An Inductive Limit Model for the K-Theory of the Generator-Interchanging Antiautomorphism of an Irrational Rotation Algebra

P. J. Stacey

Abstract

Let A_{θ} be the universal C^{*}-algebra generated by two unitaries U, V satisfying $V U=$ $e^{2 \pi i \theta} U V$ and let Φ be the antiautomorphism of A_{θ} interchanging U and V. The K-theory of $R_{\theta}=$ $\left\{a \in A_{\theta}: \Phi(a)=a^{*}\right\}$ is computed. When θ is irrational, an inductive limit of algebras of the form $M_{q}(C(\mathbb{T})) \oplus M_{q^{\prime}}(\mathbb{R}) \oplus M_{q}(\mathbb{R})$ is constructed which has complexification A_{θ} and the same K-theory as R_{θ}.

1 Introduction

It was shown in [6] and later, with a simplified proof, in [7] that the irrational rotation algebra A_{θ}, generated by unitaries U, V with $V U=e^{2 \pi i \theta} U V$, can be written as an inductive limit of algebras of the form $M_{q}(C(\mathbb{T})) \oplus M_{q^{\prime}}(C(\mathbb{T}))$, where $C(\mathbb{T})$ denotes the algebra of continuous complex-valued functions on the unit circle $\mathbb{\Gamma}$ and $M_{q}(C(\mathbb{T}))$ denotes the algebra of $q \times q$ matrices with entries in $C(\mathbb{T})$. It was subsequently shown by Walters in [14], with a simplified proof given by Boca in [2], that the algebras $M_{q}(C(\mathbb{T})) \oplus M_{q^{\prime}}(C(\mathbb{T}))$ can be chosen to be invariant under the flip given by $U \rightarrow U^{*}, V \mapsto V^{*}$. Similar results were obtained in [13] for the antiautomorphisms given by $U \mapsto U, V \mapsto V^{*}$ and $U \mapsto-U, V \mapsto V^{*}$, but it was shown that the other naturally occurring antiautomorphism Φ, given by $\Phi(U)=V$ and $\Phi(V)=U$, does not admit such a decomposition.

A similar situation obtains for the period 4 (Fourier) automorphism given by $U \mapsto V$ and $V \mapsto U^{*}$. It was shown in [12] that there is no inductive limit decomposition of Elliott-Evans type which is invariant under this automorphism. However in [16] Walters raised the possibility of an invariant inductive limit decomposition using algebras of the form $M_{q}(C(\mathbb{T})) \oplus M_{q}(C(\mathbb{T})) \oplus M_{q^{\prime}} \oplus M_{q}$. He produced an inductive limit decomposition of A_{θ} using such algebras and an order 4 automorphism σ of A_{θ} compatible with the decomposition and with the same induced map on $K_{1}\left(A_{\theta}\right)$ as the Fourier automorphism.

In this paper the construction of [16] is slightly modified to obtain an inductive limit decomposition invariant under an antiautomorphism of period 2 with the same effect on $K_{1}\left(A_{\theta}\right)$ as Φ. In this setting it is possible to obtain a more detailed agreement between the two antiautomorphisms by showing that the K-theories of the

[^0]associated real algebras are identical. It is straightforward to calculate the K-theory of the inductive limit, but not immediately clear how to compute the K-theory of $R_{\theta}=\left\{a \in A_{\theta}: \Phi(a)=a^{*}\right\}$ since it has no (obvious) cross product structure. The calculation, which occupies most of this paper, is achieved by combining a standard exact sequence for real C^{*}-algebras with the exact sequence for real C^{*}-algebras produced in [11]. Walters, in [15], has calculated, for a dense G_{δ} set of real parameters θ, the K-theory of the analogous fixed point algebra of the Fourier automorphism, but his methods are different from (and more difficult than) those employed here.

2 Computing the K-Theory of R_{θ}

As a first step in the calculation of $K_{0}\left(R_{\theta}\right)$, it will be shown that Boca's construction from [3] produces a projection p in R_{θ} with trace θ. The features of this construction which are required to show this will now be described.

For each $r \in \mathbb{R}$ let $e(r)=e^{2 \pi i r}$ and let β be the Heisenberg cocycle on \mathbb{R}^{2}, defined by $\beta\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=e\left(x y^{\prime}\right)$. Let D be the lattice $\left\{\sqrt{\theta}\left(n_{1}, n_{2}\right): n_{1}, n_{2} \in \mathbb{Z}\right\}$ and let $D^{\perp}=\left\{\frac{1}{\sqrt{\theta}}\left(m_{1}, m_{2}\right): m_{1}, m_{2} \in \mathbb{Z}\right\}$ (defined so that $D^{\perp}=\left\{z \in \mathbb{R}^{2}\right.$: $\beta(z, w)=\beta(w, z)$ for all $w \in D\})$. In accordance with page 278 of [9], choose the Haar measures on D, D^{\perp} to assign each point the masses $\sqrt{\theta}, 1$ respectively. Then define the twisted group algebras $C^{*}(D, \beta)$ and $C^{*}\left(D^{\perp}, \bar{\beta}\right)$ as the C^{*}-completions of $L_{1}(D, \beta)$ and $L_{1}\left(D^{\perp}, \bar{\beta}\right)$ with the multiplications

$$
\begin{aligned}
& (f g)(w)=\int_{D} f\left(w^{\prime}\right) g\left(w-w^{\prime}\right) \beta\left(w^{\prime}, w-w^{\prime}\right) d w^{\prime} \quad \text { for } w \in D \\
& (f g)(z)=\int_{D^{\perp}} f\left(z^{\prime}\right) g\left(z-z^{\prime}\right) \overline{\beta\left(z^{\prime}, z-z^{\prime}\right)} d z^{\prime} \quad \text { for } z \in D^{\perp}
\end{aligned}
$$

and the involutions $f^{*}(w)=\beta(w, w) \overline{f(-w)}$ for $w \in D$ and $f^{*}(z)=\overline{\beta(z, z) f(-z)}$ for $z \in D^{\perp}$.

The Schwartz space $S(\mathbb{R})$ is a $C^{*}(D, \beta)-C^{*}\left(D^{\perp}, \bar{\beta}\right)$ bimodule under the actions defined, for $a \in S(D), b \in S\left(D^{\perp}\right)$ and $h \in S(\mathbb{R})$, by

$$
\begin{gathered}
(a h)(s)=\sqrt{\theta} \sum_{(x, y) \in D} a(x, y) h(s+x) e(s y) \\
(h b)(s)=\sum_{(x, y) \in D^{\perp}} b(x, y) h(s-x) e(y(x-s)) .
\end{gathered}
$$

Furthermore it becomes a $C^{*}(D, \beta)-C^{*}\left(D^{\perp}, \bar{\beta}\right)$ equivalence bimodule under the $C^{*}(D, \beta)$ and $C^{*}\left(D^{\perp}, \bar{\beta}\right)$ valued inner products \langle,\rangle_{D} and $\langle,\rangle_{D^{\perp}}$ defined for $f, g \in S(\mathbb{R})$ by

$$
\begin{aligned}
& \langle f, g\rangle_{D}(x, y)=\int_{\mathbb{R}} f(s) \overline{g(s+x)} e(-s y) d s \\
& \langle f, g\rangle_{D^{\perp}}(x, y)=\int_{\mathbb{R}} \overline{f(s) g(s+x) e(s y) d s .}
\end{aligned}
$$

If $f \in S(\mathbb{R})$ is defined by $f(s)=e^{-\pi s^{2}}$ and $0<\theta<0.948$, then $\langle f, f\rangle_{D^{\perp}}$ is invertible and

$$
p=\left\langle f\langle f, f\rangle_{D^{\perp}}^{-1 / 2}, f\langle f, f\rangle_{D^{\perp}}^{-1 / 2}\right\rangle_{D}
$$

defines a projection p in $C^{*}(D, \beta)$ with $\tau_{D}(p)=\theta$, where τ_{D} is the unique normalised trace on $C^{*}(D, \beta) \cong A_{\theta}$. Using the isomorphism between A_{θ} and $A_{1-\theta}$ it follows that for all θ either p or $1-p$ is a projection in A_{θ} with trace θ.

Let J, \mathcal{F} be the bounded invertible operators on $L_{2}(\mathbb{R})$ defined for $f \in S(\mathbb{R})$ by $(J f)(s)=\overline{f(s)}$ and $(\mathcal{F} f)(s)=\int_{\mathbb{R}} f(x) e(-x s) d x$ and let $F=J \mathcal{F}$, so $(F f)(s)=$ $\int_{\mathbb{R}} \overline{f(x)} e(x s) d x . F$ is an invertible antilinear operator on $L_{2}(\mathbb{R})$ and therefore $\Phi(a)=$ $F^{-1} a^{*} F$ defines an antiautomorphism of $B\left(L_{2}(\mathbb{R})\right)$.

Lemma 2.1 Testricts to the involutory antiautomorphism of $C^{*}(D, \beta)$ which interchanges the canonical unitary generators.

Proof It suffices to show that $\Phi\left(\chi_{(\sqrt{\theta}, 0)}\right)=\chi_{(0, \sqrt{\theta})}$ and $\Phi\left(\chi_{(0, \sqrt{\theta})}\right)=\chi_{(\sqrt{\theta}, 0)}$, where χ_{d} is the characteristic function of $\{d\}$ for $d \in D$. Let $h \in S(\mathbb{R})$ and $s \in \mathbb{R}$. Then

$$
\begin{aligned}
\left(F \Phi\left(\chi_{(\sqrt{\theta}, 0)}\right) h\right)(s) & =\left(\chi_{(\sqrt{\theta}, 0)}^{*} F h\right)(s)=\left(\chi_{(-\sqrt{\theta}, 0)} F h\right)(s) \\
& =\sqrt{\theta}(F h)(s-\sqrt{\theta})=\sqrt{\theta} \int_{\mathbb{R}} \overline{h(x)} e(x(s-\sqrt{\theta})) d x
\end{aligned}
$$

whereas

$$
\begin{aligned}
\left(F \chi_{(0, \sqrt{\theta})} h\right)(s) & =\int_{\mathbb{R}} \overline{\left(\chi_{(0, \sqrt{\theta})} h\right)(x)} e(x s) d x \\
& =\sqrt{\theta} \int_{\mathbb{R}} e(-\sqrt{\theta} x) \overline{h(x)} e(x s) d x
\end{aligned}
$$

Thus $F \chi_{(0, \sqrt{\theta})}=F \Phi\left(\chi_{(\sqrt{\theta}, 0)}\right)$, so $\chi_{(0, \sqrt{\theta})}=\Phi\left(\chi_{(\sqrt{\theta}, 0)}\right)$. A similar calculation gives $\chi_{(\sqrt{\theta}, 0)}=\Phi\left(\chi_{(0, \sqrt{\theta})}\right)$.

Proposition 2.2 If $0<\theta<1$ then R_{θ} contains a projection p with trace θ.

Proof By Lemma 2.1 and the preceding remarks it suffices to show that $p F=F p$ where $p=\left\langle f\langle f, f\rangle_{D^{\perp}}^{-1 / 2}, f\langle f, f\rangle_{D^{\perp}}^{-1 / 2}\right\rangle_{D}$ and $f(s)=e^{-\pi s^{2}}$. It is shown in [3] that $\mathcal{F} p=p \mathcal{F}$, so it suffices to show that $J p=p J$.

For $h \in S(\mathbb{R})$ and $s \in \mathbb{R}$,

$$
\begin{aligned}
\left(h\langle f, f\rangle_{D^{\perp}}\right)(s) & =\sum_{(x, y) \in D^{\perp}}\langle f, f\rangle_{D^{\perp}}(x, y) h(s-x) e(y(x-s)) \\
& =\sum_{(x, y) \in D^{\perp}} \int_{\mathbb{R}} f(t) f(t+x) e(t y) d t h(s-x) e(y(x-s))
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left(h\langle f, f\rangle_{D^{\perp}} J\right)(s) & =\sum_{(x, y) \in D^{\perp}} \int_{\mathbb{R}} f(t) f(t+x) e(-t y) d t \overline{h(s-x)} e(-y(x-s)) \\
& =\left(h J\langle f, f\rangle_{D^{\perp}}\right)(s) .
\end{aligned}
$$

It follows in turn that $J\langle f, f\rangle_{D^{\perp}}=\langle f, f\rangle_{D^{\perp}} J, J\langle f, f\rangle_{D^{\perp}}^{-1 / 2}=\langle f, f\rangle_{D^{\perp}}^{-1 / 2} J$ and $f\langle f, f\rangle_{D^{\perp}}^{-1 / 2} J=f J\langle f, f\rangle_{D^{\perp}}^{-1 / 2}=f\langle f, f\rangle_{D^{\perp}}^{-1 / 2}$. Putting $g=f\langle f, f\rangle_{D^{\perp}}^{-1 / 2}$, a calculation for $\langle g, g\rangle_{D}$ similar to that given above for $\langle f, f\rangle_{D^{\perp}}$ then shows that $J p=p J$, as required.

The principal tool used to calculate the K-theory of R_{θ} will be two exact sequences, which both rely on the K-theoretic maps $\alpha_{i}: K_{i}\left(A_{\theta}\right) \rightarrow K_{i}\left(A_{\theta}\right)$, where α is the antilinear automorphism defined by $\alpha(x)=\Phi\left(x^{*}\right)$. The proof of Proposition 2.7 in III of [8] shows that, when $r_{i}: K_{i}\left(A_{\theta}\right) \rightarrow K_{i}\left(R_{\theta}\right)$ and $c_{i}: K_{i}\left(R_{\theta}\right) \rightarrow K_{i}\left(A_{\theta}\right)$ arise from the maps $r(x+i y)=\left(\begin{array}{cc}x & -y \\ y & x\end{array}\right)$ and the inclusion $c(x)=x$, then $r_{i} \circ c_{i}=2 \mathrm{id}$ and $c_{i} \circ r_{i}=\mathrm{id}+\alpha_{i}$.

Although the principal interest of this paper is in the case of irrational θ, the calculation of the K theory of R_{θ} can be carried out for both rational and irrational θ simultaneously if the complexification map $c_{0}: K_{0}\left(R_{\theta}\right) \rightarrow K_{0}\left(A_{\theta}\right)$ is shown to be a surjection.

Proposition 2.3 The complexification map $c_{0}: K_{0}\left(R_{\theta}\right) \rightarrow K_{0}\left(A_{\theta}\right)$ is a surjection.

Proof When θ is irrational, then $K_{0}\left(A_{\theta}\right)$ is generated by [1] and [p] for any projection p in A_{θ} with trace θ. Thus the result follows from Proposition 2.2.

When $\theta=p / q$ with $(p, q)=1$ then, as shown for example in [4], A_{θ} is isomorphic to

$$
\begin{aligned}
\left\{f \in C\left([0,1]^{2}, M_{q}\right): f(\lambda, 1)\right. & =W_{1} f(\lambda, 0) W_{1}^{*} \text { for all } 0 \leq \lambda \leq 1 \\
f(1, \mu) & \left.=W_{2} f(0, \mu) W_{2}^{*} \text { for all } 0 \leq \mu \leq 1\right\}
\end{aligned}
$$

where M_{q} denotes the algebra of $q \times q$ complex matrices (with $q=1$ when $\theta=1$) and W_{1} and W_{2} are two particular $q \times q$ matrices. Let $e \in R_{\theta}$ be the Boca projection with trace $\frac{1}{q}$ and note that, by continuity, the usual normalised trace of $e(\lambda, \mu)$ is equal to $\frac{1}{q}$ for each $(\lambda, \mu) \in[0,1]^{2}$. Thus e is a full projection in R_{θ}, so that $e R_{\theta} e$ is stably isomorphic (as a real C^{*}-algebra) to R_{θ}. Since $e R_{\theta} e$ is isomorphic to

$$
\begin{aligned}
R_{1}=\left\{f \in C\left([0,1]^{2}, \mathbb{C}\right): f(\lambda, 1)=f(\lambda, 0), f(1, \mu)\right. & =f(0, \mu) \\
& f(\lambda, \mu)=\overline{f(\mu, \lambda)} \text { for all } \lambda, \mu\}
\end{aligned}
$$

it suffices to prove the result when θ has any fixed value, such as $\frac{1}{2}$.

As observed in [17], the arguments for the irrational case apply also when $\theta=$ $\frac{p}{q}$ to show that $K_{0}\left(R_{\theta}\right)$ is generated by [1] and [f] where f is a Rieffel projection with trace $\frac{1}{q}$. Thus, if $\theta=\frac{1}{2}$ and e is a Boca projection with trace $\frac{1}{2}$ then $[e]=$ $a[1]+(1-2 a)[f]$ for some $a \in \mathbb{Z}$, from which it follows that $c_{0}\left(K_{0}\left(R_{\theta}\right)\right) \supseteq \mathbb{Z} \times$ $(1-2 a) \mathbb{Z}$ and $c_{0} r_{0}\left(K_{0}\left(A_{\theta}\right)\right) \supseteq 2 \mathbb{Z} \times 2(1-2 a) \mathbb{Z}$, so $\operatorname{det}\left(\mathrm{id}+\alpha_{0}\right)=\operatorname{det}\left(c_{0} r_{0}\right) \neq 0$. The only possibilities for an order 2 automorphism α_{0} of \mathbb{Z}^{2} are $\pm\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right), \pm\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ and $\left(\begin{array}{cc}a & b \\ c & -a\end{array}\right)$ with $a^{2}+b c=1$. The only one of these for which $\operatorname{det}\left(\mathrm{id}+\alpha_{0}\right) \neq 0$ is id. Hence $c_{0} r_{0}=2$ id and $c_{0}\left(K_{0}\left(R_{\theta}\right)\right) \supseteq 2 \mathbb{Z}^{2}$. When combined with $c_{0}\left(K_{0}\left(R_{\theta}\right)\right) \supseteq$ $\mathbb{Z} \times(1-2 a) \mathbb{Z}$, this gives $c_{0}\left(K_{0}\left(R_{\theta}\right)\right)=\mathbb{Z}^{2}$, as required.

Proposition 2.4 For any $\theta \leq \theta \leq 1$, the maps $\alpha_{i}: K_{i}\left(A_{\theta}\right) \rightarrow K_{i}\left(A_{\theta}\right)$ are periodic of period 4. The matrices defining the corresponding automorphisms of \mathbb{Z}^{2} are

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \text { when } i \equiv 0(\bmod 4) \\
& \left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right) \quad \text { when } i \equiv 1(\bmod 4) \\
& \left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \quad \text { when } i \equiv 2(\bmod 4) \\
& \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { when } i \equiv 3(\bmod 4)
\end{aligned}
$$

Proof For any complex C^{*}-algebra A let $S A=C_{0}(\mathbb{R}, A)$ and let $\theta_{A}: K_{1}(A) \rightarrow K_{0}(S A)$ and $\beta_{A}: K_{0}(A) \rightarrow K_{1}(S A)$ be the isomorphisms defined in Theorem 8.2.2 and Definition 9.1.1 of [1]. The isomorphism θ_{A} commutes with the maps produced by either a linear or antilinear automorphism of A. When α is an antilinear automorphism, let $\tilde{\alpha}$ be the associated antilinear automorphism of $C\left(S^{1}, \mathrm{GL}_{n}\left(A^{+}\right)\right)$and note that when $f_{e}: z \mapsto z e+(1-e)$ (where e is a projection in A) then $\tilde{\alpha}\left(f_{e}\right): z \mapsto \bar{z} \alpha(e)+(1-\alpha(e))$. Thus $\tilde{\alpha}\left(f_{e}\right)=f_{\alpha(e)}^{-1}$ and so, when τ is the inverse map in $K_{1}(S A)$, the following diagram commutes.

It follows that, under the Bott isomorphism $\theta_{S A} \beta_{A}$ between $K_{0}(A)$ and $K_{2}(A)$, the following diagram commutes, where τ is the inverse map.

It remains to establish the matrices for $\alpha_{0}: K_{0}\left(A_{\theta}\right) \rightarrow K_{0}\left(A_{\theta}\right)$ and $\alpha_{1}: K_{1}\left(A_{\theta}\right) \rightarrow$ $K_{1}\left(A_{\theta}\right)$. The second is immediate from $\alpha(U)=V^{*}$ and $\alpha(V)=U^{*}$, where U, V are the unitary generators of A_{θ}. In the first case it has already been shown in the rational case that $\alpha_{0}=$ id. When θ is irrational, let p be a projection in R_{θ} given by Proposition 2.3. Then [1] and [p] generate $K_{0}\left(A_{\theta}\right)$ and $(c r)(1)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, $(c r)(p)=\left(\begin{array}{ll}p & 0 \\ 0 & p\end{array}\right)$, so id $+\alpha_{0}=2$ id on $K_{0}\left(A_{\theta}\right)$ and hence $\alpha_{0}=\mathrm{id}$.

The first exact sequence used to determine the K-theory of R_{θ} will be based on the results of [11]. The first step is to compute the K-theory of the real C^{*}-algebra $C_{\theta}=A_{\theta} \times{ }_{\alpha} \mathbb{Z}$ using the real Pimsner-Voiculescu sequence.
Proposition 2.5 For any $0 \leq \theta \leq 1$, let $C_{\theta}=A_{\theta} \times{ }_{\alpha} \mathbb{Z}$ where $\alpha(x)=\Phi\left(x^{*}\right)$ for each $x \in A_{\theta}$. Then

$$
\begin{gathered}
K_{i}\left(C_{\theta}\right) \cong \mathbb{Z}^{3} \quad \text { when } i \equiv 0,1(\bmod 4) \\
K_{i}\left(C_{\theta}\right) \cong \mathbb{Z} \quad \text { when } i \equiv 3(\bmod 4)
\end{gathered}
$$

and

$$
K_{i}\left(C_{\theta}\right) \cong \mathbb{Z}_{2}^{2} \times \mathbb{Z} \quad \text { when } i \equiv 2(\bmod 4)
$$

Proof The real Pimsner-Voiculescu sequence in this case is

$$
\cdots \longrightarrow K_{0}\left(A_{\theta}\right) \underset{\mathrm{id}-\alpha_{0}}{\longrightarrow} K_{0}\left(A_{\theta}\right) \longrightarrow K_{0}\left(C_{\theta}\right) \longrightarrow K_{7}\left(A_{\theta}\right) \longrightarrow \cdots
$$

From Proposition 2.4, id $=\alpha_{i}$ when $i \equiv 0(\bmod 4)$ so, starting with $K_{0}\left(A_{\theta}\right)$ we obtain

$$
\begin{aligned}
& 0 \longrightarrow \mathbb{Z}^{2} \longrightarrow K_{0}\left(C_{\theta}\right) \longrightarrow \mathbb{Z}^{2} \xrightarrow[\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)]{ } \mathbb{Z}^{2} \longrightarrow K_{7}\left(C_{\theta}\right) \longrightarrow \mathbb{Z}^{2} \\
& \\
& \text { 2id } \\
& \mathbb{Z}^{2} \longrightarrow K_{6}\left(C_{\theta}\right) \longrightarrow \mathbb{Z}^{2} \xrightarrow[\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)]{ } \mathbb{Z}^{2} \longrightarrow K_{5}\left(C_{\theta}\right) \longrightarrow \mathbb{Z}^{2} \longrightarrow 0
\end{aligned}
$$

The initial portion gives $0 \rightarrow \mathbb{Z}^{2} \rightarrow K_{0}\left(C_{\theta}\right) \rightarrow\{(n, n): n \in \mathbb{Z}\} \rightarrow 0$, so $K_{0}\left(C_{\theta}\right) \cong$ \mathbb{Z}^{3}. The next part gives $0 \rightarrow \mathbb{Z}^{2} /\{(n,-n): n \in \mathbb{Z}\} \rightarrow K_{7}\left(C_{\theta}\right) \rightarrow \operatorname{ker}(2 \mathrm{id}) \rightarrow 0$, yielding $K_{7}\left(C_{\theta}\right) \cong \mathbb{Z}$.

Finally, the portions $0 \rightarrow \mathbb{Z}^{2} \underset{2 \text { id }}{ } \mathbb{Z}^{2} \longrightarrow K_{6}\left(C_{\theta}\right) \longrightarrow\{(n,-n): n \in \mathbb{Z}\} \rightarrow 0$ and $0 \rightarrow \mathbb{Z}^{2} /\{(n, n): n \in \mathbb{Z}\} \rightarrow K_{5}\left(C_{\theta}\right) \rightarrow \mathbb{Z}^{2} \rightarrow 0$ yield $K_{6}\left(C_{\theta}\right) \cong \mathbb{Z}_{2}^{2} \times \mathbb{Z}$ and $K_{5}\left(C_{\theta}\right) \cong \mathbb{Z}^{3}$. The periodicity of period 4 established in Proposition 2.4 completes the proof.

It follows from Propositions 2.2(ii) and 2.3 of [11] that C_{θ} is isomorphic to

$$
\begin{aligned}
C_{\theta}=\left\{f \in C\left([0,1], M_{2}\left(A_{\theta}\right)\right): f(1)\right. & =\hat{\alpha}(f(0)) \\
f(t) & \left.=(\Psi \hat{\alpha})\left(f(1-t)^{*}\right) \text { for each } 0 \leq t \leq 1\right\}
\end{aligned}
$$

where

$$
\hat{\alpha}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
a & -b \\
-c & d
\end{array}\right)
$$

and

$$
\Psi\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
\Phi(d) & \Phi(b) \\
\Phi(c) & \Phi(a)
\end{array}\right)
$$

For each $f \in C_{\theta}, f(0)=(\Psi \hat{\alpha})\left(f(1)^{*}\right)=\Psi(f(0))^{*}$ and $f\left(\frac{1}{2}\right)=(\Psi \hat{\alpha})\left(f\left(\frac{1}{2}\right)\right)^{*}$. By Proposition 2.4 of [11] it follows that the evaluation map at $\frac{1}{2}$ has image isomorphic to $R_{\theta} \otimes \mathbb{H}$ and the evaluation map at 0 has image isomorphic to $R_{\theta} \otimes M_{2}(\mathbb{R}) \cong$ $M_{2}\left(R_{\theta}\right)$. Thus, using I to denote $[0,1]$, there is an exact sequence

$$
0 \rightarrow C_{0}\left(I, M_{2}\left(A_{\theta}\right)\right) \rightarrow C_{\theta} \rightarrow M_{2}\left(R_{\theta}\right) \times\left(R_{\theta} \otimes \mathbb{H}\right) \rightarrow 0
$$

The associated K-theoretic long exact sequence

$$
\begin{equation*}
\cdots \rightarrow K_{n+1}\left(A_{\theta}\right) \rightarrow K_{n}\left(C_{\theta}\right) \rightarrow K_{n}\left(R_{\theta}\right) \times K_{n+4}\left(R_{\theta}\right) \rightarrow K_{n}\left(A_{\theta}\right) \rightarrow \cdots \tag{2.1}
\end{equation*}
$$

is one of the tools which will be used to calculate the K-theory of R_{θ}. The other is the sequence, described in Theorem 1.4.7 of [10],

$$
\begin{equation*}
\cdots \longrightarrow K_{n}\left(R_{\theta}\right) \underset{c_{n}}{\longrightarrow} K_{n}\left(A_{\theta}\right) \longrightarrow K_{n-2}\left(A_{\theta}\right) \underset{r_{n-2}}{\longrightarrow} K_{n-2}\left(R_{\theta}\right) \longrightarrow K_{n-1}\left(R_{\theta}\right) \longrightarrow \cdots \tag{2.2}
\end{equation*}
$$

in which the middle map from $K_{n}\left(A_{\theta}\right)$ to $K_{n-2}\left(A_{\theta}\right)$ is the Bott isomorphism.
It follows from (2.1) and Proposition 2.5 that each group $K_{n}\left(R_{\theta}\right)$ is finitely generated. The following lemma gives some more detailed information.

Lemma 2.6 For any $0 \leq \theta \leq 1$, there exist $a_{1}, \ldots, a_{7} \in \mathbb{N} \cup\{0\}$ such that

$$
\begin{array}{ll}
K_{0}\left(R_{\theta}\right) \cong \mathbb{Z}^{2} \times \mathbb{Z}_{2}^{a_{0}}, & K_{1}\left(R_{\theta}\right) \cong \mathbb{Z} \times \mathbb{Z}_{2}^{a_{1}}, \\
K_{2}\left(R_{\theta}\right) \cong \mathbb{Z}_{2}^{a_{2}}, & K_{3}\left(R_{\theta}\right) \cong \mathbb{Z} \times \mathbb{Z}_{2}^{a_{3}}, \\
K_{4}\left(R_{\theta}\right) \cong \mathbb{Z}^{2} \times \mathbb{Z}_{2}^{a_{4}}, & K_{5}\left(R_{\theta}\right) \cong \mathbb{Z} \times \mathbb{Z}_{2}^{a_{5}}, \\
K_{6}\left(R_{\theta}\right) \cong \mathbb{Z}_{2}^{a_{6}}, & K_{7}\left(R_{\theta}\right) \cong \mathbb{Z} \times \mathbb{Z}_{2}^{a_{7}} .
\end{array}
$$

Proof For $i=2,6$ then, by Proposition 2.4, $c_{i} r_{i}=\mathrm{id}+\alpha_{i}=0$. Using $r_{i} c_{i}=2 \mathrm{id}$ it follows that $2 r_{i}\left(\mathbb{Z}^{2}\right)=r_{i} c_{i} r_{i}\left(\mathbb{Z}^{2}\right)=0$ and therefore $4 K_{i}\left(R_{\theta}\right)=2 r_{i} c_{i} K_{i}\left(R_{\theta}\right) \subseteq$ $2 r_{i}\left(\mathbb{Z}^{2}\right)=0$. Hence $c_{i}: K_{i}\left(R_{\theta}\right) \rightarrow \mathbb{Z}^{2}$ is the zero map and so $2 K_{i}\left(R_{\theta}\right)=r_{i} c_{i} K_{i}\left(R_{\theta}\right)=$ 0 , showing that $K_{i}\left(R_{\theta}\right)$ is a 2-torsion group and, being finitely generated, it is therefore of the required form.

From (2.2) there is an exact sequence

$$
\cdots \longrightarrow K_{0}\left(R_{\theta}\right) \underset{c_{0}}{\longrightarrow} \mathbb{Z}^{2} \underset{r_{6}}{\longrightarrow} K_{6}\left(R_{\theta}\right)
$$

$$
\longrightarrow K_{7}\left(R_{\theta}\right) \underset{c_{7}}{\longrightarrow} \mathbb{Z}^{2} \underset{r_{5}}{\longrightarrow} K_{5}\left(R_{\theta}\right) \longrightarrow K_{6}\left(R_{\theta}\right) \underset{c_{6}}{\longrightarrow} \mathbb{Z}^{2} \longrightarrow \cdots
$$

Part of this gives $\mathbb{Z}_{2}^{a_{6}} \longrightarrow K_{7}\left(R_{\theta}\right) \underset{c_{7}}{\longrightarrow} \mathbb{Z}^{2} \underset{r_{5}}{\longrightarrow} K_{5}\left(R_{\theta}\right) \longrightarrow \mathbb{Z}_{2}^{a_{6}} \longrightarrow 0$. From Proposition $2.4 c_{5} r_{5}=\operatorname{id}+\alpha_{5}=\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$ so either $\operatorname{ker}\left(r_{5}\right)=\{0\}$ or $\operatorname{ker}\left(r_{5}\right) \cong \mathbb{Z}$. If $\operatorname{ker}\left(r_{5}\right)=\{0\}$ then $\operatorname{Im}\left(c_{7}\right)=0$ contradicting $c_{7} r_{7}=\left(\begin{array}{cc}1 & 1 \\ 1 & 1\end{array}\right)$. Thus $\operatorname{ker}\left(r_{5}\right)=$ $\operatorname{Im}\left(c_{7}\right) \cong \mathbb{Z}$, from which it follows that both $K_{5}\left(R_{\theta}\right)$ and $K_{7}\left(R_{\theta}\right)$ are of the form $\mathbb{Z} \times F_{i}$ for some finite groups F_{5}, F_{7}. Then $c_{5}\left(F_{5}\right)=c_{7}\left(F_{7}\right)=0$ and hence $2 F_{5}=r_{5} c_{5} F_{5}=0$ and $2 F_{7}=r_{7} c_{7} F_{7}=0$, showing that both $K_{5}\left(R_{\theta}\right)$ and $K_{7}\left(R_{\theta}\right)$ have the required forms. A similar argument applies to $\mathbb{Z}_{2}^{a_{2}} \longrightarrow K_{3}\left(R_{\theta}\right) \underset{c_{3}}{\longrightarrow} \mathbb{Z}^{2} \underset{r_{1}}{\longrightarrow} K_{1}\left(R_{\theta}\right) \longrightarrow \mathbb{Z}_{2}^{a_{2}} \longrightarrow 0$, producing the result for $K_{1}\left(R_{\theta}\right)$ and $K_{3}\left(R_{\theta}\right)$.

The portion $\mathbb{Z}_{2}^{a_{6}} \underset{c_{6}}{\longrightarrow} \mathbb{Z}^{2} \underset{r_{4}}{\longrightarrow} K_{4}\left(R_{\theta}\right) \longrightarrow K_{5}\left(R_{\theta}\right) \underset{c_{5}}{\longrightarrow} \mathbb{Z}^{2} \underset{r_{3}}{\longrightarrow} K_{3}\left(R_{\theta}\right)$ has $\operatorname{Im}\left(c_{5}\right)=$ $\operatorname{ker}\left(r_{3}\right) \cong \mathbb{Z}$ since $\operatorname{ker}\left(r_{3}\right) \cong \mathbb{Z}^{2}$ contradicts $c_{3} r_{3}=\left(\begin{array}{cc}1 & 1 \\ 1 & 1\end{array}\right)$ and $\operatorname{Im}\left(c_{5}\right)=\{0\}$ contradicts $c_{5} r_{5}=\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$. Thus $0 \rightarrow \mathbb{Z}^{2} \rightarrow K_{4}\left(R_{\theta}\right) \rightarrow \mathbb{Z} \times \mathbb{Z}_{2}^{a_{5}} \rightarrow \mathbb{Z} \rightarrow 0$ and so $0 \rightarrow \mathbb{Z}^{2} \rightarrow K_{4}\left(R_{\theta}\right) \rightarrow \mathbb{Z}_{2}^{a_{5}} \rightarrow 0$ from which it follows that $K_{4}\left(R_{\theta}\right)$ has the required form. A similar argument works for $K_{0}\left(R_{\theta}\right)$.

The exact sequence (2.1) will next be used to limit the size of a_{0}, \ldots, a_{7}.
Lemma 2.7 Let a_{0}, \ldots, a_{7} be as defined in Lemma 2.6. Then $a_{0}+a_{4} \in\{0,1\}, a_{1}+a_{5} \in$ $\{0,1,2\}, a_{2}+a_{6} \in\{1,2,3\}, a_{3}+a_{7}=0$.

Proof The part of the sequence (2.1) starting at $K_{7}\left(C_{\theta}\right)$ gives

$$
\cdots \longrightarrow \mathbb{Z} \underset{\beta_{7}}{\longrightarrow} \mathbb{Z}^{2} \times \mathbb{Z}_{2}^{a_{3}+a_{7}} \underset{\gamma_{7}}{\longrightarrow} \mathbb{Z}^{2} \underset{\alpha_{6}}{\longrightarrow} \mathbb{Z}_{2}^{2} \times \mathbb{Z} \underset{\beta_{6}}{\longrightarrow} \mathbb{Z}_{2}^{a_{2}+a_{6}} \underset{0}{\longrightarrow} \mathbb{Z}^{2}
$$

If $\operatorname{Im}\left(\gamma_{7}\right) \cong \mathbb{Z}^{2}$ then $\operatorname{ker}\left(\beta_{6}\right)=\operatorname{Im}\left(\alpha_{6}\right)$ is a torsion group, giving a contradiction to the final part of the sequence. $\operatorname{Im}\left(\gamma_{7}\right)=0$ is also impossible because α_{6} cannot be injective. Hence $\operatorname{Im}\left(\gamma_{7}\right) \cong \mathbb{Z}$ and so $\operatorname{Im}\left(\beta_{7}\right)=\operatorname{ker}\left(\gamma_{7}\right) \cong \mathbb{Z} \times \mathbb{Z}_{2}^{a_{3}+a_{7}}$, which forces $a_{3}+a_{7}=0$. The previous part of the sequence (2.1) gives

$$
\longrightarrow \mathbb{Z}^{3} \underset{\beta_{0}}{\longrightarrow} \mathbb{Z}^{4} \times \mathbb{Z}_{2}^{a_{0}+a_{4}} \underset{\gamma_{0}}{\longrightarrow} \mathbb{Z}^{2} \underset{\alpha_{7}}{\longrightarrow} \mathbb{Z} \underset{\beta_{7}}{\longrightarrow} \mathbb{Z}^{2}
$$

and, from $\operatorname{Im}\left(\alpha_{7}\right)=\operatorname{ker} \beta_{7}=0$ it follows that $\operatorname{Im}\left(\gamma_{0}\right)=\mathbb{Z}^{2}$ and hence $\operatorname{Im}\left(\beta_{0}\right)=$ $\operatorname{ker}\left(\gamma_{0}\right) \cong \mathbb{Z}^{2} \times \mathbb{Z}_{2}^{a_{0}+a_{4}}$, from which it follows that $a_{0}+a_{4} \in\{0,1\}$. Both possibilities $\operatorname{Im}\left(\beta_{0}\right) \cong \mathbb{Z}^{2}$ and $\operatorname{Im}\left(\beta_{0}\right) \cong \mathbb{Z}^{2} \times \mathbb{Z}_{2}$ imply that $\operatorname{ker}\left(\beta_{0}\right) \cong \mathbb{Z}$. The part of sequence (2.1) finishing at β_{0} is

$$
\mathbb{Z}^{3} \underset{\beta_{1}}{\longrightarrow} \mathbb{Z}^{2} \times \mathbb{Z}_{2}^{a_{1}+a_{5}} \underset{\gamma_{1}}{\longrightarrow} \mathbb{Z}^{2} \underset{\alpha_{0}}{\longrightarrow} \mathbb{Z}^{3} \underset{\beta_{0}}{\longrightarrow}
$$

and it follows from $\operatorname{Im}\left(\alpha_{0}\right)=\operatorname{ker}\left(\beta_{0}\right) \cong \mathbb{Z}$ that $\operatorname{Im}\left(\gamma_{1}\right)=\operatorname{ker}\left(\alpha_{0}\right) \cong \mathbb{Z}$. Thus $\operatorname{Im}\left(\beta_{1}\right) \cong \mathbb{Z} \times \mathbb{Z}_{2}^{a_{1}+a_{5}}$ from which it follows that $a_{1}+a_{5} \in\{0,1,2\}$. Finally, the part of sequence (2.1) used at the start of the proof has $\operatorname{ker}\left(\alpha_{6}\right)=\operatorname{Im}\left(\gamma_{7}\right) \cong \mathbb{Z}$ so $\operatorname{Im}\left(\alpha_{6}\right) \cong \mathbb{Z} \times \mathbb{Z}_{2}$ or $\operatorname{Im}\left(\alpha_{6}\right) \cong \mathbb{Z}$. The first possibility leads to $a_{2}+a_{6} \in\{1,2\}$ and the second to $a_{2}+a_{6} \in\{2,3\}$.

The K-theory of R_{θ} can now be calculated.

Theorem 2.8 The K groups of R_{θ} are given by the following table.

$$
\begin{array}{c|cccccccc}
i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline K_{i}\left(R_{\theta}\right) & \mathbb{Z}^{2} & \mathbb{Z} \times \mathbb{Z}_{2}^{2} & \mathbb{Z}_{2}^{2} & \mathbb{Z} & \mathbb{Z}^{2} & \mathbb{Z} & 0 & \mathbb{Z}
\end{array}
$$

Proof From Proposition 2.3 the complexification map $c_{0}: \mathbb{Z}^{2} \times \mathbb{Z}_{2}^{a_{0}} \rightarrow \mathbb{Z}^{2}$ is a surjection. Thus, from $r_{0} c_{0}=2 \mathrm{id}, r_{0}\left(\mathbb{Z}^{2}\right)=2 \mathbb{Z}^{2}$. The exact sequence (2.2) contains the portion

$$
\cdots \longrightarrow \mathbb{Z}^{2} \underset{r_{0}}{\longrightarrow} K_{0}\left(R_{\theta}\right) \longrightarrow K_{1}\left(R_{\theta}\right) \underset{c_{1}}{\longrightarrow} \mathbb{Z}^{2} \longrightarrow \cdots
$$

which is known to be of the form

$$
\cdots \longrightarrow \mathbb{Z}^{2} \underset{r_{0}}{\longrightarrow} \mathbb{Z}^{2} \times \mathbb{Z}_{2}^{a_{0}} \underset{\delta}{\longrightarrow} \mathbb{Z} \times \mathbb{Z}_{2}^{a_{1}} \underset{c_{1}}{\longrightarrow} \mathbb{Z}^{2} \longrightarrow \cdots
$$

From $r_{0}\left(\mathbb{Z}^{2}\right)=2 \mathbb{Z}^{2}$ it follows that $\operatorname{Im}(\delta) \cong \mathbb{Z}_{2}^{2+a_{0}}$ and thus that $a_{1} \geq 2+a_{0}$. However, by Lemma 2.7, $a_{1} \leq 2$ so $a_{1}=2$ and $a_{0}=0$. Then, since $a_{1}+a_{5} \leq 2, a_{5}=0$. Another portion of the sequence (2.2) is

$$
\longrightarrow K_{0}\left(R_{\theta}\right)=\mathbb{Z}^{2} \underset{c_{0}}{\longrightarrow} \mathbb{Z}^{2} \underset{r_{6}}{\longrightarrow} K_{6}\left(R_{\theta}\right) \longrightarrow K_{7}\left(R_{\theta}\right)=\mathbb{Z}
$$

and, since c_{0} is surjective and $K_{6}\left(R_{\theta}\right)=\mathbb{Z}_{2}^{a_{6}}, K_{6}\left(R_{\theta}\right)=0$.
To calculate $K_{4}\left(R_{\theta}\right)$ and $K_{2}\left(R_{\theta}\right)$ note that for $x \in R_{\theta}$,

$$
\begin{aligned}
\left(\begin{array}{cc}
x & 0 \\
0 & 0
\end{array}\right) & =\frac{1}{2}\left(\begin{array}{cc}
x & 0 \\
0 & x
\end{array}\right)+\frac{i}{2}\left(\begin{array}{cc}
-i x & 0 \\
0 & i x
\end{array}\right) \\
& =\frac{1}{2}\left(x \otimes 1_{\mathbb{H}}\right)+\frac{i}{2}\left(x \otimes i_{H}\right) \\
& \in\left(R_{\theta} \otimes \mathbb{H}\right)+i\left(R_{\theta} \otimes \mathbb{H}\right)
\end{aligned}
$$

Thus $r\left(\begin{array}{ll}x & 0 \\ 0 & 0\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}x \otimes 1_{\mathrm{H}} & -x \otimes i_{\mathrm{H}} \\ x \otimes i_{\mathrm{H}} & x \otimes 11_{\mathrm{H}}\end{array}\right)=A\left(\begin{array}{cc}x \otimes 1_{\mathrm{H}} & 0 \\ 0 & 0\end{array}\right) A^{*}$ where $\sqrt{2} A=\left(\begin{array}{cc}1 \otimes 1_{\mathrm{H}} & 1 \otimes 1_{\mathrm{H}} \\ 1 \otimes i_{H I} & -1 \otimes i_{\mathrm{H}}\end{array}\right)$, showing that $r([1])=\left[1 \otimes 1_{H}\right]$ and $r([p])=\left[p \otimes 1_{H}\right]$, whereas $c\left[1 \otimes 1_{H}\right]=2[1]$ and $c\left[p \otimes 1_{H}\right]=2[p]$. Thus

$$
\cdots \longrightarrow \mathbb{Z}^{2} \underset{r_{4}}{\longrightarrow} \mathbb{Z}^{2} \times \mathbb{Z}_{2}^{a_{4}} \underset{\gamma}{\longrightarrow} \mathbb{Z}=K_{5}\left(R_{\theta}\right) \longrightarrow \cdots
$$

with $r_{4}\left(\mathbb{Z}^{2}\right)=\mathbb{Z}^{2}$, showing that $a_{4}=0$, and

$$
\longrightarrow K_{4}\left(R_{\theta}\right)=\mathbb{Z}^{2} \underset{c_{4}}{\longrightarrow} \mathbb{Z}^{2} \underset{r_{2}}{\longrightarrow} K_{2}\left(R_{\theta}\right) \longrightarrow K_{3}\left(R_{\theta}\right)=\mathbb{Z}
$$

with $c_{4}\left(\mathbb{Z}^{2}\right)=2 \mathbb{Z}^{2}$, showing that $K_{2}\left(R_{\theta}\right) \cong \mathbb{Z}_{2}^{2}$.
Having established the group structure of $K_{n}\left(R_{\theta}\right)$ it is possible to specify generators explicitly, though this will not be needed in the sequel. This has already been done for $K_{0}\left(R_{\theta}\right)$. By the identification $K_{4}\left(R_{\theta}\right) \cong K_{0}\left(R_{\theta} \otimes \mathbb{H}\right)$, the generators for
$K_{4}\left(R_{\theta}\right)$ are $\left[1 \otimes 1_{H}\right]$ and $\left[p \otimes 1_{H}\right.$] where [1] and [p] are generators for $K_{0}\left(R_{\theta}\right)$. The element $\left[e^{-\pi i \theta} U V^{*}\right]$ is a generator of the summand \mathbb{Z} of $K_{1}\left(R_{\theta}\right)$ and the elements $\left[\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right]$ and $\left[\left(\begin{array}{cc}1-p & p \\ p & 1-p\end{array}\right)\right]$, where $[\mathrm{p}]$ is a generator of $K_{0}\left(R_{\theta}\right)$, are generators of the two \mathbb{Z}_{2} summands. These can be obtained in the following way from the generators [1] and [p] of $K_{0}\left(A_{\theta}\right)$. Note that the relevant portion of the exact sequence (2.1) arising from

$$
0 \rightarrow C_{0}\left(I, M_{2}\left(A_{\theta}\right)\right) \rightarrow C_{\theta} \rightarrow M_{2}\left(R_{\theta}\right) \times\left(R_{\theta} \otimes \mathbb{H}\right) \rightarrow 0
$$

is

$$
\cdots \underset{0}{\longrightarrow} K_{1}\left(C_{0}\left(I, M_{2}\left(A_{\theta}\right)\right) \cong \mathbb{Z}^{2} \longrightarrow K_{1}\left(C_{\theta}\right) \cong \mathbb{Z}^{3} \longrightarrow\left(\mathbb{Z} \times \mathbb{Z}_{2}^{2}\right) \times \mathbb{Z} \longrightarrow \mathbb{Z}^{2} \longrightarrow \cdots,\right.
$$

and thus that the two generators of \mathbb{Z}_{2}^{2} arise from evaluation at 0 of the elements of C_{θ} generating the summands containing the image of $K_{1}\left(C_{0}\left(I, M_{2}\left(A_{\theta}\right)\right)\right)$.

The two generators [1] and [p] of $K_{0}\left(A_{\theta}\right)$ give rise to the elements f_{1} and f_{p} of $C_{0}\left(I, A_{\theta}\right)^{+}$defined by $f_{1}(t)=I+\left(e^{2 \pi i t}-1\right) 1$ and $f_{p}(t)=I+\left(e^{2 \pi i t}-1\right) p$, where I is the identity adjoined to $C_{0}\left(I, A_{\theta}\right)$. The corresponding elements of C_{θ} are defined by

$$
f_{p}(t)=\left\{\begin{array}{cc}
\left(\begin{array}{cc}
1+\left(e^{4 \pi i t}-1\right) p & 0 \\
0 & 1
\end{array}\right) & \text { if } 0 \leq t \leq \frac{1}{2} \\
\left(\begin{array}{cc}
1 & 0 \\
0 & 1+\left(e^{4 \pi i t}-1\right) p
\end{array}\right) & \text { if } \frac{1}{2} \leq t \leq 1
\end{array}\right.
$$

with a corresponding definition of f_{1}. These formulae arise from using $f(t)=$ $(\Psi \hat{\alpha})\left(f(1-t)^{*}\right)$ for $\frac{1}{2} \leq t \leq 1$. Note that $\left[f_{p}\right]=\left[g_{p}\right]$ and $\left[f_{1}\right]=\left[g_{1}\right]$ where

$$
g_{p}(t)=\left(\begin{array}{cc}
1+\left(e^{2 \pi i t}-1\right) p & 0 \\
0 & 1+\left(e^{2 \pi i t}-1\right) p
\end{array}\right)
$$

for all $0 \leq t \leq 1$, with a similar formula for g_{1}. Let $h_{p}(t)=\left(\begin{array}{c}1-p p e^{\pi i t} \\ p e^{\pi i t} \\ 1-p\end{array}\right)$ for $0 \leq$ $t \leq 1$ with a similar definition of h_{1}. Then $h_{p}^{2}=g_{p}, h_{1}^{2}=g_{1}, h_{p} \in C_{\theta}$ and $h_{1} \in$ C_{θ}. Evaluating at 0 gives the generators $\left[\left(\begin{array}{cc}1-p & p \\ p & 1-p\end{array}\right)\right]$ and $\left[\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right]$ of the two \mathbb{Z}_{2} summands of $K_{1}\left(R_{\theta}\right)$.

Regarding $K_{5}\left(R_{\theta}\right)$ as $K_{1}\left(R_{\theta} \otimes \mathbb{H}\right)$, a generator is $\left[e^{-\pi i \theta} U V^{*} \otimes 1_{H}\right]$. The generators of $K_{2}\left(R_{\theta}\right)$, viewed as $K_{1}\left(C_{0}\left(I, R_{\theta}\right)\right)$ are obtained, via the exact sequence (2.2), as the images of the generators of $K_{1}\left(C_{0}\left(I, A_{\theta}\right)\right)$ under the realification map. These are given by

$$
t \mapsto\left(\begin{array}{cc}
1+(\cos (2 \pi t)-1) p & p \sin (2 \pi t) \\
-p \sin (2 \pi t) & 1+(\cos (2 \pi t)-1) p
\end{array}\right)
$$

and

$$
t \mapsto\left(\begin{array}{cc}
\cos (2 \pi t) 1 & \sin (2 \pi t) 1 \\
-\sin (2 \pi t) 1 & \cos (2 \pi t) 1
\end{array}\right)
$$

The latter can also be viewed as the image of the generator of $K_{2}(\mathbb{R})$ under the map from $K_{2}(\mathbb{R})$ into $K_{2}\left(R_{\theta}\right)$ resulting from $\lambda \mapsto \lambda 1$.

The most cumbersome generators to describe are those for $K_{3}\left(R_{\theta}\right)$ and $K_{7}\left(R_{\theta}\right)$. To obtain a generator for $K_{7}\left(R_{\theta}\right)$ note that the exact sequence (2.2) includes the portion

$$
\begin{aligned}
\longrightarrow K_{1}\left(R_{\theta}\right) \underset{c_{1}}{\longrightarrow} \\
\mathbb{Z}
\end{aligned}{ }^{2}=K_{1}\left(A_{\theta}\right) \longrightarrow \mathbb{Z}^{2}=K_{7}\left(A_{\theta}\right) ~ 子 \underset{r_{7}}{\longrightarrow} K_{7}\left(R_{\theta}\right)=\mathbb{Z} \longrightarrow K_{0}\left(R_{\theta}\right) \underset{c_{0}}{\longrightarrow} K_{0}\left(A_{\theta}\right)
$$

where c_{0} is an isomorphism and the image of c_{1} is $\left[e^{-\pi i \theta} U V^{*}\right]=\left[U V^{*}\right]$. It follows that, for either generator [U] or [V] of $K_{1}\left(A_{\theta}\right)$, the image under r_{7} of the corresponding element of $K_{7}\left(A_{\theta}\right)$ generates $K_{7}\left(R_{\theta}\right)$. One description of this generator can be obtained by using the results of [5] to identify $K_{n}\left(R_{\theta}\right)$ with $K_{n+1}\left(D_{\theta}\right)$ where $D_{\theta}=\left\{f \in C_{0}\left(\mathbb{R}, A_{\theta}\right): f(-x)=\Phi\left(f(x)^{*}\right)\right\}\left(=C_{0}^{\mathbb{R}}(i \mathbb{R}) \otimes R_{\theta}\right.$ in the language of [5]).

The complexification of D_{θ} is just $C_{0}\left(\mathbb{R}, A_{\theta}\right)$ and the element of $K_{0}\left(C_{0}\left(\mathbb{R}, A_{\theta}\right)\right)$ corresponding to the element $[U]$ of $K_{1}\left(A_{\theta}\right)$ is, as described in Theorem 8.2.2 of [1], $\left[p_{U}\right]-\left[\left(\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right)\right]$ where $p_{U} \in C_{0}\left(I, M_{2}\left(A_{\theta}\right)\right)$ is defined by

$$
p_{U}(t)=\left(\begin{array}{cc}
1+s_{t}^{2} c_{t}^{2}\left(U+U^{*}-2\right) & c_{t} s_{t}(U-1)\left(1+s_{t}^{2}(U-1)\right) \\
c_{t} s_{t}\left(U^{*}-1\right)\left(1+s_{t}^{2}\left(U^{*}-1\right)\right) & c_{t}^{2} s_{t}^{2}\left(2-U^{*}-U\right)
\end{array}\right)
$$

in which $s_{t}=\sin \left(\frac{\pi}{2} t\right)$ and $c_{t}=\cos \left(\frac{\pi}{2} t\right)$ for $0 \leq t \leq 1$. The corresponding generator of $K_{0}\left(D_{\theta}\right)$ is then given by $\left[P_{U}\right]-\left[\left(\begin{array}{ccc}e & 0 \\ 0 & e\end{array}\right)\right]$ where

$$
P_{U}=\frac{1}{2}\left(\begin{array}{cc}
p_{U}+\Psi\left(p_{U}\right)^{*} & -i \Psi\left(p_{U}\right)^{*}+i p_{U} \\
i \Psi\left(p_{U}\right)^{*}-i p_{U} & p_{U}+\Psi\left(p_{U}\right)^{*}
\end{array}\right) \quad \text { and } \quad e=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

A similar generator can be obtained for $K_{3}\left(R_{\theta}\right) \cong K_{0}\left(D_{\theta} \otimes \mathbb{H I}\right)$ by tensoring with 1_{H}.

3 An Inductive Limit Sharing the K-Theory of R_{θ}

In [16] Walters constructed an inductive limit decomposition of A_{θ}, when θ is irrational, and a period 4 automorphism of A_{θ} compatible with the decomposition, producing the same map on $K_{1}\left(A_{\theta}\right)$ as the Fourier automorphism α given by $\alpha(U)=V$, $\alpha(V)=U^{*}$. In this section a minor modification of Walters's construction will be used to produce an involutory antiautomorphism Ψ of A_{θ} compatible with the decomposition and producing the same map on $K_{1}\left(A_{\theta}\right)$ as the antiautomorphism Φ defined by $\Phi(U)=V, \Phi(V)=U$. Furthermore it will be shown that the real inductive limit algebra associated with Ψ has the same K-theory as R_{θ}, suggesting that R_{θ} may well be isomorphic to this inductive limit.

Following [16] let θ have continued fraction expansion [a_{0}, a_{1}, \ldots] where $a_{n} \geq 1$ for $n \geq 1$ and $a_{0}=0$ and let

$$
\begin{aligned}
P_{n} & =\left(\begin{array}{cc}
a_{5 n} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{5 n-1} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{5 n-2} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{5 n-3} & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{5 n-4} & 1 \\
1 & 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
\alpha_{n} & \beta_{n} \\
\gamma_{n} & \delta_{n}
\end{array}\right)
\end{aligned}
$$

so that $\operatorname{det}\left(P_{n}\right)=-1$. The n-th convergent p_{n} / q_{n} of θ is determined by

$$
\begin{array}{ll}
q_{0}=1, & q_{1}=a_{1},
\end{array} \quad q_{n}=a_{n} q_{n-1}+q_{n-2}, ~\left(p_{1}=1, \quad p_{n}=a_{n} p_{n-1}+p_{n-2} .\right.
$$

and therefore

$$
\begin{array}{ll}
q_{5 n+5}=\alpha_{n+1} q_{5 n}+\beta_{n+1} q_{5 n-1}, & q_{5 n+4}=\gamma_{n+1} q_{5 n}+\delta_{n+1} q_{5 n-1} \\
p_{5 n+5}=\alpha_{n+1} p_{5 n}+\beta_{n+1} p_{5 n-1}, & p_{5 n+4}=\gamma_{n+1} p_{5 n}+\delta_{n+1} p_{5 n-1}
\end{array}
$$

As noted in [16], $\alpha_{n} \geq 5$ and $\gamma_{n} \geq 5$ for each n, so we can write

$$
\alpha_{n}=2 \alpha_{n}^{\prime}+\alpha_{n}^{\prime \prime}, \quad \gamma_{n}=2 \gamma_{n}^{\prime}+\gamma_{n}^{\prime \prime}
$$

where $\alpha_{n}^{\prime \prime}, \gamma_{n}^{\prime \prime} \in\{1,2\}$ and $\alpha_{n}^{\prime}, \gamma_{n}^{\prime} \geq 2$. Then, as in [16], let

$$
A_{n}=M_{q_{5 n}}(C(\mathbb{T})) \oplus M_{q_{5 n}}(C(\mathbb{T})) \oplus M_{q_{5 n-1}} \oplus M_{q_{5 n}}
$$

and equip this with the involutory antiautomorphism Ψ_{n} defined by

$$
\Psi_{n}(f, g, A, B)=\left(g^{\operatorname{tr}}, f^{\mathrm{tr}}, A^{\mathrm{tr}}, B^{\mathrm{tr}}\right)
$$

which has the associated real algebra $R_{n}=\left\{(f, \bar{f}, A, B): f \in M_{q_{5 n}}(C(\mathbb{T})), A \in\right.$ $\left.M_{q_{5 n-1}}(\mathbb{R}), B \in M_{q_{5 n-1}}(\mathbb{R})\right\}$.

For any $\ell \times \ell$ matrix M, let $I_{k} \otimes M$ denote the $k \ell \times k \ell$ matrix with K copies of M down the main diagonal and let $M \otimes I_{k}$ denote the $k \ell \times k \ell$ matrix consisting of $k \times k$ blocks $m_{i j} I_{k}$ in the obvious way. As in [16] let S_{k} and $S_{k}(\mathrm{id})$ be the $k \times k$ matrices with entries in $C(\mathbb{T})$ defined by

$$
S_{k}=\left(\begin{array}{cc}
0 & 1 \\
I_{k-1} & 0
\end{array}\right) \quad \text { and } \quad S_{k}(\mathrm{id})=\left(\begin{array}{cc}
0 & \mathrm{id} \\
I_{k-1} & 0
\end{array}\right)
$$

where id is the identity function on $\mathbb{T} \subseteq \mathbb{C}$. Let $\rho_{n}: A_{n} \rightarrow A_{n+1}$ be defined, for constant $X, Y \in M_{q_{5 n}}(C(\mathbb{T}))$, for $Z \in M_{q_{5 n-1}}$ and $Z^{\prime} \in M_{q_{5 n}}$ by

$$
\begin{aligned}
& \rho_{n}\left(\mathrm{id} I_{q_{5 n}}, 0,0,0\right) \\
& \quad=\left(\left[I_{q_{5 n}} \otimes S_{\alpha_{n+1}^{\prime}}(\mathrm{id})\right] 000,\left[I_{q_{5 n}} \otimes S_{\alpha_{n+1}^{\prime}}\right] 000,\left[I_{q_{5 n}} \otimes S_{\gamma_{n+1}^{\prime}}\right] 000,\left[I_{q_{5 n}} \otimes S_{\alpha_{n+1}^{\prime}}\right] 000\right), \\
& \rho_{n}\left(0, \mathrm{id} I_{q_{5 n}}, 0,0\right) \\
& \quad=\left(0\left[I_{q_{5 n}} \otimes S_{\alpha_{n+1}^{\prime}}^{\operatorname{tr}}\right] 00,0\left[I_{q_{5 n}} \otimes S_{\alpha_{n+1}^{\prime}}^{\mathrm{tr}}(\mathrm{id})\right] 00,0\left[I_{q_{5 n}} \otimes S_{\gamma_{n+1}}^{\mathrm{tr}}\right] 00,0\left[I_{q_{5 n}} \otimes S_{\alpha_{n+1}^{\prime}}^{\mathrm{tr}}\right] 00\right), \\
& \rho_{n}\left(X, Y, Z, Z^{\prime}\right)=(A, A, B, A),
\end{aligned}
$$

where

$$
A=\left[X \otimes I_{\alpha_{n+1}^{\prime}}\right]\left[Y \otimes I_{\alpha_{n+1}^{\prime}}\right]\left[Z \otimes I_{\beta_{n+1}}\right]\left[Z^{\prime} \otimes I_{\alpha_{n+1}^{\prime \prime}}\right]
$$

and

$$
B=\left[X \otimes I_{\gamma_{n+1}^{\prime}}\right]\left[Y \otimes I_{\gamma_{n+1}^{\prime}}\right]\left[Z \otimes I_{\delta_{n+1}}\right]\left[Z^{\prime} \otimes I_{\gamma_{n+1}^{\prime \prime}}\right]
$$

Here, as in [16], the matrices in square brackets are diagonal blocks in the appropriate matrix of size $q_{5 n+5}$ or $q_{5 n+4}$. (The only difference from the map ρ_{n} defined in [16] is in the third and fourth components of the image of $\left(0\right.$, id $\left.I_{q_{5 n}}, 0,0\right)$, where $S^{\text {tr }}$ replaces $\Lambda S \Lambda^{*}$.)

For each $k \in \mathbb{N}$ let $W_{2 k}$ be the $2 k \times 2 k$ unitary matrix

$$
W_{2 k}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
i I_{k} & -i I_{k} \\
I_{k} & I_{k}
\end{array}\right)
$$

and for each $n \in \mathbb{N}$ let V_{n+1} be the matrix in $M_{q_{5 n+5}}(C(\mathbb{T})) \oplus M_{q_{5 n+5}}(C(\mathbb{T})) \oplus M_{q_{5 n+4}} \oplus$ $M_{q_{5 n+5}}$ defined by

$$
V_{n+1}=\left(\left[W_{2 q_{5 n} \alpha_{n+1}^{\prime}}\right] I I,\left[W_{2 q_{5 n} \alpha_{n+1}^{\prime}}\right] I I,\left[W_{2 q_{5 n} \gamma_{n+1}^{\prime}}\right] I I,\left[W_{2 q_{5 n} \alpha_{n+1}^{\prime}}\right] I I\right)
$$

Then let $\psi_{n}: A_{n} \rightarrow A_{n+1}$ be defined by $\psi_{n}=\left(\operatorname{Ad} V_{n+1}\right) \circ \rho_{n}$.
Lemma 3.1 For each $n, \Psi_{n+1} \psi_{n}=\psi_{n} \Psi_{n}$.

Proof Note that for $k \times k$ matrices A, B

$$
W_{2 k}\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right) W_{2 k}^{*}=\frac{1}{2}\left(\begin{array}{cc}
A+B & i(A-B) \\
i(B-A) & A+B
\end{array}\right)=\left[W_{2 k}\left(\begin{array}{cc}
B^{\operatorname{tr}} & 0 \\
0 & A^{\operatorname{tr}}
\end{array}\right) W_{2 k}^{*}\right]^{\operatorname{tr}}
$$

It follows that $\Psi_{n+1} \psi_{n}\left(\operatorname{id} I_{q_{5 n}}, 0,0,0\right)=\psi_{n}\left(0, \operatorname{id} I_{q_{5 n}}, 0,0\right)=\psi_{n} \Psi_{n}\left(\operatorname{id} I_{q_{5 n}}, 0,0,0\right)$, that $\Psi_{n+1} \psi_{n}\left(0\right.$, id $\left.I_{q_{5 n}}, 0,0\right)=\psi_{n}\left(\operatorname{id} I_{q_{5 n}}, 0,0,0\right)=\psi_{n} \Psi_{n}\left(0, \mathrm{id} I_{q_{5 n}}, 0,0\right)$ and that $\Psi_{n+1} \psi_{n}\left(X, Y, Z, Z^{\prime}\right)=\psi_{n}\left(Y^{\mathrm{tr}}, X^{\mathrm{tr}}, Z^{\mathrm{tr}}, Z^{\prime}{ }^{\mathrm{tr}}\right)=\psi_{n} \Psi_{n}\left(X, Y, Z, Z^{\prime}\right)$.

It follows from Lemma 3.1 that $\psi_{n}: R_{n} \rightarrow R_{n+1}$ where

$$
\begin{aligned}
R_{n} & =\left\{a \in A_{n}: \Psi_{n}(a)=a^{*}\right\} \\
& =\left\{(A, \bar{A}, B, C): A \in M_{q_{5 n}}(C(\mathbb{T})), B \in M_{q_{5 n-1}}(\mathbb{R}), C \in M_{q_{5 n}}(\mathbb{R})\right\} .
\end{aligned}
$$

The elements of R_{n} will henceforth be identified with triples (A, B, C) where $A \in$ $M_{q_{5 n}}(C(\mathbb{T})), B \in M_{q_{5 n-1}}(\mathbb{R}), C \in M_{q_{5 n}}(\mathbb{R})$. In this context, for constant $X \in$ $M_{q_{5 n}}(C(\mathbb{T}))$, for $Z \in M_{q_{5 n-1}}(\mathbb{R})$ and for $Z^{\prime} \in M_{q_{5 n}}(\mathbb{R})$,

$$
\begin{aligned}
\psi_{n}\left(\operatorname{id} I_{q_{5 n}}, 0,0\right)= & \left(\left[T_{n}\right] 00,\left[I_{2 q_{5 n}} \otimes S_{\gamma_{n+1}^{\prime}}\right] 00,\left[I_{2 q_{5 n}} \otimes S_{\alpha_{n+1}^{\prime}}\right] 00\right) \\
& \psi_{n}\left(X, Z, Z^{\prime}\right)=(A, B, A)
\end{aligned}
$$

where

$$
\begin{gathered}
A=\left[r\left(X \otimes I_{\alpha_{n+1}^{\prime}}\right)\right]\left[Z \otimes I_{\beta_{n+1}}\right]\left[Z^{\prime} \otimes I_{\alpha_{n+1}^{\prime \prime}}\right] \\
B=\left[r\left(X \otimes I_{\gamma_{n+1}^{\prime}}\right)\right]\left[Z \otimes I_{\delta_{n+1}}\right]\left[Z^{\prime} \otimes I_{\gamma_{n+1}^{\prime \prime}}\right], \\
T_{n}=\operatorname{Ad} W_{2 q_{5 n} \alpha_{n+1}^{\prime}}\left(\left[I_{q_{5 n}} \otimes S_{\alpha_{n+1}^{\prime}}(\mathrm{id})\right]\left[I_{q_{5 n}} \otimes S_{\alpha_{n+1}^{\prime}}\right]\right) \\
=\frac{1}{2}\left(\begin{array}{cc}
I_{q_{5 n}} \otimes\left(S_{\alpha_{n+1}^{\prime}}+S_{\alpha_{n+1}^{\prime}}(\mathrm{id})\right) & i I_{q_{5 n}} \otimes\left(S_{\alpha_{n+1}^{\prime}}(\mathrm{id})-S_{\alpha_{n+1}^{\prime}}\right) \\
i I_{q_{5 n}} \otimes\left(S_{\alpha_{n+1}^{\prime}}-S_{\alpha_{n+1}^{\prime}}(\mathrm{id})\right) & I_{q_{5 n}} \otimes\left(S_{\alpha_{n+1}^{\prime}}+S_{\alpha_{n+1}^{\prime}}(\mathrm{id})\right)
\end{array}\right), \\
r\left(X \otimes I_{\alpha_{n+1}^{\prime}}\right)=\operatorname{Ad} W_{2 q_{5 n} \alpha_{n+1}^{\prime}}\left(\left[X \otimes I_{\alpha_{n+1}^{\prime}}\right]\left[\bar{X} \otimes I_{\alpha_{n+1}^{\prime}}\right]\right) \\
=\left(\begin{array}{cc}
\operatorname{Re}(X) \otimes I_{\alpha_{n+1}^{\prime}} & -\operatorname{Im}(X) \otimes I_{\alpha_{n+1}^{\prime}} \\
\operatorname{Im}(X) \otimes I_{\alpha_{n+1}^{\prime}} & \operatorname{Re}(X) \otimes I_{\alpha_{n+1}^{\prime}}
\end{array}\right)
\end{gathered}
$$

These formulae enable the K-theory of $R=\lim R_{n}$ to be computed.
Theorem 3.2 Let $0<\theta<1$ be irrational and let $R=\lim \left(R_{n}, \psi_{n}\right)$ where $R_{n}=$ $M_{q_{5 n}}(C(\mathbb{T})) \oplus M_{q_{5 n-1}}(\mathbb{R}) \oplus M_{q_{5 n}}(\mathbb{R})$ and where ψ_{n} is defined above. Then the complexification of R is isomorphic to A_{θ} and the K groups of R are given by the following table.

$$
\begin{array}{l|lccccccc}
i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline K_{i}(R) & \mathbb{Z}^{2} & \mathbb{Z} \times \mathbb{Z}_{2}^{2} & \mathbb{Z}_{2}^{2} & \mathbb{Z} & \mathbb{Z}^{2} & \mathbb{Z} & 0 & \mathbb{Z}
\end{array}
$$

Proof Recall that the K groups of \mathbb{R} and $C(\mathbb{T})$ are as given in the following table.

i	0	1	2	3	4	5	6	7
$K_{i}(C(\mathbb{T}))$	\mathbb{Z}							
$K_{i}(\mathbb{R})$	\mathbb{Z}	\mathbb{Z}_{2}	\mathbb{Z}_{2}	0	\mathbb{Z}	0	0	0
$K_{i}\left(R_{n}\right)$	\mathbb{Z}^{3}	$\mathbb{Z} \times \mathbb{Z}_{2}^{2}$	$\mathbb{Z} \times \mathbb{Z}_{2}^{2}$	\mathbb{Z}	\mathbb{Z}^{3}	\mathbb{Z}	\mathbb{Z}	\mathbb{Z}

All cases other than $i=0,4$ can be handled by considering separately the effect on the $M_{q}(C(\mathbb{T}))$ and $M_{q^{\prime}}(\mathbb{R}) \oplus M_{q}(\mathbb{R})$ summands. On the $M_{q}(C(\mathbb{T}))$ summands the map ψ_{n} is specified by

$$
\begin{aligned}
\operatorname{id} I_{q_{5 n}} & \mapsto \operatorname{Ad} W_{2 q_{5 n} \alpha_{n+1}^{\prime}}\left(\left[I_{q_{5 n}} \otimes S_{\alpha_{n+1}^{\prime}}(\mathrm{id})\right]\left[I_{9_{5 n}} \otimes S_{\alpha_{n+1}^{\prime}}\right]\right) 00 \\
X & \mapsto \operatorname{Ad} W_{2 q_{5 n} \alpha_{n+1}^{\prime}}\left(\left[X \otimes I_{\alpha_{n+1}^{\prime}}\right]\left[\bar{X} \otimes I_{\alpha_{n+1}^{\prime}}\right]\right) 00
\end{aligned}
$$

Since the K-theory is not affected by the inner automorphism, ψ_{n} can be replaced by the sum of a linear and antilinear map specified by

$$
\text { id } I_{q_{5 n}} \mapsto I_{q_{5 n}} \otimes S_{\alpha_{n+1}^{\prime}}(\mathrm{id}), \quad X \mapsto X \otimes I_{\alpha_{n+1}^{\prime}}
$$

and

$$
\text { id } I_{q_{5 n}} \mapsto I_{q_{5 n}} \otimes S_{\alpha_{n+1}^{\prime}}, \quad X \mapsto \bar{X} \otimes I_{\alpha_{n+1}^{\prime}}
$$

It follows that ψ_{n} induces the identity map from $K_{1}(C(\mathbb{T})) \cong \mathbb{Z}$ to $K_{1}(C(\mathbb{T})) \cong \mathbb{Z}$. Furthermore, since only the linear component of the map has a non-zero effect on
K_{1}, usual complex Bott periodicity shows that ψ_{n} also induces the identity map from $K_{i}(C(\mathbb{T})) \cong \mathbb{Z}$ to $K_{i}(C(\mathbb{T})) \cong \mathbb{Z}$ when $i=3,5,7$. In the cases $i=3,5,7$, for which $K_{i}(\mathbb{R})=0, \psi_{n}$ therefore induces the identity map from $K_{i}\left(R_{n}\right) \cong \mathbb{Z}$ to $K_{i}\left(R_{n+1}\right) \cong \mathbb{Z}$.

On $K_{0}(C(\mathbb{T})) \cong \mathbb{Z}$ both linear and antilinear parts correspond to multiplication by α_{n+1}^{\prime} on \mathbb{Z}. Thus, using the discussion in the proof of Proposition 2.4, the same is true on K_{4}, but in K_{2} and K_{6} the antilinear part corresponds to multiplication by $-\alpha_{n+1}^{\prime}$. Thus, when $i=2$ or $i=6, \psi_{n}$ induces the zero map from $K_{i}(C(\mathbb{T}))$ to $K_{i}(C(\mathbb{T}))$. When $i=6$, for which $K_{i}(\mathbb{R})=0$, it follows that ψ_{n} gives the zero map from $K_{i}\left(R_{n}\right)$ to $K_{i}\left(R_{n+1}\right)$.

Turning to the $M_{q^{\prime}}(\mathbb{R}) \oplus M_{q}(\mathbb{R})$ summands, ψ_{n} is given by

$$
\left(Z, Z^{\prime}\right) \mapsto\left(00\left[Z \otimes I_{\delta_{n+1}}\right]\left[Z^{\prime} \otimes I_{\gamma_{n+1}^{\prime \prime}}\right], 00\left[Z \otimes I_{\beta_{n+1}}\right]\left[Z^{\prime} \otimes I_{\alpha_{n+1}^{\prime \prime}}\right]\right)
$$

It follows that, for any i, the effect on $K_{i}\left(M_{q_{5 n-1}}(\mathbb{R}) \oplus M_{q_{5 n}}(\mathbb{R})\right)$ is given by the matrix

$$
\left(\begin{array}{cc}
\delta_{n+1} & \beta_{n+1} \\
\gamma_{n+1}^{\prime \prime} & \alpha_{n+1}^{\prime \prime}
\end{array}\right)
$$

Recall that $\alpha_{n+1} \delta_{n+1}-\beta_{n+1} \gamma_{n+1}=-1$ and that $\alpha_{n+1}^{\prime \prime} \equiv \alpha_{n+1}(\bmod 2), \gamma_{n+1}^{\prime \prime} \equiv \gamma_{n+1}$ $(\bmod 2)$, so that for $i=1,2, \psi_{n}$ induces an isomorphism from \mathbb{Z}_{2}^{2} to \mathbb{Z}_{2}^{2}. Combining this with the earlier results on the $M_{q}(C(\mathbb{T}))$ summands, it follows that ψ_{n} induces an isomorphism from $K_{1}\left(R_{n}\right) \cong \mathbb{Z} \times \mathbb{Z}_{2}^{2}$ onto $K_{1}\left(R_{n+1}\right) \cong \mathbb{Z} \times \mathbb{Z}_{2}^{2}$ and a homomorphism with range \mathbb{Z}_{2}^{2} from $K_{2}\left(R_{n}\right) \cong \mathbb{Z} \times \mathbb{Z}_{2}^{2}$ onto $\mathbb{Z}_{2}^{2} \subseteq K_{2}\left(R_{n+1}\right)$, with ψ_{n+1} then mapping this image isomorphically onto $\mathbb{Z}_{2}^{2} \subseteq K_{2}\left(R_{n+2}\right)$.

This leaves K_{0} and K_{4} to be considered. As in [16] the corresponding map from \mathbb{Z}^{3} to \mathbb{Z}^{3} is in each case given by the matrix

$$
\left(\begin{array}{ccc}
\alpha_{n+1}^{\prime} & \beta_{n+1} & \alpha_{n+1}^{\prime \prime} \\
\gamma_{n+1}^{\prime} & \delta_{n+1} & \gamma_{n+1}^{\prime \prime} \\
\alpha_{n+1}^{\prime} & \beta_{n+1} & \alpha_{n+1}^{\prime \prime}
\end{array}\right)
$$

(where exactly the same 4×4 matrix as in [16] is obtained after embedding R_{n} in A_{n}). The arguments given in the proof of Proposition 2 of [16] show that the limit algebra has $K_{i}(R)$ isomorphic to \mathbb{Z}^{2} and that the complexification of R, namely $\lim \left(A_{n}, \psi_{n}\right)$, is isomorphic to A_{θ}.

References

[1] B. Blackadar, K-theory for operator algebras. Springer-Verlag, New York, 1986.
[2] F. P. Boca, On the flip fixed point algebra in certain noncommutative tori. Indiana Univ. Math. J. 45(1996), 253-273.
[3] , Projections in rotation algebras and theta functions. Comm. Math. Phys. 202(1999), 325-357.
[4] O. Bratteli, G. A. Elliott, D. E. Evans and A. Kishimoto, Non-commutative spheres II: rational rotations. J. Operator Theory 27(1992), 53-85.
[5] J. Cuntz, K-theory and C ${ }^{*}$-algebras. In: Springer Lecture Notes in Math. 1046, 55-79, Springer-Verlag, Berlin, 1984.
[6] G. A. Elliott and D. Evans, The structure of the irrational rotation C^{*}-algebra. Ann. of Math. 138(1993), 477-501.
[7] G. A. Eliott and Q. Lin, Cut-down method in the inductive limit decomposition of non-commutative tori. J. London Math. Soc. (2) 54(1996), 121-134.
[8] M. Karoubi, K-theory: an introduction. Springer-Verlag, New York, Berlin, Heidelberg, 1978.
[9] M. A. Rieffel, Projective modules over higher-dimensional non-commutative tori. Canad. J. Math. XL(1988), 257-338.
[10] H. Schröder, K-theory for real C*-algebras and applications. Longman, Harlow, 1993.
[11] P. J. Stacey, Stability of involutory *-antiautomorphisms in UHF-algebras. J. Operator Theory 24(1990), 57-74.
[12] \longrightarrow Inductive limit toral automorphisms of irrational rotation algebras. Canad. Math. Bull. 44(2001), 335-336.
[13] Inductive limit decompositions of real structures in irrational rotation algebras. Indiana Univ. Math. J. 51(2002), 1511-1540.
[14] S. Walters, Inductive limit automorphisms of the irrational rotation algebra. Comm. Math. Phys. 171(1995), 365-381.
[15] ,K-theory of non-commutative spheres arising from the Fourier automorphism. Canad. J. Math. (3) 53(2001), 631-672.
[16] On the inductive limit structure of order four automorphisms of the irrational rotation algebra. Internat. J. Math., to appear.
[17] H.-S. Yin, A simple proof of the classification of rational rotation C^{*}-algebras. Proc. Amer. Math. Soc. 98(1986), 469-470.

Department of Mathematics
La Trobe University
Victoria 3086
Australia
e-mail: P.Stacey@latrobe.edu.au

[^0]: Received by the editors December 10, 2001; revised October 29, 2002.
 AMS subject classification: 46L35, 46L80.
 (C)Canadian Mathematical Society 2003.

