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An Inductive Limit Model for the
K-Theory of the Generator-Interchanging
Antiautomorphism of an Irrational
Rotation Algebra

P. J. Stacey

Abstract. Let Aθ be the universal C∗-algebra generated by two unitaries U , V satisfying VU =

e2πiθUV and let Φ be the antiautomorphism of Aθ interchanging U and V . The K-theory of Rθ =

{a ∈ Aθ : Φ(a) = a∗} is computed. When θ is irrational, an inductive limit of algebras of the form

Mq(C(T)) ⊕ Mq′ (R) ⊕ Mq(R) is constructed which has complexification Aθ and the same K-theory

as Rθ .

1 Introduction

It was shown in [6] and later, with a simplified proof, in [7] that the irrational ro-

tation algebra Aθ , generated by unitaries U , V with VU = e2πiθUV , can be written

as an inductive limit of algebras of the form Mq

(

C(T)
)

⊕ Mq ′

(

C(T)
)

, where C(T)

denotes the algebra of continuous complex-valued functions on the unit circle T and

Mq

(

C(T)
)

denotes the algebra of q × q matrices with entries in C(T). It was subse-

quently shown by Walters in [14], with a simplified proof given by Boca in [2], that

the algebras Mq

(

C(T)
)

⊕ Mq ′

(

C(T)
)

can be chosen to be invariant under the flip

given by U → U ∗, V 7→ V ∗. Similar results were obtained in [13] for the antiauto-

morphisms given by U 7→ U , V 7→ V ∗ and U 7→ −U , V 7→ V ∗, but it was shown

that the other naturally occurring antiautomorphism Φ, given by Φ(U ) = V and

Φ(V ) = U , does not admit such a decomposition.

A similar situation obtains for the period 4 (Fourier) automorphism given by

U 7→ V and V 7→ U ∗. It was shown in [12] that there is no inductive limit decom-

position of Elliott-Evans type which is invariant under this automorphism. However

in [16] Walters raised the possibility of an invariant inductive limit decomposition

using algebras of the form Mq

(

C(T)
)

⊕ Mq

(

C(T)
)

⊕ Mq ′ ⊕ Mq. He produced an

inductive limit decomposition of Aθ using such algebras and an order 4 automor-

phism σ of Aθ compatible with the decomposition and with the same induced map

on K1(Aθ) as the Fourier automorphism.

In this paper the construction of [16] is slightly modified to obtain an inductive

limit decomposition invariant under an antiautomorphism of period 2 with the same

effect on K1(Aθ) as Φ. In this setting it is possible to obtain a more detailed agree-

ment between the two antiautomorphisms by showing that the K-theories of the
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associated real algebras are identical. It is straightforward to calculate the K-theory

of the inductive limit, but not immediately clear how to compute the K-theory of

Rθ = {a ∈ Aθ : Φ(a) = a∗} since it has no (obvious) cross product structure. The

calculation, which occupies most of this paper, is achieved by combining a standard

exact sequence for real C∗-algebras with the exact sequence for real C∗-algebras pro-

duced in [11]. Walters, in [15], has calculated, for a dense Gδ set of real parameters θ,

the K-theory of the analogous fixed point algebra of the Fourier automorphism, but

his methods are different from (and more difficult than) those employed here.

2 Computing the K-Theory of Rθ

As a first step in the calculation of K0(Rθ), it will be shown that Boca’s construction

from [3] produces a projection p in Rθ with trace θ. The features of this construction

which are required to show this will now be described.

For each r ∈ R let e(r) = e2πir and let β be the Heisenberg cocycle on R
2, defined

by β
(

(x, y), (x ′, y ′)
)

= e(xy ′). Let D be the lattice {
√
θ(n1, n2) : n1, n2 ∈ Z}

and let D⊥
= { 1√

θ
(m1,m2) : m1,m2 ∈ Z} (defined so that D⊥

= {z ∈ R
2 :

β(z,w) = β(w, z) for all w ∈ D}). In accordance with page 278 of [9], choose the

Haar measures on D,D⊥ to assign each point the masses
√
θ, 1 respectively. Then

define the twisted group algebras C∗(D, β) and C∗(D⊥, β̄) as the C∗-completions of

L1(D, β) and L1(D⊥, β̄) with the multiplications

( f g)(w) =

∫

D

f (w ′)g(w − w ′)β(w ′,w − w ′) dw ′ for w ∈ D

( f g)(z) =

∫

D⊥

f (z ′)g(z − z ′)β(z ′, z − z ′) dz ′ for z ∈ D⊥

and the involutions f ∗(w) = β(w,w) f (−w) for w ∈ D and f ∗(z) = β(z, z) f (−z)

for z ∈ D⊥.

The Schwartz space S(R) is a C∗(D, β) − C∗(D⊥, β̄) bimodule under the actions

defined, for a ∈ S(D), b ∈ S(D⊥) and h ∈ S(R), by

(ah)(s) =

√
θ
∑

(x,y)∈D

a(x, y)h(s + x)e(sy)

(hb)(s) =

∑

(x,y)∈D⊥

b(x, y)h(s − x)e
(

y(x − s)
)

.

Furthermore it becomes a C∗(D, β) − C∗(D⊥, β̄) equivalence bimodule under the

C∗(D, β) and C∗(D⊥, β̄) valued inner products 〈 , 〉D and 〈 , 〉D⊥ defined for

f , g ∈ S(R) by

〈 f , g〉D(x, y) =

∫

R

f (s)g(s + x)e(−sy) ds

〈 f , g〉D⊥(x, y) =

∫

R

f (s)g(s + x)e(sy) ds.
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If f ∈ S(R) is defined by f (s) = e−πs2

and 0 < θ < 0.948, then 〈 f , f 〉D⊥ is invertible

and

p =
〈

f 〈 f , f 〉−1/2

D⊥ , f 〈 f , f 〉−1/2

D⊥

〉

D

defines a projection p in C∗(D, β) with τD(p) = θ, where τD is the unique normalised

trace on C∗(D, β) ∼= Aθ. Using the isomorphism between Aθ and A1−θ it follows that

for all θ either p or 1 − p is a projection in Aθ with trace θ.

Let J, F be the bounded invertible operators on L2(R) defined for f ∈ S(R) by

( J f )(s) = f (s) and (F f )(s) =
∫

R
f (x)e(−xs) dx and let F = JF, so (F f )(s) =

∫

R
f (x)e(xs) dx. F is an invertible antilinear operator on L2(R) and therefore Φ(a) =

F−1a∗F defines an antiautomorphism of B
(

L2(R)
)

.

Lemma 2.1 Φ restricts to the involutory antiautomorphism of C∗(D, β) which inter-

changes the canonical unitary generators.

Proof It suffices to show that Φ(χ(
√
θ,0)) = χ(0,

√
θ) and Φ(χ(0,

√
θ)) = χ(

√
θ,0), where

χd is the characteristic function of {d} for d ∈ D. Let h ∈ S(R) and s ∈ R. Then

(

FΦ(χ(
√
θ,0))h

)

(s) = (χ∗
(
√
θ,0)

Fh)(s) = (χ(−
√
θ,0)Fh)(s)

=

√
θ(Fh)(s −

√
θ) =

√
θ

∫

R

h(x)e
(

x(s −
√
θ)
)

dx,

whereas

(Fχ(0,
√
θ)h)(s) =

∫

R

(χ(0,
√
θ)h)(x)e(xs) dx

=

√
θ

∫

R

e(−
√
θx)h(x)e(xs) dx.

Thus Fχ(0,
√
θ) = FΦ(χ(

√
θ,0)), so χ(0,

√
θ) = Φ(χ(

√
θ,0)). A similar calculation gives

χ(
√
θ,0) = Φ(χ(0,

√
θ)).

Proposition 2.2 If 0 < θ < 1 then Rθ contains a projection p with trace θ.

Proof By Lemma 2.1 and the preceding remarks it suffices to show that pF = Fp

where p =
〈

f 〈 f , f 〉−1/2

D⊥ , f 〈 f , f 〉−1/2

D⊥

〉

D
and f (s) = e−πs2

. It is shown in [3] that

Fp = pF, so it suffices to show that Jp = p J.

For h ∈ S(R) and s ∈ R,

(h〈 f , f 〉D⊥)(s) =

∑

(x,y)∈D⊥

〈 f , f 〉D⊥(x, y)h(s − x)e
(

y(x − s)
)

=

∑

(x,y)∈D⊥

∫

R

f (t) f (t + x)e(t y) dt h(s − x)e
(

y(x − s)
)

.
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Thus

(h〈 f , f 〉D⊥ J)(s) =

∑

(x,y)∈D⊥

∫

R

f (t) f (t + x)e(−t y) dt h(s − x)e
(

−y(x − s)
)

= (h J〈 f , f 〉D⊥)(s).

It follows in turn that J〈 f , f 〉D⊥ = 〈 f , f 〉D⊥ J, J〈 f , f 〉−1/2

D⊥ = 〈 f , f 〉−1/2

D⊥ J and

f 〈 f , f 〉−1/2

D⊥ J = f J〈 f , f 〉−1/2

D⊥ = f 〈 f , f 〉−1/2

D⊥ . Putting g = f 〈 f , f 〉−1/2

D⊥ , a calcula-

tion for 〈g, g〉D similar to that given above for 〈 f , f 〉D⊥ then shows that Jp = p J, as

required.

The principal tool used to calculate the K-theory of Rθ will be two exact sequences,

which both rely on the K-theoretic maps αi : Ki(Aθ) → Ki(Aθ), where α is the anti-

linear automorphism defined by α(x) = Φ(x∗). The proof of Proposition 2.7 in III

of [8] shows that, when ri : Ki(Aθ) → Ki(Rθ) and ci : Ki(Rθ) → Ki(Aθ) arise from

the maps r(x + i y) =
(

x −y
y x

)

and the inclusion c(x) = x, then ri ◦ ci = 2 id and

ci ◦ ri = id +αi .

Although the principal interest of this paper is in the case of irrational θ, the cal-

culation of the K theory of Rθ can be carried out for both rational and irrational θ
simultaneously if the complexification map c0 : K0(Rθ) → K0(Aθ) is shown to be a

surjection.

Proposition 2.3 The complexification map c0 : K0(Rθ) → K0(Aθ) is a surjection.

Proof When θ is irrational, then K0(Aθ) is generated by [1] and [p] for any projec-

tion p in Aθ with trace θ. Thus the result follows from Proposition 2.2.

When θ = p/q with (p, q) = 1 then, as shown for example in [4], Aθ is isomor-

phic to

{

f ∈ C([0, 1]2,Mq) : f (λ, 1) = W1 f (λ, 0)W ∗
1 for all 0 ≤ λ ≤ 1,

f (1, µ) = W2 f (0, µ)W ∗
2 for all 0 ≤ µ ≤ 1

}

,

where Mq denotes the algebra of q×q complex matrices (with q = 1 when θ = 1) and

W1 and W2 are two particular q × q matrices. Let e ∈ Rθ be the Boca projection with

trace 1
q

and note that, by continuity, the usual normalised trace of e(λ, µ) is equal to
1
q

for each (λ, µ) ∈ [0, 1]2. Thus e is a full projection in Rθ, so that eRθe is stably

isomorphic (as a real C∗-algebra) to Rθ. Since eRθe is isomorphic to

R1 = { f ∈ C([0, 1]2,C) : f (λ, 1) = f (λ, 0), f (1, µ) = f (0, µ),

f (λ, µ) = f (µ, λ) for all λ, µ},

it suffices to prove the result when θ has any fixed value, such as 1
2
.
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As observed in [17], the arguments for the irrational case apply also when θ =
p
q

to show that K0(Rθ) is generated by [1] and [ f ] where f is a Rieffel projection

with trace 1
q
. Thus, if θ =

1
2

and e is a Boca projection with trace 1
2

then [e] =

a[1] + (1 − 2a)[ f ] for some a ∈ Z, from which it follows that c0

(

K0(Rθ)
)

⊇ Z ×
(1 − 2a)Z and c0r0

(

K0(Aθ)
)

⊇ 2Z × 2(1 − 2a)Z, so det(id +α0) = det(c0r0) 6= 0.

The only possibilities for an order 2 automorphism α0 of Z
2 are ±

(

1 0
0 1

)

, ±
(

1 0
0 −1

)

and
(

a b
c −a

)

with a2 + bc = 1. The only one of these for which det(id +α0) 6= 0 is

id. Hence c0r0 = 2 id and c0

(

K0(Rθ)
)

⊇ 2Z
2. When combined with c0

(

K0(Rθ)
)

⊇
Z × (1 − 2a)Z, this gives c0

(

K0(Rθ)
)

= Z
2, as required.

Proposition 2.4 For any θ ≤ θ ≤ 1, the maps αi : Ki(Aθ) → Ki(Aθ) are periodic of

period 4. The matrices defining the corresponding automorphisms of Z
2 are

(

1 0

0 1

)

when i ≡ 0 (mod 4)

(

0 −1

−1 0

)

when i ≡ 1 (mod 4)

(

−1 0

0 −1

)

when i ≡ 2 (mod 4)

(

0 1

1 0

)

when i ≡ 3 (mod 4)

Proof For any complex C∗-algebra A let SA = C0(R,A) and let θA : K1(A) → K0(SA)

and βA : K0(A) → K1(SA) be the isomorphisms defined in Theorem 8.2.2 and Defi-

nition 9.1.1 of [1]. The isomorphism θA commutes with the maps produced by either

a linear or antilinear automorphism of A. Whenα is an antilinear automorphism, let

α̃ be the associated antilinear automorphism of C
(

S1,GLn(A+)
)

and note that when

fe : z 7→ ze+(1−e) (where e is a projection in A) then α̃( fe) : z 7→ z̄α(e)+
(

1−α(e)
)

.

Thus α̃( fe) = f −1
α(e) and so, when τ is the inverse map in K1(SA), the following dia-

gram commutes.
K0(A) −−−−→

α0

K0(A)

βA





y





y
βA

K1(SA) −−−−→
α̃1◦τ

K1(SA)

It follows that, under the Bott isomorphism θSAβA between K0(A) and K2(A), the

following diagram commutes, where τ is the inverse map.

K0(A) −−−−→
α0

K0(A)

θSAβA





y





y θSAβA

K2(A) −−−−→
α2◦τ

K2(A)
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It remains to establish the matrices for α0 : K0(Aθ) → K0(Aθ) and α1 : K1(Aθ) →
K1(Aθ). The second is immediate from α(U ) = V ∗ and α(V ) = U ∗, where U ,

V are the unitary generators of Aθ . In the first case it has already been shown in

the rational case that α0 = id. When θ is irrational, let p be a projection in Rθ

given by Proposition 2.3. Then [1] and [p] generate K0(Aθ) and (cr)(1) =
(

1 0
0 1

)

,

(cr)(p) =
( p 0

0 p

)

, so id +α0 = 2 id on K0(Aθ) and hence α0 = id.

The first exact sequence used to determine the K-theory of Rθ will be based on

the results of [11]. The first step is to compute the K-theory of the real C∗-algebra

Cθ = Aθ ×α Z using the real Pimsner-Voiculescu sequence.

Proposition 2.5 For any 0 ≤ θ ≤ 1, let Cθ = Aθ ×α Z where α(x) = Φ(x∗) for each

x ∈ Aθ. Then

Ki(Cθ) ∼= Z
3 when i ≡ 0, 1 (mod 4),

Ki(Cθ) ∼= Z when i ≡ 3 (mod 4),

and

Ki(Cθ) ∼= Z
2
2 × Z when i ≡ 2 (mod 4).

Proof The real Pimsner-Voiculescu sequence in this case is

· · · −→ K0(Aθ) −→
id −α0

K0(Aθ) −→ K0(Cθ) −→ K7(Aθ) −→ · · · .

From Proposition 2.4, id = αi when i ≡ 0 (mod 4) so, starting with K0(Aθ) we

obtain

0 −→ Z
2 −→ K0(Cθ) −→ Z

2 −−−−→
(

1 −1
−1 1

)

Z
2 −→ K7(Cθ) −→ Z

2

−→
2 id

Z
2 −→ K6(Cθ) −→ Z

2 −−−→
(

1 1
1 1

)

Z
2 −→ K5(Cθ) −→ Z

2 −→ 0.

The initial portion gives 0 → Z
2 → K0(Cθ) → {(n, n) : n ∈ Z} → 0, so K0(Cθ) ∼=

Z
3. The next part gives 0 → Z

2/{(n,−n) : n ∈ Z} → K7(Cθ) → ker(2 id) → 0,

yielding K7(Cθ) ∼= Z.

Finally, the portions 0 → Z
2 −→

2 id
Z

2 −→ K6(Cθ) −→ {(n,−n) : n ∈ Z} → 0

and 0 → Z
2/{(n, n) : n ∈ Z} → K5(Cθ) → Z

2 → 0 yield K6(Cθ) ∼= Z
2
2 × Z and

K5(Cθ) ∼= Z
3. The periodicity of period 4 established in Proposition 2.4 completes

the proof.

It follows from Propositions 2.2(ii) and 2.3 of [11] that Cθ is isomorphic to

Cθ =
{

f ∈ C
(

[0, 1],M2(Aθ)
)

: f (1) = α̂
(

f (0)
)

,

f (t) = (Ψα̂)
(

f (1 − t)∗
)

for each 0 ≤ t ≤ 1
}

https://doi.org/10.4153/CMB-2003-044-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2003-044-0


Inductive Limit Model 447

where

α̂

(

a b

c d

)

=

(

a −b

−c d

)

and

Ψ

(

a b

c d

)

=

(

Φ(d) Φ(b)

Φ(c) Φ(a)

)

.

For each f ∈ Cθ, f (0) = (Ψα̂)
(

f (1)∗
)

= Ψ
(

f (0)
)∗

and f ( 1
2
) = (Ψα̂)

(

f ( 1
2
)
)∗

. By

Proposition 2.4 of [11] it follows that the evaluation map at 1
2

has image isomorphic

to Rθ ⊗ H and the evaluation map at 0 has image isomorphic to Rθ ⊗ M2(R) ∼=
M2(Rθ). Thus, using I to denote [0, 1], there is an exact sequence

0 → C0

(

I,M2(Aθ)
)

→ Cθ → M2(Rθ) × (Rθ ⊗ H) → 0.

The associated K-theoretic long exact sequence

(2.1) · · · → Kn+1(Aθ) → Kn(Cθ) → Kn(Rθ) × Kn+4(Rθ) → Kn(Aθ) → · · ·

is one of the tools which will be used to calculate the K-theory of Rθ. The other is the

sequence, described in Theorem 1.4.7 of [10],

(2.2)

· · · −→ Kn(Rθ)−→
cn

Kn(Aθ) −→ Kn−2(Aθ)−→
rn−2

Kn−2(Rθ) −→ Kn−1(Rθ) −→ · · ·

in which the middle map from Kn(Aθ) to Kn−2(Aθ) is the Bott isomorphism.

It follows from (2.1) and Proposition 2.5 that each group Kn(Rθ) is finitely gener-

ated. The following lemma gives some more detailed information.

Lemma 2.6 For any 0 ≤ θ ≤ 1, there exist a1, . . . , a7 ∈ N ∪ {0} such that

K0(Rθ) ∼= Z
2 × Z

a0

2 , K1(Rθ) ∼= Z × Z
a1

2 ,

K2(Rθ) ∼= Z
a2

2 , K3(Rθ) ∼= Z × Z
a3

2 ,

K4(Rθ) ∼= Z
2 × Z

a4

2 , K5(Rθ) ∼= Z × Z
a5

2 ,

K6(Rθ) ∼= Z
a6

2 , K7(Rθ) ∼= Z × Z
a7

2 .

Proof For i = 2, 6 then, by Proposition 2.4, ciri = id +αi = 0. Using rici = 2 id

it follows that 2ri(Z
2) = riciri(Z

2) = 0 and therefore 4Ki(Rθ) = 2riciKi(Rθ) ⊆
2ri(Z

2) = 0. Hence ci : Ki(Rθ) → Z
2 is the zero map and so 2Ki(Rθ) = riciKi(Rθ) =

0, showing that Ki(Rθ) is a 2-torsion group and, being finitely generated, it is there-

fore of the required form.

From (2.2) there is an exact sequence

· · · −→ K0(Rθ)−→
c0

Z
2 −→

r6

K6(Rθ)

−→ K7(Rθ)−→
c7

Z
2 −→

r5

K5(Rθ) −→ K6(Rθ)−→
c6

Z
2 −→ · · ·
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Part of this gives Z
a6

2 −→ K7(Rθ)−→
c7

Z
2 −→

r5

K5(Rθ) −→ Z
a6

2 −→ 0. From Propo-

sition 2.4 c5r5 = id +α5 =
(

1 −1
−1 1

)

so either ker(r5) = {0} or ker(r5) ∼= Z. If

ker(r5) = {0} then Im(c7) = 0 contradicting c7r7 =
(

1 1
1 1

)

. Thus ker(r5) =

Im(c7) ∼= Z, from which it follows that both K5(Rθ) and K7(Rθ) are of the form Z×Fi

for some finite groups F5, F7. Then c5(F5) = c7(F7) = 0 and hence 2F5 = r5c5F5 = 0

and 2F7 = r7c7F7 = 0, showing that both K5(Rθ) and K7(Rθ) have the required forms.

A similar argument applies to Z
a2

2 −→ K3(Rθ)−→
c3

Z
2 −→

r1

K1(Rθ) −→ Z
a2

2 −→ 0,

producing the result for K1(Rθ) and K3(Rθ).

The portion Z
a6

2 −→
c6

Z
2 −→

r4

K4(Rθ) −→ K5(Rθ)−→
c5

Z
2 −→

r3

K3(Rθ) has Im(c5) =

ker(r3) ∼= Z since ker(r3) ∼= Z
2 contradicts c3r3 =

(

1 1
1 1

)

and Im(c5) = {0} con-

tradicts c5r5 =
(

1 −1
−1 1

)

. Thus 0 → Z
2 → K4(Rθ) → Z × Z

a5

2 → Z → 0 and so

0 → Z
2 → K4(Rθ) → Z

a5

2 → 0 from which it follows that K4(Rθ) has the required

form. A similar argument works for K0(Rθ).

The exact sequence (2.1) will next be used to limit the size of a0, . . . , a7.

Lemma 2.7 Let a0, . . . , a7 be as defined in Lemma 2.6. Then a0 +a4 ∈ {0, 1}, a1 +a5 ∈
{0, 1, 2}, a2 + a6 ∈ {1, 2, 3}, a3 + a7 = 0.

Proof The part of the sequence (2.1) starting at K7(Cθ) gives

· · · −→ Z−→
β7

Z
2 × Z

a3+a7

2 −→
γ7

Z
2 −→

α6

Z
2
2 × Z−→

β6

Z
a2+a6

2 −→
0

Z
2.

If Im(γ7) ∼= Z
2 then ker(β6) = Im(α6) is a torsion group, giving a contradiction to

the final part of the sequence. Im(γ7) = 0 is also impossible because α6 cannot be

injective. Hence Im(γ7) ∼= Z and so Im(β7) = ker(γ7) ∼= Z × Z
a3+a7

2 , which forces

a3 + a7 = 0. The previous part of the sequence (2.1) gives

−→ Z
3 −→

β0

Z
4 × Z

a0+a4

2 −→
γ0

Z
2 −→

α7

Z−→
β7

Z
2

and, from Im(α7) = kerβ7 = 0 it follows that Im(γ0) = Z
2 and hence Im(β0) =

ker(γ0) ∼= Z
2 × Z

a0+a4

2 , from which it follows that a0 + a4 ∈ {0, 1}. Both possibilities

Im(β0) ∼= Z
2 and Im(β0) ∼= Z

2 × Z2 imply that ker(β0) ∼= Z. The part of sequence

(2.1) finishing at β0 is

Z
3 −→

β1

Z
2 × Z

a1+a5

2 −→
γ1

Z
2 −→

α0

Z
3 −→

β0

and it follows from Im(α0) = ker(β0) ∼= Z that Im(γ1) = ker(α0) ∼= Z. Thus

Im(β1) ∼= Z × Z
a1+a5

2 from which it follows that a1 + a5 ∈ {0, 1, 2}. Finally, the

part of sequence (2.1) used at the start of the proof has ker(α6) = Im(γ7) ∼= Z so

Im(α6) ∼= Z × Z2 or Im(α6) ∼= Z. The first possibility leads to a2 + a6 ∈ {1, 2} and

the second to a2 + a6 ∈ {2, 3}.

The K-theory of Rθ can now be calculated.
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Theorem 2.8 The K groups of Rθ are given by the following table.

i 0 1 2 3 4 5 6 7

Ki(Rθ) Z
2

Z × Z
2
2 Z

2
2 Z Z

2
Z 0 Z

Proof From Proposition 2.3 the complexification map c0 : Z
2 × Z

a0

2 → Z
2 is a sur-

jection. Thus, from r0c0 = 2 id, r0(Z
2) = 2Z

2. The exact sequence (2.2) contains the

portion

· · · −→ Z
2 −→

r0

K0(Rθ) −→ K1(Rθ)−→
c1

Z
2 −→ · · ·

which is known to be of the form

· · · −→ Z
2 −→

r0

Z
2 × Z

a0

2 −→
δ

Z × Z
a1

2 −→
c1

Z
2 −→ · · ·

From r0(Z
2) = 2Z

2 it follows that Im(δ) ∼= Z
2+a0

2 and thus that a1 ≥ 2 + a0. However,

by Lemma 2.7, a1 ≤ 2 so a1 = 2 and a0 = 0. Then, since a1 + a5 ≤ 2, a5 = 0.

Another portion of the sequence (2.2) is

−→ K0(Rθ) = Z
2 −→

c0

Z
2 −→

r6

K6(Rθ) −→ K7(Rθ) = Z,

and, since c0 is surjective and K6(Rθ) = Z
a6

2 , K6(Rθ) = 0.

To calculate K4(Rθ) and K2(Rθ) note that for x ∈ Rθ,

(

x 0

0 0

)

=
1

2

(

x 0

0 x

)

+
i

2

(

−ix 0

0 ix

)

=
1

2
(x ⊗ 1H) +

i

2
(x ⊗ iH)

∈ (Rθ ⊗ H) + i(Rθ ⊗ H).

Thus r
(

x 0
0 0

)

=
1
2

(

x⊗1H −x⊗iH

x⊗iH x⊗1H

)

= A
(

x⊗1H 0
0 0

)

A∗ where
√

2A =
(

1⊗1H 1⊗1H

1⊗iH −1⊗iH

)

,

showing that r([1]) = [1 ⊗ 1H] and r([p]) = [p ⊗ 1H], whereas c[1 ⊗ 1H] = 2[1]

and c[p ⊗ 1H] = 2[p]. Thus

· · · −→ Z
2 −→

r4

Z
2 × Z

a4

2 −→
γ

Z = K5(Rθ) −→ · · ·

with r4(Z
2) = Z

2, showing that a4 = 0, and

−→ K4(Rθ) = Z
2 −→

c4

Z
2 −→

r2

K2(Rθ) −→ K3(Rθ) = Z

with c4(Z
2) = 2Z

2, showing that K2(Rθ) ∼= Z
2
2.

Having established the group structure of Kn(Rθ) it is possible to specify gener-

ators explicitly, though this will not be needed in the sequel. This has already been

done for K0(Rθ). By the identification K4(Rθ) ∼= K0(Rθ ⊗ H), the generators for
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K4(Rθ) are [1 ⊗ 1H] and [p ⊗ 1H] where [1] and [p] are generators for K0(Rθ). The

element [e−πiθUV ∗] is a generator of the summand Z of K1(Rθ) and the elements
[(

0 1
1 0

)]

and
[( 1−p p

p 1−p

)]

, where [p] is a generator of K0(Rθ), are generators of the

two Z2 summands. These can be obtained in the following way from the generators

[1] and [p] of K0(Aθ). Note that the relevant portion of the exact sequence (2.1)

arising from

0 → C0

(

I,M2(Aθ)
)

→ Cθ → M2(Rθ) × (Rθ ⊗ H) → 0

is

· · · −→
0

K1(C0(I,M2(Aθ)) ∼= Z
2 −→ K1(Cθ) ∼= Z

3 −→ (Z×Z
2
2)×Z −→ Z

2 −→ · · · ,

and thus that the two generators of Z
2
2 arise from evaluation at 0 of the elements of

Cθ generating the summands containing the image of K1

(

C0

(

I,M2(Aθ)
)

)

.

The two generators [1] and [p] of K0(Aθ) give rise to the elements f1 and fp of

C0(I,Aθ)
+ defined by f1(t) = I + (e2πit − 1)1 and fp(t) = I + (e2πit − 1)p, where I is

the identity adjoined to C0(I,Aθ). The corresponding elements of Cθ are defined by

fp(t) =























(

1 + (e4πit − 1)p 0

0 1

)

if 0 ≤ t ≤ 1
2

(

1 0

0 1 + (e4πit − 1)p

)

if 1
2
≤ t ≤ 1,

with a corresponding definition of f1. These formulae arise from using f (t) =

(Ψα̂)
(

f (1 − t)∗
)

for 1
2
≤ t ≤ 1. Note that [ fp] = [gp] and [ f1] = [g1] where

gp(t) =

(

1 + (e2πit − 1)p 0

0 1 + (e2πit − 1)p

)

for all 0 ≤ t ≤ 1, with a similar formula for g1. Let hp(t) =
( 1−p peπit

peπit 1−p

)

for 0 ≤
t ≤ 1 with a similar definition of h1. Then h2

p = gp, h2
1 = g1, hp ∈ Cθ and h1 ∈

Cθ. Evaluating at 0 gives the generators
[( 1−p p

p 1−p

)]

and
[(

0 1
1 0

)]

of the two Z2

summands of K1(Rθ).

Regarding K5(Rθ) as K1(Rθ ⊗ H), a generator is [e−πiθUV ∗ ⊗ 1H]. The generators

of K2(Rθ), viewed as K1

(

C0(I,Rθ)
)

are obtained, via the exact sequence (2.2), as the

images of the generators of K1

(

C0(I,Aθ)
)

under the realification map. These are

given by

t 7→
(

1 +
(

cos(2πt) − 1
)

p p sin(2πt)

−p sin(2πt) 1 +
(

cos(2πt) − 1
)

p

)

and

t 7→
(

cos(2πt)1 sin(2πt)1

− sin(2πt)1 cos(2πt)1

)

.
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The latter can also be viewed as the image of the generator of K2(R) under the map

from K2(R) into K2(Rθ) resulting from λ 7→ λ1.

The most cumbersome generators to describe are those for K3(Rθ) and K7(Rθ). To

obtain a generator for K7(Rθ) note that the exact sequence (2.2) includes the portion

−→ K1(Rθ)−→
c1

Z
2
= K1(Aθ) −→ Z

2
= K7(Aθ)

−→
r7

K7(Rθ) = Z −→ K0(Rθ)−→
c0

K0(Aθ)

where c0 is an isomorphism and the image of c1 is [e−πiθUV ∗] = [UV ∗]. It fol-

lows that, for either generator [U ] or [V ] of K1(Aθ), the image under r7 of the cor-

responding element of K7(Aθ) generates K7(Rθ). One description of this generator

can be obtained by using the results of [5] to identify Kn(Rθ) with Kn+1(Dθ) where

Dθ =
{

f ∈ C0(R,Aθ) : f (−x) = Φ
(

f (x)∗
)}

(= CR

0 (iR) ⊗ Rθ in the language

of [5]).

The complexification of Dθ is just C0(R,Aθ) and the element of K0

(

C0(R,Aθ)
)

corresponding to the element [U ] of K1(Aθ) is, as described in Theorem 8.2.2 of [1],

[pU ] −
[(

1 0
0 0

)]

where pU ∈ C0

(

I,M2(Aθ)
)

is defined by

pU (t) =

(

1 + s2
t c2

t (U + U∗ − 2) ct st (U − 1)
(

1 + s2
t (U − 1)

)

ct st (U
∗ − 1)

(

1 + s2
t (U∗ − 1)

)

c2
t s2

t (2 −U ∗ −U )

)

in which st = sin( π
2

t) and ct = cos( π
2

t) for 0 ≤ t ≤ 1. The corresponding generator

of K0(Dθ) is then given by [PU ] −
[(

e 0
0 e

)]

where

PU =
1

2

(

pU + Ψ(pU )∗ −iΨ(pU )∗ + i pU

iΨ(pU )∗ − i pU pU + Ψ(pU )∗

)

and e =

(

1 0

0 0

)

.

A similar generator can be obtained for K3(Rθ) ∼= K0(Dθ ⊗ H) by tensoring with 1H.

3 An Inductive Limit Sharing the K-Theory of Rθ

In [16] Walters constructed an inductive limit decomposition of Aθ, when θ is irra-

tional, and a period 4 automorphism of Aθ compatible with the decomposition, pro-

ducing the same map on K1(Aθ) as the Fourier automorphismα given by α(U ) = V ,

α(V ) = U ∗. In this section a minor modification of Walters’s construction will be

used to produce an involutory antiautomorphism Ψ of Aθ compatible with the de-

composition and producing the same map on K1(Aθ) as the antiautomorphism Φ

defined by Φ(U ) = V , Φ(V ) = U . Furthermore it will be shown that the real induc-

tive limit algebra associated with Ψ has the same K-theory as Rθ, suggesting that Rθ
may well be isomorphic to this inductive limit.

Following [16] let θ have continued fraction expansion [a0, a1, . . . ] where an ≥ 1

for n ≥ 1 and a0 = 0 and let

Pn =

(

a5n 1

1 0

)(

a5n−1 1

1 0

)(

a5n−2 1

1 0

)(

a5n−3 1

1 0

)(

a5n−4 1

1 0

)

=

(

αn βn

γn δn

)

,
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so that det(Pn) = −1. The n-th convergent pn/qn of θ is determined by

q0 = 1, q1 = a1, qn = anqn−1 + qn−2

p0 = 0, p1 = 1, pn = an pn−1 + pn−2

and therefore

q5n+5 = αn+1q5n + βn+1q5n−1, q5n+4 = γn+1q5n + δn+1q5n−1

p5n+5 = αn+1 p5n + βn+1 p5n−1, p5n+4 = γn+1 p5n + δn+1 p5n−1.

As noted in [16], αn ≥ 5 and γn ≥ 5 for each n, so we can write

αn = 2α ′
n + α ′ ′

n , γn = 2γ ′
n + γ ′ ′

n

where α ′ ′
n , γ

′ ′
n ∈ {1, 2} and α ′

n, γ
′
n ≥ 2. Then, as in [16], let

An = Mq5n

(

C(T)
)

⊕ Mq5n

(

C(T)
)

⊕ Mq5n−1
⊕ Mq5n

and equip this with the involutory antiautomorphism Ψn defined by

Ψn( f , g,A,B) = (gtr , f tr ,Atr ,Btr),

which has the associated real algebra Rn =
{

( f , f̄ ,A,B) : f ∈ Mq5n

(

C(T)
)

, A ∈
Mq5n−1

(R), B ∈ Mq5n−1
(R)
}

.

For any `× ` matrix M, let Ik ⊗ M denote the k`× k` matrix with K copies of M

down the main diagonal and let M ⊗ Ik denote the k`× k` matrix consisting of k× k

blocks mi jIk in the obvious way. As in [16] let Sk and Sk(id) be the k × k matrices

with entries in C(T) defined by

Sk =

(

0 1

Ik−1 0

)

and Sk(id) =

(

0 id

Ik−1 0

)

where id is the identity function on T ⊆ C. Let ρn : An → An+1 be defined, for

constant X,Y ∈ Mq5n

(

C(T)
)

, for Z ∈ Mq5n−1
and Z ′ ∈ Mq5n

by

ρn(id Iq5n
, 0, 0, 0)

=
(

[Iq5n
⊗ Sα ′

n+1
(id)]000, [Iq5n

⊗ Sα ′

n+1
]000, [Iq5n

⊗ Sγ ′

n+1
]000, [Iq5n

⊗ Sα ′

n+1
]000

)

,

ρn(0, id Iq5n
, 0, 0)

=
(

0[Iq5n
⊗ Str

α ′

n+1
]00, 0[Iq5n

⊗ Str
α ′

n+1
(id)]00, 0[Iq5n

⊗ Str
γ ′

n+1
]00, 0[Iq5n

⊗ Str
α ′

n+1
]00
)

,

ρn(X,Y,Z,Z ′) = (A,A,B,A),

where

A = [X ⊗ Iα ′

n+1
][Y ⊗ Iα ′

n+1
][Z ⊗ Iβn+1

][Z ′ ⊗ Iα ′′

n+1
]
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and

B = [X ⊗ Iγ ′

n+1
][Y ⊗ Iγ ′

n+1
][Z ⊗ Iδn+1

][Z ′ ⊗ Iγ ′ ′

n+1
].

Here, as in [16], the matrices in square brackets are diagonal blocks in the appropriate

matrix of size q5n+5 or q5n+4. (The only difference from the map ρn defined in [16] is

in the third and fourth components of the image of (0, id Iq5n
, 0, 0), where Str replaces

ΛSΛ
∗.)

For each k ∈ N let W2k be the 2k × 2k unitary matrix

W2k =
1√
2

(

iIk −iIk

Ik Ik

)

and for each n ∈ N let Vn+1 be the matrix in Mq5n+5

(

C(T)
)

⊕Mq5n+5

(

C(T)
)

⊕Mq5n+4
⊕

Mq5n+5
defined by

Vn+1 =
(

[W2q5nα ′

n+1
]II, [W2q5nα ′

n+1
]II, [W2q5nγ ′

n+1
]II, [W2q5nα ′

n+1
]II
)

Then let ψn : An → An+1 be defined by ψn = (Ad Vn+1) ◦ ρn.

Lemma 3.1 For each n, Ψn+1ψn = ψnΨn.

Proof Note that for k × k matrices A,B

W2k

(

A 0

0 B

)

W ∗
2k =

1

2

(

A + B i(A − B)

i(B − A) A + B

)

=

[

W2k

(

Btr 0

0 Atr

)

W ∗
2k

]tr

.

It follows that Ψn+1ψn(id Iq5n
, 0, 0, 0) = ψn(0, id Iq5n

, 0, 0) = ψnΨn(id Iq5n
, 0, 0, 0),

that Ψn+1ψn(0, id Iq5n
, 0, 0) = ψn(id Iq5n

, 0, 0, 0) = ψnΨn(0, id Iq5n
, 0, 0) and that

Ψn+1ψn(X,Y,Z,Z ′) = ψn(Y tr ,Xtr ,Ztr ,Z
′ tr) = ψnΨn(X,Y,Z,Z ′).

It follows from Lemma 3.1 that ψn : Rn → Rn+1 where

Rn = {a ∈ An : Ψn(a) = a∗}

=
{

(A, Ā,B,C) : A ∈ Mq5n

(

C(T)
)

,B ∈ Mq5n−1
(R),C ∈ Mq5n

(R)
}

.

The elements of Rn will henceforth be identified with triples (A,B,C) where A ∈
Mq5n

(

C(T)
)

, B ∈ Mq5n−1
(R), C ∈ Mq5n

(R). In this context, for constant X ∈
Mq5n

(

C(T)
)

, for Z ∈ Mq5n−1
(R) and for Z ′ ∈ Mq5n

(R),

ψn(id Iq5n
, 0, 0) =

(

[Tn]00, [I2q5n
⊗ Sγ ′

n+1
]00, [I2q5n

⊗ Sα ′

n+1
]00
)

,

ψn(X,Z,Z ′) = (A,B,A),
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where

A = [r(X ⊗ Iα ′

n+1
)][Z ⊗ Iβn+1

][Z ′ ⊗ Iα ′′

n+1
],

B = [r(X ⊗ Iγ ′

n+1
)][Z ⊗ Iδn+1

][Z ′ ⊗ Iγ ′ ′

n+1
],

Tn = Ad W2q5nα ′

n+1

(

[Iq5n
⊗ Sα ′

n+1
(id)][Iq5n

⊗ Sα ′

n+1
]
)

=
1

2

(

Iq5n
⊗
(

Sα ′

n+1
+ Sα ′

n+1
(id)

)

iIq5n
⊗
(

Sα ′

n+1
(id) − Sα ′

n+1

)

iIq5n
⊗
(

Sα ′

n+1
− Sα ′

n+1
(id)

)

Iq5n
⊗
(

Sα ′

n+1
+ Sα ′

n+1
(id)

)

)

,

r(X ⊗ Iα ′

n+1
) = Ad W2q5nα ′

n+1
([X ⊗ Iα ′

n+1
][X̄ ⊗ Iα ′

n+1
])

=

(

Re(X) ⊗ Iα ′

n+1
− Im(X) ⊗ Iα ′

n+1

Im(X) ⊗ Iα ′

n+1
Re(X) ⊗ Iα ′

n+1

)

.

These formulae enable the K-theory of R = lim Rn to be computed.

Theorem 3.2 Let 0 < θ < 1 be irrational and let R = lim(Rn, ψn) where Rn =

Mq5n

(

C(T)
)

⊕ Mq5n−1
(R) ⊕ Mq5n

(R) and where ψn is defined above. Then the com-

plexification of R is isomorphic to Aθ and the K groups of R are given by the following

table.

i 0 1 2 3 4 5 6 7

Ki(R) Z
2

Z × Z
2
2 Z

2
2 Z Z

2
Z 0 Z

Proof Recall that the K groups of R and C(T) are as given in the following table.

i 0 1 2 3 4 5 6 7

Ki

(

C(T)
)

Z Z Z Z Z Z Z Z

Ki(R) Z Z2 Z2 0 Z 0 0 0

Ki(Rn) Z
3

Z × Z
2
2 Z × Z

2
2 Z Z

3
Z Z Z

All cases other than i = 0, 4 can be handled by considering separately the effect on

the Mq

(

C(T)
)

and Mq ′(R) ⊕ Mq(R) summands. On the Mq

(

C(T)
)

summands the

map ψn is specified by

id Iq5n
7→ Ad W2q5nα ′

n+1

(

[Iq5n
⊗ Sα ′

n+1
(id)][Iq5n

⊗ Sα ′

n+1
]
)

00

X 7→ Ad W2q5nα ′

n+1

(

[X ⊗ Iα ′

n+1
][X̄ ⊗ Iα ′

n+1
]
)

00.

Since the K-theory is not affected by the inner automorphism, ψn can be replaced by

the sum of a linear and antilinear map specified by

id Iq5n
7→ Iq5n

⊗ Sα ′

n+1
(id), X 7→ X ⊗ Iα ′

n+1

and

id Iq5n
7→ Iq5n

⊗ Sα ′

n+1
, X 7→ X̄ ⊗ Iα ′

n+1
.

It follows that ψn induces the identity map from K1

(

C(T)
) ∼= Z to K1

(

C(T)
) ∼= Z.

Furthermore, since only the linear component of the map has a non-zero effect on
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K1, usual complex Bott periodicity shows that ψn also induces the identity map from

Ki

(

C(T)
) ∼= Z to Ki

(

C(T)
) ∼= Z when i = 3, 5, 7. In the cases i = 3, 5, 7, for which

Ki(R) = 0, ψn therefore induces the identity map from Ki(Rn) ∼= Z to Ki(Rn+1) ∼= Z.

On K0

(

C(T)
) ∼= Z both linear and antilinear parts correspond to multiplication

by α ′
n+1 on Z. Thus, using the discussion in the proof of Proposition 2.4, the same

is true on K4, but in K2 and K6 the antilinear part corresponds to multiplication by

−α ′
n+1. Thus, when i = 2 or i = 6, ψn induces the zero map from Ki

(

C(T)
)

to

Ki

(

C(T)
)

. When i = 6, for which Ki(R) = 0, it follows that ψn gives the zero map

from Ki(Rn) to Ki(Rn+1).

Turning to the Mq ′(R) ⊕ Mq(R) summands, ψn is given by

(Z,Z ′) 7→
(

00[Z ⊗ Iδn+1
][Z ′ ⊗ Iγ ′′

n+1
], 00[Z ⊗ Iβn+1

][Z ′ ⊗ Iα ′′

n+1
]
)

.

It follows that, for any i, the effect on Ki

(

Mq5n−1
(R)⊕Mq5n

(R)
)

is given by the matrix

(

δn+1 βn+1

γ ′ ′
n+1 α ′ ′

n+1

)

.

Recall that αn+1δn+1 − βn+1γn+1 = −1 and that α ′ ′
n+1 ≡ αn+1 (mod 2), γ ′ ′

n+1 ≡ γn+1

(mod 2), so that for i = 1, 2, ψn induces an isomorphism from Z
2
2 to Z

2
2. Combining

this with the earlier results on the Mq

(

C(T)
)

summands, it follows that ψn induces

an isomorphism from K1(Rn) ∼= Z × Z
2
2 onto K1(Rn+1) ∼= Z × Z

2
2 and a homomor-

phism with range Z
2
2 from K2(Rn) ∼= Z × Z

2
2 onto Z

2
2 ⊆ K2(Rn+1), with ψn+1 then

mapping this image isomorphically onto Z
2
2 ⊆ K2(Rn+2).

This leaves K0 and K4 to be considered. As in [16] the corresponding map from

Z
3 to Z

3 is in each case given by the matrix





α ′
n+1 βn+1 α ′ ′

n+1

γ ′
n+1 δn+1 γ ′ ′

n+1

α ′
n+1 βn+1 α ′ ′

n+1





(where exactly the same 4×4 matrix as in [16] is obtained after embedding Rn in An).

The arguments given in the proof of Proposition 2 of [16] show that the limit algebra

has Ki(R) isomorphic to Z
2 and that the complexification of R, namely lim(An, ψn),

is isomorphic to Aθ.
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