A Generalized Poisson Transform of an L^{p}-Function over the Shilov Boundary of the n-Dimensional Lie Ball

Fouzia El Wassouli

Abstract

Let \mathcal{D} be the n-dimensional Lie ball and let $\mathfrak{B}(S)$ be the space of hyperfunctions on the Shilov boundary S of \mathcal{D}. The aim of this paper is to give a necessary and sufficient condition on the generalized Poisson transform $P_{l, \lambda} f$ of an element f in the space $\mathfrak{B}(S)$ for f to be in $L^{p}(S), 1<p<$ ∞. Namely, if F is the Poisson transform of some $f \in \mathfrak{B}(S)$ (i.e., $F=P_{l, \lambda} f$), then for any $l \in \mathbb{Z}$ and $\lambda \in \mathbb{C}$ such that $\operatorname{Re}[i \lambda]>\frac{n}{2}-1$, we show that $f \in L^{p}(S)$ if and only if f satisfies the growth condition $$
\|F\|_{\lambda, p}=\sup _{0 \leq r<1}\left(1-r^{2}\right)^{\mathcal{R e}[i \lambda]-\frac{n}{2}+l}\left[\int_{S}|F(r u)|^{p} d u\right]^{\frac{1}{p}}<+\infty .
$$

1 Introduction and Notations

Let $X=G / K$ be a Hermitian symmetric space of non-compact type. Let $\left(\chi_{l}, K_{c}\right)$ be a holomorphic character of the complexification K_{c} of K and $E_{l}=G \times_{\chi_{l}}$ C the associated homogenous line bundle over X. Shimeno [7] proved that each eigenfunction of all invariant differential operators on E_{l} is the Poisson transform of an element f in the space $\mathfrak{B}\left(G / P_{m i n} ; L_{l, \lambda}\right)$ of hyperfunction sections of the line bundle $L_{l, \lambda}$ over the Furstenberg boundary $G / P_{\text {min }}$ of X under certain condition on the parameter λ.

Recently, Ben Said proved a Fatou-type theorem for line bundles [1], and he characterized the range of the Poisson transform of L^{p}-functions on the maximal boundary of X as a Hardy-type space.

Since the space $\mathfrak{B}\left(G / P_{\Xi} ; s\right)(s \in \mathbb{C})$ of hyperfunction valued sections of degenerate principal series representations attached to the Shilov boundary $S \simeq G / P_{\Xi}$ of X is a G-submodule of $\mathfrak{B}\left(G / P_{\text {min }} ; L_{l, \lambda_{s}}\right)$ for some $\lambda_{s} \in \mathbb{C}$, it is natural to investigate under what conditions on the generalized Poisson transform F of f will f be in $L^{p}(S)$.

To state the main result of this paper, let us introduce some notations. For $l \in \mathbb{Z}$ and $\lambda \in \mathbb{C}$, we define the generalized Poisson transform $P_{l, \lambda}$ acting on hyperfunctions $f \in \mathfrak{B}(S)$ by

$$
\left(P_{l, \lambda} f\right)(z)=\int_{S}\left(\frac{e^{2 i \theta}}{\left(\frac{t}{(} u-z\right)(u-z)}\right)^{l}\left(\frac{1-2^{t} \bar{z} z+\left|{ }^{t} z z\right|^{2}}{\left.| |^{t}(u-z)(u-z)\right|^{2}}\right)^{\frac{\frac{n}{2}-l+i \lambda}{2}} f(u) d u, \quad z \in \mathcal{D} .
$$

The main result can be stated as follows.

[^0]Theorem 1.1 Let $l \in \mathbb{Z}, \lambda \in \mathbb{C}$ such that $\operatorname{Re}[i \lambda]>\frac{n}{2}-1$. Then, we have the following.
(i) Let $F=P_{l, \lambda} f, f \in L^{p}(S), 1<p<\infty$. Then

$$
\|F\|_{\lambda, p}=\sup _{0 \leq r<1}\left(1-r^{2}\right)^{\mathcal{R e}[i \lambda]-\frac{n}{2}+l}\left(\int_{S}|F(r u)|^{p} d u\right)^{\frac{1}{p}}<\infty .
$$

(ii) Let $f \in \mathfrak{B}(S)$.

For $1<p<\infty$, if $F=P_{l, \lambda} f$ satisfies $\left\|P_{l, \lambda} f\right\|_{\lambda, p}<\infty$, then f is in $L^{p}(S)$.
Moreover, there exists a positive constant $\gamma_{l}(\lambda)$ such that for every function $f \in L^{p}(S)$, we have

$$
\left|C_{l}(\lambda)\right|\|f\|_{p} \leq\left\|P_{l, \lambda} f\right\|_{\lambda, p} \leq \gamma_{l}(\lambda)\|f\|_{p}
$$

(iii) Let $F=P_{l, \lambda} f, f \in L^{2}(S)$. Then its L^{2}-boundary value f is given by the following inversion formula:

$$
f(u)=\left|C_{l}(\lambda)\right|^{-2} \lim _{r \longrightarrow 1^{-}}\left(1-r^{2}\right)^{2\left(l+\mathcal{R e}[i \lambda]-\frac{n}{2}\right)} \int_{S} F(r v) \overline{P_{l, \lambda}(r u, v)} d v, \quad \text { in } L^{2}(S),
$$

where $C_{l}(\lambda)$ is given by (3.1) (see Section 3).
The main tool to obtain our results is the asymptotic behavior of the generalized spherical functions, which is a consequence of the following Fatou-type theorem.

Theorem 1.2 Let $l \in \mathbb{Z}, \lambda \in \mathbb{C}$ such that $\operatorname{Re}[i \lambda]>\frac{n}{2}-1$. Then, we have

$$
\lim _{r \longrightarrow 1^{-}}\left(1-r^{2}\right)^{-\left(\frac{n}{2}-l-i \lambda\right)} P_{l, \lambda} f(r u)=C_{l}(\lambda) f(u)
$$

(i) uniformly for f in the space $C(S)$ of all continuous functions on S,
(ii) uniformly in $L^{p}(S)$, if $f \in L^{p}(S), 1<p<\infty$.

We now describe the organization of this paper. In Section 2, we define a generalized Poisson transform. In Section 3, we establish a Fatou-type theorem. In Section 4, we give the precise action of the Poisson transform on $L^{2}(S)$ (Proposition4.1). In the last section, we prove Theorem 1.1

Notice that the case $l=0$ corresponds to our main theorem in [2], which is governed by a Hua system.

This leads to the conjecture that a Hua system depending on l might exist that could characterize the range of the Poisson transform $P_{l, \lambda}$.

2 Poisson Transform

In this section, we consider a Poisson transform for the line bundle E_{l}. Let

$$
G=S O(n, 2)=\left\{g \in S L(n+2, \mathbb{R}), \quad{ }^{t} g I_{n, 2} g=I_{n, 2}\right\}
$$

where $I_{n, 2}=\left(\begin{array}{cc}-I_{n} & 0 \\ 0 & I_{2}\end{array}\right)$.
The group $K=S(O(n) \times O(2))$ is a maximal compact subgroup of G.
Let \mathfrak{g} and \mathfrak{f} be the Lie algebras of G and K respectively. Let θ denote the corresponding Cartan involution of G and \mathfrak{g}. We have a Cartan decomposition $\mathfrak{g}=\mathfrak{f} \oplus \mathfrak{p}$, where \mathfrak{p} is the -1 -eigenspace of θ in \mathfrak{g}.

Let \mathfrak{g}_{c} be the complexification of \mathfrak{g}. For any subset \mathfrak{m} of \mathfrak{g}_{c}, we denote by \mathfrak{m}_{c} the complex subspace of \mathfrak{g}_{c} spanned by \mathfrak{m}.

Since the symmetric space G / K is Hermitian, there exist abelian subalgebras \mathfrak{p}_{+} and \mathfrak{p}_{-}of \mathfrak{g}_{c} such that $\mathfrak{p}_{c}=\mathfrak{p}_{+} \oplus \mathfrak{p}_{-}$. Let G_{c} be the complexification of G with the Lie algebra \mathfrak{g}_{c}. We denote by K_{c} (resp. P_{+}, P_{-}) the complex analytic subgroup of G_{c} corresponding to \mathfrak{f}_{c} (resp. $\mathfrak{p}_{+}, \mathfrak{p}_{-}$). Then G / K is realized as the G-orbit of the origin $U=K_{c} P_{-}$of the generalized flag manifold G_{c} / U. Thus $P_{+} K_{c} P_{-}$is an open subset of G_{c}, and any element $w \in P_{+} K_{c} P_{-}$is uniquely expressed as $w=p_{+} k p_{-}$, with $p_{+} \in P_{+}, k \in K_{c}, p_{-} \in P_{-}$. This is called the Harish-Chandra decomposition. One can prove that $G U \subset P_{+} U$ and that there exists a unique bounded domain \mathcal{D} in \mathfrak{p}_{+}such that $G U=(\exp \mathcal{D}) U$. Then there are canonical isomorphisms $G / K \simeq$ $G U / U \simeq \mathcal{D}$ given by $g K \mapsto g U \mapsto g \cdot 0=z$. For $g \in G, z \in \mathcal{D}, g \cdot z$ denotes the unique element of \mathcal{D} such that $g(\exp z) U=(\exp g \cdot z) U$. One fixes a point $\mu U \in G_{c} / U$ such that μU belongs to the boundary of $G U / U$ and the G-orbit of μU is compact. The G-orbit $G \mu U / U$ is the Shilov boundary of the bounded domain $G U / U \cong G / K$, and the isotropic subgroup of the point μU in G_{c} / U is a maximal parabolic subgroup of G, which will be denoted by P_{Ξ}.

In our case $\mathfrak{p}_{+} \simeq \mathbb{C}^{n}$,

$$
\mathcal{D}=\left\{z \in \mathbb{C}^{n} ; \quad{ }^{t} \bar{z} z<\frac{1}{2}\left(1+\left|{ }^{t} z z\right|^{2}\right)<1\right\}
$$

and the action of G on \mathcal{D} is given, for $g=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$, by

$$
g \cdot z=\left(A z+B\binom{\frac{i}{2}\left(1-^{t} z z\right)}{\frac{1}{2}\left(1+^{t} z z\right)}\right)\left((-i, 1)\left(C z+D\binom{\frac{i}{2}\left(1--^{t} z z\right)}{\frac{1}{2}\left(1+^{t} z z\right.}\right)\right)^{-1}
$$

Put

$$
u_{\circ}=\binom{1}{0} \in \mathbb{C}^{n} \quad \text { and } \quad \mu_{\circ}=\exp \left(u_{\circ}\right)=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & I_{n} & 0 \\
0 & 0 & 1
\end{array}\right) \gamma
$$

where

$$
\gamma=\left(\begin{array}{cc}
I_{n} & 0 \\
0 & \left(\begin{array}{cc}
i & 1 \\
-i & 1
\end{array}\right)
\end{array}\right)
$$

Then, clearly, we get $\mu U=\mu_{\circ} U=\left(\exp u_{\circ}\right) U$, which implies that $G \cap \mu U \mu^{-1}=$ $G \cap \mu_{\circ} U \mu_{\circ}^{-1}=P_{\Xi}$.

Put

$$
S=\left\{u \in p_{+} ; \exp u U \in G \mu_{\circ} U / U\right\}=\left\{u=e^{i \theta} x ; \quad 0 \leq \theta<2 \pi, \quad x \in S^{n-1}\right\}
$$

where

$$
S^{n-1}=\left\{x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \in \mathbb{R}^{n} ; \quad \sum_{i=1}^{n} x_{i}^{2}=1\right\}
$$

Then S is the Shilov boundary of \mathcal{D}. let $P_{\Xi}=M_{\Xi} A_{\Xi} N_{\Xi}^{+}$be a Langlands decomposition of the maximal parabolic subgroup P_{Ξ} of G :

$$
\begin{aligned}
& M_{\Xi}=\left\{\left(\begin{array}{ccc}
m_{1} & 0 & 0 \\
0 & m_{2} & 0 \\
0 & 0 & m_{1}
\end{array}\right) ; m_{1} \in\{-1,1\}, \quad m_{2} \in S O(n-1,1)\right\} \\
& A_{\Xi}=\left\{\left(\begin{array}{ccc}
\cosh t & 0 & \sinh t \\
0 & I_{n} & 0 \\
\sinh t & 0 & \cosh t
\end{array}\right) \in G ; \quad t \in \mathbb{R}\right\}, \\
& N_{\Xi}^{+}=\left\{\left(\begin{array}{cccc}
1+\frac{1}{2}\left(\xi^{2}-{ }^{t} \eta \eta\right) & { }^{t} \eta & \xi & \frac{1}{2}\left({ }^{t} \eta \eta-\xi^{2}\right) \\
-\eta & I_{n-1} & 0 & \eta \\
\xi & 0 & 1 & -\xi \\
\frac{1}{2}\left(\xi^{2}-{ }^{t} \eta \eta\right) & { }^{t} \eta & \xi & 1+\frac{1}{2}\left({ }^{t} \eta \eta-\xi^{2}\right)
\end{array}\right) ; \xi \in \mathbb{R}, \quad \eta \in \mathbb{R}^{n-1}\right\} .
\end{aligned}
$$

Let $a_{\Xi}=\mathbb{R} X_{\circ}$ be the one dimensional Lie algebra of A_{Ξ}

$$
X_{\circ}=\left(\begin{array}{lll}
0 & 0 & 2 \\
0 & 0 & 0 \\
2 & 0 & 0
\end{array}\right) .
$$

On a_{Ξ}, we define the linear form by $\rho_{\circ}\left(X_{\circ}\right)=2$, and, on A_{Ξ}, we use the coordinate $a_{t}=e^{t X_{\circ}} ; t \in \mathbb{R}$.

For $\lambda \in \mathbb{C}$ and $l \in \mathbb{Z}$, let $\xi_{l, \lambda}$ denote the C^{∞}-character of P_{Ξ} given by $\xi_{l, \lambda}\left(m a_{t} n\right)=$ $m_{1}^{l} e^{2 t\left(\frac{n}{2}-i \lambda\right)} ; a_{t}=e^{t X \circ} \in A_{\Xi}, n \in N_{\Xi}^{+}$and

$$
m=\left(\begin{array}{ccc}
m_{1} & 0 & 0 \\
0 & m_{2} & 0 \\
0 & 0 & m_{1}
\end{array}\right) \in M_{\Xi}
$$

Put $\tilde{K}_{c}=\gamma K_{c} \gamma^{-1}, \quad \tilde{P}_{-}=\gamma P_{-} \gamma^{-1}$. Then, $U=K_{c} P_{-}=\gamma^{-1} \tilde{K}_{c} \tilde{P}_{-} \gamma$

$$
\begin{aligned}
& \left.\tilde{K}_{c}=\left\{\left(\begin{array}{ccc}
\alpha & 0 & 0 \\
0 & \delta & 0 \\
0 & 0 & \delta^{-1}
\end{array}\right) \in S L(n+2, \mathbb{C}) ; \quad \alpha \in S O(n, \mathbb{C}), \quad \delta \in \mathbb{C}^{*}\right)\right\}, \\
& \tilde{P}_{-}=\left\{\left(\begin{array}{ccc}
I_{n} & w & 0 \\
0 & 1 & 0 \\
-2^{t} w & -^{t} w w & 1
\end{array}\right) ; \quad w \in \mathbb{C}^{n}\right\} .
\end{aligned}
$$

For $\lambda \in \mathbb{C}$ and $l \in \mathbb{Z}$, let χ_{l} denote the one-dimensional representation of U given by

$$
\begin{gathered}
\chi_{l}: \quad U=\gamma^{-1} \tilde{K}_{c} \tilde{P}_{-} \gamma \longrightarrow \mathbb{C}^{*}, \\
\gamma^{-1}\left(\begin{array}{ccc}
\alpha & 0_{n, 1} & 0 \\
0 & \delta & 0 \\
0 & 0 & \delta^{-1}
\end{array}\right) \widetilde{P}_{-} \gamma \longmapsto(\delta)^{-l},
\end{gathered}
$$

and we denote the corresponding representation of K by the same notation. Thus, for any

$$
k=\left(\begin{array}{cc}
k_{1} & 0 \\
0 & k_{2}
\end{array}\right) \in K, \quad k_{2}=\left(\begin{array}{cc}
\cos \varphi & \sin \varphi \\
-\sin \varphi & \cos \varphi
\end{array}\right)
$$

we have $\chi_{l}(k)=e^{-i l \varphi}$.
We denote by E_{l} the line bundle over G / K associated with χ_{l}. Then the space of all C^{∞}-sections of E_{l} is identified with

$$
C^{\infty}\left(G / K ; \chi_{l}\right)=\left\{f \in C^{\infty}(G) ; \quad f(g k)=\chi_{l}^{-1}(k) f(g) ; \quad g \in G, k \in K\right\}
$$

We denote by $L_{\xi_{l, \lambda}}$ the line bundle on G / P_{Ξ} associated with $\xi_{l, \lambda}$. Then the space of the hyperfunction sections on $L_{\xi_{l, \lambda}}$ is identified with

$$
\begin{aligned}
& \mathfrak{B}\left(G / P_{\Xi} ; \xi_{l, \lambda}\right)=\left\{f \in \mathfrak{B}(G) ; f\left(g m a_{t} n\right)=\xi_{l, \lambda}^{-1}\left(m a_{t} n\right) f(g)\right. \\
&\left.=e^{2\left(i \lambda-\frac{n}{2}\right) t} \xi_{l, \lambda}^{-1}(m) f(g) ; g \in G, m \in M_{\Xi}, a_{t} \in A_{\Xi}, n \in N_{\Xi}^{+}\right\}
\end{aligned}
$$

For $\phi \in \mathfrak{B}\left(G / P_{\Xi} ; \xi_{l, \lambda}\right)$, we define the Poisson integral $\widetilde{P}_{l, \lambda} \phi$ by

$$
\left(\widetilde{P}_{l, \lambda} \phi\right)(g)=\int_{K} \chi_{l}(k) \phi(g k) d k
$$

Here $d k$ denotes the invariant measure on K with total measure 1 .
For $g \in G, g=k \operatorname{man}\left(k \in K, m \in M_{\Xi}, a \in A_{\Xi}, n \in N_{\Xi}^{+}\right)$, we put

$$
\kappa(g)=k, \widetilde{\kappa}(g)=k m, H_{\Xi}(g)=\log a, n(g)=n
$$

We define $\omega_{l}(k m)=\chi_{l}(k) \xi_{l, \lambda}(m) \quad\left(k \in K, m \in M_{\Xi}\right)$.
A straightforward computation shows that (see [6])

$$
\begin{equation*}
\left(\widetilde{P}_{l, \lambda} \phi\right)(g)=\int_{K} \omega_{l}\left(\widetilde{\kappa}\left(g^{-1} k\right)\right) e^{-\left(i \lambda+\frac{n}{2}\right) \rho_{o}\left(H_{\Xi}\left(g^{-1} k\right)\right)} \phi(k) d k \tag{2.1}
\end{equation*}
$$

Put

$$
\begin{aligned}
& \mathfrak{B}\left(G \mu_{\circ} U / U ; \chi_{l}\right)=\left\{\psi \in \mathfrak{B}\left(G \mu_{\circ} U\right) ; \quad \psi(w u)=\chi_{l}^{-1}(u) \psi(w)\right. \\
&\left.w \in G \mu_{\circ} U, u \in U\right\}
\end{aligned}
$$

and
$C^{\infty}\left(G U / U ; \chi_{l}\right)=\left\{h \in C^{\infty}(G U) ; \quad h(w u)=\chi_{l}^{-1}(u) h(w), \quad w \in G U, u \in U\right\}$.
Then, we obtain the following four isomorphisms

$$
\begin{array}{ll}
C^{\infty}\left(G U / U ; \chi_{l}\right) \longrightarrow C^{\infty}\left(G / K ; \chi_{l}\right), & C^{\infty}\left(G U / U ; \chi_{l}\right) \longrightarrow C^{\infty}(\mathcal{D}) \\
h \longmapsto f, \quad f(g)=h(g), g \in G, & h \longmapsto F, \quad F(z)=h(\exp z), z \in \mathcal{D}, \\
\mathfrak{B}\left(G \mu_{\circ} U / U ; \chi_{l}\right) \longrightarrow \mathfrak{B}\left(G / P_{\Xi} ; \xi_{l, \lambda}\right), & \mathfrak{B}\left(G \mu_{\circ} U / U ; \chi_{l}\right) \longrightarrow \mathfrak{B}(S) \\
\psi \longmapsto \phi, \quad \phi(g)=\psi\left(g \mu_{\circ}\right), g \in G, & \psi \longmapsto \Phi, \quad \Phi(u)=\psi(\exp u), u \in S .
\end{array}
$$

Since $G U=(\exp \mathcal{D}) U$ we have for any $g \in G$ and $k \in K$

$$
\begin{aligned}
g & =(\exp g \cdot 0) u(g)=(\exp z) u(g) \\
k \mu_{\circ} & =k\left(\exp u_{\circ}\right)=\left(\exp k \cdot u_{\circ}\right) u(k)=(\exp u) k
\end{aligned}
$$

This implies that

$$
\begin{gathered}
\left(\widetilde{P}_{l, \lambda} \phi\right)(g)=h((\exp z) u(g))=\chi_{l}(u(g))^{-1} h(\exp z)=\chi_{l}(u(g))^{-1}\left(P_{l, \lambda} \Phi\right)(z) \\
\phi(k)=\psi\left(k \mu_{\circ}\right)=\psi((\exp u) k)=\chi_{l}^{-1}(k) \psi(\exp u)=\chi_{l}^{-1}(k) \Phi(u) .
\end{gathered}
$$

Substituting these functions into (2.1), we obtain

$$
\left(P_{l, \lambda} \Phi\right)(z)=\int_{S} P_{l, \lambda}(z, u) \Phi(u) d u
$$

where $P_{l, \lambda}(z, u)$ is the generalized Poisson kernel of the Lie ball \mathcal{D} with respect to its Shilov boundary S given by
$P_{l, \lambda}(z, u)=\chi_{l}(u(g)) \chi_{l}^{-1}(k) \omega_{l}\left(\widetilde{\kappa}\left(g^{-1} k\right)\right) e^{-\left(i \lambda+\frac{n}{2}\right) \rho_{\circ}\left(H_{\Xi}\left(g^{-1} k\right)\right)}, \quad z=g \cdot 0, \quad u=k \cdot u_{\circ}$.
A straightforward computation shows that (see $[2,6]$)

$$
P_{l, \lambda}(z, u)=\left(\frac{e^{2 i \theta}}{t^{t}(u-z)(u-z)}\right)^{l}\left(\frac{1-2^{t} \bar{z} z+|t z z|^{2}}{|t(u-z)(u-z)|^{2}}\right)^{\frac{\frac{n}{2}-l+i \lambda}{2}}, \quad l \in \mathbb{Z}, \quad \lambda \in \mathbb{C}
$$

3 Proof of Theorem 1.2

We begin by showing that the integral giving the c-function $C_{l}(\lambda)$ is absolutely convergent if $\mathcal{R e}[i \lambda]>\frac{n}{2}-1$.

Lemma 3.1 Let $\lambda \in \mathbb{C}$ such that $\operatorname{Re}[i \lambda]>\frac{n}{2}-1$. Then, the integral

$$
C_{l}(\lambda)=2^{2\left(i \lambda-\frac{n}{2}\right)} \int_{N_{\Xi}^{-}} \omega_{l}(\widetilde{\kappa}(\bar{n})) e^{-\left(i \lambda+\frac{n}{2}\right) \rho_{o} H_{\Xi}(\bar{n})} d \bar{n}
$$

converges absolutely.
Here $N_{\Xi}^{-}=\theta\left(N_{\Xi}^{+}\right)$, where θ is the Cartan involution of $\operatorname{SO}(n, 2)$ given by

$$
\begin{aligned}
& \theta(g)=\left(\begin{array}{cc}
I_{n} & 0 \\
0 & -I_{2}
\end{array}\right) g\left(\begin{array}{cc}
I_{n} & 0 \\
0 & -I_{2}
\end{array}\right), \\
& \quad g \in S O(n, 2) \\
& N_{\Xi}^{-}=\left\{\left(\begin{array}{cccc}
1+\frac{1}{2}\left(\xi^{2}-{ }^{t} \eta \eta\right) & { }^{t} \eta & -\xi & \frac{1}{2}\left(\xi^{2}-{ }^{t} \eta \eta\right) \\
-\eta & I_{n-1} & 0 & -\eta \\
-\xi & 0 & 1 & -\xi \\
\frac{1}{2}\left({ }^{t} \eta \eta-\xi^{2}\right) & -{ }^{t} \eta & \xi & 1+\frac{1}{2}\left({ }^{t} \eta \eta-\xi^{2}\right)
\end{array}\right) ; \xi \in \mathbb{R}, \eta \in \mathbb{R}^{n-1} \cdot\right\}
\end{aligned}
$$

To prove this lemma, we need the following lemma.
Lemma 3.2 (see $[2,6]$) For any $g^{-1}=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in S O(n, 2)$, we have

$$
\begin{aligned}
& e^{-\rho_{\circ}(H \Xi(g))}=\left(\frac{1-2^{t} \bar{z} z+\left|{ }^{t} z z\right|^{2}}{\left.\left.\right|^{t}\left(u_{\circ}-z\right)\left(u_{\circ}-z\right)\right|^{2}}\right)^{\frac{1}{2}}, \omega_{l}(\widetilde{\kappa}(g))=\left(\frac{\left.\right|^{t}\left(u_{\circ}-z\right)\left(u_{\circ}-z\right) \Delta \mid}{{ }^{t}\left(u_{\circ}-z\right)\left(u_{\circ}-z\right) \Delta}\right)^{l} \\
& \text { and }|\Delta|^{-2}=1-2^{t} \bar{z} z+\left.\left.\right|^{t} z z\right|^{2}, \text { where } z=g^{-1} \cdot 0 \text { and } \Delta=\frac{1}{2}(-i, 1) D\binom{i}{1} .
\end{aligned}
$$

Proof of Lemma 3.1 By using Lemma3.2, we get

$$
\begin{aligned}
\left|\omega_{l}(\widetilde{\kappa}(\bar{n})) e^{-\left(i \lambda+\frac{n}{2}\right) \rho_{\circ} H_{\equiv}(\bar{n})}\right| & =\left(\frac{\left.\left.\right|^{t}\left(u_{\circ}-z\right)\left(u_{\circ}-z\right)\right|^{2}}{1-2^{t} \bar{z} z+|t z z|^{2}}\right)^{-\frac{\operatorname{Re}[i \lambda]+\frac{n}{2}}{2}} \\
& =\left(\frac{\left|1-2 z_{1}+^{t} z z\right|^{2}}{1-2^{t} \bar{z} z+|t z z|^{2}}\right)^{-\frac{\mathfrak{R e}(i \lambda]+\frac{n}{2}}{2}}, \\
z & =^{t}\left(z_{1}, \ldots, z_{n}\right)=\bar{n}^{-1} \cdot 0 .
\end{aligned}
$$

Thus we assume that $i \lambda$ is real and $l=0$.
Now, we consider the following function

$$
f(x, y)=16 y+4(1+x-y)^{2}-4 y-\left(2+\frac{1}{2}(x-y)\right)^{2}, \quad x \in \mathbb{R}^{+}, \quad y \in \mathbb{R}^{+}
$$

For $x \geq y \geq 0$, we get that

$$
f(x, y)=12 y+6(x-y)+\frac{15}{4}(x-y)^{2} \geq 0
$$

For $0 \leq x \leq y$, to study the sign of $f(x, y)$, we evaluate the sign of $\frac{\partial f}{\partial y}(x, y)$

$$
\frac{\partial f}{\partial y}(x, y)=6+\frac{15}{2}(y-x)>0
$$

which implies that $f(x, \cdot)$ is increasing. Then $f(x, y)>f(x, x)=12 x \geq 0$. Henceforth,
$f\left({ }^{t} \eta \eta, \xi^{2}\right)=16 \xi^{2}+4\left(1+{ }^{t} \eta \eta-\xi^{2}\right)^{2}-4 \xi^{2}-\left(2+\frac{1}{2}\left({ }^{t} \eta \eta-\xi^{2}\right)\right)^{2} \geq 0, \eta \in \mathbb{R}^{n-1}, \xi \in \mathbb{R}$.
Thus for any

$$
\bar{n}^{-1}=\left(\begin{array}{cccc}
1+\frac{1}{2}\left(\xi^{2}-{ }^{t} \eta \eta\right) & { }^{t} \eta & -\xi & \frac{1}{2}\left(\xi^{2}-{ }^{t} \eta \eta\right) \\
-\eta & I_{n-1} & 0 & -\eta \\
-\xi & 0 & 1 & -\xi \\
\frac{1}{2}\left({ }^{t} \eta \eta-\xi^{2}\right) & -{ }^{t} \eta & \xi & 1+\frac{1}{2}\left({ }^{t} \eta \eta-\xi^{2}\right)
\end{array}\right) \in N_{\Xi}^{-}
$$

we have

$$
\left.\left.\right|^{t}\left(u_{\circ}-z\right)\left(u_{\circ}-z\right)\right|^{2}=\frac{16 \xi^{2}+4\left(1+^{t} \eta \eta-\xi^{2}\right)^{2}}{4 \xi^{2}+\left(2+\frac{1}{2}\left({ }^{t} \eta \eta-\xi^{2}\right)\right)^{2}} \geq 1, \quad z=\bar{n}^{-1} \cdot 0
$$

This assures that the following integral

$$
\begin{aligned}
& I=\int_{N_{\Xi}^{-}}\left|\omega_{0}(\widetilde{\kappa}(\bar{n})) e^{-\left(i \lambda+\frac{n}{2}\right) \rho_{0} H_{\Xi}(\bar{n})}\right| d \bar{n} \\
& =\int_{N_{\Xi}^{-}}\left(\frac{\left.\left.\right|^{t}\left(u_{\circ}-z\right)\left(u_{\circ}-z\right)\right|^{2}}{1-2^{t} \bar{z} z+\left.\left.\right|^{t} z z\right|^{2}}\right)^{-\frac{\operatorname{Re}[i \lambda]+\frac{n}{2}}{2}} d \bar{n}, \\
& \leq \int_{N_{\Xi}^{-}}\left(1-2^{t} \bar{z} z+\left.\left.\right|^{t} z z\right|^{2}\right)^{\frac{\operatorname{Re}(i \lambda]+\frac{n}{2}}{2}} d \bar{n}, \quad z=\bar{n}^{-1} \cdot 0 .
\end{aligned}
$$

Thus
$I \leq \int_{S O(n, 2)}\left(1-2^{t} \bar{z} z+\left.\left.\right|^{t} z z\right|^{2}\right)^{\frac{\operatorname{Re}[i \lambda]+\frac{n}{2}}{2}} d g=\int_{\mathcal{D}}\left(1-2^{t} \bar{z} z+\left.\left.\right|^{t} z z\right|^{2}\right)^{\frac{\operatorname{Re}[i \lambda]+\frac{n}{2}}{2}} d z, z=g^{-1} \cdot 0$.
It is known that (see [5, p. 12])

$$
\int_{\mathcal{D}}\left(1-2^{t} \bar{z} z+\left.\left.\right|^{t} z z\right|^{2}\right)^{\frac{\mathcal{R e}[i \lambda]+\frac{n}{2}}{2}} d z=\frac{\pi^{n} \Gamma\left(1+\frac{\mathcal{R e}[i \lambda]+\frac{n}{2}}{2}\right)}{2^{n-1}\left(\frac{3 n}{2}+\operatorname{Re}[i \lambda]\right) \Gamma\left(n+\frac{\operatorname{Re}[i \lambda]+\frac{n}{2}}{2}\right)}<\infty
$$

This concludes the proof of Lemma 3.1
Proof of Theorem 1.2 (i) For $\phi \in C\left(G / P_{\Xi}, \xi_{l, \lambda}\right)$, the map $h \rightarrow \chi_{l}(h) \phi\left(k a_{t} h\right)$ is a $K \cup M_{\xi}$-invariant function on K. Put $g=\kappa(g) m(g) e^{H_{\Xi}(g)} n(g)$, then by [4, Chpt. I,

Thm. 5.20], we have

$$
\begin{aligned}
\widetilde{P}_{l, \lambda} \phi\left(k a_{t}\right) & =\int_{K} \chi_{l}(h) \phi\left(k a_{t} h\right) d h \\
& =\int_{N_{\bar{\Xi}}^{-}} \chi_{l}(\kappa(\bar{n})) \phi\left(k a_{t} \kappa(\bar{n})\right) e^{-n \rho_{o}\left(H_{\Xi}(\bar{n})\right.} d \bar{n} \\
& =\int_{N_{\Xi}^{-}} \chi_{l}(\kappa(\bar{n})) \xi_{l, \lambda}(m(\bar{n})) e^{-\left(i \lambda+\frac{n}{2}\right) \rho_{o} H_{\Xi}(\bar{n})} \phi\left(k a_{t} \bar{n}\right) d \bar{n} \\
& =e^{t\left(i \lambda-\frac{n}{2}\right)} \int_{N_{\Xi}^{-}} \omega_{l}(\widetilde{\kappa}(\bar{n})) e^{-\left(i \lambda+\frac{n}{2}\right) \rho_{o} H_{\Xi}(\bar{n})} \phi\left(k a_{t} \bar{n} a_{-t}\right) d \bar{n}
\end{aligned}
$$

Next, since $a_{t} \bar{n} a_{-t}$ goes to the identity element e of G, as $t \longrightarrow \infty$, we deduce that

$$
\begin{equation*}
\lim _{t \longrightarrow} e^{\left(-i \lambda+\frac{n}{2}\right) t} \widetilde{P}_{l, \lambda} \phi\left(k a_{t}\right)=2^{2\left(\frac{n}{2}-i \lambda\right)} C_{l}(\lambda) \phi(k) \tag{3.1}
\end{equation*}
$$

To justify the reversal order of the limit and integration, we use the dominated convergence theorem. For this, let

$$
\psi_{t}(\bar{n})=\omega_{l}(\widetilde{\kappa}(\bar{n})) e^{-\left(\frac{n}{2}+i \lambda\right) \rho_{\circ}\left(H_{\Xi}(\bar{n})\right)} \phi\left(k a_{t} \bar{n} a_{-t}\right)
$$

Since $\left|\omega_{l}(\widetilde{\kappa}(\bar{n}))\right|=1$ and $\left|\xi_{l, \lambda}(m)\right|=1$ for all $m \in M_{\Xi}$, we have

$$
\begin{aligned}
\left|\psi_{t}(\bar{n})\right| & =\left|e^{-\left(\frac{n}{2}+i \lambda\right) \rho_{\circ}\left(H_{\Xi}(\bar{n})\right)} \phi\left(k a_{t} \bar{n} a_{-t}\right)\right| \\
& =\left|e^{-\left(\frac{n}{2}+i \lambda\right) \rho_{\circ}\left(H_{\Xi}(\bar{n})\right)} \xi_{l, \lambda}^{-1}\left(m\left(a_{t} \bar{n} a_{-t}\right)\right) e^{\left(-\frac{n}{2}+i \lambda\right) \rho_{\circ}\left(H_{\Xi}\left(a_{t} \bar{n} a_{-t}\right)\right)} \phi\left(k \kappa\left(a_{t} \bar{n} a_{-t}\right)\right)\right| \\
& \leq\left|e^{-\left(\frac{n}{2}+i \lambda\right) \rho_{\circ}\left(H_{\Xi}(\bar{n})+\left(-\frac{n}{2}+i \lambda\right) \rho_{\circ}\left(H_{\Xi}\left(a_{t} \bar{n} a_{-t}\right)\right)\right.}\right| \sup _{\bar{n}, t}\left|\phi\left(k \kappa\left(a_{t} \bar{n} a_{-t}\right)\right)\right| \\
& \leq\left|e^{-\left(\frac{n}{2}+i \lambda\right) \rho_{\circ}\left(H_{\Xi}(\bar{n})+\left(-\frac{n}{2}+i \lambda\right) \rho_{\circ}\left(H_{\Xi}\left(a_{t} \bar{n} a_{-t}\right)\right)\right.}\right| \sup _{k \in K}|\phi(k)| .
\end{aligned}
$$

In order to complete the proof, we apply the following lemma.
Lemma 3.3 Let $t>0$ and $\bar{n} \in N_{\Xi}^{-}$. Then, we have
(i) $\quad e^{\rho_{\circ}(H \equiv(\bar{n}))} \geq 1$.
(ii) $e^{\rho_{\circ}\left(H_{\Xi}(\bar{n})\right)} \geq e^{\rho_{\circ}\left(H_{\Xi}\left(a_{t} \bar{n} a_{-t}\right)\right)}$.
(iii) $e^{\rho_{\circ}\left(H \equiv\left(a_{t} \bar{n} a_{-t}\right)\right)} \geq 1$.

The proof will be given at the end of this section.
For the case $-1<\mathcal{R e} e[i \lambda]-\frac{n}{2} \leq 0$, we use (iii) of the above lemma to see that

$$
\left|\psi_{t}(\bar{n})\right| \leq \sup _{k \in K}|\phi(k)| e^{-\left(\mathcal{R e}[i \lambda]+\frac{n}{2}\right) \rho_{0} H_{\Xi}(\bar{n})}
$$

which is an integrable function on N_{Ξ}^{-}.

In the case $\mathcal{R e}[i \lambda]-\frac{n}{2} \geq 0$, we use (ii) of the above lemma to see that

$$
\begin{aligned}
e^{-\left(\mathcal{R e}[i \lambda]+\frac{n}{2}\right) \rho_{0} H_{\Xi}(\bar{n})+\left(\mathcal{R e}[i \lambda]-\frac{n}{2}\right) \rho_{\circ}\left(a_{t} \bar{n} a_{-t}\right)} & \leq e^{-\left(\mathcal{R e}[i \lambda]+\frac{n}{2}\right) \rho_{0} H_{\Xi}(\bar{n})+\left(\mathcal{R e}[i \lambda]-\frac{n}{2}\right) \rho_{0}(\bar{n})} \\
& =e^{-n \rho_{0} H_{\Xi}(\bar{n})}
\end{aligned}
$$

Thus,

$$
\left|\psi_{t}(\bar{n})\right| \leq \sup _{k \in K}|\phi(k)| e^{-n \rho_{o} H_{\Xi}(\bar{n})}
$$

Hence, the result follows, since $\int_{N_{\Xi}^{-}} e^{-n \rho_{0} H_{\Xi}(\bar{n})} d \bar{n}<\infty$.
For any $\phi \in C\left(G / P_{\Xi}, \xi_{l, \lambda}\right)$ and $\Phi \in C(S)$, we have

$$
\begin{aligned}
\phi(h) & =\chi_{l}(k)^{-1} \Phi(u), \quad u=h \cdot u_{\circ}, \quad h \in K, \\
\left(\widetilde{P}_{l, \lambda} \phi\right)\left(k a_{t}\right) & =\int_{K} \omega_{l}\left(\widetilde{\kappa}\left(\left(k a_{t}\right)^{-1} h\right)\right) e^{\left.-\left(i \lambda+\frac{n}{2}\right) \rho_{0}\left(H_{\Xi}\left(\left(k a_{t}\right)^{-1} h\right)\right)\right)} \phi(h) d h, \\
\left(P_{l, \lambda} \Phi\right)(z) & =\int_{S} P_{l, \lambda}(z, \tilde{u}) \Phi(\tilde{u}) d \tilde{u}, \quad z=k a_{t} \cdot 0,
\end{aligned}
$$

where

$$
P_{l, \lambda}(z, \tilde{u})=\chi_{l}\left(u\left(k a_{t}\right)\right) \chi_{l}^{-1}(h) \omega_{l}\left(\widetilde{\kappa}\left(\left(k a_{t}\right)^{-1} h\right)\right) e^{\left.-\left(i \lambda+\frac{n}{2}\right) \rho_{\circ}\left(H_{\Xi}\left(\left(k a_{t}\right)^{-1} h\right)\right)\right)}
$$

$z=k a_{t} \cdot 0, \tilde{u}=h \cdot u_{0}$.
For $\Phi \in C(S)$, consider the function $\phi \in C\left(G / P_{\Xi}, \xi_{l, \lambda}\right)$ such that

$$
\phi(h)=\chi_{l}(k)^{-1} \Phi(u), u=h \cdot u_{\circ}, h \in K
$$

Then,

$$
\left.\widetilde{P}_{l, \lambda} \phi\right)\left(k a_{t}\right)=\chi_{l}\left(u\left(k a_{t}\right)\right)^{-1}\left(\left(P_{l, \lambda} \Phi\right)(z)\right)
$$

Let $r \in\left[0,1\left[\right.\right.$ such that $z=k a_{t} \cdot 0=r u=r k \cdot u_{\circ}$, which implies that $e^{t}=\frac{(1+r)^{2}}{1-r^{2}}$.
Then, by using formula (3.1), we obtain

$$
\lim _{r \longrightarrow 1^{-}}\left(\frac{(1+r)^{2}}{1-r^{2}}\right)^{\frac{n}{2}-i \lambda} \chi_{l}\left(u\left(k a_{t}\right)\right)^{-1}\left(P_{l, \lambda} \Phi\right)(r u)=2^{2\left(\frac{n}{2}-i \lambda\right)} C_{l}(\lambda) \chi_{l}^{-1}(k) \Phi(u)
$$

Thus, since $\chi_{l}(k) \chi_{l}^{-1}\left(u\left(k a_{t}\right)\right)=\left(1-r^{2}\right)^{l}$ (see [5]), we have

$$
\begin{aligned}
\lim _{r \longrightarrow 1^{-}}\left(1-r^{2}\right)^{i \lambda-\frac{n}{2}} \chi_{l}(k) \chi_{l}^{-1}\left(u\left(k a_{t}\right)\right)\left(P_{l, \lambda} \Phi\right)(r u) & =\lim _{r \longrightarrow 1^{-}}\left(1-r^{2}\right)^{i \lambda-\frac{n}{2}+l}\left(P_{l, \lambda} \Phi\right)(r u) \\
& =C_{l}(\lambda) \Phi(u) .
\end{aligned}
$$

Before giving the proof of Theorem 1.2(ii), we recall a result about representations of compact groups.

Let \widehat{K} be the set of equivalence classes of finite-dimensional irreducible representations of K. For $\delta \in \widehat{K}$, let $C(S)(\delta)$ be the linear span of all K-finite functions on S of type δ. Then, by the Stone-Weierstrass theorem, the algebraic sum $\bigoplus_{\delta \in \widehat{K}} C(S)(\delta)$ is dense in $C(S)$ under the topology of uniform convergence. Since S is compact, $C(S)$ is dense in $L^{p}(S)$ for $1 \leq p<\infty$, thus $\bigoplus_{\delta \in \widehat{K}} C(S)(\delta)$ is dense in $L^{p}(S)$.

For the proof of Theorem 1.2 (ii), we need the following lemma.

Lemma 3.4 Let $\lambda \in \mathbb{C}$ such that $\operatorname{Re}[i \lambda]>\frac{n}{2}-1$. Then, there exists a positive constant $\gamma_{l}(\lambda)$ such that for $\left.p \in\right] 1, \infty\left[\right.$ and $f \in L^{p}(S)$, we have:

$$
\left(\int_{S}\left|P_{l, \lambda} f(r u)\right|^{p} d u\right)^{\frac{1}{p}} \leq \gamma_{l}(\lambda)\left(1-r^{2}\right)^{-\left(\mathcal{R e}[i \lambda]-\frac{n}{2}+l\right)}\|f\|_{p}
$$

Proof For every $r \in\left[0,1\left[\right.\right.$, we introduce the function $P_{l, \lambda}^{r}$ on K as follows

$$
P_{l, \lambda}^{r}(k)=P_{l, \lambda}\left(r u_{\circ}, k^{-1} u_{\circ}\right) .
$$

Then, the above integral can be written as a convolution over the compact group K,

$$
P_{l, \lambda} f(r u)=f * P_{l, \lambda}^{r}(k), \quad u=k u_{\circ}
$$

By the Young-Hausdorff inequality, we have

$$
\left(\int_{S}\left|P_{l, \lambda} f(r u)\right|^{p} d u\right)^{\frac{1}{p}} \leq\|f\|_{p}\left\|P_{l, \lambda}^{r}\right\|_{1}
$$

Next, using the fact that

$$
\begin{aligned}
\left\|P_{l, \lambda}^{r}\right\|_{1} & =\int_{S}\left|P_{l, \lambda}\left(r u_{\circ}, u\right)\right| d u \\
& =\left(1-r^{2}\right)^{\frac{n}{2}+l-\mathcal{R e}[i \lambda]} \int_{S}\left(\frac{1}{\left|t\left(r u_{\circ}-u\right)\left(r u_{\circ}-u\right)\right|}\right)^{\frac{n}{2}+\mathcal{R e}[i \lambda]} d u
\end{aligned}
$$

we obtain from the Forelli-Rudin inequality (see [3]) that there exists a positive constant $\gamma_{l}(\lambda)$ such that

$$
\left\|P_{l, \lambda}^{r}\right\|_{1} \leq \gamma_{l}(\lambda)\left(1-r^{2}\right)^{-\left(\mathcal{R e}[i \lambda]-\frac{n}{2}+l\right)}
$$

This completes the proof of Lemma 3.4
Now, let us prove Theorem 1.2(ii). Let $f \in L^{p}(S)$. Then, for any $\epsilon>0$, there exists $\Phi \in \bigoplus_{\delta \in \hat{K}} C(S)(\delta)$ such that $\|f-\Phi\|_{p}<\epsilon$, and one gets

$$
\begin{array}{r}
\left\|C_{l}(\lambda)^{-1}\left(1-r^{2}\right)^{-\left(\frac{n}{2}-l-i \lambda\right)} P_{l, \lambda}^{r}(f)-f\right\|_{p} \leq\left\|C_{l}(\lambda)^{-1}\left(1-r^{2}\right)^{-\left(\frac{n}{2}-l-i \lambda\right)} P_{l, \lambda}^{r}(f-\Phi)\right\|_{p} \\
+\left\|C_{l}(\lambda)^{-1}\left(1-r^{2}\right)^{-\left(\frac{n}{2}-l-i \lambda\right)} P_{l, \lambda}^{r} \Phi-\Phi\right\|_{p}+\|\Phi-f\|_{p}
\end{array}
$$

where $P_{l, \lambda}^{r} f(u)=P_{l, \lambda} f(r u)$. By Lemma3.4

$$
\left\|C_{l}(\lambda)^{-1}\left(1-r^{2}\right)^{-\left(\frac{n}{2}-l-i \lambda\right)} P_{l, \lambda}^{r}(f-\Phi)\right\|_{p} \leq \gamma_{l}(\lambda)\left|C_{l}(\lambda)\right|^{-1}\|\Phi-f\|_{p}
$$

and Theorem 1.2 (i), we get

$$
\lim _{t \longrightarrow \infty}\left\|C_{l}(\lambda)^{-1}\left(1-r^{2}\right)^{-\left(\frac{n}{2}-l-i \lambda\right)} P_{l, \lambda}^{r} \Phi-\Phi\right\|_{p}=0
$$

Therefore,

$$
\lim _{t \longrightarrow \infty}\left\|C_{l}(\lambda)^{-1}\left(1-r^{2}\right)^{-\left(\frac{n}{2}-l-i \lambda\right)} P_{l, \lambda}^{r} f-f\right\|_{p} \leq \epsilon\left(\gamma_{l}(\lambda)+1\right)
$$

which implies (ii) and the proof of Theorem 1.2 is finished.

Proof of Lemma 3.3 For any

$$
\bar{n}^{-1}=\left(\begin{array}{cccc}
1+\frac{1}{2}\left(\xi^{2}-{ }^{t} \eta \eta\right) & { }^{t} \eta & -\xi & \frac{1}{2}\left(\xi^{2}-^{t} \eta \eta\right) \\
-\eta & I_{n-1} & 0 & -\eta \\
-\xi & 0 & 1 & -\xi \\
\frac{1}{2}\left({ }^{t} \eta \eta-\xi^{2}\right) & -^{t} \eta & \xi & 1+\frac{1}{2}\left({ }^{t} \eta \eta-\xi^{2}\right)
\end{array}\right) \in N_{\Xi}^{-}
$$

and

$$
a_{t}=\left(\begin{array}{cccc}
\cosh t & 0 & 0 & \sinh t \\
0 & I_{n-1} & 0 & 0 \\
0 & 0 & 1 & 0 \\
\sinh t & 0 & 0 & \cosh t
\end{array}\right) \in A_{\Xi}
$$

we have

$$
a_{t} \bar{n}^{-1} a_{-t}=\left(\begin{array}{cccc}
1+\frac{1}{2}\left(\xi^{2}-{ }^{t} \eta \eta\right) e^{-2 t} & { }^{t} \eta e^{-t} & -\xi e^{-t} & \frac{1}{2}\left(\xi^{2}-t\right. \\
-\eta \eta) e^{-2 t} \\
-\eta e^{-t} & I_{n-1} & 0 & -\eta e^{-t} \\
-\xi e^{-t} & 0 & 1 & -\xi e^{-t} \\
\frac{1}{2}\left({ }^{t} \eta \eta-\xi^{2}\right) e^{-2 t} & -{ }^{t} \eta e^{-t} & \xi e^{-t} & 1+\frac{1}{2}\left({ }^{t} \eta \eta-\xi^{2}\right) e^{-2 t}
\end{array}\right)
$$

Thus

$$
z=\bar{n}^{-1} \cdot 0=\frac{1}{2+2 i \xi+\frac{1}{2}\left({ }^{t} \eta \eta-\xi^{2}\right)}\binom{-i \xi-\frac{1}{2}\left({ }^{t} \eta \eta-\xi^{2}\right)}{-\eta}
$$

and

$$
\tilde{z}=a_{t} \bar{n}^{-1} a_{-t} \cdot 0=\frac{1}{2+2 i \xi e^{-t}+\frac{1}{2}\left({ }^{t} \eta \eta-\xi^{2}\right) e^{-2 t}}\binom{-i \xi e^{-t}-\frac{1}{2}\left({ }^{t} \eta \eta-\xi^{2}\right) e^{-2 t}}{-\eta e^{-t}} .
$$

By using Lemma3.2, we have

$$
\begin{aligned}
e^{2 \rho_{\circ}\left(H_{\Xi(\bar{n}))}\right.} & =\frac{\left|{ }^{t}\left(u_{\circ}-z\right)\left(u_{\circ}-z\right)\right|^{2}}{1-2^{t} \bar{z} z+|t z z|^{2}}=\frac{\left|1-2 z_{1}+{ }^{t} z z\right|^{2}}{1-2^{t} \bar{z} z+\left|{ }^{t} z z\right|^{2}} \\
& =1+2\left({ }^{t} \eta \eta+\xi^{2}\right)+\left({ }^{t} \eta \eta-\xi^{2}\right)^{2} \geq 1, \quad{ }^{t} z=\left(z_{1}, \ldots, z_{n}\right)
\end{aligned}
$$

and
$e^{2 \rho_{\circ}\left(H_{\Xi}\left(a_{t} \bar{n} a_{-t}\right)\right)}=\frac{\left|{ }^{t}\left(u_{\circ}-\tilde{z}\right)\left(u_{\circ}-\tilde{z}\right)\right|^{2}}{1-2^{t} \tilde{\tilde{z}} \tilde{z}+\left|{ }^{t} \tilde{z} \tilde{z}\right|^{2}}=1+2\left({ }^{t} \eta \eta+\xi^{2}\right) e^{-2 t}+\left({ }^{t} \eta \eta-\xi^{2}\right)^{2} e^{-4 t} \geq 1$.
Thus,

$$
e^{2 \rho_{\circ}\left(H_{\Xi}(\bar{n})\right)}-e^{2 \rho_{\circ}\left(H_{\Xi}\left(a_{t} \bar{n} a_{-t}\right)\right)}=2\left({ }^{t} \eta \eta+\xi^{2}\right)\left(1-e^{-2 t}\right)+\left({ }^{t} \eta \eta-\xi^{2}\right)^{2}\left(1-e^{-4 t}\right) \geq 0 .
$$

4 The Precise Action of the Generalized Poisson Transform $P_{l, \lambda}$ on $L^{2}(S)$

In this section, we have to study the action of the generalized Poisson transform $P_{l, \lambda}$ on $L^{2}(S)$.

First, recall that the Peter-Weyl decomposition can be stated as

$$
L^{2}(S)=\bigoplus_{m \in \wedge} V_{m},
$$

where \wedge is the set of all two-tuple, $m=\left(m_{1}, m_{2}\right) \in \mathbb{Z}^{2}$ with $m_{1} \geq m_{2}$. The K-irreducible component V_{m} is the finite linear span $\left\{\phi_{m} \circ k, k \in K\right\}$. Here the function $\phi_{m} \in V_{m}$ is the zonal spherical function.

Proposition 4.1 Let $\lambda \in \mathbb{C}, l \in \mathbb{Z}$ and let $f \in V_{m}$. Then, we have

$$
\left(P_{l, \lambda} f\right)(r u)=\Phi_{\lambda, m}^{l}(r) f(u)
$$

where $\Phi_{\lambda, m}^{l}(r)=\left(P_{l, \lambda} \phi_{m}\right)\left(r u_{\circ}\right)$.
Proof We introduce the operator $P_{l, \lambda}^{r}: L^{2}(S) \longrightarrow L^{2}(S)$:

$$
\left(P_{l, \lambda}^{r} f\right)(u)=\int_{S} P_{l, \lambda}(r u, v) f(v) d v
$$

Since the operator $P_{l, \lambda}^{r}$ commutes with the K-action, and this action is multiplicity free, it is Scalar on each component V_{m}. Hence there exists a constant $\Phi_{\lambda, m}^{l}(r)$ such that

$$
\begin{equation*}
P_{l, \lambda}^{r}=\Phi_{\lambda, m}^{l}(r) \cdot I \text { on } V_{m} \tag{4.1}
\end{equation*}
$$

where I is identity operator on V_{m}.
Taking the spherical function ϕ_{m} in (4.1), we get $\Phi_{\lambda, m}^{l}(r)=\left(P_{l, \lambda}^{r} \phi_{m}\right)\left(u_{\circ}\right)$. Thus, from Theorem [1.2, we deduce the following asymptotic behavior of the generalized spherical function $\Phi_{\lambda, m}^{l}(r)$.

Corollary 4.2 Let $l \in \mathbb{Z}, \lambda \in \mathbb{C}$ such that $\operatorname{Re}[i \lambda]>\frac{n}{2}-1$. Then, for $r \in[0,1[$, we have

$$
\lim _{r \longrightarrow 1^{-}}\left(1-r^{2}\right)^{-\left(\frac{n}{2}-l-i \lambda\right)} \Phi_{\lambda, m}^{l}(r)=C_{l}(\lambda)
$$

uniformly in $m \in \wedge$.

4.1 Proof of Theorem 1.1

(i) Let $F=P_{l, \lambda} f, f \in L^{p}(S)$. By Lemma 3.4, we get the right-hand side of the estimate in Theorem 1.1. Thus, $\left\|P_{l, \lambda} f\right\|_{\lambda, p}<\infty$.
(ii) Let $F=P_{l, \lambda} f, f \in A^{\prime}(S)$ such that $\|F\|_{\lambda, 2}<\infty$ and $f=\sum_{m \in \wedge} f_{m}$ be its K-type decomposition, then using Proposition 4.1, we get

$$
F(r u)=\sum_{m \in \wedge} \Phi_{\lambda, m}^{l}(r) f_{m}(u) \quad \text { in } \quad C^{\infty}([0,1[\times S) .
$$

Since $\|F\|_{\lambda, 2}<\infty$, we get

$$
\left(1-r^{2}\right)^{-(n-l-\mathcal{R e}[i \lambda])}\left\{\sum_{m \in \Lambda}\left|\Phi_{\lambda, m}^{l}(r)\right|^{2}\left\|f_{m}\right\|_{2}\right\}^{\frac{1}{2}}<\infty
$$

for every $r \in[0,1[$.
Let \wedge_{\circ} be a finite subset of \wedge, then we have

$$
\left(1-r^{2}\right)^{-\left(\frac{n}{2}-l-\mathcal{R e}[i \lambda]\right)}\left\{\sum_{m \in \wedge_{0}}\left|\Phi_{\lambda, m}^{l}(r)\right|^{2}\left\|f_{m}\right\|_{2}\right\}^{\frac{1}{2}} \leq\|F\|_{\lambda, 2}<\infty
$$

for every $r \in[0,1[$.
Next, using the asymptotic behavior of $\Phi_{\lambda, m}^{l}(r)$ given by Corollary 4.2, we obtain

$$
\left|C_{l}(\lambda)\right|^{2} \sum_{m \in \wedge_{\circ}}\left\|f_{m}\right\|_{2}^{2} \leq\|F\|_{\lambda, 2}^{2}<\infty
$$

from which we deduce that the left-hand side of the estimate in Theorem 1.1 holds for $p=2$.

For the case $p \in\left[2, \infty\left[\right.\right.$, let F be a \mathbb{C}-valued function on \mathcal{D} such that $\|F\|_{\lambda, p}<\infty$.
By using the fact that $\|F\|_{\lambda, 2} \leq\|F\|_{\lambda, p}$, there exist from Theorem 1.1 (iii) a function $f \in L^{2}(S)$ such that $F=P_{\lambda} f$ and $f(u)=\lim _{r \longrightarrow 1^{-}} g_{r}(u)$ in $L^{2}(S)$, where

$$
g_{r}(u)=\left|C_{l}(\lambda)\right|^{-2}\left(1-r^{2}\right)^{2\left(l+\mathcal{R e}[i \lambda]-\frac{n}{2}\right)} \int_{S} F(r v) \overline{P_{l, \lambda}(r u, v)} d v .
$$

Let Φ be a continuous function in S. Then we have

$$
\lim _{r \longrightarrow 1^{-}} \int_{S} g_{r}(u) \overline{\Phi(u)} d u=\int_{S} f(u) \overline{\Phi(u)} d u .
$$

But

$$
\begin{aligned}
\int_{S} g_{r}(u) \overline{\Phi(u)} d u & =\left|C_{l}(\lambda)^{-2}\left(1-r^{2}\right)\right|^{2\left(l+\mathcal{R e}[i \lambda]-\frac{n}{2}\right)} \int_{S}\left(\int_{S} F(r v) \overline{P_{l, \lambda}(r u, v)} d v\right) \overline{\Phi(u)} d u \\
& =\left|C_{l}(\lambda)^{-2}\left(1-r^{2}\right)\right|^{2\left(l+\mathcal{R e}[i \lambda]-\frac{n}{2}\right)} \iint_{S} \overline{P_{l, \lambda} \Phi(r v)} F(r v) d v .
\end{aligned}
$$

Thus by using the Holder inequality, we obtain

$$
\left|\int_{S} \overline{P_{l, \lambda} \Phi(r v)} F(r v) d v\right| \leq\left(\int_{S}|F(r v)|^{p} d v\right)^{\frac{1}{p}}\left(\int_{S}\left|\left(P_{l, \lambda} \Phi\right)(r v)\right|^{q} d v\right)^{\frac{1}{q}}
$$

where q is such that $\frac{1}{p}+\frac{1}{q}=1$.
Since $\|F\|_{\lambda, p}<\infty$, we obtain

$$
\left|\int_{S} g_{r}(u) \overline{\Phi(u)} d u\right| \leq\left|C_{l}(\lambda)^{-2}\left\|\left.\left(1-r^{2}\right)\right|^{\left(l+\mathcal{R e}[i \lambda]-\frac{n}{2}\right)}\left(\int_{S}\left|\left(P_{l, \lambda} \Phi\right)(r v)\right|^{q} d v\right)^{\frac{1}{q}}\right\| F \|_{\lambda, p}\right.
$$

Next, Theorem 1.2 shows that, for every $q>1$,

$$
\Phi(u)=C_{l}(\lambda)^{-1} \lim _{r \longrightarrow 1^{-}}\left(1-r^{2}\right)^{\left(l+\mathcal{R e}[i \lambda]-\frac{n}{2}\right)}\left(P_{l, \lambda} \Phi\right)(r u) \quad \text { in } \quad L^{q}(S)
$$

Hence,

$$
\|f\|_{p}=\sup _{\|\Phi\| \leq 1}\left|\int_{S} f(u) \overline{\Phi(u)}\right| d u \leq C_{l}(\lambda)^{-1}\|\Phi\|_{q}\|F\|_{\lambda, p}
$$

Finally, we deduce that $f \in L^{p}(S)$ and that $\left|C_{l}(\lambda)\|\mid f\|_{p} \leq\|F\|_{\lambda, p}\right.$.
For the case $1<p \leq 2$, Let x_{n} be an approximation of the identity in the space $C\left(K / K \cap M_{\Xi}, \chi_{l}\right)$ of continuous functions Φ on K satisfying $\Phi(k m)=\chi_{l}^{-1}(m) \Phi(k)$, $m \in K \cap M_{\Xi}$. That is, $\int_{K}\left|\chi_{l}(k)\right| x_{n}(k) d k=1$ and $\lim _{n \rightarrow \infty} \int_{K \backslash U} x_{n}(k) \chi_{l}(k) d k=0$ for every neighborhood U of the neutral element of K.

For each n, define the function F_{n} on G / K by

$$
F_{n}(g K)=\int_{K} x_{n}(k) F\left(k^{-1} g K\right) d k
$$

Then, $\lim _{n \rightarrow \infty} F_{n}=F$ pointwise in G. Since $F=P_{l, \lambda} f, \quad f \in A^{\prime}(S)$, there exist $f_{n} \in A^{\prime}(S)$ such that $F_{n}=P_{l, \lambda} f_{n}$.

For each $r \in\left[0,1\left[\right.\right.$, define a function F_{n}^{r} in S by $F_{n}^{r}(u)=F(r u)$. Then,

$$
\chi_{l}\left(k_{\circ}\right) F_{n}\left(r k_{\circ} \cdot e\right)=\chi_{l}\left(k_{\circ}\right) F_{n}^{r}\left(k_{\circ} \cdot e\right)=\left(\chi_{l} x_{n} * \chi_{l} F^{r}\right)\left(k_{\circ}\right)
$$

Therefore,

$$
\left\|\chi_{l} F_{n}^{r}\right\|_{2} \leq\left\|\chi_{l} x_{n}\right\|_{2}\left\|\chi_{l} F^{r}\right\|_{1} \leq\left\|\chi_{l} x_{n}\right\|_{2}\left\|\chi_{l} F^{r}\right\|_{p}
$$

which implies that $\left\|F_{n}\right\|_{\lambda, 2}<\infty$. Thus $f_{n} \in L^{2}(S)$.
Let q such that $\frac{1}{p}+\frac{1}{q}=1$ and let L_{n} be the linear form defined in $L^{q}(S)$ by

$$
L_{n}(\Phi)=\int_{K} \chi_{2 l}(k) f_{n}(k) \Phi(k) d k
$$

Since $p \leq 2$, we have $f_{n} \in L^{p}(S)$ and

$$
\left|L_{n} \Phi\right| \leq\left\|\chi_{2 l} f_{n}\right\|_{p}\|\Phi\|_{q} \leq\left\|\chi_{2 l}\right\|_{1}\left\|f_{n}\right\|_{p}\|\Phi\|_{q}
$$

By Theorem 1.2(ii), we known that

$$
f_{n}(u)=\lim _{r \longrightarrow 1^{-}}|C(\lambda)|^{-1}\left(1-r^{2}\right)^{\left(i \lambda-\frac{n}{2}+l\right)} P_{l, \lambda} f_{n}(r u) \quad \text { in } \quad L^{p}(S) .
$$

Hence, there exists a sequence $\left(r_{j}\right)$ with $r_{j} \rightarrow 1^{-}$as $j \rightarrow \infty$ such that

$$
f_{n}(u)=\lim _{j \longrightarrow \infty}|C(\lambda)|^{-1}\left(1-r_{j}^{2}\right)^{\left(i \lambda-\frac{n}{2}+l\right)} P_{l, \lambda} f_{n}\left(r_{j} u\right)
$$

almost everywhere in S.
By the classical Fatou lemma, we have

$$
\left\|f_{n}\right\|_{p} \leq|C(\lambda)|^{-1} \sup _{j}\left|\left(1-r_{j}^{2}\right)\right|^{\left(\mathcal{R e}[i \lambda]-\frac{n}{2}+l\right)}\left(\int_{S}\left|F_{n}\left(r_{j} u\right)\right|^{p} d u\right)^{\frac{1}{p}}
$$

which gives

$$
\left\|f_{n}\right\|_{p} \leq|C(\lambda)|^{-1}\left\|P_{l, \lambda} f_{n}\right\|_{\lambda, p}
$$

Hence,

$$
\left|L_{n}(\Phi)\right| \leq|C(\lambda)|^{-1}\left\|F_{n}\right\|_{\lambda, p}\|\Phi\|_{q}
$$

Now, from $\left\|\chi_{l} F_{n}^{r}\right\|_{p} \leq\left\|\chi_{l} x_{n}\right\|_{1}\left\|\chi_{l} F^{r}\right\|_{p}=\left\|\chi_{l} F^{r}\right\|_{p}$, we deduce that $\left\|F_{n}\right\|_{\lambda, p} \leq\|F\|_{\lambda, p}$ and $\left|L_{n} \Phi\right| \leq|C(\lambda)|^{-1}\|F\|_{\lambda, p}\|\Phi\|_{q}$.

Therefore the linear functionals L_{n} are uniformly bounded. By the BanachAlaoglu theorem, there exists a subsequence $\left\{L_{n_{i}}\right\}$ that converges under the weak ${ }^{*}$ topology to a bounded linear functional L on $L^{q}(S)$, with $\|L\| \leq|C(\lambda)|^{-1}\|F\|_{\lambda, p}$. By the Riesz representation theorem, there exists a unique function $f \in L^{p}(S)$ such that

$$
L(\Phi)=\int_{K} \chi_{2 l}(k) f(k) \Phi(k) d k
$$

Now, let $\phi_{g}(k)=\chi_{l}(u(g)) \chi_{l}^{-1}(k) \omega_{l}\left(\widetilde{\kappa}\left(g^{-1} k\right)\right) e^{-(i \lambda+n) \rho_{\circ}\left(H_{\equiv}\left(g^{-1} k\right)\right)}$.
Then, $F_{n}(g K)=L_{n}\left(\chi_{-2 l}(k) \phi_{g}(k)\right)$. Since $\left(F_{n_{j}}\right)$ converge pointwise to F and $\left(L_{n_{j}}\right)$ converge to L under the weak ${ }^{*}$ topology, we have

$$
F(g K)=\lim _{n_{j} \longrightarrow \infty} F_{n_{j}}(g K)=\lim _{n_{j} \longrightarrow \infty} L_{n_{j}}\left(\chi_{-2 l} \phi_{g}\right)=L\left(\chi_{-2 l} \phi_{g}\right) .
$$

Therefore, $F(g K)=P_{l, \lambda} f(g K)$.
(iii) Let $F=P_{l, \lambda} f, f \in L^{2}(S)$. Expanding f into its K-type series, $f=\sum_{m \in \wedge} f_{m}$ and using Proposition 4.1 we get the series expansion of F

$$
F(r u)=\sum_{m \in \wedge} \Phi_{\lambda, m}^{l}(r) f_{m}(u)
$$

in $C^{\infty}\left(\left[0,1[\times S)\right.\right.$, with $\sum_{m \in \wedge}\left|\Phi_{\lambda, m}^{l}(r)\right|^{2}\left\|f_{m}\right\|_{2}^{2}<\infty$, for all $r \in[0,1[$.
Now, for each $r \in\left[0,1\left[\right.\right.$, consider the following \mathbb{C}-valued function g_{r} on the Shilov boundary S given by

$$
g_{r}(u)=\left(1-r^{2}\right)^{-2\left(\frac{n}{2}-l-\mathcal{R e}[i \lambda]\right)} \int_{S} F(r v) \overline{P_{l, \lambda}(r u, v)} d v
$$

Thus,

$$
g_{r}(u)=\left(1-r^{2}\right)^{-2\left(\frac{n}{2}-l-\mathcal{R e}[i \lambda]\right)} \int_{S} \sum_{m \in \Lambda} \Phi_{\lambda, m}^{l}(r) f_{m}(v) \overline{P_{l, \lambda}(r u, v)} d v .
$$

Since, for every fixed $r \in\left[0,1\left[\right.\right.$, the series $\sum_{m \in \wedge} \Phi_{\lambda, m}^{l}(r) f_{m}(v)$ uniformly converges on S, we get

$$
g_{r}(u)=\left(1-r^{2}\right)^{-d\left(\frac{n}{d}-l-\mathcal{R e}[i \lambda]\right)} \sum_{m \in \wedge} \Phi_{\lambda, m}^{l}(r) \int_{S} f_{m}(v) \overline{P_{l, \lambda}(r u, v)} d v,
$$

and by Proposition 4.1 we have

$$
g_{r}(u)=\left(1-r^{2}\right)^{-2\left(\frac{n}{2}-l-\mathcal{R e}[i \lambda]\right)} \sum_{m \in \wedge}\left|\Phi_{\lambda, m}^{l}(r)\right|^{2} f_{m}(u),
$$

noticing that
$\left\|\left|C_{l}(\lambda)\right|^{-2} g_{r}-f\right\|_{2}^{2}=\sum_{m \in \Lambda}\left[\left|C_{l}(\lambda)\right|^{-2}\left(1-r^{2}\right)^{-2\left(\frac{n}{2}-l-\mathcal{R e} e[i \lambda]\right)}\left|\Phi_{\lambda, m}^{l}(r)\right|^{2}-1\right]^{2} \times\left\|f_{m}\right\|_{2}^{2}$
and, using the limit of the generalized spherical function $\Phi_{\lambda, m}^{l}(r)$ (which uniformly in $m \in \wedge$) given by Corollary 4.2, we see that

$$
\left.\lim _{r \rightarrow 1^{-}} \| C_{l}(\lambda)\right)^{-2} g_{r}-f \|_{2}^{2}=0
$$

which gives the desired result.
Remark 4.3 Note that, to prove the Theorems 1.1 and Theorem 1.2 in the case n even one can proceed also by computing explicitly $\Phi_{\lambda, m}^{l}(r)$ and its asymptotic behavior [2].

References

[1] S. Ben Saïd, Hardy-type spaces for eigenfunctions of invariant differential operators on homogenous line bundles over Hermitian symmetric spaces. Complex Var. Theory Appl. 48(2003), no. 10, 865-876. doi:10.1080/02781070310001617547
[2] F. El Wassouli, Représentation L ${ }^{p}$-intégrale des solutions du système d’ équations différentielles de Hua sur la boule de Lie. Thesis, Ibn Tofail University, Faculty of Sciences, 2007.
[3] , Function spaces and reproducing kernels on bounded symmetric domains. J. Funct. Anal. 88(1990), no. 1, 64-89. doi:10.1016/0022-1236(90)90119-6
4] S. Helgason, Groups and geometric analysis. Integral geometry, invariant differential operators and spherical functions. Pure and Applied Mathematics, 113, Academic Press, Orlando, FL, 1984.
[5] L. K. Hua, Harmonic analysis of functions of several variables in the classical domains. American Mathematical Society, Providence, RI, 1963.
[6] K. Okamoto, M. Tsukamoto, and K. Yokota, Generalized Poisson and Cauchy kernel functions on classical domains. Japan. J. Math. 26(2000), no. 1, 51-103.
[7] N. Shimeno, Eigenspaces of invariant differential operators on a homogeneous line bundle on a Riemannian symmetric space. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 37(1990), no. 1, 201-234.

Department of Mathematics, Faculty of Sciences, University Ibn Tofail, Kenitra, Morocco.
e-mail: f_elwassouli@yahoo.fr

[^0]: Received by the editors December 4, 2007; revised December 11, 2008.
 Published electronically August 18, 2010.
 AMS subject classification: 32A45, 30E20, 33C67, 33C60, 33C55, 32A25, 33C75, 11K70.
 Keywords: Lie ball, Shilov boundary, Fatou's theorem, hyperfuctions, parabolic subgroup, homogeneous line bundle.

