $a_0 + a_4 \in \{0, 1\}$. Both possibilities $\operatorname{Im}(\beta_0) \cong \mathbb{Z}^2$ and $\operatorname{Im}(\beta_0) \cong \mathbb{Z}^2 \times \mathbb{Z}_2$ imply that $\ker(\beta_0) \cong \mathbb{Z}$. The part of sequence (2.1) finishing at β_0 is

$$\mathbb{Z}^3 \xrightarrow[\beta_1]{} \mathbb{Z}^2 \times \mathbb{Z}_2^{a_1 + a_5} \xrightarrow[\gamma_1]{} \mathbb{Z}^2 \xrightarrow[\alpha_0]{} \mathbb{Z}^3 \xrightarrow[\beta_0]{}$$

and it follows from $\operatorname{Im}(\alpha_0) = \ker(\beta_0) \cong \mathbb{Z}$ that $\operatorname{Im}(\gamma_1) = \ker(\alpha_0) \cong \mathbb{Z}$. Thus $\operatorname{Im}(\beta_1) \cong \mathbb{Z} \times \mathbb{Z}_2^{a_1+a_5}$ from which it follows that $a_1 + a_5 \in \{0, 1, 2\}$. Finally, the part of sequence (2.1) used at the start of the proof has $\ker(\alpha_6) = \operatorname{Im}(\gamma_7) \cong \mathbb{Z}$ so $\operatorname{Im}(\alpha_6) \cong \mathbb{Z} \times \mathbb{Z}_2$ or $\operatorname{Im}(\alpha_6) \cong \mathbb{Z}$. The first possibility leads to $a_2 + a_6 \in \{1, 2\}$ and the second to $a_2 + a_6 \in \{2, 3\}$.

The *K*-theory of R_{θ} can now be calculated.

Theorem 2.8 The K groups of R_{θ} are given by the following table.

Proof From Proposition 2.3 the complexification map $c_0: \mathbb{Z}^2 \times \mathbb{Z}_2^{a_0} \to \mathbb{Z}^2$ is a surjection. Thus, from $r_0c_0 = 2$ id, $r_0(\mathbb{Z}^2) = 2\mathbb{Z}^2$. The exact sequence (2.2) contains the portion

$$\cdots \longrightarrow \mathbb{Z}^2 \xrightarrow[r_0]{} K_0(R_\theta) \longrightarrow K_1(R_\theta) \xrightarrow[c_1]{} \mathbb{Z}^2 \longrightarrow \cdots$$

which is known to be of the form

. .

$$\cdots \longrightarrow \mathbb{Z}^2 \xrightarrow[r_0]{} \mathbb{Z}^2 \times \mathbb{Z}_2^{a_0} \xrightarrow[\delta]{} \mathbb{Z} \times \mathbb{Z}_2^{a_1} \xrightarrow[c_1]{} \mathbb{Z}^2 \longrightarrow \cdots$$

From $r_0(\mathbb{Z}^2) = 2\mathbb{Z}^2$ it follows that $\operatorname{Im}(\delta) \cong \mathbb{Z}_2^{2+a_0}$ and thus that $a_1 \ge 2+a_0$. However, by Lemma 2.7, $a_1 \le 2$ so $a_1 = 2$ and $a_0 = 0$. Then, since $a_1 + a_5 \le 2$, $a_5 = 0$. Another portion of the sequence (2.2) is

$$\longrightarrow K_0(R_\theta) = \mathbb{Z}^2 \xrightarrow[c_0]{} \mathbb{Z}^2 \xrightarrow[r_6]{} K_6(R_\theta) \longrightarrow K_7(R_\theta) = \mathbb{Z},$$

and, since c_0 is surjective and $K_6(R_\theta) = \mathbb{Z}_2^{a_6}$, $K_6(R_\theta) = 0$. To calculate $K_4(R_\theta)$ and $K_2(R_\theta)$ note that for $x \in R_\theta$,

$$\begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix} + \frac{i}{2} \begin{pmatrix} -ix & 0 \\ 0 & ix \end{pmatrix}$$
$$= \frac{1}{2} (x \otimes 1_{\mathrm{H}}) + \frac{i}{2} (x \otimes i_{\mathrm{H}})$$
$$\in (R_{\theta} \otimes \mathbb{H}) + i(R_{\theta} \otimes \mathbb{H}).$$

Thus $r\begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} x \otimes 1_{H} & -x \otimes i_{H} \\ x \otimes i_{H} & x \otimes 1_{H} \end{pmatrix} = A \begin{pmatrix} x \otimes 1_{H} & 0 \\ 0 & 0 \end{pmatrix} A^{*}$ where $\sqrt{2}A = \begin{pmatrix} 1 \otimes 1_{H} & 1 \otimes 1_{H} \\ 1 \otimes i_{H} & -1 \otimes i_{H} \end{pmatrix}$, showing that $r([1]) = [1 \otimes 1_{H}]$ and $r([p]) = [p \otimes 1_{H}]$, whereas $c[1 \otimes 1_{H}] = 2[1]$ and $c[p \otimes 1_{\mathbb{H}}] = 2[p]$. Thus

$$\cdots \longrightarrow \mathbb{Z}^2 \xrightarrow[r_4]{} \mathbb{Z}^2 \times \mathbb{Z}_2^{a_4} \xrightarrow[\gamma]{} \mathbb{Z} = K_5(R_\theta) \longrightarrow \cdots$$

with $r_4(\mathbb{Z}^2) = \mathbb{Z}^2$, showing that $a_4 = 0$, and

$$\longrightarrow K_4(R_\theta) = \mathbb{Z}^2 \xrightarrow[c_4]{} \mathbb{Z}^2 \xrightarrow[r_2]{} K_2(R_\theta) \longrightarrow K_3(R_\theta) = \mathbb{Z}$$

with $c_4(\mathbb{Z}^2) = 2\mathbb{Z}^2$, showing that $K_2(R_\theta) \cong \mathbb{Z}_2^2$.

Having established the group structure of $K_n(R_\theta)$ it is possible to specify generators explicitly, though this will not be needed in the sequel. This has already been done for $K_0(R_{\theta})$. By the identification $K_4(R_{\theta}) \cong K_0(R_{\theta} \otimes \mathbb{H})$, the generators for

 $K_4(R_\theta)$ are $[1 \otimes 1_H]$ and $[p \otimes 1_H]$ where [1] and [p] are generators for $K_0(R_\theta)$. The element $[e^{-\pi i \theta} UV^*]$ is a generator of the summand \mathbb{Z} of $K_1(R_\theta)$ and the elements $\left[\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\right]$ and $\left[\begin{pmatrix} 1-p & p \\ p & 1-p \end{pmatrix}\right]$, where [p] is a generator of $K_0(R_\theta)$, are generators of the two \mathbb{Z}_2 summands. These can be obtained in the following way from the generators [1] and [p] of $K_0(A_\theta)$. Note that the relevant portion of the exact sequence (2.1) arising from

$$0 o C_0ig(I, M_2(A_ heta)ig) o C_ heta o M_2(R_ heta) imes (R_ heta \otimes \mathbb{H}) o 0$$

$$\cdots \xrightarrow{}_{0} K_1(C_0(I, M_2(A_{\theta})) \cong \mathbb{Z}^2 \longrightarrow K_1(C_{\theta}) \cong \mathbb{Z}^3 \longrightarrow (\mathbb{Z} \times \mathbb{Z}_2^2) \times \mathbb{Z} \longrightarrow \mathbb{Z}^2 \longrightarrow \cdots,$$

and thus that the two generators of \mathbb{Z}_2^2 arise from evaluation at 0 of the elements of C_θ generating the summands containing the image of $K_1(C_0(I, M_2(A_\theta)))$.

The two generators [1] and [*p*] of $K_0(A_\theta)$ give rise to the elements f_1 and f_p of $C_0(I, A_\theta)^+$ defined by $f_1(t) = I + (e^{2\pi i t} - 1)1$ and $f_p(t) = I + (e^{2\pi i t} - 1)p$, where *I* is the identity adjoined to $C_0(I, A_\theta)$. The corresponding elements of C_θ are defined by

$$f_p(t) = \begin{cases} \begin{pmatrix} 1 + (e^{4\pi i t} - 1)p & 0\\ 0 & 1 \end{pmatrix} & \text{if } 0 \le t \le \frac{1}{2} \\ \\ \begin{pmatrix} 1 & 0\\ 0 & 1 + (e^{4\pi i t} - 1)p \end{pmatrix} & \text{if } \frac{1}{2} \le t \le 1, \end{cases}$$

with a corresponding definition of f_1 . These formulae arise from using $f(t) = (\Psi \hat{\alpha}) (f(1-t)^*)$ for $\frac{1}{2} \le t \le 1$. Note that $[f_p] = [g_p]$ and $[f_1] = [g_1]$ where

$$g_p(t) = \begin{pmatrix} 1 + (e^{2\pi i t} - 1)p & 0\\ 0 & 1 + (e^{2\pi i t} - 1)p \end{pmatrix}$$

for all $0 \le t \le 1$, with a similar formula for g_1 . Let $h_p(t) = \begin{pmatrix} 1-p & pe^{\pi i t} \\ pe^{\pi i t} & 1-p \end{pmatrix}$ for $0 \le t \le 1$ with a similar definition of h_1 . Then $h_p^2 = g_p$, $h_1^2 = g_1$, $h_p \in C_\theta$ and $h_1 \in C_\theta$. Evaluating at 0 gives the generators $\left[\begin{pmatrix} 1-p & p \\ p & 1-p \end{pmatrix}\right]$ and $\left[\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\right]$ of the two \mathbb{Z}_2 summands of $K_1(R_\theta)$.

Regarding $K_5(R_\theta)$ as $K_1(R_\theta \otimes \mathbb{H})$, a generator is $[e^{-\pi i \theta}UV^* \otimes 1_{\mathbb{H}}]$. The generators of $K_2(R_\theta)$, viewed as $K_1(C_0(I, R_\theta))$ are obtained, via the exact sequence (2.2), as the images of the generators of $K_1(C_0(I, A_\theta))$ under the realification map. These are given by

$$t \mapsto \begin{pmatrix} 1 + (\cos(2\pi t) - 1) p & p \sin(2\pi t) \\ -p \sin(2\pi t) & 1 + (\cos(2\pi t) - 1) p \end{pmatrix}$$

and

$$t \mapsto \begin{pmatrix} \cos(2\pi t)1 & \sin(2\pi t)1\\ -\sin(2\pi t)1 & \cos(2\pi t)1 \end{pmatrix}.$$

The latter can also be viewed as the image of the generator of $K_2(\mathbb{R})$ under the map from $K_2(\mathbb{R})$ into $K_2(R_\theta)$ resulting from $\lambda \mapsto \lambda 1$.

The most cumbersome generators to describe are those for $K_3(R_\theta)$ and $K_7(R_\theta)$. To obtain a generator for $K_7(R_\theta)$ note that the exact sequence (2.2) includes the portion

$$\longrightarrow K_1(R_\theta) \underset{c_1}{\longrightarrow} \mathbb{Z}^2 = K_1(A_\theta) \longrightarrow \mathbb{Z}^2 = K_7(A_\theta)$$
$$\longrightarrow K_7(R_\theta) = \mathbb{Z} \longrightarrow K_0(R_\theta) \underset{c_0}{\longrightarrow} K_0(A_\theta)$$

where c_0 is an isomorphism and the image of c_1 is $[e^{-\pi i\theta}UV^*] = [UV^*]$. It follows that, for either generator [U] or [V] of $K_1(A_\theta)$, the image under r_7 of the corresponding element of $K_7(A_\theta)$ generates $K_7(R_\theta)$. One description of this generator can be obtained by using the results of [5] to identify $K_n(R_\theta)$ with $K_{n+1}(D_\theta)$ where $D_\theta = \{ f \in C_0(\mathbb{R}, A_\theta) : f(-x) = \Phi(f(x)^*) \}$ (= $C_0^{\mathbb{R}}(i\mathbb{R}) \otimes R_\theta$ in the language of [5]).

The complexification of D_{θ} is just $C_0(\mathbb{R}, A_{\theta})$ and the element of $K_0(C_0(\mathbb{R}, A_{\theta}))$ corresponding to the element [*U*] of $K_1(A_{\theta})$ is, as described in Theorem 8.2.2 of [1], $[p_U] - \left[\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right]$ where $p_U \in C_0(I, M_2(A_{\theta}))$ is defined by

$$p_U(t) = \begin{pmatrix} 1 + s_t^2 c_t^2 (U + U^* - 2) & c_t s_t (U - 1) (1 + s_t^2 (U - 1)) \\ c_t s_t (U^* - 1) (1 + s_t^2 (U^* - 1)) & c_t^2 s_t^2 (2 - U^* - U) \end{pmatrix}$$

in which $s_t = \sin(\frac{\pi}{2}t)$ and $c_t = \cos(\frac{\pi}{2}t)$ for $0 \le t \le 1$. The corresponding generator of $K_0(D_\theta)$ is then given by $[P_U] - \left[\begin{pmatrix} e & 0 \\ 0 & e \end{pmatrix} \right]$ where

$$P_U = \frac{1}{2} \begin{pmatrix} p_U + \Psi(p_U)^* & -i\Psi(p_U)^* + ip_U \\ i\Psi(p_U)^* - ip_U & p_U + \Psi(p_U)^* \end{pmatrix} \text{ and } e = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

A similar generator can be obtained for $K_3(R_\theta) \cong K_0(D_\theta \otimes \mathbb{H})$ by tensoring with $1_{\mathbb{H}}$.

3 An Inductive Limit Sharing the *K*-Theory of R_{θ}

In [16] Walters constructed an inductive limit decomposition of A_{θ} , when θ is irrational, and a period 4 automorphism of A_{θ} compatible with the decomposition, producing the same map on $K_1(A_{\theta})$ as the Fourier automorphism α given by $\alpha(U) = V$, $\alpha(V) = U^*$. In this section a minor modification of Walters's construction will be used to produce an involutory antiautomorphism Ψ of A_{θ} compatible with the decomposition and producing the same map on $K_1(A_{\theta})$ as the antiautomorphism Φ defined by $\Phi(U) = V$, $\Phi(V) = U$. Furthermore it will be shown that the real inductive limit algebra associated with Ψ has the same *K*-theory as R_{θ} , suggesting that R_{θ} may well be isomorphic to this inductive limit.

Following [16] let θ have continued fraction expansion $[a_0, a_1, ...]$ where $a_n \ge 1$ for $n \ge 1$ and $a_0 = 0$ and let

$$P_n = \begin{pmatrix} a_{5n} & 1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_{5n-1} & 1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_{5n-2} & 1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_{5n-3} & 1\\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_{5n-4} & 1\\ 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} \alpha_n & \beta_n\\ \gamma_n & \delta_n \end{pmatrix},$$

so that $det(P_n) = -1$. The *n*-th convergent p_n/q_n of θ is determined by

$$q_0 = 1, \quad q_1 = a_1, \quad q_n = a_n q_{n-1} + q_{n-2}$$

 $p_0 = 0, \quad p_1 = 1, \quad p_n = a_n p_{n-1} + p_{n-2}$

and therefore

$$q_{5n+5} = \alpha_{n+1}q_{5n} + \beta_{n+1}q_{5n-1}, \qquad q_{5n+4} = \gamma_{n+1}q_{5n} + \delta_{n+1}q_{5n-1}$$
$$p_{5n+5} = \alpha_{n+1}p_{5n} + \beta_{n+1}p_{5n-1}, \qquad p_{5n+4} = \gamma_{n+1}p_{5n} + \delta_{n+1}p_{5n-1}$$

As noted in [16], $\alpha_n \ge 5$ and $\gamma_n \ge 5$ for each *n*, so we can write

$$\alpha_n = 2\alpha'_n + \alpha''_n, \quad \gamma_n = 2\gamma'_n + \gamma''_n$$

where $\alpha''_n, \gamma''_n \in \{1, 2\}$ and $\alpha'_n, \gamma'_n \ge 2$. Then, as in [16], let

$$A_n = M_{q_{5n}}ig(C(\mathbb{T})ig) \oplus M_{q_{5n}}ig(C(\mathbb{T})ig) \oplus M_{q_{5n-1}} \oplus M_{q_{5n}}$$

and equip this with the involutory antiautomorphism Ψ_n defined by

$$\Psi_n(f, g, A, B) = (g^{\mathrm{tr}}, f^{\mathrm{tr}}, A^{\mathrm{tr}}, B^{\mathrm{tr}}),$$

which has the associated real algebra $R_n = \{ (f, \overline{f}, A, B) : f \in M_{q_{5n}}(C(\mathbb{T})) \}$, $A \in M_{q_{5n-1}}(\mathbb{R}), B \in M_{q_{5n-1}}(\mathbb{R}) \}$.

For any $\ell \times \ell$ matrix M, let $I_k \otimes M$ denote the $k\ell \times k\ell$ matrix with K copies of M down the main diagonal and let $M \otimes I_k$ denote the $k\ell \times k\ell$ matrix consisting of $k \times k$ blocks $m_{ij}I_k$ in the obvious way. As in [16] let S_k and $S_k(id)$ be the $k \times k$ matrices with entries in $C(\mathbb{T})$ defined by

$$S_k = \begin{pmatrix} 0 & 1 \\ I_{k-1} & 0 \end{pmatrix}$$
 and $S_k(\mathrm{id}) = \begin{pmatrix} 0 & \mathrm{id} \\ I_{k-1} & 0 \end{pmatrix}$

where id is the identity function on $\mathbb{T} \subseteq \mathbb{C}$. Let $\rho_n \colon A_n \to A_{n+1}$ be defined, for constant $X, Y \in M_{q_{5n}}(C(\mathbb{T}))$, for $Z \in M_{q_{5n-1}}$ and $Z' \in M_{q_{5n}}$ by

$$\begin{split} \rho_n(\text{id } I_{q_{5n}}, 0, 0, 0) \\ &= \left([I_{q_{5n}} \otimes S_{\alpha'_{n+1}}(\text{id})] 000, [I_{q_{5n}} \otimes S_{\alpha'_{n+1}}] 000, [I_{q_{5n}} \otimes S_{\gamma'_{n+1}}] 000, [I_{q_{5n}} \otimes S_{\alpha'_{n+1}}] 000 \right), \\ \rho_n(0, \text{id } I_{q_{5n}}, 0, 0) \\ &= \left(0[I_{q_{5n}} \otimes S_{\alpha'_{n+1}}^{\text{tr}}] 00, 0[I_{q_{5n}} \otimes S_{\alpha'_{n+1}}^{\text{tr}}(\text{id})] 00, 0[I_{q_{5n}} \otimes S_{\gamma'_{n+1}}^{\text{tr}}] 00, 0[I_{q_{5n}} \otimes S_{\alpha'_{n+1}}^{\text{tr}}] 00 \right), \\ \rho_n(X, Y, Z, Z') = (A, A, B, A), \end{split}$$

where

$$A = [X \otimes I_{\alpha'_{n+1}}][Y \otimes I_{\alpha'_{n+1}}][Z \otimes I_{\beta_{n+1}}][Z' \otimes I_{\alpha''_{n+1}}]$$

and

$$B = [X \otimes I_{\gamma'_{n+1}}][Y \otimes I_{\gamma'_{n+1}}][Z \otimes I_{\delta_{n+1}}][Z' \otimes I_{\gamma''_{n+1}}].$$

Here, as in [16], the matrices in square brackets are diagonal blocks in the appropriate matrix of size q_{5n+5} or q_{5n+4} . (The only difference from the map ρ_n defined in [16] is in the third and fourth components of the image of (0, id $I_{q_{5n}}$, 0, 0), where S^{tr} replaces $\Lambda S\Lambda^*$.)

For each $k \in \mathbb{N}$ let W_{2k} be the $2k \times 2k$ unitary matrix

$$W_{2k} = \frac{1}{\sqrt{2}} \begin{pmatrix} iI_k & -iI_k \\ I_k & I_k \end{pmatrix}$$

and for each $n \in \mathbb{N}$ let V_{n+1} be the matrix in $M_{q_{5n+5}}(C(\mathbb{T})) \oplus M_{q_{5n+5}}(C(\mathbb{T})) \oplus M_{q_{5n+4}} \oplus M_{q_{5n+5}}$ defined by

$$V_{n+1} = \left([W_{2q_{5n}\alpha'_{n+1}}]II, [W_{2q_{5n}\alpha'_{n+1}}]II, [W_{2q_{5n}\gamma'_{n+1}}]II, [W_{2q_{5n}\alpha'_{n+1}}]II \right)$$

Then let $\psi_n \colon A_n \to A_{n+1}$ be defined by $\psi_n = (\text{Ad } V_{n+1}) \circ \rho_n$.

Lemma 3.1 For each n, $\Psi_{n+1}\psi_n = \psi_n\Psi_n$.

Proof Note that for $k \times k$ matrices A, B

$$W_{2k}\begin{pmatrix} A & 0\\ 0 & B \end{pmatrix} W_{2k}^* = \frac{1}{2} \begin{pmatrix} A+B & i(A-B)\\ i(B-A) & A+B \end{pmatrix} = \begin{bmatrix} W_{2k}\begin{pmatrix} B^{\text{tr}} & 0\\ 0 & A^{\text{tr}} \end{pmatrix} W_{2k}^* \end{bmatrix}^{\text{tr}}.$$

It follows that $\Psi_{n+1}\psi_n(\text{id }I_{q_{5n}},0,0,0) = \psi_n(0,\text{id }I_{q_{5n}},0,0) = \psi_n\Psi_n(\text{id }I_{q_{5n}},0,0,0),$ that $\Psi_{n+1}\psi_n(0,\text{id }I_{q_{5n}},0,0) = \psi_n(\text{id }I_{q_{5n}},0,0,0) = \psi_n\Psi_n(0,\text{id }I_{q_{5n}},0,0)$ and that $\Psi_{n+1}\psi_n(X,Y,Z,Z') = \psi_n(Y^{\text{tr}},X^{\text{tr}},Z^{\text{tr}},Z^{\text{tr}}) = \psi_n\Psi_n(X,Y,Z,Z').$

It follows from Lemma 3.1 that $\psi_n \colon R_n \to R_{n+1}$ where

$$egin{aligned} R_n &= \{ a \in A_n : \Psi_n(a) = a^* \} \ &= \left\{ (A, ar{A}, B, C) : A \in M_{q_{5n}}ig(C(\mathbb{T})ig), B \in M_{q_{5n-1}}(\mathbb{R}), C \in M_{q_{5n}}(\mathbb{R})
ight\}. \end{aligned}$$

The elements of R_n will henceforth be identified with triples (A, B, C) where $A \in M_{q_{5n}}(C(\mathbb{T}))$, $B \in M_{q_{5n-1}}(\mathbb{R})$, $C \in M_{q_{5n}}(\mathbb{R})$. In this context, for constant $X \in M_{q_{5n}}(C(\mathbb{T}))$, for $Z \in M_{q_{5n-1}}(\mathbb{R})$ and for $Z' \in M_{q_{5n}}(\mathbb{R})$,

$$\psi_n(\text{id } I_{q_{5n}}, 0, 0) = \left([T_n] 00, [I_{2q_{5n}} \otimes S_{\gamma'_{n+1}}] 00, [I_{2q_{5n}} \otimes S_{\alpha'_{n+1}}] 00 \right),$$

$$\psi_n(X, Z, Z') = (A, B, A),$$

P. J. Stacey

where

$$\begin{split} A &= [r(X \otimes I_{\alpha'_{n+1}})][Z \otimes I_{\beta_{n+1}}][Z' \otimes I_{\alpha''_{n+1}}], \\ B &= [r(X \otimes I_{\gamma'_{n+1}})][Z \otimes I_{\delta_{n+1}}][Z' \otimes I_{\gamma''_{n+1}}], \\ T_n &= \operatorname{Ad} W_{2q_{5n}\alpha'_{n+1}} \left([I_{q_{5n}} \otimes S_{\alpha'_{n+1}}(\operatorname{id})][I_{q_{5n}} \otimes S_{\alpha'_{n+1}}] \right) \\ &= \frac{1}{2} \begin{pmatrix} I_{q_{5n}} \otimes \left(S_{\alpha'_{n+1}} + S_{\alpha'_{n+1}}(\operatorname{id})\right) & iI_{q_{5n}} \otimes \left(S_{\alpha'_{n+1}}(\operatorname{id}) - S_{\alpha'_{n+1}}\right) \\ iI_{q_{5n}} \otimes \left(S_{\alpha'_{n+1}} - S_{\alpha'_{n+1}}(\operatorname{id})\right) & I_{q_{5n}} \otimes \left(S_{\alpha'_{n+1}} + S_{\alpha'_{n+1}}(\operatorname{id})\right) \end{pmatrix} \right), \\ r(X \otimes I_{\alpha'_{n+1}}) &= \operatorname{Ad} W_{2q_{5n}\alpha'_{n+1}} ([X \otimes I_{\alpha'_{n+1}}]][\bar{X} \otimes I_{\alpha'_{n+1}}]) \\ &= \begin{pmatrix} \operatorname{Re}(X) \otimes I_{\alpha'_{n+1}} & -\operatorname{Im}(X) \otimes I_{\alpha'_{n+1}} \\ \operatorname{Im}(X) \otimes I_{\alpha'_{n+1}} & \operatorname{Re}(X) \otimes I_{\alpha'_{n+1}} \end{pmatrix}. \end{split}$$

These formulae enable the *K*-theory of $R = \lim R_n$ to be computed.

Theorem 3.2 Let $0 < \theta < 1$ be irrational and let $R = \lim(R_n, \psi_n)$ where $R_n = M_{q_{5n}}(C(\mathbb{T})) \oplus M_{q_{5n-1}}(\mathbb{R}) \oplus M_{q_{5n}}(\mathbb{R})$ and where ψ_n is defined above. Then the complexification of R is isomorphic to A_{θ} and the K groups of R are given by the following table.

Proof Recall that the *K* groups of \mathbb{R} and $C(\mathbb{T})$ are as given in the following table.

i	0	1	2	3	4	5	6	7
$K_i(C(\mathbb{T}))$	\mathbb{Z}	\mathbb{Z}	Z	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}
$K_i(\mathbb{R})$	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}	0	0	0
$K_i(R_n)$	\mathbb{Z}^3	$\mathbb{Z} imes \mathbb{Z}_2^2$	$\mathbb{Z} imes \mathbb{Z}_2^2$	\mathbb{Z}	\mathbb{Z}^3	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}

All cases other than i = 0, 4 can be handled by considering separately the effect on the $M_q(C(\mathbb{T}))$ and $M_{q'}(\mathbb{R}) \oplus M_q(\mathbb{R})$ summands. On the $M_q(C(\mathbb{T}))$ summands the map ψ_n is specified by

$$\operatorname{id} I_{q_{5n}} \mapsto \operatorname{Ad} W_{2q_{5n}\alpha'_{n+1}} \big([I_{q_{5n}} \otimes S_{\alpha'_{n+1}}(\operatorname{id})] [I_{q_{5n}} \otimes S_{\alpha'_{n+1}}] \big) 00$$
$$X \mapsto \operatorname{Ad} W_{2q_{5n}\alpha'_{n+1}} \big([X \otimes I_{\alpha'_{n+1}}] [\bar{X} \otimes I_{\alpha'_{n+1}}] \big) 00.$$

Since the *K*-theory is not affected by the inner automorphism, ψ_n can be replaced by the sum of a linear and antilinear map specified by

$$\mathrm{id}\,I_{q_{5n}}\mapsto I_{q_{5n}}\otimes S_{\alpha'_{n+1}}(\mathrm{id}),\quad X\mapsto X\otimes I_{\alpha'_{n+1}}$$

and

id
$$I_{q_{5n}} \mapsto I_{q_{5n}} \otimes S_{\alpha'_{n+1}}, \quad X \mapsto \bar{X} \otimes I_{\alpha'_{n+1}}$$

It follows that ψ_n induces the identity map from $K_1(C(\mathbb{T})) \cong \mathbb{Z}$ to $K_1(C(\mathbb{T})) \cong \mathbb{Z}$. Furthermore, since only the linear component of the map has a non-zero effect on

 K_1 , usual complex Bott periodicity shows that ψ_n also induces the identity map from $K_i(C(\mathbb{T})) \cong \mathbb{Z}$ to $K_i(C(\mathbb{T})) \cong \mathbb{Z}$ when i = 3, 5, 7. In the cases i = 3, 5, 7, for which $K_i(\mathbb{R}) = 0$, ψ_n therefore induces the identity map from $K_i(R_n) \cong \mathbb{Z}$ to $K_i(R_{n+1}) \cong \mathbb{Z}$.

On $K_0(C(\mathbb{T})) \cong \mathbb{Z}$ both linear and antilinear parts correspond to multiplication by α'_{n+1} on \mathbb{Z} . Thus, using the discussion in the proof of Proposition 2.4, the same is true on K_4 , but in K_2 and K_6 the antilinear part corresponds to multiplication by $-\alpha'_{n+1}$. Thus, when i = 2 or i = 6, ψ_n induces the zero map from $K_i(C(\mathbb{T}))$ to $K_i(C(\mathbb{T}))$. When i = 6, for which $K_i(\mathbb{R}) = 0$, it follows that ψ_n gives the zero map from $K_i(R_n)$ to $K_i(R_{n+1})$.

Turning to the $M_{q'}(\mathbb{R}) \oplus M_q(\mathbb{R})$ summands, ψ_n is given by

$$(Z,Z')\mapsto \left(00[Z\otimes I_{\delta_{n+1}}][Z'\otimes I_{\gamma_{n+1}''}],00[Z\otimes I_{\beta_{n+1}}][Z'\otimes I_{\alpha_{n+1}''}]\right)$$

It follows that, for any *i*, the effect on $K_i(M_{q_{5n-1}}(\mathbb{R}) \oplus M_{q_{5n}}(\mathbb{R}))$ is given by the matrix

$$\begin{pmatrix} \delta_{n+1} & \beta_{n+1} \\ \gamma_{n+1}^{\prime\prime} & \alpha_{n+1}^{\prime\prime} \end{pmatrix}.$$

Recall that $\alpha_{n+1}\delta_{n+1} - \beta_{n+1}\gamma_{n+1} = -1$ and that $\alpha_{n+1}'' \equiv \alpha_{n+1} \pmod{2}$, $\gamma_{n+1}'' \equiv \gamma_{n+1} \pmod{2}$, so that for $i = 1, 2, \psi_n$ induces an isomorphism from \mathbb{Z}_2^2 to \mathbb{Z}_2^2 . Combining this with the earlier results on the $M_q(C(\mathbb{T}))$ summands, it follows that ψ_n induces an isomorphism from $K_1(R_n) \cong \mathbb{Z} \times \mathbb{Z}_2^2$ onto $K_1(R_{n+1}) \cong \mathbb{Z} \times \mathbb{Z}_2^2$ and a homomorphism with range \mathbb{Z}_2^2 from $K_2(R_n) \cong \mathbb{Z} \times \mathbb{Z}_2^2$ onto $\mathbb{Z}_2^2 \subseteq K_2(R_{n+1})$, with ψ_{n+1} then mapping this image isomorphically onto $\mathbb{Z}_2^2 \subseteq K_2(R_{n+2})$.

This leaves K_0 and K_4 to be considered. As in [16] the corresponding map from \mathbb{Z}^3 to \mathbb{Z}^3 is in each case given by the matrix

$$\begin{pmatrix} \alpha'_{n+1} & \beta_{n+1} & \alpha''_{n+1} \\ \gamma'_{n+1} & \delta_{n+1} & \gamma''_{n+1} \\ \alpha'_{n+1} & \beta_{n+1} & \alpha''_{n+1} \end{pmatrix}$$

(where exactly the same 4×4 matrix as in [16] is obtained after embedding R_n in A_n). The arguments given in the proof of Proposition 2 of [16] show that the limit algebra has $K_i(R)$ isomorphic to \mathbb{Z}^2 and that the complexification of R, namely $\lim(A_n, \psi_n)$, is isomorphic to A_θ .

References

- [1] B. Blackadar, K-theory for operator algebras. Springer-Verlag, New York, 1986.
- F. P. Boca, On the flip fixed point algebra in certain noncommutative tori. Indiana Univ. Math. J. 45(1996), 253–273.
- [3] _____, Projections in rotation algebras and theta functions. Comm. Math. Phys. 202(1999), 325–357.
- [4] O. Bratteli, G. A. Elliott, D. E. Evans and A. Kishimoto, Non-commutative spheres II: rational rotations. J. Operator Theory 27(1992), 53–85.
- J. Cuntz, K-theory and C*-algebras. In: Springer Lecture Notes in Math. 1046, 55–79, Springer-Verlag, Berlin, 1984.
- [6] G. A. Elliott and D. Evans, The structure of the irrational rotation C*-algebra. Ann. of Math. 138(1993), 477–501.

P. J. Stacey

- G. A. Eliott and Q. Lin, *Cut-down method in the inductive limit decomposition of non-commutative tori*. J. London Math. Soc. (2) 54(1996), 121–134.
- [8] M. Karoubi, *K-theory: an introduction*. Springer-Verlag, New York, Berlin, Heidelberg, 1978.
- [9] M. A. Rieffel, *Projective modules over higher-dimensional non-commutative tori*. Canad. J. Math. XL(1988), 257–338.
- [10] H. Schröder, K-theory for real C*-algebras and applications. Longman, Harlow, 1993.
- [11] P. J. Stacey, *Stability of involutory *-antiautomorphisms in UHF-algebras.* J. Operator Theory **24**(1990), 57–74.
- [12] _____, Inductive limit toral automorphisms of irrational rotation algebras. Canad. Math. Bull. 44(2001), 335–336.
- [13] _____, Inductive limit decompositions of real structures in irrational rotation algebras. Indiana Univ. Math. J. 51(2002), 1511–1540.
- S. Walters, *Inductive limit automorphisms of the irrational rotation algebra*. Comm. Math. Phys. 171(1995), 365–381.
- [15] _____, *K*-theory of non-commutative spheres arising from the Fourier automorphism. Canad. J. Math. (3) **53**(2001), 631–672.
- [16] _____, On the inductive limit structure of order four automorphisms of the irrational rotation algebra. Internat. J. Math., to appear.
- [17] H.-S. Yin, A simple proof of the classification of rational rotation C*-algebras. Proc. Amer. Math. Soc. 98(1986), 469–470.

Department of Mathematics La Trobe University Victoria 3086 Australia e-mail: P.Stacey@latrobe.edu.au