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Periods of Modular Forms and Imaginary
Quadratic Base Change

Mak Trifković

Abstract. Let f be a classical newform of weight 2 on the upper half-plane H(2), E the corresponding

strong Weil curve, K a class number one imaginary quadratic field, and F the base change of f to K.

Under a mild hypothesis on the pair ( f , K), we prove that the period ratio ΩE/(
p

|D|ΩF) is in Q . Here

ΩF is the unique minimal positive period of F, and ΩE the area of E(C). The claim is a specialization

to base change forms of a conjecture proposed and numerically verified by Cremona and Whitley.

1 Introduction

Let E be an elliptic curve over an imaginary quadratic field K. For simplicity, we

assume K to have class number one, and denote by D, w, and εK its discriminant,

number of units and the associated quadratic character, respectively. By analogy with

the Shimura–Taniyama conjecture over Q , we expect the isogeny class of E to deter-

mine, in most cases, a weight 2 cusp form on GL2(AK ). Such a form has a unique

minimal positive period ΩF , which the Birch and Swinnerton-Dyer conjecture sug-

gests should be related to ΩE, the area of E(C). Indeed, in the articles of Cremona [2]

and Cremona-Whitley [4] it was conjectured that

(1.1)
1

√

|D|

ΩE

ΩF

∈ Q.

In this note, we prove (1.1) in the special case when E is the base change of an elliptic

curve over Q , under a mild assumption on E and K (see Theorem 4.1 below).

In our paper [12], we proposed a conjectural p-adic construction of global points

on the elliptic curve E/K . The main ingredient in this construction is the modular

symbol associated with E, obtained by dividing path integrals of the corresponding

modular form F by its period ΩF . Relating this period to ΩE for a base change curve

is the first step in relating our Stark–Heegner points to the classical Heegner points.

2 Modular Forms over Imaginary Quadratic Fields

In the relatively simple setting of an imaginary quadratic field of class number one,

the adelic object conjecturally corresponding to an elliptic curve E/K without com-

plex multiplication by K can be identified with a harmonic 1-form on the upper

half-space H
(3)

= C × R>0. We briefly review the setup from [7].
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Gramm–Schmidt orthogonalization identifies H
(3) with the PGL2(C)-homogen-

eous space PGL2(C)/ PSU2 via

(z, t) ↔

(

t z

0 1

)

mod PSU2, z ∈ C, t ∈ R>0.

A basis of 1-differentials on H
(3) is given by the column vector β =

t (− dz
t
, dt

t
, dz̄

t
).

For an ideal n of the ring of integers OK ⊂ K, we consider the congruence subgroup

Γ
+
0 (n) =

{

(

a b

c d

)

∈ PGL2(OK ) | c ∈ n

}

.

The automorphic objects with which we are concerned are defined as follows.

Definition 2.1 A plus-cusp form of weight 2 and level n (“plusform” for short) is a

function F = (F0, F1, F2) : H
(3) → C3 with values in row vectors, satisfying

(i) Γ
+
0 (n)-invariance: The dot product F ·β is a harmonic 1-form on H

(3) invariant

under Γ
+
0 (n);

(ii) Cuspidality: By property (i) and an explicit computation of the action of

PGL2(C) on H
(3), we have F(z, t) = F(z + w, t) for w ∈ OK (see [4]). It then

makes sense to require that
∫

C/OK
(γ∗)(F · β) = 0 for all γ ∈ PGL2(OK ), i.e.,

the constant term in the Fourier–Bessel expansion of F at the cusp γ−1∞ (see

below) is zero.

This definition is simplified by the assumption that h(K) = 1, as that requires us

to consider only one copy of H
(3) and makes the action of PGL2(OK ) on the cusps

P1(K) transitive. The space of all plus-cusp forms of weight 2 and level n is denoted

S+
2 (n).

As in the classical case, conditions (i) and (ii) mean that an element of S+
2 (n)

can be identified with a harmonic differential without poles on the compact three-

dimensional manifold X0(n) = Γ
+
0 (n)\H(3)∗. Here the extended upper half-space

H
(3)∗

= H
(3) ∪ P1(K) depends on K. Note that X0(n) does not have the structure of

an algebraic variety (its complex dimension would be 1.5), which makes the modu-

larity theory almost entirely conjectural.

The invariance condition (i) applied to matrices γ =
(

1 t
0 1

)

, t ∈ OK and γ =
(

η 0
0 1

)

, η ∈ O
×
K implies that the cusp form F has a “Fourier–Bessel” series expansion

at the cusp ∞ (see [7]):

(2.1) F(z, t) =

∑

0 6=(α)⊂OK

c(α)t
2
K

( 4π |α| t
√

|D|

)

∑

η∈O
×
F

e
2πi TrK/Q

“

ηαz√
D

”

.

The sum is over proper ideals of OK , and K(t) =
i
2
(−K1(t),−2iK0(t), K1(t)). The

function Kr(t), r = 0 or 1, is the (R-valued) hyperbolic Bessel function that satisfies

the differential equation

d2
Kr

dt2
+

1

t

dKr

dt
−

(

1 +
1

t2r

)

Kr = 0
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and decreases rapidly at infinity.

The theory of Hecke operators carries over verbatim from classical modular forms

to plusforms. For a prime (π) of OK , the Hecke operator T(π) sends F to a form with

coefficients c ′(α) = NK/Q (π)c(απ) + c(α/π), the second term being understood to

be 0 if π ∤ α. A new plusform of level n is an eigenvector for all the Hecke operators

T(π) with prime index (π) ∤ n, which is not induced from a lower level.

In this setting we have the following version of the Shimura–Taniyama conjecture.

Conjecture 2.2 Each isogeny class of elliptic curves E/K of conductor n, without com-

plex multiplication by K, determines a unique new plusform F ∈ S+
2 (n) whose Fourier–

Bessel coefficient with prime index p is given by

cp = Np + 1 − #E(Fp) ∈ Z.

Equivalently, we have an equality of L-functions L(E/K , s) = L(F, s), where

L(F, s) :=
∑

(α)⊂OK

c(α)(NK/Qα)−s
= (2π)2s−2 |D|

1−s
Γ(s)−2 16π2

w |D|

∫ ∞

0

t2s−2F1(0, t)
dt

t
.

It should be noted that not all forms in S+
2 (n) correspond to elliptic curves over K:

some are quadratic twists of lifts of forms over Q with real quadratic coefficients,

corresponding to abelian surfaces over Q with quaternionic multiplication (see [3]).

A curve E/K with CM by K should correspond to an Eisenstein series.

Cremona [2] produced extensive numerical evidence for Conjecture 2.2. Tay-

lor [11] proved a weak converse to the conjecture: starting with a newform F with

Fourier–Bessel expansion (2.1), he constructed a system of l-adic Galois representa-

tions of Gal(K̄/K) whose trace of Frobenius at p is equal to cp outside a set of density

zero. These l-adic representations can in turn sometimes be identified as coming

from an elliptic curve by checking the equality of a finite number of traces of Frobe-

nius, according to the method of Faltings–Serre.

We will start with a weight 2 newform fQ =
∑∞

n=1 anqn on the upper half-plane

H
(2) of level prime to D and without complex multiplication by K. The correspond-

ing strong Weil curve E/Q can be viewed as a curve over K which should, under

Conjecture 2.2, correspond to the base change FK of fQ to K. The existence of the

base-changed modular form FK is known independently of any Shimura–Taniyama-

type conjecture, either as a consequence of the general work of Jacquet [6], or by

the explicit computations of Asai [1] and Friedberg [5]. From the L-function rela-

tion satisfied by base change (see (4.1) below), one easily deduces the Fourier–Bessel

coefficients of FK : cπ = ap if p = ππ̄ is split, cp = a2
p − 2p if p is inert in K.

3 Modular Symbols

Fix a newform F ∈ S+
2 (n) with coefficients c(α) ∈ Z. For any two cusps a, b ∈ P1(K),

we define the modular symbol

(3.1) {a → b}K =
16π2

w |D|

∫ b

a

F · β.
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This symbol is real-valued, which is readily calculated from the Fourier–Bessel series

(2.1) in the special case b = ∞:

{a → ∞}K =
16π2

w |D|

∫ ∞

0

∑

0 6=(α)⊂OF

c(α)t
2
K0

( 4π |α| t
√

|D|

)

∑

η∈O
×
F

e
2πi TrK/Q

“

ηαa√
D

”

dt

t
∈ R.

By multiplicity one (see [7]), the values of {a → b}K on closed paths in X0(n) form

a rank one lattice in R, whose positive generator is the period ΩF from the Introduc-

tion.

Let χ : (OK/(µ))×/O
×
K → C× be a primitive Dirichlet character (i.e., a Hecke

character with trivial archimedean component) with conductor ideal (µ) ⊆ OK

(here we again use h(K) = 1). We define the twisted L-function by L(F, χ, s) =
∑

(α)⊂OK
c(α)χ(α)(NK/Qα)−s. Modular symbols allow us to calculate its special val-

ues.

Proposition 3.1 There exists a tK (χ) ∈ Q(χ) such that

L(F, χ, 1) = τK (χ̄)−1tK (χ)ΩF,

where τK (χ̄) =
∑

α∈OK/(µ) χ̄(α)e
2πi TrK/Q

α
µ
√

D is the Gauss sum.

Proof For any a, b ∈ P1(K), there exists an r ∈ Q such that {a → b}K = rΩF . This

is the Manin–Drinfeld lemma for forms over K, proved as over Q by using a suitable

Hecke operator to “close the path”. The normalization constant in (3.1) was chosen

so that

L(F, χ, 1) = τK (χ̄)−1
∑

κ∈OK/(µ)

χ̄(κ)

{

κ

µ
→ ∞

}

K

,

a version of Birch’s lemma proved analogously to the classical case. Combining these

two facts gives the proposition. For details, see [7, Lemma 6].

To fix notation, we recall the analogous proposition over Q . Let fQ ∈ S2(N) be

a classical newform on H
(2), and let Ω+,Ω− denote the smallest positive real and

imaginary parts of its periods.

Proposition 3.2 Let χ : (Z/mZ)× → C× be a primitive Dirichlet character. Set

Ω = Ω+ if χ is even, and Ω = iΩ− if χ is odd. There is a number tQ (χ) ∈ Q(χ) such

that L( fQ , χ, 1) = τQ (χ̄)−1tQ (χ)Ω, where τQ (χ̄) =
∑m−1

k=0 χ̄(k)e
2πik

m is the Gauss sum.

4 Comparison of Periods

Our main result is the following.

Theorem 4.1 Keeping the notations from the introduction, let fQ ∈ S2(N) be a new-

form on H
(2) with (N, D) = 1, and FK on H

(3) its base change to K. Assume that

the strong Weil curve E corresponding to fQ does not have complex multiplication by K.

Then
1

√

|D|

ΩE

ΩFK

∈ Q.
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Proof Let χ : (Z/mZ)× → C× be a primitive Dirichlet character with (m, ND) = 1,

and let χ ◦ NK/Q be its base change to K. By the coprimality assumptions, we can

factor the twisted special L-value of FK as follows:

(4.1) L(FK , χ ◦ NK/Q , 1) = L( fQ , χ, 1)L( fQ , χεK , 1).

Expressing the left-hand (resp. right-hand) side in terms of Proposition 3.1 (resp.

3.2), we get two expressions for L(FK , χ ◦ NK/Q , 1) in terms of modular symbols:

(4.2) τK (χ̄ ◦ NK/Q )−1rK(χ)ΩFK
= τQ (χ̄)−1τQ (χ̄εK )−1rQ (χ)iΩ+Ω−,

for some rQ (χ), rK(χ) ∈ Q(χ). Both Ω+ and Ω− appear since, as K is imaginary,

the characters χ̄ and χ̄εK have opposite parity. Since (m, D) = 1, the Gauss sums are

related by the identity

(4.3) τK (χ̄ ◦ NK/Q ) = −i
τQ (χ̄)τQ (χ̄εK )

√

|D|

(see [9, p. 183]. We have that ΩE = δΩ+Ω−, where δ = 2 if E(R) is connected, and 1

otherwise. Substituting this and (4.3) into (4.2), we get

(4.4) δ
√

|D|rK (χ)ΩFK
= −rQ (χ)ΩE.

We now need a theorem of Rohrlich [10].

Theorem 4.2 Let g be a newform of level N on H
(2). Let S be a finite set of primes not

dividing N. For all but finitely many primitive Dirichlet characters χ whose conductors

are divisible only by primes in S, we have L(g, χ, 1) 6= 0.

This allows us to find a χ such that L( fQ , χ, 1) 6= 0 6= L( fQ , χεK , 1), and hence

rK (χ) 6= 0 6= rQ (χ). We then divide by rQ (χ) in (4.4) to conclude that

(4.5)
1

√

|D|

ΩE

ΩFK

= −
δrK (χ)

rQ (χ)
∈ Q(χ).

Finally, we need to show that the ratio (4.5) in fact lies in Q . This is strongly suggested

by the fact that it is independent of χ. Indeed, choose two characters χ1, χ2 with non-

zero special values and relatively prime conductors, so that Q(χ1)∩Q(χ2) = Q .

Naturally, we would like to understand the period ratio (4.5). Incidental to the

computations in [12], we calculated it for pairs (E, K), where K is euclidean and E/Q

is a strong Weil curve of prime conductor ≤ 53 which remains inert in K. In all

cases, we found that ΩE = (w
√

|D|/2)ΩFK
. This means that each of those strong

Weil curves over Q remains a strong Weil curve over K in the sense of [4]. For level

11, the final remark of [4] observes that this is the case precisely for the K where 11

is inert. It would be interesting to explore whether this holds for a general curve of

prime conductor.
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The numbers rQ (χ), rK(χ) are computed in terms of modular symbols. Our proof

of Theorem 4.1 uses only their rationality properties, treating their actual values as a

black box. In practice, one encodes a modular form in S+
2 (n) as a finite sequence of

integers by evaluating {a → b}K /ΩFK
on a basis of H1(X0(n), Z). One gets a similar

sequence of integers for a classical modular form on H
(2) by dividing the modular

symbol {a → b}
+
Q

= Re(−2πi
∫ b

a
f (z)dz) by Ω

+ and evaluating on a homology basis

of the classical modular curve. The following natural question seems of considerable

intrinsic interest.

Question Is it possible to give a recipe for computing the sequence of integers asso-

ciated with the base-changed form FK on H
(3) directly from the one associated with

the original form fQ on H
(2)?
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[12] M. Trifković, Stark-Heegner points on elliptic curves defined over imaginary quadratic fields. Duke
Math. J. 135(2006), no. 3, 415–453. doi:10.1215/S0012-7094-06-13531-7

Mathematics and Statistics, University of Victoria, Victoria, BC, V8P 5C2
e-mail: mtrifkov@uvic.ca

https://doi.org/10.4153/CMB-2010-047-0 Published online by Cambridge University Press

http://dx.doi.org/10.1112/jlms/s2-45.3.404
http://dx.doi.org/10.2307/2153419
http://dx.doi.org/10.1007/BF01389997
http://dx.doi.org/10.1007/BF01388636
http://dx.doi.org/10.1007/BF01231575
http://dx.doi.org/10.1215/S0012-7094-06-13531-7
https://doi.org/10.4153/CMB-2010-047-0

