Periods of Modular Forms and Imaginary Quadratic Base Change

Mak Trifković

Abstract

Let f be a classical newform of weight 2 on the upper half-plane $\mathcal{H}^{(2)}, E$ the corresponding strong Weil curve, K a class number one imaginary quadratic field, and F the base change of f to K. Under a mild hypothesis on the pair (f, K), we prove that the period ratio $\Omega_{E} /\left(\sqrt{|D|} \Omega_{F}\right)$ is in \mathbb{O}. Here Ω_{F} is the unique minimal positive period of F, and Ω_{E} the area of $E(\mathbb{C})$. The claim is a specialization to base change forms of a conjecture proposed and numerically verified by Cremona and Whitley.

1 Introduction

Let E be an elliptic curve over an imaginary quadratic field K. For simplicity, we assume K to have class number one, and denote by D, w, and ε_{K} its discriminant, number of units and the associated quadratic character, respectively. By analogy with the Shimura-Taniyama conjecture over $(\mathbb{O}$, we expect the isogeny class of E to determine, in most cases, a weight 2 cusp form on $\mathrm{GL}_{2}\left(\mathbb{A}_{K}\right)$. Such a form has a unique minimal positive period Ω_{F}, which the Birch and Swinnerton-Dyer conjecture suggests should be related to Ω_{E}, the area of $E(\mathbb{C})$. Indeed, in the articles of Cremona [2] and Cremona-Whitley [4] it was conjectured that

$$
\begin{equation*}
\frac{1}{\sqrt{|D|}} \frac{\Omega_{E}}{\Omega_{F}} \in(\mathbb{O}) . \tag{1.1}
\end{equation*}
$$

In this note, we prove (1.1) in the special case when E is the base change of an elliptic curve over $(\mathbb{O}$, under a mild assumption on E and K (see Theorem4.1below).

In our paper [12], we proposed a conjectural p-adic construction of global points on the elliptic curve $E_{/ K}$. The main ingredient in this construction is the modular symbol associated with E, obtained by dividing path integrals of the corresponding modular form F by its period Ω_{F}. Relating this period to Ω_{E} for a base change curve is the first step in relating our Stark-Heegner points to the classical Heegner points.

2 Modular Forms over Imaginary Quadratic Fields

In the relatively simple setting of an imaginary quadratic field of class number one, the adelic object conjecturally corresponding to an elliptic curve $E_{/ K}$ without complex multiplication by K can be identified with a harmonic 1-form on the upper half-space $\mathcal{H}^{(3)}=\mathbb{C} \times \mathbb{R}_{>0}$. We briefly review the setup from [7].

[^0]Gramm-Schmidt orthogonalization identifies $\mathcal{H}^{(3)}$ with the $\mathrm{PGL}_{2}(\mathbb{C})$-homogeneous space $\mathrm{PGL}_{2}(\mathbb{C}) / \mathrm{PSU}_{2}$ via

$$
(z, t) \leftrightarrow\left(\begin{array}{cc}
t & z \\
0 & 1
\end{array}\right) \bmod \mathrm{PSU}_{2}, \quad z \in \mathbb{C}, t \in \mathbb{R}_{>0}
$$

A basis of 1-differentials on $\mathcal{H}^{(3)}$ is given by the column vector $\beta={ }^{t}\left(-\frac{d z}{t}, \frac{d t}{t}, \frac{d \bar{z}}{t}\right)$. For an ideal \mathfrak{n} of the ring of integers $\mathcal{O}_{K} \subset K$, we consider the congruence subgroup

$$
\Gamma_{0}^{+}(\mathfrak{n})=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{PGL}_{2}\left(\mathcal{O}_{K}\right) \right\rvert\, c \in \mathfrak{n}\right\}
$$

The automorphic objects with which we are concerned are defined as follows.
Definition 2.1 A plus-cusp form of weight 2 and level \mathfrak{n} ("plusform" for short) is a function $F=\left(F_{0}, F_{1}, F_{2}\right): \mathcal{H}^{(3)} \rightarrow \mathbb{C}^{3}$ with values in row vectors, satisfying
(i) $\Gamma_{0}^{+}(\mathfrak{t})$-invariance: The dot product $F \cdot \beta$ is a harmonic 1-form on $\mathcal{H}^{(3)}$ invariant under $\Gamma_{0}^{+}(\mathfrak{r})$;
(ii) Cuspidality: By property (i) and an explicit computation of the action of $\operatorname{PGL}_{2}(\mathbb{C})$ on $\mathcal{H}^{(3)}$, we have $F(z, t)=F(z+w, t)$ for $w \in \mathcal{O}_{K}$ (see [4]). It then makes sense to require that $\int_{\mathbb{C} / \mathcal{O}_{K}}\left(\gamma^{*}\right)(F \cdot \beta)=0$ for all $\gamma \in \mathrm{PGL}_{2}\left(\mathcal{O}_{K}\right)$, i.e., the constant term in the Fourier-Bessel expansion of F at the cusp $\gamma^{-1} \infty$ (see below) is zero.

This definition is simplified by the assumption that $h(K)=1$, as that requires us to consider only one copy of $\mathcal{H}^{(3)}$ and makes the action of $\mathrm{PGL}_{2}\left(\mathcal{O}_{K}\right)$ on the cusps $\mathbb{P}^{1}(K)$ transitive. The space of all plus-cusp forms of weight 2 and level \mathfrak{n} is denoted $S_{2}^{+}(\mathfrak{n})$.

As in the classical case, conditions (i) and (ii) mean that an element of $S_{2}^{+}(\mathfrak{r})$ can be identified with a harmonic differential without poles on the compact threedimensional manifold $X_{0}(\mathfrak{n})=\Gamma_{0}^{+}(\mathfrak{n}) \backslash \mathcal{H}^{(3) *}$. Here the extended upper half-space $\mathcal{H}^{(3) *}=\mathcal{H}^{(3)} \cup \mathbb{P}^{1}(K)$ depends on K. Note that $X_{0}(\mathfrak{t})$ does not have the structure of an algebraic variety (its complex dimension would be 1.5), which makes the modularity theory almost entirely conjectural.

The invariance condition (i) applied to matrices $\gamma=\left(\begin{array}{cc}1 & t \\ 0 & 1\end{array}\right), t \in \mathcal{O}_{K}$ and $\gamma=$ $\left(\begin{array}{cc}\eta & 0 \\ 0 & 1\end{array}\right), \eta \in \mathcal{O}_{K}^{\times}$implies that the cusp form F has a "Fourier-Bessel" series expansion at the cusp ∞ (see [7]):

$$
\begin{equation*}
F(z, t)=\sum_{0 \neq(\alpha) \subset \mathcal{O}_{K}} c_{(\alpha)} t^{2} \mathbf{K}\left(\frac{4 \pi|\alpha| t}{\sqrt{|D|}}\right) \sum_{\eta \in \mathcal{O}_{F}^{\times}} e^{2 \pi i \operatorname{Tr}_{K / Q}\left(\frac{\eta \alpha z}{\sqrt{D}}\right)} \tag{2.1}
\end{equation*}
$$

The sum is over proper ideals of \mathcal{O}_{K}, and $\mathbf{K}(t)=\frac{i}{2}\left(-\mathbf{K}_{1}(t),-2 i \mathbf{K}_{0}(t), \mathbf{K}_{1}(t)\right)$. The function $\mathbf{K}_{r}(t), r=0$ or 1 , is the $(\mathbb{R}$-valued) hyperbolic Bessel function that satisfies the differential equation

$$
\frac{d^{2} \mathbf{K}_{r}}{d t^{2}}+\frac{1}{t} \frac{d \mathbf{K}_{r}}{d t}-\left(1+\frac{1}{t^{2 r}}\right) \mathbf{K}_{r}=0
$$

and decreases rapidly at infinity.
The theory of Hecke operators carries over verbatim from classical modular forms to plusforms. For a prime (π) of \mathcal{O}_{K}, the Hecke operator $T_{(\pi)}$ sends F to a form with coefficients $c^{\prime}(\alpha)=N_{K / \mathbb{Q}}(\pi) c(\alpha \pi)+c(\alpha / \pi)$, the second term being understood to be 0 if $\pi \nmid \alpha$. A new plusform of level \mathfrak{n} is an eigenvector for all the Hecke operators $T_{(\pi)}$ with prime index $(\pi) \nmid \mathfrak{n}$, which is not induced from a lower level.

In this setting we have the following version of the Shimura-Taniyama conjecture.
Conjecture 2.2 Each isogeny class of elliptic curves $E_{/ K}$ of conductor \mathfrak{n}, without complex multiplication by K, determines a unique new plusform $F \in S_{2}^{+}(\mathfrak{n})$ whose FourierBessel coefficient with prime index \mathfrak{p} is given by

$$
c_{\mathfrak{p}}=N \mathfrak{p}+1-\# E\left(\mathbb{F}_{\mathfrak{p}}\right) \in \mathbb{Z}
$$

Equivalently, we have an equality of L-functions $L\left(E_{/ K}, s\right)=L(F, s)$, where
$L(F, s):=\sum_{(\alpha) \subset \mathcal{O}_{K}} c_{(\alpha)}\left(N_{K / \mathbb{Q}} \alpha\right)^{-s}=(2 \pi)^{2 s-2}|D|^{1-s} \Gamma(s)^{-2} \frac{16 \pi^{2}}{w|D|} \int_{0}^{\infty} t^{2 s-2} F_{1}(0, t) \frac{d t}{t}$.
It should be noted that not all forms in $S_{2}^{+}(\mathfrak{r})$ correspond to elliptic curves over K : some are quadratic twists of lifts of forms over (\mathbb{O}) with real quadratic coefficients, corresponding to abelian surfaces over (\mathbb{O}) with quaternionic multiplication (see [3]). A curve $E_{/ K}$ with CM by K should correspond to an Eisenstein series.

Cremona [2] produced extensive numerical evidence for Conjecture 2.2 Taylor [11] proved a weak converse to the conjecture: starting with a newform F with Fourier-Bessel expansion (2.1), he constructed a system of l-adic Galois representations of $\operatorname{Gal}(\bar{K} / K)$ whose trace of Frobenius at \mathfrak{p} is equal to $\boldsymbol{c}_{\mathfrak{p}}$ outside a set of density zero. These l-adic representations can in turn sometimes be identified as coming from an elliptic curve by checking the equality of a finite number of traces of Frobenius, according to the method of Faltings-Serre.

We will start with a weight 2 newform $f_{\mathbb{Q}}=\sum_{n=1}^{\infty} a_{n} q^{n}$ on the upper half-plane $\mathcal{H}^{(2)}$ of level prime to D and without complex multiplication by K. The corresponding strong Weil curve $E_{/ \mathbb{Q}}$ can be viewed as a curve over K which should, under Conjecture 2.2, correspond to the base change F_{K} of $f_{\mathbb{O}}$ to K. The existence of the base-changed modular form F_{K} is known independently of any Shimura-Taniyamatype conjecture, either as a consequence of the general work of Jacquet [6], or by the explicit computations of Asai [1] and Friedberg [5]. From the L-function relation satisfied by base change (see (4.1) below), one easily deduces the Fourier-Bessel coefficients of $F_{K}: c_{\pi}=a_{p}$ if $p=\pi \bar{\pi}$ is split, $c_{p}=a_{p}^{2}-2 p$ if p is inert in K.

3 Modular Symbols

Fix a newform $F \in S_{2}^{+}(\mathfrak{n})$ with coefficients $c_{(\alpha)} \in \mathbb{Z}$. For any two cusps $a, b \in \mathbb{P}^{1}(K)$, we define the modular symbol

$$
\begin{equation*}
\{a \rightarrow b\}_{K}=\frac{16 \pi^{2}}{w|D|} \int_{a}^{b} F \cdot \beta \tag{3.1}
\end{equation*}
$$

This symbol is real-valued, which is readily calculated from the Fourier-Bessel series (2.1) in the special case $b=\infty$:

$$
\{a \rightarrow \infty\}_{K}=\frac{16 \pi^{2}}{w|D|} \int_{0}^{\infty} \sum_{0 \neq(\alpha) \subset \mathcal{O}_{F}} c_{(\alpha)} t^{2} \mathbf{K}_{0}\left(\frac{4 \pi|\alpha| t}{\sqrt{|D|}}\right) \sum_{\eta \in \mathcal{O}_{F}^{\times}} e^{2 \pi i \operatorname{Tr}_{K / \mathbb{Q}}\left(\frac{\eta \alpha a}{\sqrt{D}}\right)} \frac{d t}{t} \in \mathbb{R} .
$$

By multiplicity one (see [7]), the values of $\{a \rightarrow b\}_{K}$ on closed paths in $X_{0}(\mathfrak{n})$ form a rank one lattice in \mathbb{R}, whose positive generator is the period Ω_{F} from the Introduction.

Let $\chi:\left(\mathcal{O}_{K} /(\mu)\right)^{\times} / \mathcal{O}_{K}^{\times} \rightarrow \mathbb{C}^{\times}$be a primitive Dirichlet character (i.e., a Hecke character with trivial archimedean component) with conductor ideal $(\mu) \subseteq \mathcal{O}_{K}$ (here we again use $h(K)=1$). We define the twisted L-function by $L(F, \chi, s)=$ $\sum_{(\alpha) \subset \mathcal{O}_{K}} c_{(\alpha)} \chi(\alpha)\left(N_{K / \mathbb{Q}} \alpha\right)^{-s}$. Modular symbols allow us to calculate its special values.

Proposition 3.1 There exists a $t_{K}(\chi) \in \mathbb{O}(\chi)$ such that

$$
L(F, \chi, 1)=\tau_{K}(\bar{\chi})^{-1} t_{K}(\chi) \Omega_{F}
$$

where $\tau_{K}(\bar{\chi})=\sum_{\alpha \in \mathcal{O}_{K} /(\mu)} \bar{\chi}(\alpha) e^{2 \pi i \operatorname{Tr}_{K / Q} \frac{\alpha}{\mu \sqrt{D}}}$ is the Gauss sum.
Proof For any $a, b \in \mathbb{P}^{1}(K)$, there exists an $r \in \mathbb{O}$) such that $\{a \rightarrow b\}_{K}=r \Omega_{F}$. This is the Manin-Drinfeld lemma for forms over K, proved as over (\mathbb{O}) by using a suitable Hecke operator to "close the path". The normalization constant in (3.1) was chosen so that

$$
L(F, \chi, 1)=\tau_{K}(\bar{\chi})^{-1} \sum_{\kappa \in \mathcal{O}_{K} /(\mu)} \bar{\chi}(\kappa)\left\{\frac{\kappa}{\mu} \rightarrow \infty\right\}_{K}
$$

a version of Birch's lemma proved analogously to the classical case. Combining these two facts gives the proposition. For details, see [7, Lemma 6].

To fix notation, we recall the analogous proposition over $\left(\mathbb{O}\right.$. Let $f_{\mathbb{Q}} \in S_{2}(N)$ be a classical newform on $\mathcal{H}^{(2)}$, and let Ω_{+}, Ω_{-}denote the smallest positive real and imaginary parts of its periods.
Proposition 3.2 Let $\chi:(\mathbb{Z} / m \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$be a primitive Dirichlet character. Set $\Omega=\Omega_{+}$if χ is even, and $\Omega=i \Omega_{-}$if χ is odd. There is a number $t_{\mathbb{Q}}(\chi) \in \mathbb{O}_{2}(\chi)$ such that $L\left(f_{\mathbb{Q}}, \chi, 1\right)=\tau_{\mathbb{Q}}(\bar{\chi})^{-1} t_{\mathbb{Q}}(\chi) \Omega$, where $\tau_{\mathbb{Q}}(\bar{\chi})=\sum_{k=0}^{m-1} \bar{\chi}(k) e^{\frac{2 \pi i k}{m}}$ is the Gauss sum.

4 Comparison of Periods

Our main result is the following.
Theorem 4.1 Keeping the notations from the introduction, let $f_{\mathbb{Q}} \in S_{2}(N)$ be a newform on $\mathcal{H}^{(2)}$ with $(N, D)=1$, and F_{K} on $\mathcal{H}^{(3)}$ its base change to K. Assume that the strong Weil curve E corresponding to $f_{\mathbb{Q}}$ does not have complex multiplication by K. Then

$$
\frac{1}{\sqrt{|D|}} \frac{\Omega_{E}}{\Omega_{F_{K}}} \in \mathbb{O}
$$

Proof Let $\chi:(\mathbb{Z} / m \mathbb{Z})^{\times} \rightarrow \mathbb{C}^{\times}$be a primitive Dirichlet character with $(m, N D)=1$, and let $\chi \circ N_{K / \mathbb{Q}}$ be its base change to K. By the coprimality assumptions, we can factor the twisted special L-value of F_{K} as follows:

$$
\begin{equation*}
L\left(F_{K}, \chi \circ N_{K / \mathbb{Q}}, 1\right)=L\left(f_{\mathbb{Q}}, \chi, 1\right) L\left(f_{\mathbb{Q}}, \chi \varepsilon_{K}, 1\right) \tag{4.1}
\end{equation*}
$$

Expressing the left-hand (resp. right-hand) side in terms of Proposition 3.1 (resp. 3.2), we get two expressions for $L\left(F_{K}, \chi \circ N_{K / \mathbb{Q}}, 1\right)$ in terms of modular symbols:

$$
\begin{equation*}
\tau_{K}\left(\bar{\chi} \circ N_{K / \mathbb{Q}}\right)^{-1} r_{K}(\chi) \Omega_{F_{K}}=\tau_{\mathbb{Q}}(\bar{\chi})^{-1} \tau_{\mathbb{Q}}\left(\bar{\chi} \varepsilon_{K}\right)^{-1} r_{\mathbb{Q}}(\chi) i \Omega_{+} \Omega_{-}, \tag{4.2}
\end{equation*}
$$

for some $r_{\mathbb{Q}}(\chi), r_{K}(\chi) \in \mathbb{O}(\chi)$. Both Ω_{+}and Ω_{-}appear since, as K is imaginary, the characters $\bar{\chi}$ and $\bar{\chi} \varepsilon_{K}$ have opposite parity. Since $(m, D)=1$, the Gauss sums are related by the identity

$$
\begin{equation*}
\tau_{K}\left(\bar{\chi} \circ N_{K / \mathbb{Q}}\right)=-i \frac{\tau_{\mathbb{Q}}(\bar{\chi}) \tau_{\mathbb{Q}}\left(\bar{\chi} \varepsilon_{K}\right)}{\sqrt{|D|}} \tag{4.3}
\end{equation*}
$$

(see [9, p. 183]. We have that $\Omega_{E}=\delta \Omega_{+} \Omega_{-}$, where $\delta=2$ if $E(\mathbb{R})$ is connected, and 1 otherwise. Substituting this and (4.3) into (4.2), we get

$$
\begin{equation*}
\delta \sqrt{|D|} r_{K}(\chi) \Omega_{F_{K}}=-r_{\mathbb{Q}}(\chi) \Omega_{E} \tag{4.4}
\end{equation*}
$$

We now need a theorem of Rohrlich [10].
Theorem 4.2 Let g be a newform of level N on $\mathcal{H}^{(2)}$. Let S be a finite set of primes not dividing N. For all but finitely many primitive Dirichlet characters χ whose conductors are divisible only by primes in S, we have $L(g, \chi, 1) \neq 0$.

This allows us to find a χ such that $L\left(f_{\mathbb{Q}}, \chi, 1\right) \neq 0 \neq L\left(f_{\mathbb{Q}}, \chi \varepsilon_{K}, 1\right)$, and hence $r_{K}(\chi) \neq 0 \neq r_{\mathbb{Q}}(\chi)$. We then divide by $r_{\mathbb{Q}}(\chi)$ in (4.4) to conclude that

$$
\begin{equation*}
\frac{1}{\sqrt{|D|}} \frac{\Omega_{E}}{\Omega_{F_{K}}}=-\frac{\delta r_{K}(\chi)}{r_{\mathbb{O}}(\chi)} \in \mathbb{O}(\chi) \tag{4.5}
\end{equation*}
$$

Finally, we need to show that the ratio (4.5) in fact lies in (0). This is strongly suggested by the fact that it is independent of χ. Indeed, choose two characters χ_{1}, χ_{2} with nonzero special values and relatively prime conductors, so that $\mathbb{O})\left(\chi_{1}\right) \cap\left(\mathbb{O}\left(\chi_{2}\right)=(\mathbb{O})\right.$.

Naturally, we would like to understand the period ratio 4.5). Incidental to the computations in [12], we calculated it for pairs (E, K), where K is euclidean and $E_{/ \mathbb{Q}}$ is a strong Weil curve of prime conductor ≤ 53 which remains inert in K. In all cases, we found that $\Omega_{E}=(w \sqrt{|D|} / 2) \Omega_{F_{K}}$. This means that each of those strong Weil curves over $\mathbb{O}_{\mathbb{Z}}$ remains a strong Weil curve over K in the sense of [4]. For level 11, the final remark of [4] observes that this is the case precisely for the K where 11 is inert. It would be interesting to explore whether this holds for a general curve of prime conductor.

The numbers $r_{\mathbb{Q}}(\chi), r_{K}(\chi)$ are computed in terms of modular symbols. Our proof of Theorem 4.1 uses only their rationality properties, treating their actual values as a black box. In practice, one encodes a modular form in $S_{2}^{+}(\mathfrak{n})$ as a finite sequence of integers by evaluating $\{a \rightarrow b\}_{K} / \Omega_{F_{K}}$ on a basis of $H_{1}\left(X_{0}(\mathfrak{n}), \mathbb{Z}\right)$. One gets a similar sequence of integers for a classical modular form on $\mathcal{H}^{(2)}$ by dividing the modular symbol $\{a \rightarrow b\}_{\mathbb{Q}}^{+}=\operatorname{Re}\left(-2 \pi i \int_{a}^{b} f(z) d z\right)$ by Ω^{+}and evaluating on a homology basis of the classical modular curve. The following natural question seems of considerable intrinsic interest.

Question Is it possible to give a recipe for computing the sequence of integers associated with the base-changed form F_{K} on $\mathcal{H}^{(3)}$ directly from the one associated with the original form $f_{\mathbb{Q}}$ on $\mathcal{H}^{(2)}$?

References

[1] T. Asai, On the Doi-Naganuma lifting associated with imaginary quadratic fields. Nagoya Math. J. 71(1978), 149-167.
[2] J. Cremona, Hyperbolic tessellations, modular symbols, and elliptic curves over complex quadratic fields. Compositio Math. 51(1984), no. 3, 275-324.
[3] , Abelian varieties with extra twist, cusp forms, and elliptic curves over imaginary quadratic fields. J. London Math. Soc. 45(1992), no. 3, 404-416. doi:10.1112/jlms/s2-45.3.404
[4] J. Cremona, and E. Whitley, Periods of cusp forms and elliptic curves over imaginary quadratic fields. Math. Comp. 62(1994), no. 205, 407-429. doi:10.2307/2153419
[5] S. Friedberg, On the imaginary quadratic Doi-Naganuma lifting of modular forms of arbitrary level. Nagoya Math. J. 92(1983), 1-20.
[6] H. Jacquet, Automorphic Forms on GL(2). Part II. Lecture Notes in Mathematics 278. Springer-Verlag, Berlin, 1972.
[7] P. Kurčanov, The cohomology of discrete groups and Dirichlet series that are related to Jacquet-Langlands cusp forms. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 42(1978), no. 3, 588-601.
[8] B. Mazur, and P. Swinnerton-Dyer, Arithmetic of Weil curves. Invent. Math. 25(1974), 1-61. doi:10.1007/BF01389997
[9] T. Miyake, Modular forms. Translated from the Japanese by Yoshitaka Maeda. Springer-Verlag, Berlin, 1989.
[10] D. E. Rohrlich, On L-functions of elliptic curves and cyclotomic towers. Invent. Math. 75(1984), no. 3, 409-423. doi:10.1007/BF01388636
[11] R. Taylor, l-adic representations associated to modular forms over imaginary quadratic fields. II. Invent. Math. 116(1994), no. 1-3, 619-643. doi:10.1007/BF01231575
[12] M. Trifković, Stark-Heegner points on elliptic curves defined over imaginary quadratic fields. Duke Math. J. 135(2006), no. 3, 415-453. doi:10.1215/S0012-7094-06-13531-7

Mathematics and Statistics, University of Victoria, Victoria, BC, V8P 5C2
e-mail: mtrifkov@uvic.ca

[^0]: Received by the editors June 17, 2007.
 Published electronically May 11, 2010.
 AMS subject classification: 11F67.

