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Conjugacy Classes of Subalgebras of the
Real Sedenions

Kai-Cheong Chan and Dragomir Ž. D– oković

Abstract. By applying the Cayley–Dickson process to the division algebra of real octonions, one ob-

tains a 16-dimensional real algebra known as (real) sedenions. We denote this algebra by A4. It is a

flexible quadratic algebra (with unit element 1) but not a division algebra.

We classify the subalgebras of A4 up to conjugacy (i.e., up to the action of the automorphism group

G of A4) with one exception: we leave aside the more complicated case of classifying the quaternion

subalgebras. Any nonzero subalgebra contains 1 and we show that there are no proper subalgebras of

dimension 5, 7 or > 8. The proper non-division subalgebras have dimensions 3, 6 and 8. We show

that in each of these dimensions there is exactly one conjugacy class of such subalgebras. There are

infinitely many conjugacy classes of subalgebras in dimensions 2 and 4, but only 4 conjugacy classes in

dimension 8.

1 Introduction

The real Cayley–Dickson algebra An, n ≥ 0, is a non-associative algebra of dimension

2n. It has an involution (i.e., an involutory anti-automorphism) x → x̄. For simplic-

ity, we shall assume that the underlying vector space of An is the coordinate space R
2n

.

These algebras are defined recursively as follows. The algebra A0 is just the field R of

real numbers with trivial involution: x̄ = x, for all x ∈ R. We can write x, y ∈ An+1

as x = (x1, x2) and y = (y1, y2) where x1, x2, y1, y2 ∈ An. Then the product and the

involution in An+1 are defined by

xy := (x1 y1 − ȳ2x2, y2x1 + x2 ȳ1),(1.1)

x̄ := (x̄1,−x2).(1.2)

We shall identify x1 ∈ An with (x1, 0) ∈ An+1. Then An becomes a subalgebra of

An+1 and the involution of An+1 extends that of An. The identity 1 ∈ R is also the

identity element of each An. Thus we obtain an infinite chain of algebras

A0 ⊂ A1 ⊂ A2 ⊂ A3 ⊂ A4 ⊂ · · ·

The first four of these algebras are A0 = R, A1 = C (the field of complex num-

bers), A2 = H (the division algebra of Hamilton quaternions), and A3 = O (the non-

associative division algebra of Cayley octonions). The next algebra in the above se-

quence, A4, is the first one that is not a division algebra, i.e., it has non-zero elements
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Subalgebras of the Sedenions 493

x and y such that xy = 0. This algebra has attracted the attention of physicists, and

there are several papers dedicated to its study (see [1, 9, 10] and the references given

there). It has been given the name of (real) sedenions, which we have also adopted in

this paper.

Let us agree that whenever we write an element x ∈ An as x = (x1, x2), it will be

understood that x1, x2 ∈ An−1 (and that n > 0).

For integer i in the range 0 ≤ i < 2n, let ei denote the (i + 1)-st basis vector of An.

In particular, e0 = 1. We have ēi = −ei for i 6= 0 and, of course, ē0 = e0. Let

x, y ∈ An be written as x =
∑

ξiei and y =
∑

ηiei where ξi, ηi ∈ R.

The trace of x ∈ An is defined by tr(x) := x+ x̄ = 2ξ0. The standard inner product

(x | y) in An can be expressed using the multiplication map as follows:

(x | y) =
1

2
(xȳ + yx̄) =

∑

ξiηi .

In particular, the square of the norm of x is given by ‖x‖2
= xx̄ =

∑

ξ2
i .

We say that x ∈ An is pure if tr(x) = 0. We denote by A
pu
n , the subspace of pure

elements of An. We say that x = (x1, x2) ∈ An is doubly pure in An if x1 and x2

are both pure in An−1. The space of all doubly pure elements of An will be denoted

by A
pp
n .

Since x + x̄ = tr(x) ∈ R, the flexible law (xy)x = x(yx), which is valid in An,

implies that also (xy)x̄ = x(yx̄) for all x, y ∈ An. Hence, the map An × An → An

sending (x, y) to xyx̄ is well defined. If x is a unit vector, then x̄ = x−1 is the inverse

of x and the map An → An sending y → xyx̄ will be called conjugation by x.

It is well known that the automorphism group of An is trivial if n = 0, it is cyclic of

order 2 if n = 1, it is isomorphic to SO(3) if n = 2, and it is the connected compact

simple Lie group of type G2 if n = 3. We shall write G2 for the automorphism group

of A3 = O and G for that of the sedenions, A4.

Since we will be interested exclusively in the sedenions, we introduce the following

alternative notation for some of the standard basis vectors:

i = e1, j = e2, k = e3, l = e4, e = e8.

Then we have

i j = k, il = e5, jl = e6, kl = e7, ie = e9, je = e10, . . . , (kl)e = e15.

Now let

ζ :=
−1 +

√
3e

2
∈ A4.

Then the conjugation map

µ(x) := ζxζ̄, x ∈ A4,

is an automorphism of A4 of order 3. One has µ(1) = 1, µ(e) = e, and µ(x) = xζ
for x ∈ Opu. If α, β ∈ R and x, y ∈ Opu, then

µ(α + βe + x + ye) = α + βe + xζ + (yζ)e

= α + βe − 1

2
(x +

√
3y) +

1

2
(
√

3x − y)e.
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There is also an important automorphism τ of A4 of order 2. It is defined by

τ (x + ye) = x − ye, x, y ∈ O.

The automorphisms µ and τ generate a subgroup Σ3 isomorphic to the symmetric

group on three letters.

Every automorphism σ ∈ G2 of O extends to an automorphism σ̂ of the sedenions

by setting

σ̂(x + ye) := σ(x) + σ(y)e, x, y ∈ O.

Hence, by identifying σ and σ̂, we can consider G2 as a subgroup of G. In 1967

R. B. Brown [2] proved that

G = G2 × Σ3.

He also made a conjecture about the structure of the automorphism group of An

for n ≥ 4 (using a more general definition of the Cayley–Dickson process). His

conjecture was later proved by Eakin and Sathaye [4].

We say that two subalgebras S and S ′ of A4 are G-conjugate (or simply conjugate) if

S ′
= σ(S) for some σ ∈ G. Our main objective is to determine the conjugacy classes

of subalgebras of the sedenions.

Let us highlight some of the main results that we have obtained. Let S denote a

proper subalgebra of A4. Thus R ⊂ S and dim(S) < 16.

In Section 4 we show that dim(S) has to be 1, 2, 3, 4, 6 or 8. Examples of subalge-

bras in each of these dimensions are easy to provide (see Section 2).

Section 3 contains some results on two special classes of elements: the zero divisors

and alternative elements.

If S is not a division algebra, we show that its dimension is 3, 6 or 8 and in each

of these cases there is exactly one conjugacy class of subalgebras (see Theorem 8.1).

Hence, the classification problem is thereby reduced to the case of division subalge-

bras.

Any 2-dimensional subalgebra is isomorphic to C but there are infinitely many

conjugacy classes. In Section 5 we study the action of G and G2 on the unit spheres

S13 ⊂ A
pp

4 and S14 ⊂ A
pu

4 . We determine the orbit spaces and show that the canonical

maps S13 → S13/G2 and S13 → S13/G have cross sections. Then in Section 6 we

apply these results to obtain a set of representatives for the G-conjugacy classes of

2-dimensional subalgebras.

There are exactly two isomorphism classes of 4-dimensional subalgebras: the qua-

ternion subalgebras and another division algebra which we call S4. Two subalgebras

of the latter isomorphism type are always conjugate but this is not so in the case

of quaternion subalgebras. In fact, there are infinitely many conjugacy classes of

quaternion subalgebras.

In Theorem 7.1 we show that any quaternion subalgebra is conjugate to a quater-

nion subalgebra inside a particular octonion subalgebra, which we call Oi, j,e. The first

author has now completed the classification of the G-conjugacy classes of quaternion

subalgebras (see [3]).

Finally we show that there are exactly three conjugacy classes of 8-dimensional

division subalgebras. Two of these classes consist of algebras isomorphic to the octo-

nions.
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2 Preliminaries

We say that x ∈ An is a zero-divisor in An if xy = 0 for some nonzero element y ∈ An.

The associator of x, y, z ∈ An is defined by

(x, y, z) := (xy)z − x(yz).

It is well known that all algebras An are flexible, i.e., that (xy)x = x(yx) for all

x, y ∈ An.

Let us recall the definition of alternative elements. We say that a ∈ An is alternative

in An if the associator (a, a, x) vanishes for all x ∈ An. Let us write a = α + βe2n−1 + b

with α, β ∈ R and b ∈ A
pp
n . Then it is easy to check that a is alternative iff b is

alternative.

For a ∈ An, the left (resp., right) multiplication operator La (resp. Ra) is the linear

operator on An defined by La(x) := ax (resp., Ra(x) := xa).

We refer to Moreno’s paper [12] and the survey paper [8] by Khalil and Yiu for the

proofs of the following facts.

Proposition 2.1

(i) If x, y ∈ A
pu
n , then x ⊥ y iff xy = −yx.

(ii) (xy | z) = (y | x̄z) = (x | zȳ) for all x, y, z ∈ An.

(iii) ‖xy‖ = ‖yx‖ = ‖x̄y‖ = ‖xȳ‖ for all x, y, z ∈ An.

(iv) If x ∈ An is a zero-divisor in An, then x ∈ A
pp
n .

(v) A sedenion x = (x1, x2) is a zero-divisor iff it is doubly pure, ‖x1‖ = ‖x2‖, and

x1 ⊥ x2.

(vi) The linear operators La and Ra with a ∈ A
pu
n are skew-symmetric (with respect to

the standard inner product).

(vii) For any subalgebra S ⊂ An, SS⊥ ⊂ S⊥ and S⊥S ⊂ S⊥.

Note that (vi) and (vii) are immediate consequences of (ii).

We shall need yet another known result (see [8, Theorem 3.2.3]). (Note that [12,

Corollary 2.14] is incorrectly stated.)

Proposition 2.2 The group G2 acts freely and transitively on

{(x, y) ∈ A4 × A4 : ‖x‖ = ‖y‖ = 1, xy = 0}.

We conclude this section with examples of subalgebras S of A4 of dimensions 2, 3,

4, 6 and 8. These examples will be used throughout the paper.

If S is a 2-dimensional subalgebra of A4, then S is spanned by 1 and an element

a ∈ A
pu

4 with a2
= −1. This subalgebra, isomorphic to C, will be denoted by Ca.

In dimension 3 we give only one example: the subalgebra S3 = 〈1, i + le, j + (kl)e〉
(spanned by the indicated elements) and point out that (i + le)(( j + (kl)e) = 0. We

shall see later (Proposition 8.1) that any 3-dimensional subalgebra is conjugate to S3.
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In dimension 4 we give three examples:

H = A2 = 〈1, i, j, k〉,
Hi,e := 〈1, i, e, ie〉,

S4 := 〈1, i + je, l + (kl)e, il − ( jl)e〉.

It is easy to write down the multiplication table of S4. If we set a := i + je,

b := l + (kl)e and c := il − ( jl)e, then ab = 2c, bc = 2a and ca = 2b.

Clearly Hi,e is isomorphic to H. Since the 2-element set {±e} is G-invariant, these

two subalgebras are not conjugate. As the subalgebra S4 is not associative, it is not

isomorphic to H. We shall see later (Corollary 3.5) that any 4-dimensional subalgebra

S ⊂ A4 is a division algebra and (Theorem 7.1) that S is either isomorphic to H or

conjugate to S4.

If a, b ∈ Opu are orthogonal unit vectors, then we denote by Ha,b the 4-dimensi-

onal subalgebra generated by a and b. There is an isomorphism H → Ha,b sending

i → a and j → b. In fact, it follows from Proposition 2.2 that Ha,b is conjugate to H.

In dimension 6 we give only one subalgebra:

S6 := S3 + S3e = 〈1, i + le, j + (kl)e, e, l − ie, kl − je〉.

We shall see later (Proposition 8.1) that any 6-dimensional subalgebra is conjugate to

S6.

Finally, in dimension 8 we give 4 examples. The first three are division algebras,

while the last one is not:

O = A3 = H + Hl,

Oi, j,e := H + He,

R8 := S4 + S4e,

S8 := H + H(le).

The subalgebra Oi, j,e is isomorphic but not conjugate to O, while R8 is not isomor-

phic to O. We shall see later (Theorems 8.1 and 9.3) that any 8-dimensional subalge-

bra S is conjugate to one of these four. Note that both S6 and S8 contain S3.

3 Alternative Elements and Zero-Divisors of Sedenions

In this section we collect some additional facts about the alternative elements and

zero-divisors of sedenions. We start by describing two kinds of subspaces of A4 which

play an important role in this paper.

The first type are the subspaces all of whose elements are alternative elements

of A4. In the case of sedenions there is a simple characterization of doubly pure al-

ternative elements a = (b, c). It says that such a is alternative iff b and c are linearly

dependent. Let us say that a subspace is alternative if each of its elements is alter-

native. These subspaces are described in [8, Corollary 4.6.4]. We shall prove the

following special case of their result.
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Proposition 3.1 The alternative subspaces V ⊂ A
pp

4 are of two types:

(i) V = V0a, where V0 is a subspace of Opu and a ∈ Ce a unit vector,

(ii) V = xCe for some x ∈ Opu.

Proof It is clear that the subspaces mentioned in (i) and (ii) are indeed alternative.

Any nonzero alternative element x ∈ A
pp

4 can be written as x = va, where v ∈ Opu

and a ∈ Ce is a unit vector. Moreover, this decomposition is unique apart from

x = (−v)(−a).

Denote by V0 the orthogonal projection of V to O
pu. Let x, y ∈ V be nonzero

vectors and write them as x = va, y = wb with v, w ∈ V0 and unit vectors a, b ∈ Ce.

Since x + y ∈ V is alternative, it is easy to see that either v and w or a and b must be

linearly dependent. It follows that if dim(V0) > 1 then V must be of type (i).

If dim(V0) = 1, then dim(V ) is 1 or 2. In the former case V is of type (i) and in

the latter of type (ii).

The second type are the subspaces all of whose elements are zero-divisors in A4.

More generally, if V is a subspace of a subalgebra S ⊂ A4 such that every x ∈ V is

a zero-divisor in S, then we say that V is a ZD-subspace of S. In particular, we shall

prove that the maximum dimension of a ZD-subspace of A4 is 6.

We now give a method for constructing ZD-subspaces.

Let V0 be a subspace of Opu. If ϕ : V0 → Opu is any linear map, we define the

subspace V0(ϕ) by

V0(ϕ) = {x + ϕ(x)e : x ∈ V0}.

If ϕ is an isometry, then

V0(ϕ) ⊥ V0(−ϕ).

A special isometry is an isometry ϕ : V0 → Opu such that x ⊥ ϕ(x) for all x ∈ V0. It

is easy to verify that if ϕ is a special isometry, then V0(ϕ) is a ZD-subspace of A4.

Proposition 3.2 Let V be a ZD-subspace of A4 and d its dimension. Then there exist a

unique d-dimensional subspace V0 ⊂ Opu and a unique special isometry ϕ : V0 → Opu

such that V = V0(ϕ).

Proof Recall first that every zero-divisor is doubly pure. Hence, we can define lin-

ear maps π0, π1 : V → Opu by writing z ∈ V as z = (x, y) = x + ye and setting

π0(z) = x and π1(z) = y. It follows from Proposition 2.1(v) that both maps π0

and π1 are injective. We denote their respective images by V0 and V1. The map

ϕ := π1◦π−1
0 : V0 → V1 is an isomorphism of vector spaces and V = V0(ϕ). Propo-

sition 2.1(v) also implies that the isometry ϕ is special.

The uniqueness assertions are obvious.

Next we establish the upper bound for the dimension of ZD-subspaces.

Proposition 3.3 The maximum dimension of a ZD-subspace of A4 is 6.
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Proof Let V0 be the orthogonal complement of C in O. Clearly, V0 ⊂ Opu. Then

V := {x + (ix)e : x ∈ V0}

is a ZD-subspace of dimension 6.

In view of the previous proposition, it remains to show that there is no special

isometry ϕ : O
pu → O

pu. This is true because there are no non-vanishing continuous

vector fields on even-dimensional spheres [5, Theorem 16.5].

One can also prove this by an elementary argument. Indeed, the condition that

ϕ : Opu → Opu is a special isometry implies that it is a skew-symmetric operator. As

O
pu has dimension 7, such an operator does not exist.

We shall need some additional properties of zero-divisors.

Proposition 3.4

(i) If z = (a, b) ∈ A4 is a zero-divisor with ‖a‖ = ‖b‖ = 1, then

ker(Lz) = {(x, a(bx)) : x ∈ O ∩ H
⊥

a,b}.

(ii) If (a, b), (c, d) ∈ A4 satisfy (a, b) · (c, d) = 0 and a, b, c, d are unit vectors, then

ab + cd = 0.

(iii) If x, y, z ∈ A4 satisfy xy = yz = zx = 0, then at least one of x, y, z is 0.

Proof For (i) see [12, Theorem 1.15] or [8, §3.2].

To prove (ii) we may assume that a = i and b = j. By (i) we know that c = xl

where x ∈ H, ‖x‖ = 1, and d = −kc. Hence, cd = −(xl)(k(xl)) = −k.

(iii) follows from (ii).

Corollary 3.5 Any 4-dimensional subalgebra S ⊂ A4 is a division algebra.

Proof Assume that S is not a division algebra, i.e., that ab = 0 for some a, b ∈ S

with ‖a‖ = ‖b‖ = 1. As a ⊥ b, there exists an orthonormal basis {a, b, c} of Spu. By

Proposition 2.1(vii), the 1-dimensional subspace 〈c〉 is La and Lb-invariant. As these

operators are skew-symmetric, we must have ac = bc = 0. We have a contradiction

to part (iii) of the proposition.

Corollary 3.6 S6 is not contained in any 8-dimensional subalgebra S ⊂ A4.

Proof Assume that there is such a subalgebra S and let P := S ∩ S⊥6 . Choose a

nonzero vector a ∈ P. Since aS6 ⊂ P, the kernel of La must be contained in S6. In

fact ker(La) = S
pp

6 since zero-divisors are doubly pure. Now the elements i +le, kl− je

and a contradict part (iii) of the proposition.

The following proposition is essentially due to Moreno [12] but it is not stated

there in this form.
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Proposition 3.7 Let a = ri + (si + t j)e, where r, s, t ∈ R and rt 6= 0, be a unit

vector. Then L2
a has eigenvalues −1 and −1 ± 2rt. The −1-eigenspace is the octonion

subalgebra Oi, j,e. Those with eigenvalues −1 + 2rt and −1 − 2rt, respectively, are the

ZD-subspaces

{xl − ((xk)l)e : x ∈ H} and {xl + ((xk)l)e : x ∈ H}.

Moreover, their sum is equal to O⊥

i, j,e = Hl + H(le), and its square is contained in Oi, j,e.

Proof As Oi, j,e is an alternative algebra, we have L2
a(x) = a(ax) = a2x = −x for all

x ∈ Oi, j,e. A computation shows that the eigenvalues and eigenspaces are as specified

in the lemma. By using Proposition 2.1(ii), it is easy to verify that xl and (xk)l are or-

thogonal to each other and have the same norm for all x ∈ H. Hence the eigenspaces

belonging to −1 ± 2rt are ZD-spaces. The last assertion is straightforward to verify.

4 Non-Existence of Proper Subalgebras of Dimension 5, 7 or > 8

In this section we shall prove that the sedenions have no proper subalgebras of di-

mension 5, 7 or > 8.

For any subspace V ⊂ A4, we set

V pu := V ∩ A
pu

4 and V pp := V ∩ A
pp

4 .

Lemma 4.1 If S ⊂ A4 is a subalgebra of odd dimension, then Spu is a ZD-subspace of

S (and A4).

Proof For a ∈ Spu, La is a skew-symmetric operator, and so is its restriction LS
a to S.

As dim(S) is odd, LS
a must be singular, i.e., a is a zero-divisor in S.

Proposition 4.2 A4 has no proper subalgebras of dimension > 8.

Proof Assume S ⊂ A4 is a proper subalgebra with d := dim(S) > 8. Let a ∈ S⊥,

a 6= 0. By Proposition 2.1(vii) we have aS ⊂ S⊥ and by Proposition 3.4(i) ker(La)

has dimension 0 or 4. It follows that

(4.1) 16 − d = dim(S⊥) ≥ dim(aS) ≥ d − 4,

hence d ≤ 10.

If d = 9, then by Lemma 4.1, Spu is a ZD-subspace of dimension 8 which con-

tradicts Proposition 3.3. Thus we must have dim(S) = 10. The inequalities in (4.1)

must now be equalities. Hence, S⊥ is a ZD-subspace. Consequently, S⊥ ⊂ A
pp

4 and

so e ∈ S. By Proposition 3.2, there exists a 6-dimensional subspace V0 of O
pu and

a special isometry ϕ : V0 → Opu such that S⊥ = V0(ϕ). We conclude that the unit

vector a ∈ Opu which is orthogonal to V0 belongs to S. Consequently, the quaternion

subalgebra Ha,e spanned by 1, a, e and ae is contained in S. As S⊥ ⊂ H⊥

a,e, it follows
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from Proposition 2.1(vii) that S⊥Ha,e ⊂ S⊥S ⊂ S⊥. It is not hard to check that the

map

Ha,e × S⊥ → S⊥, (q, x) → xq

makes S⊥ into a left vector space over Ha,e. This is impossible, since S⊥ has dimen-

sion 6.

Proposition 4.3 A4 has no 7-dimensional subalgebras.

Proof Suppose S ⊂ A4 is a 7-dimensional subalgebra. By Lemma 4.1, Spu is a

ZD-subspace of S. By Proposition 2.2, we may assume that the elements a := i + je

and b := l − (kl)e are in S.

By Proposition 3.2, Spu
= V0(ϕ) for some 6-dimensional subspace V0 ⊂ Opu and

a special isometry ϕ : V0 → Opu. Since the subspace V0(−ϕ) is orthogonal to S, it

must be contained in S⊥. In fact we have S⊥ = 〈e, u, ve〉⊕V0(−ϕ), where u (resp., v)

is a unit pure octonion orthogonal to V0 (resp., ϕ(V0)). It is now easy to verify that

S⊥ ∩ Opue = Rve.

Since a, b ∈ S, we have i, l ∈ V0 and ϕ(i) = j, ϕ(l) = −kl. We conclude that

i − je and l + (kl)e belong to S⊥. By Proposition 2.1(vii) we have SS⊥ ⊂ S⊥, and so

the elements

a(i − je) = (i + je)(i − je) = 2ke,

a(l + (kl)e) = (i + je)(l + (kl)e) = 2(il − ( jl)e),

b(i − je) = (l − (kl)e)(i − je) = −2(il + ( jl)e),

belong to S⊥. Hence, ke and ( jl)e both belong to S⊥ ∩ Opue. As this intersection is

1-dimensional, we have a contradiction.

Proposition 4.4 A4 has no 5-dimensional subalgebras.

Proof Suppose S ⊂ A4 is a 5-dimensional subalgebra. By Lemma 4.1, Spu is a

ZD-subspace of S. Choose unit vectors a, b ∈ Spu such that ab = 0. Then necessarily

a ⊥ b. Extend them to get an orthonormal basis {a, b, c, d} of Spu. By Proposition

2.1(vii), the subspace 〈c, d〉 is invariant under La and Lb. Since their restrictions to

this 2-dimensional space are skew-symmetric operators, some nonzero linear com-

bination of a and b will kill both c and d. By choosing a new orthonormal basis of

〈a, b〉, we may assume that, in addition to ab = 0, we also have ac = ad = 0.

Since Rb, Rc and Rd kill a, they must leave P := 〈1, b, c, d〉 invariant. Thus P

is a 4-dimensional subalgebra of S. We may assume that a = (i + je)/
√

2. Since

b, c, bc ∈ Ppu ⊂ ker(La), Proposition 3.7 implies that bc = 0. This contradicts

Proposition 3.4(iii).
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5 The Action of G on the Unit Sphere

In this section we study the action of G and G2 on the unit spheres S13 ⊂ A
pp

4 and

S14 ⊂ A
pu

4 . Some of the results that we prove here will be used in the next section

to obtain the classification of the G-conjugacy classes of 2-dimensional subalgebras

of A4.

We shall view A4 as a right Ce-vector space (of dimension 8) via the sedenion

multiplication (x, z) → xz where x ∈ A4 and z ∈ Ce. It is easy to verify that this map

indeed makes A4 into a right Ce-vector space. For elements z ∈ Ce we shall write |z|
instead of ‖z‖.

We use the direct decomposition A4 = Ce⊕A
pp

4 to define a hermitian form on A4.

For arbitrary sedenions x and y there is a unique 〈x | y〉 ∈ Ce such that

x̄y − 〈x | y〉 ∈ A
pp

4 .

It is easy to verify that 〈xz1 | yz2〉 = z̄1〈x | y〉z2 is valid for arbitrary sedenions x, y

and arbitrary z1, z2 ∈ Ce, i.e., 〈x | y〉 is a hermitian form. It is closely related to the

standard inner product. Indeed we have

〈x | y〉 = (x | y) + (xe | y)e,

〈x | x〉 = (x | x) = ‖x‖2.

The map Q : A4 → Ce defined by Q(x) := 〈τ (x) | x〉 is a Ce-quadratic form. If we

write x = x1 + x2e, with x1, x2 ∈ O, then

Q(x) = ‖x1‖2 − ‖x2‖2 + 2(x1 | x2)e.

It is immediate from this formula that, for x ∈ A
pp

4 , x is a zero divisor in A4 iff

Q(x) = 0.

Denote by ∆ the closed unit disk in Ce.

Theorem 5.1

(a) Q maps the unit sphere S13 of A
pp

4 onto ∆.

(b) An element x ∈ S13 is alternative, resp., zero-divisor iff |Q(x)| = 1 resp., Q(x) = 0.

(c) Two points x, y ∈ S13 belong to the same G2-orbit iff Q(x) = Q(y). Consequently,

Q induces a homeomorphism from the orbit space S13/G2 onto ∆.

Proof Let x ∈ S13 be written as x = x1 + x2e with x1, x2 ∈ O
pu.

(a) By the Cauchy–Schwarz inequality, we have

|Q(x)|2 = 1 − 4(‖x1‖2‖x2‖2 − (x1 | x2)2) ≤ 1.

Since Q maps the circle {i cos θ+ ie sin θ : 0 ≤ θ ≤ 2π} onto the boundary of ∆ with

winding number 2, and S13 is simply connected, the image of S13 must be the whole

disk ∆.

https://doi.org/10.4153/CMB-2006-048-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2006-048-6


502 K. C. Chan D. Ž. D– oković

(b) The assertion about alternative elements follows from the fact that the

Cauchy–Schwarz inequality is an equality iff x1 and x2 are R-linearly dependent. The

case of zero-divisors was already observed above.

(c) Write y = y1 + y2e with y1, y2 ∈ Opu. Observe that Q(x) = Q(y) means that

the ordered vector pairs (x1, x2) and (y1, y2) are congruent, i.e., have the same Gram

matrix. This is exactly what is needed for the G2-conjugacy of such pairs.

Our next objective is to construct a cross section of the map

(5.1) Q : S13 → ∆.

Proposition 5.2 Let r and θ be the usual polar coordinates in Ce. For 0 ≤ r ≤ 1 set

α(r) =

√

1 + r

2
, β(r) =

√

1 − r

2
.

Then the map σ : ∆ → S13 defined by

σ(r, θ) =
1

2

(

α(r) + β(r)
)

· (i + je)

+
1

2

(

α(r) − β(r)
)

·
[

(i cos θ + j sin θ) + (i sin θ − j cos θ)e
]

is a cross section of the map (5.1).

Proof Clearly, σ is continuous. It remains to verify that Q ◦ σ is the identity map

on ∆, which is straightforward.

We remark that the image of σ is a cap of the unit sphere in the 3-dimensional

space spanned by the mutually orthogonal vectors i + je, i − je and j + ie.

Let us explain how the above map σ was actually constructed. Consider the one-

parameter subgroup {ϕθ} of G2 which fixes the basic unit l and acts on the quater-

nion subalgebra H as conjugation by cos(θ/4) + k sin(θ/4). Explicitly, we have

ϕθ(i) = i cos(θ/2) + j sin(θ/2), ϕθ( j) = −i sin(θ/2) + j cos(θ/2).

As G2 acts on A4 as a group of automorphisms, ϕθ fixes also the basic units 1, k, kl, e,

ke, le and (kl)e. Then one has

σ(r, θ) = ϕθ

(

α(r)i + β(r) je
)(

cos(θ/2) + e sin(θ/2)
)

.

Note that Σ3 = 〈µ, τ〉 acts on the sphere S13 and on the orbit space S13/G2. Define

the action of Σ3 on the euclidean plane Ce by letting τ act via its restriction to this

plane and by specifyng that µ acts as multiplication by ζ2. Since Q(τ (x)) = τQ(x)

and Q(µ(x)) = Q(xζ) = Q(x)ζ2, we conclude that the above map S13/G2 → ∆ is

Σ3-equivariant. It follows that every G-orbit in S13 contains a unique G2-orbit whose

Q-image lies in the closed sector Λ of ∆ defined by 0 ≤ θ ≤ π/3 in terms of the

polar coordinate θ. In particular, the following corollary is valid.
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Corollary 5.3 Q induces a homeomorphism from the orbit space S13/G onto Λ ⊂ ∆.

By identifying S13/G with Λ, one can obtain a cross section of the canonical map

S13 → Λ by taking the restriction of σ. We shall construct a different cross section

for this map.

Let Γ1 ⊂ S13 be the closed subset consisting of all unit vectors

(5.2) u = αi + (βi + γ j)e

such that α, β, γ ≥ 0 and

(5.3) 2αβ ≤
√

3(2α2 − 1).

Proposition 5.4 The set Γ1 is a cross section of the canonical map S13 → S13/G. In

particular, Γ1 is a set of representatives of the G-orbits in S13.

Proof It suffices to verify that Q induces a bijection Γ1 → Λ. We omit the details of

this routine verification.

Let Γ2 be the subset of S13 consisting of elements of the form (5.2) such that

α, β, γ ≥ 0 and

(5.4) 2αβ >
√

3(1 − 2α2)

or α = γ = 1/
√

2 and β = 0.

Let Γ̃ ⊂ S14 be the subset consisting of all unit vectors

(5.5) v = e cos ϕ + u sin ϕ,

where ϕ ∈ [0, π/2) and u ∈ Γ2 or ϕ = π/2 and u ∈ Γ1. One can show that Γ̃ is a set

of representatives of the G-orbits in S14.

6 Two-Dimensional Subalgebras

Recall that any 2-dimensional subalgebra of A4 is given by Ca = 〈1, a〉, where a ∈
A

pu

4 is a unit vector, i.e., a2
= −1. As C−a = Ca, the problem of classification of

2-dimensional subalgebras up to conjugacy is equivalent to the classification of G-

orbits in the real projective space associated with the space of pure sedenions (its

points are the 1-dimensional subspaces of A
pu

4 ). For dimension reasons, there are

infinitely many of these conjugacy classes.

We can apply the results of the previous section to obtain a set of representatives

of the G-conjugacy classes of 2-dimensional subalgebras.

To any point (u, ϕ) ∈ Γ1 × [0, π/2] we associate the 2-dimensional subalgebra

S(u, ϕ) = Ca where a = e cos ϕ + u sin ϕ.

Proposition 6.1 The subalgebras S(u, ϕ), (u, ϕ) ∈ Γ1 × [0, π/2], form a set of rep-

resentatives of the G-conjugacy classes of 2-dimensional subalgebras of A4.
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Proof Let S be any 2-dimensional subalgebra. We know that S = Ca for some

a ∈ S14. We have a = e cos ϕ + u sin ϕ for some u ∈ S13 and ϕ ∈ [0, π]. By

Proposition 5.4, we may assume that u ∈ Γ1. If ϕ ∈ [0, π/2], then S = S(u, ϕ).

Otherwise we replace a by −a = e cos(π − ϕ) − u sin(π − ϕ) which is G2-conjugate

to e cos(π − ϕ) + u sin(π − ϕ). Hence S is G-conjugate to S(u, π − ϕ).

Now assume that S(u, ϕ) and S(u ′, ϕ ′) are G-conjugate. Then there exists g ∈ G

such that

g(e cos ϕ + u sin ϕ) = ±(e cos ϕ ′ + u ′ sin ϕ ′).

Since ϕ, ϕ ′ ∈ [0, π/2], we must have ϕ = ϕ ′. If ϕ = 0, then ϕ ′
= 0 and S(u, ϕ) =

S(u ′, ϕ ′) = Ce. Otherwise g(u) = ±u ′ and Proposition 5.4 implies that u = u ′.

Since Ca = C−a, it is natural to ask: if a ∈ S14, when are a and −a G-conjugate?

If a ∈ S13, then a and −a are G2-conjugate and so we may assume that a /∈ S13.

Since τ (e) = −e, we may also assume that a 6= ±e. The answer is given in the next

proposition.

Proposition 6.2 Let a ∈ S14, a /∈ S13, a 6= ±e, be written as a = e cos ϕ + u sin ϕ
where u ∈ S13. Then a and −a are G-conjugate iff Q(u)3 ∈ R.

Proof Assume that a and −a belong to the same G-orbit, i.e.,

g(a) = −τ (a) = e cos ϕ − τ (u) sin ϕ

for some g ∈ G. As cos ϕ 6= 0, we must have g ∈ 〈G2, µ〉. Since sin ϕ 6= 0, it

follows that g(u) = −τ (u). By applying Q and using Theorem 5.1, we conclude that

τ (Q(u)) = µs · Q(u) for some s ∈ {0, 1, 2}. Since µ acts on Ce as multiplication by

ζ2 and τ as complex conjugation, we infer that indeed Q(u)3 ∈ R. The converse can

be proved similarly.

7 Four-Dimensional Subalgebras

In this section we prove that there are only two isomorphism classes of 4-dimensional

subalgebras: H and S4. The subalgebras isomorphic to S4 are all conjugate. On the

other hand, there are infinitely many conjugacy classes of quaternion subalgebras.

Theorem 7.1 Any 4-dimensional subalgebra S ⊂ A4 is either conjugate to S4 or to a

quaternion subalgebra of Oi, j,e.

Proof Assume first that all elements of S are alternative. Let a, b be an orthonormal

pair in Spp . By using the action of G2, we may assume that a = ri + sie and b =

αi + β j + (γi + δ j)e for some real r, s, α, β, γ, δ such that αδ − βγ = 0. It is evident

that S ⊂ Oi, j,e and so S is a quaternion algebra.

Assume now that S contains a non-alternative element. Assume also that S is not

conjugate to a subalgebra of Oi, j,e. Then Proposition 3.7 implies that S contains a

nonzero zero-divisor, say a, of A4. Without any loss of generality, we may assume

that a = (i + je)/
√

2.
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The eigenvalues of L2
a are 0,−1 and −2. S is a direct sum of its intersections with

the eigenspaces of L2
a. As S is a division algebra (see Corollary 3.5) and not contained

in Oi, j,e, we conclude that S contains a nonzero vector, say b, from the −2-eigenspace.

This eigenspace is described in Proposition 3.7. By using the action of G2, we may

assume that b = l + (kl)e. Hence S = S4.

As mentioned in the Introduction, the classification of the conjugacy classes of the

quaternion subalgebras has been now completed by the first author [3]. It is more

complicated than that for 2-dimensional subalgebras.

8 Non-Division Subalgebras

In this section we determine the conjugacy classes of proper subalgebras S ⊂ A4

which are not division algebras. It turns out that there are exactly three such conju-

gacy classes: one in each of the dimensions 3, 6 and 8.

Recall that the real division algebras have dimensions 1, 2, 4 or 8 (a famous result

due to Milnor and Bott [11] and Kervaire [7], independently). Since any subalgebra

of dimension 2 or 4 is a division algebra (see Theorem 7.1), the possible dimensions

for a proper non-division subalgebra of A4 are 3, 6 and 8.

The computations needed in the proof of the next theorem were performed by

using Maple (a package for symbolic computations).

Theorem 8.1 If S ⊂ A4 is a proper non-division subalgebra, then:

(i) S is conjugate to S3, S6 or S8.

(ii) If S ⊃ S3, then S is one of S3, S6, S8 or one of the two particular conjugates of S8.

(One of these conjugates is generated by S3 and kζ and the other by S3 and kζ2.)

Proof By hypothesis there exist a, b ∈ Spu such that ab = 0 and ‖a‖2
= ‖b‖2

= 2.

By Proposition 2.2, we may assume that a = i + le and b = j + (kl)e. In particular

S ⊃ S3 and we see that (i) follows from (ii). It remains to prove (ii) for S 6= S3.

Let P = S ∩ S⊥3 . Since dim(P) is odd, aP ⊂ P and La is skew-symmetric, there

exists a nonzero c ∈ P such that ac = 0. Since b ⊥ c, there exist α, β, γ ∈ R such that

c = α( jl + ke) + β(k − ( jl)e) + γ(kl − je)

= (α jl + βk + γkl) + (αk − β jl − γ j)e.

Let M be the 8-by-16 matrix of coefficients of the vectors a, b, c, bc, a(bc), b(a(bc)),

c(bc) and c(a(bc)). All of these vectors belong to Spu. Hence the rank of M is < 8. We

use Maple to compute some 8-by-8 minors of M. The one in columns 2, 3, 4, 5, 7, 9,

11 and 16 is equal to −256γ4(α2+β2)(α2+2β2). Thus if γ 6= 0, then α = β = 0 and S

contains the 6-dimensional subalgebra generated by a, b and kl− je. By Corollary 3.6,

S = S6.

It remains to consider the case γ = 0. If we perform a similar computation as

above, replacing the vector c(bc) with a(b(a(bc))), then the 8-by-8 minor in columns

2, 3, 4, 5, 6, 7, 11 and 12 is equal to 2048α5(3β2 − α2).
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If α = 0, then k−( jl)e ∈ S, and it follows that S = S8. Otherwise α = ±β
√

3 6= 0

and S is one of the two conjugates of S8 mentioned in the theorem.

For instance, if we take β = 1 and α =
√

3, then S3 and c generate the 8-dimen-

sional subalgebra with basis

{1, i + le, j + (kl)e, k +
√

3ke = −2kζ2,
√

3(l + ie) + 2le,
√

3il − (il)e,
√

3 jl − ( jl)e,
√

3(kl + je) + 2(kl)e}.

By applying µ to it, we obtain the subalgebra with basis

{1, i +
√

3l, j +
√

3kl, k, le −
√

3ie, (il)e, ( jl)e, (kl)e −
√

3 je}.

It is easy to see that this subalgebra is a G2-conjugate of S8.

9 Division Subalgebras of Dimension 8

In this section we complete the solution of our problem by classifying the 8-dimen-

sional division subalgebras S ⊂ A4. We consider first the case where S consists of

alternative elements only.

Proposition 9.1 If S ⊂ A4 is an 8-dimensional division subalgebra such that each

element of S is alternative, then S = O, µ(O) or µ2(O).

Proof The subspace Spp is alternative and has dimension at least 6. By Proposi-

tion 3.1, we have Spp
= V0a for some subspace V0 ⊂ Opu and a unit vector a ∈ Ce.

Write a = α + βe, where α, β ∈ R.

Let v, w ∈ V0 be orthonormal. Then the element

(va)(wa) = 2(vw)(α2 − β2 − 2αβe)

belongs to Spp . Hence, we must have
∣

∣

∣

∣

α2 − β2 −2αβ
α β

∣

∣

∣

∣

= 0,

i.e., a = 1, ζ or ζ2. The assertion of the proposition now follows.

In the remaining cases, we show S contains a nonzero zero-divisor of A4.

Lemma 9.2 Let S ⊂ A4 be an 8-dimensional division subalgebra containing a non-

alternative element. Then S contains a nonzero zero-divisor of A4.

Proof By hypothesis there is an a ∈ S which is not alternative. We may assume

that a is doubly pure and moreover that a = ri + (si + t j)e with r, s, t ∈ R and rt 6= 0.

By Proposition 3.7, the eigenvalues of L2
a are −1 and −1 ± 2rt . As S is L2

a-invariant,

it is the direct sum of its intersections with the three eigenspaces of L2
a. Since the

eigenspaces belonging to the eigenvalues −1 ± 2rt are ZD-spaces, we need consider

only the case where S coincides with the −1-eigenspace. Hence, S = Oi, j,e and the

assertion obviously holds.
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We can now classify the 8-dimensional division subalgebras.

Theorem 9.3 There are exactly three conjugacy classes of 8-dimensional division sub-

algebras S ⊂ A4. Their representatives are O, Oi, j,e and R8. (The first conjugacy class

consists just of three algebras: O, µ(O) and µ2(O).)

Proof Assume that S is not conjugate to O or Oi, j,e. By Proposition 9.1 and Lemma

9.2, S has a nonzero zero-divisor, say a. We may assume that a = i + je.

By Proposition 3.7, the eigenspaces of L2
a are: Oi, j,e with eigenvalue −1, ker(La)

with eigenvalue 0, and P := {x + (kx)e : x ∈ Hl} with eigenvalue −2. Since S is

L2
a-invariant, a ∈ S, and S is a division algebra, it follows that S ⊂ Oi, j,e + P. As

S 6= Oi, j,e, by a dimension argument we deduce that Q := S ∩ Oi, j,e is a quaternion

algebra and that S = Q ⊕ P. As R8 contains P and a, we conclude that S = R8.
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