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Abstract. Let G(◦) and G(∗) be two groups of finite order n, and suppose that
each of the sets {u ∈ G; u ◦ v = u ∗ v for all v ∈ G} and {v ∈ G; u ◦ v = u ∗ v for all
u ∈ G} has n/2 elements. Then G(∗) can be obtained from G(◦) by one of the two
general constructions that are discussed in the paper.
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For finite groups G(◦) and G(∗) denote the size of {(u, v) ∈ G × G; u ◦ v �= u ∗ v}
by d(◦, ∗). If n is a power of two, n = |G|, and d(◦, ∗) < n2/4, then G(◦) ∼= G(∗), by [3].
Hence 2-groups G(◦) and G(∗) with d(◦, ∗) = n2/4 deserve a special attention. It is not
difficult to find examples of such groups [1, 2, 3]. Natalia Zhukavets systematically
studied the case n ≤ 32 in her thesis [7], and in this context she and the first author
discovered two general constructions of this paper that are responsible for the majority
of pairs (G(◦), G(∗)) with d(◦, ∗) = n2/4, if n = |G| is a power of two and n ≤ 64.

Put U = {u ∈ G; u ◦ v = u ∗ v for all v ∈ G} and V = {v ∈ G; u ◦ v = u ∗ v for all
u ∈ G}. The sets U and V can be, in general, empty. However, if U (or V ) is non-empty,
then it is a subgroup of both G(◦) and G(∗). This can be verified easily and we shall
show that both U and V are non-empty if and only if G(◦) and G(∗) share the unit
element.

If |G : U| = 2 = |G : V |, then clearly d(◦, ∗) ≤ n2/4. However, the case d(◦, ∗) <

n2/4 never occurs, and it turns out that conditions d(◦, ∗) = n2/4 and |G : U| = 2 =
|G : V | are strong enough to enable a rather detailed description of the relationship
of G(◦) and G(∗). This description can be turned into a prescription of how one
can obtain, given a group G(◦), all groups G(∗) with |G : U| = 2 = |G : V | such that
x ◦ y = x ∗ y if and only if x ∈ U or y ∈ V . This prescription has the form of two
constructions, one corresponding to the case U = V and the other one to the case
U �= V .

Basic properties of these constructions and their characterizations are the content
of Sections 1 and 2. In the second part of Section 1 we also give some auxiliary results
that are used in Sections 3 and 4 when determining the cases, in which the constructions
yield a group that is isomorphic to the original group. Theorems 3.4 and 3.8 give a more
abstract description of situations when a group can be obtained from another group
by one of our constructions, and Section 5 deals with groups that can be obtained in
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this way from finite abelian groups. Related papers and some prospects for future work
are mentioned at the end of the paper.

The main advantage of the presented constructions seems to be their simplicity.
One could easily interpret them in the language of group extensions, or in other
ways. However, we have refrained from doing so, since it is not clear how such an
interpretation might prove useful with respect to our aims. Our goal is to find a system
of simple passages between 2-groups of the same order, where any two groups of that
order are (transitively) connected. This could lead to a new approach to 2-groups, when
a property might be established by a verification for a single group and by a proof that
it is retained by each passage. The methods of this paper make interconnected all
2-groups of order n when n ≤ 16. A slight generalization yields the case n = 32, and
there are reasons to hope that other kinds of passages will be found for higher orders.

When dealing with operations ◦ and ∗, we denote the unit elements by 1◦ and 1∗,
and the inverse elements by x−1 and x∗, respectively.

1. Agents of disagreement. Suppose that G(◦) and G(∗) are groups of a finite
order n with d(◦, ∗) = n2/4. The set {(x ◦ y)−1 ◦ (x ∗ y); x, y ∈ G} certainly contains 1◦,
and we shall see that under certain additional conditions this set contains, besides the
unit element, either just one element, or two elements that are mutually inverse.

LEMMA 1.1. Let ◦ and ∗ be two group operations on the set G. Put U = {u ∈
G; u ◦ v = u ∗ v for all v ∈ G} and V = {v ∈ G; u ◦ v = u ∗ v for all u ∈ G}. Then either
both U and V are empty, or ◦ and ∗ share the unit element. In the latter case both U and
V are subgroups of G(◦) and of G(∗).

Proof. If there is a common unit, then it is in U ∩ V . Conversely, if u ∈ U , then
u ◦ 1◦ = u = u ∗ 1∗ = u ◦ 1∗, and 1◦ = 1∗. Hence we can assume, for the rest of the
proof, that ◦ and ∗ share the unit element 1. Recall that by x∗ we denote the inverse of
x ∈ G with respect to ∗. For u ∈ U one has u ◦ u−1 = 1 = u ∗ u∗ = u ◦ u∗, and u−1 = u∗

follows. For every y ∈ G there is u ◦ (u−1 ◦ y) = y = u ∗ (u−1 ∗ y) = u ◦ (u−1 ∗ y), which
means u−1 ◦ y = u−1 ∗ y and u−1 ∈ U . If u1, u2 ∈ U and y ∈ G, then (u1 ◦ u2) ◦ y =
u1 ◦ (u2 ◦ y) = u1 ∗ (u2 ∗ y) = (u1 ∗ u2) ∗ y = (u1 ◦ u2) ∗ y, and the rest is clear. �

THEOREM 1.2. Let ◦ and ∗ be two different group operations on a set G, and suppose
that each of the subgroups U = {u ∈ G; u ◦ v = u ∗ v for all v ∈ G} and V = {v ∈ G; u ◦
v = u ∗ v for all u ∈ G} is of index 2 in both G(◦) and G(∗). Put S = U ∩ V.

If U = V = S, then there exists a (unique) h ∈ S ∩ Z(G(◦)) such that for all x, y ∈ G

x ∗ y =
{

x ◦ y, if x ∈ S or y ∈ S;

x ◦ y ◦ h, if x ∈ G \ S and y ∈ G \ S.

If U �= V, then there exists a (unique) h ∈ Z(S) with h ◦ u ◦ h = u for all u ∈ U \ S and
h ◦ v ◦ h = v for all v ∈ V \ S such that for all x, y ∈ G

x ∗ y =




x ◦ y, if x ∈ U or y ∈ V,

x ◦ y ◦ h, if x ∈ G \ U and y ∈ U \ V,

x ◦ y ◦ h−1, if x ∈ G \ U and y ∈ G \ (U ∪ V ).

https://doi.org/10.1017/S0017089503001253 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089503001253


MULTIPLICATION TABLES OF GROUPS 295

Proof. Suppose first U = V . If x ∈ S or y ∈ S, then x ◦ y = x ∗ y, by the very
definition of U and V . Consider x, y ∈ G \ S with x ◦ y �= x ∗ y. Then for all u, v ∈
G \ S there exist s, t ∈ S such that v = s ◦ y = s ∗ y and u = t ◦ x ◦ s−1 = t ∗ x ∗ s−1.
This means u ◦ v �= u ∗ v, as u ◦ v = t ◦ x ◦ y = t ∗ (x ◦ y) and u ∗ v = t ∗ (x ∗ y). Put
h = (x ◦ y)−1 ◦ (x ∗ y), and note that (u ◦ v)−1 ◦ (u ∗ v) is also equal to (the “agent”)
h. Hence u ∗ v = u ◦ v ◦ h for all u, v ∈ G \ S, and it remains to show h ∈ Z(G(◦)).
However, for every u ∈ G \ S we have u ∗ u ∗ u = u ∗ (u ◦ u ◦ h) = (u ◦ u) ◦ (u ◦ h) and
u ∗ u ∗ u = (u ◦ u ◦ h) ∗ u = (u ◦ u) ◦ (h ◦ u).

Assume now U �= V . Then G(◦)/S ∼= G(∗)/S is isomorphic to Klein’s 4-group,
and W = S ∪ (G \ (U ∪ V )) is a subgroup of both G(◦) and G(∗). Put U1 = U \ S,
V1 = V \ S and W1 = W \ S. If x ∈ G \ U = V1 ∪ W1, then there exists y ∈ G \ V =
U1 ∪ W1 with x ◦ y �= x ∗ y. Suppose first y ∈ U1. Every z ∈ W1 can be expressed as
y ◦ v, v ∈ V1, and x ◦ z = x ◦ y ◦ v = (x ◦ y) ∗ v �= (x ∗ y) ∗ v = x ∗ z. By reversing this
procedure one derives x ◦ y �= x ∗ y for all y ∈ U1, if x ◦ z �= x ∗ z for some z ∈ W1.
Hence x ◦ y �= x ∗ y for x, y ∈ G if and only if x ∈ G \ U = V1 ∪ W1 and y ∈ G \ V =
U1 ∪ W1, and so for x, y ∈ W one gets x ◦ y �= x ∗ y just when x, y ∈ W1. By the first
part of the proof there exists h1 ∈ S ∩ Z(W (◦)) with x ∗ y = x ◦ y ◦ h1 for all x, y ∈ W1.
Put h = h−1

1 .
If x, y ∈ W1 and u ∈ U1, then (u ◦ x) ∗ y = u ∗ x ∗ y = u ∗ (x ◦ y ◦ h−1) = ((u ◦ x) ◦

y) ◦ h−1, and so one obtains x′ ∗ y = x′ ◦ y ◦ h−1 for all (x′, y) ∈ (V1 ∪ W1) × W1.
Consider now u ∈ U1 and v ∈ V1, and put x = u−1 ◦ v−1 = u−1 ∗ v−1 = u∗ ∗ v∗.

From 1 = x ∗ x∗ = x ◦ x∗ ◦ h−1 we get x∗ = x−1 ◦ h, and v ∗ u = x∗ = x−1 ◦ h = v ◦
u ◦ h follows. If u′ is a further element of U1, then (u′ ◦ v) ∗ u = u′ ∗ v ∗ u = u′ ∗ (v ◦ u ◦
h) = ((u′ ◦ v) ◦ u) ◦ h, and hence x ∗ y = x ◦ y ◦ h for all (x, y) ∈ (V1 ∪ W1) × U1.

Now, for u ∈ U1 and v ∈ V1 we also obtain v ◦ u ◦ h ◦ u ◦ h = (v ◦ u ◦ h) ∗ u =
(v ∗ u) ∗ u = v ∗ (u ∗ u) = v ◦ u ◦ u, and h ◦ u ◦ h = u follows. Therefore u ◦ h ◦ v ◦ h =
h−1 ◦ u ◦ v ◦ h = h−1 ◦ h ◦ u ◦ v = u ◦ v, and h ◦ v ◦ h = v. �

Theorem 1.2 was obtained by generalizing examples of 2-groups of small order
n with d(◦, ∗) = n2/4. Nevertheless, there is no need to assume that G is finite in the
theorem: it suffices to require |G : U| = 2 = |G : V |.

In the rest of this section we shall make several observations that mainly pertain
to conditions of the form huh = u and hvh = v. These observations will be made in the
context of just one group operation.

For a subset M of a group G denote by 〈M〉 the least subgroup of G that contains
M. Note that 〈G \ T〉 = G when T < G is of index 2. For every M ⊆ G put

Q(M) = {h ∈ 〈M〉 \ M; hgh = g for all g ∈ M}.

PROPOSITION 1.3. Assume T < G and |G : T | = 2. Then Q(G \ T) ≤ Z(T), and
h ∈ Z(T) belongs to Q(G \ T) if and only if hgh = g for some (and thus for all) g ∈ G \ T.

Proof. Each t ∈ T can be expressed as g1g2, where g1, g2 ∈ G \ T . If h ∈ Q(G \ T),
then hth−1 = hg1g2h−1 = hg1hh−1g2h−1 = g1g2 = t. Hence Q(G \ T) ⊆ Z(T), and for
h1, h2 ∈ Q(G \ T) one gets h1h2 = h2h1 and h1h2gh1h2 = h1h2gh2h1 = h1gh1 = g, for all
g ∈ G \ T . If h ∈ Q(G \ T) then clearly h−1 ∈ Q(G \ T), and so Q(G \ T) really forms
a subgroup of Z(T).

Suppose now hgh = g for some g ∈ G \ T , where h ∈ Z(T). Then hgth =
hghh−1th = gt for all t ∈ T , and hence h ∈ Q(G \ T). �
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For a group G and its subsets M1 and M2 put

Q(M1, M2) = Q(M1 \ M2) ∩ Q(M2 \ M1).

To indicate which group operation is used we write, e.g., Q◦(M) or Q∗(M1, M2).
Note that h ∈ Q◦(U, V ) in the situation of Theorem 1.2 if U �= V . In such a case

we clearly have Q◦(U, V ) = Q∗(U, V ), and hence we write just Q(U, V ). This
set consists of all h ∈ S with h ◦ x ◦ h = x for every x ∈ G \ W , where S < W <

G and (W \ S) = (U \ S) ◦ (V \ S) = (U \ S) ∗ (V \ S). Therefore Q(U, V ) = S ∩
Q◦(G \ W ) and Q◦(G \ W ) ≤ Z(W (◦)), by Proposition 1.3.

LEMMA 1.4. Assume h ∈ Q(G \ T), where T < G and |G : T | = 2. Set αh(t) = t for
t ∈ T and αh(g) = gh for g ∈ G \ T. Then αh ∈ Aut(G) and each α ∈ Aut(G) that fixes
T pointwise is of such a form.

Proof. Fix g ∈ G \ T and t ∈ T , and note that h ∈ Z(T), by Proposition 1.3.
We have αh(gt) = gth = ght = αh(g)αh(t), αh(tg) = tgh = αh(t)αh(g) and αh(g · gt) =
g2t = ghgth = αh(g)αh(gt). On the other hand, if α ∈ Aut(G) fixes T pointwise, set
h = g−1α(g). Then α(tg) = tα(g) = t · gh, and ghgh = α(g)α(g) = α(g2) = g · g yields
h ∈ Q(G \ T). �

LEMMA 1.5. Assume h ∈ Q(G \ T), where T < G and |G : T | = 2. Then hg = h−1

for every g ∈ G \ T.

Proof. The equality g−1hg = h−1 is just another form of the equality hgh = g. �
LEMMA 1.6. Assume z ∈ Z(T), where T < G and |G : T | = 2. Then zg′

z = zgz ∈
Z(G) for all g, g′ ∈ G \ T.

Proof. Consider g, g′ ∈ G \ T . There exists t ∈ T with g′ = tg, and zg′ = ztg = zg.
The element zgz belongs to Z(T), and it remains to show (zgz)g = zgz. However,
(zgz)g = g−2zgzg = zg−2gzg = (g−1zg)z = zgz. �

LEMMA 1.7. Let U and V be two distinct subgroups of G with |G : U| = 2 = |G :
V |. Set S = U ∩ V and denote by W the subgroup of G with |G : W | = 2, S < W,
and W/S = U/S · V/S. Then Q(U, V ) ≤ Q(U \ S)Q(V \ S) ≤ Z(S), and for p ∈ Q(U \
S), q ∈ Q(V \ S) there is pu = p−1 for all u ∈ U \ S and qv = q−1 for all v ∈ V \ S.
Furthermore, pv = pv′ ∈ Q(U \ S) for all v, v′ ∈ V \ S and qu = qu′ ∈ Q(V \ S) for all
u, u′ ∈ U \ S. Set z = pvq and w = uv. Then zwz = zw′

z ∈ Q(U, V ) for all w′ ∈ W \ S,
and zw = (qup)−1.

Proof. We have Q(U \ S) ≤ Z(S) and Q(V \ S) ≤ Z(S), by Proposition 1.3, and
Q(U, V ) = Q(U \ S) ∩ Q(V \ S), by the definition. Thus Q(U, V ) ≤ Q(U \ S)Q(V \
S) ≤ Z(S).

Fix p ∈ Q(U \ S) and q ∈ Q(V \ S). Then pu = p−1 and qv = q−1, by Lemma 1.5.
Relations pv = pv′

and qu = qu′
follow from p, q ∈ Z(S). From (V \ S)u = V \ S and

(U \ S)v = U \ S we get pv ∈ Q(U \ S) and qu ∈ Q(V \ S). Hence z = pvq ∈ Z(S), and
zwz = zw′

z ∈ Z(W ) follows from Lemma 1.6. We have w = uv and zw = (pvq)uv =
((pv)−1qu)v = (pv2

)−1(qu)−1 = (qup)−1. Recall that all of p, q, pv and qu belong to Z(S).
Hence

zwzuzwz = p−1(qu)−1pvqup−1(qu)−1pvq = (qu)−1qp−1pvupvp−1(qu)−1q

= (qu)−1qu(qu)−1q = (qu)−1uq = u−1q−1u2q = u−1u2q−1q = u,

and, similarly, zwzvzwz = p−1pvvp−1pv = p−1v−1pv2p−1v−1pv = v, as pv2 = v2p. �
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2. Constructions. We shall now show that conditions on S, U , V and h, as
expressed in Theorem 1.2, suffice to construct new group operations.

PROPOSITION 2.1. Let G = G(·) be a group, S < G a subgroup of index 2, and
h ∈ S ∩ Z(G). Define a new operation ∗ on G by

x ∗ y =
{

xy, if x ∈ S or y ∈ S,

xyh, if x ∈ G \ S and y ∈ G \ S.

Then G(∗) is a group.

Proof. We have x ∗ y = xyhπ(x)π(y), where π : G → {0, 1} maps S to 0, and G \ S to
1. Denote by ⊕ the addition on {0, 1} modulo 2, and put εi = π (gi), where gi ∈ G, 1 ≤
i ≤ 3. Then (g1 ∗ g2) ∗ g3 = (g1g2hε1ε2 ) ∗ g3 = ((g1g2) ∗ g3)hε1ε2 = g1g2g3h(ε1⊕ε2)ε3+ε1ε2

and g1 ∗ (g2 ∗ g3) = g1 ∗ (g2g3hε2ε3 ) = g1g2g3hε1(ε2⊕ε3)+ε2ε3 . The equality (ε1 ⊕ ε2)ε3 +
ε1ε2 = ε1(ε2 ⊕ ε3) + ε2ε3 is clear when ε1 = ε2 = ε3 = 1, and can be easily verified
when some εi, 1 ≤ i ≤ 3, is equal to 0. �

PROPOSITION 2.2. Let G = G(·) be a group, U < G and V < G subgroups of index 2,
U �= V, and let h ∈ S, S = U ∩ V, be such that huh = u for all u ∈ U \ S and hvh = v

for all v ∈ V \ S. Define a new operation ∗ on G by

x ∗ y =




xy, if x ∈ U or y ∈ V,

xyh, if x /∈ U and y ∈ U \ V,

xyh−1, if x /∈ U and y ∈ G \ (U ∪ V ).

Then G(∗) is a group.

Proof. We can assume h �= 1. For every x, y ∈ G there exists ε ∈ {−1, 0, 1} such that
x ∗ y = xyhε. If ε �= 0, then the value of ε depends only on y. If u ∈ U , then ux = u ∗ x
falls into U just when x ∈ U , and hence u ∗ (x ∗ y) = uxyhε = (ux) ∗ y = (u ∗ x) ∗ y for
all x, y ∈ G.

The definition of ∗ is left-right symmetric, as it can be expressed by

x ∗ y =




xy, if y ∈ V or x ∈ U,

hxy, if y /∈ V and x ∈ V \ U,

h−1xy, if y /∈ V and x ∈ G \ (U ∪ V ).

For the proof of the above formula put W = S ∪ (G \ (U ∪ V )) and note that
Proposition 1.3 yields h ∈ Z(W ), as we assume hxh = x for all x ∈ G \ W . The
formula now follows by considering the four cases with x ∈ (V \ S) ∪ (W \ S) and
y ∈ (U \ S) ∪ (W \ S). For example, if x ∈ W \ S and y ∈ U \ S, then x ∗ y = xyh =
xh−1y = h−1xy.

The left-right symmetry gives (x ∗ y) ∗ v = x ∗ (y ∗ v) for all x, y ∈ G and v ∈ V . If
(x ∗ y) ∗ z = x ∗ (y ∗ z) and u ∈ U , then ((u ∗ x) ∗ y) ∗ z = (u ∗ (x ∗ y)) ∗ z = u ∗ ((x ∗
y) ∗ z) = u ∗ (x ∗ (y ∗ z)) = (u ∗ x) ∗ (y ∗ z), and, similarly, (x ∗ y) ∗ (z ∗ v) = x ∗ (y ∗
(z ∗ v)), provided v ∈ V . We see that it suffices to verify (x ∗ y) ∗ z = x ∗ (y ∗ z) just for
x, z ∈ W \ S. The case y ∈ W follows from Proposition 2.1, and the left-right symmetry
allows us to assume y ∈ U \ V . Then (x ∗ y) ∗ z = (xyh) ∗ z = xyhzh−1 = xyz and
x ∗ (y ∗ z) = x ∗ (yz) = xyz.

The associative law has been verified and the rest is easy. �

https://doi.org/10.1017/S0017089503001253 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089503001253
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The group G(∗) of Proposition 2.1 will be denoted by G[S, h], while the group G(∗)
of Proposition 2.2 will be denoted by G[U, V, h].

By writing G(∗) = G[S, h] we shall mean that G = G(·) is a group, S < G its
subgroup of index 2 and h ∈ S ∩ Z(G).

Similarly, G(∗) = G[U, V, h] means that U and V are distinct subgroups of
G = G(·), with |G : U| = |G : V | = 2, and that h ∈ U ∩ V belongs to Q(U, V ). In
such a situation we shall denote U ∩ V always by S, and S ∪ (G \ (U ∪ V )) by W .
If G(∗) = G[U, V, h], then W (∗) = W [S, h−1] and Q(U, V ) ≤ Q(G \ W ) ≤ Z(W ), by
Proposition 1.3. These facts will be used below without reference.

If G(∗) and G(·) are distinct finite groups, where the multiplication tables agree on
the half of the columns and the half of the rows, then either G(∗) = G[S, h] for some S
and h �= 1, or G(∗) = G[U, V, h] for some U , V and h �= 1, by Theorem 1.2.

We shall observe that G(∗) shares with G = G(·) a large part of its subgroup
structure. This also holds for normal subgroups, and to this purpose we first compare
conjugation in both groups.

PROPOSITION 2.3. Consider a group G = G(·). If G(∗) = G[S, h], then x∗ = x−1 if
x ∈ S, x∗ = x−1h−1 if x ∈ G \ S, and xyx−1 = x ∗ y ∗ x∗ for all x, y ∈ G.

If G(∗) = G[U, V, h], then x∗ = x−1 if x ∈ U ∪ V, x∗ = x−1h if x ∈ W \ S, and

x ∗ y ∗ x∗ =




xyx−1, when {x, y} ⊆ U or {x, y} ⊆ V or {x, y} ⊆ W ;

xyx−1h−1, when x ∈ V \ S and y ∈ U \ S;

xyx−1h, in all other cases.

Proof. Assume first G(∗) = G[S, h]. Suppose y ∈ G \ S. If x ∈ S, then
x∗ = x−1 and x ∗ y ∗ x∗ = (xy) ∗ x−1 = xyx−1, while for x ∈ G \ S we get
x∗ = x−1h−1, as x ∗ (x−1h−1) = xx−1h−1h = 1, and x ∗ y ∗ x∗ = (xyh) ∗ (x−1h−1) =
xyhx−1h−1 = xyx−1. Every y ∈ S can be expressed as y1 ∗ y2, where y1, y2 ∈ G \ S,
and x ∗ y ∗ x∗ = (x ∗ y1 ∗ x∗) ∗ (x ∗ y2 ∗ x∗) = (xy1x−1) ∗ (xy2x−1) = xy1y2x−1h =
xy1y2hx−1 = x(y1 ∗ y2)x−1 = xyx−1, for every x ∈ G.

Assume now G(∗) = G[U, V, h]. Then U(∗) = U(·), V (∗) = V (·) and for W (∗) =
W [S, h−1] the first part of the proof can be used. It remains to express x ∗ y ∗ x∗

when x and y do not belong together to U or V or W , respectively. This means, in
particular, that neither x ∈ S, nor y ∈ S. If x ∈ U \ S, then x ∗ y ∗ x∗ = (xy) ∗ x−1 is
equal to xyx−1h since xy /∈ U . If x ∈ V \ S, then x ∗ y ∗ x∗ = x ∗ (yx−1) = xyx−1h±1,
where yx−1 ∈ U \ S for y ∈ W \ S, while yx−1 ∈ W \ S for y ∈ U \ S. Finally, let
x ∈ W \ S. Then x∗ = x−1h, and x ∗ y ∗ x∗ = x ∗ (yx−1h) = xyx−1h for y ∈ U \ S and
x ∗ y ∗ x∗ = (xy) ∗ (x−1h) = xyx−1h for y ∈ V \ S. �

PROPOSITION 2.4. Consider a group G = G(·). If G(∗) = G[S, h], then a (normal)
subgroup H of G(·) is a (normal) subgroup of G(∗) if and only if H ≤ S or h ∈ H.

If G(∗) = G[U, V, h], then a subgroup H of G(·) is a subgroup of G(∗) if and only if
H ≤ U ∪ V or h ∈ H. The normality is retained if and only if H ≤ S or h ∈ H.

Proof. It is clear from the definition of G(∗) that a subgroup H of G(·) is a subgroup
of G(∗), if one of the named conditions holds. From Proposition 2.3 we also see that if
H is normal in G(·), and H ≤ S or h ∈ H, then it is normal in G(∗). When H ≤ G(·)
does not fulfil H ≤ S or H ⊆ U ∪ V (the latter means, in fact, H ≤ U or H ≤ V ),
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then one can find x ∈ H with x · x �= x ∗ x, and therefore H constitutes in such a case
a subgroup of G(∗) only when h ∈ H. If H is normal in both G(·) and G(∗), and H
intersects U \ V or V \ U , then h ∈ H, by Proposition 2.3. �

Proposition 2.3 also yields a description of commutators.

PROPOSITION 2.5. If G(∗) = G[S, h], then xyx−1y−1 = x ∗ y ∗ x∗ ∗ y∗ for all x, y ∈
G. Assume G(∗) = G[U, V, h], and put a = xyx−1y−1 and b = x ∗ y ∗ x∗ ∗ y∗, for some
x, y ∈ G. Then

b =




a, if {x, y} ⊆ U or {x, y} ⊆ V or {x, y} ⊆ W ;

ah−1, if y ∈ V \ S and x /∈ V, or x ∈ W \ S and y /∈ W ;

ah, if y ∈ W \ S and x /∈ W, or x ∈ V \ S and y /∈ V.

Proof. If G(∗) = G[S, h], then xyx−1 = x ∗ y ∗ x∗, and the commutator equality is
clear if y ∈ S. If y ∈ G \ S, then y∗ = y−1h−1, and hence (xyx−1) ∗ y∗ = xyx−1y∗h =
xyx−1y−1. Assume G(∗) = G[U, V, h] and consider the commutators a and b. Groups
U and V are the same in both operations, and hence a = b if x, y ∈ U or x, y ∈ V .
For x, y ∈ W use the first part of the proof. Now, if x ∈ V \ S and y ∈ U \ S, then
b = (xyx−1h−1) ∗ y−1 = xyx−1h−1y−1 = ah, as required. In the other remaining cases
b = (xyx−1h) ∗ y∗, and for y /∈ W we get b = xyx−1hy−1 immediately, while for y ∈ W
the equality b = xyx−1hy−1 follows from b = xyx−1hy∗h−1 and y∗ = y−1h. In all these
cases we therefore have b = ah when y ∈ W \ S, and b = ah−1 when y /∈ W . �

We shall now be concerned with subgroups γi(G) and γi(G(∗)) that occur in the
lower central series, and partly also with the iterated centres ϑi(G) and ϑi(G(∗)).

PROPOSITION 2.6. Assume G(∗) = G[S, h]. Then γi(G) = γi(G(∗)) for all i ≥ 1, and
ϑj(G) = ϑj(G(∗)) for all j ≥ 0.

Proof. We have γ1(G(·)) = G = γ1(G(∗)), and γi(G) ≤ S for i ≥ 2. Thus γi(G)
is a subgroup of G(∗) for i ≥ 2, and it equals γi(G(∗)) because of the coinciding
commutators. Similarly h ∈ ϑj(G) for j ≥ 1, and hence ϑj(G) is always a subgroup
of G(∗), by Proposition 2.4. The coinciding conjugation implies ϑj(G) = ϑj(G(∗)). �

PROPOSITION 2.7. Assume G(∗) = [U, V, h]. If one of the groups G(∗) or G(·) is
nilpotent, then both of them are nilpotent, and their nilpotency classes differ at most by
one.

Proof. Put S1 = S∗
1 = S and define Si+1 (or S∗

i+1), i ≥ 1, to be the least subgroup
of G(·) (or G(∗)) that contains all elements xyx−1y−1 (or x ∗ y ∗ x∗ ∗ y∗) with y ∈ G
and x ∈ Si (or x ∈ S∗

i ). Thus Si+1 = [Si, G] in standard notation, and S∗
i+1 is defined

in the same way with respect to G(∗). If y ∈ G and x ∈ Si ≤ S, then xyx−1y−1 =
x ∗ y ∗ x∗ ∗ y∗, by Proposition 2.5. Hence Si = S∗

i for all i ≥ 1. Groups G(·) and G(∗)
are nilpotent if and only if Sk = 1 for some k ≥ 1. If this happens and k is minimal, then
1 = Sk � Sk−1 � . . . � S1 � G is a central series of length k + 1 in both G(·) and G(∗).
We have [S, G] ≤ [G, G] ≤ S, and Si+1 ≤ γi+1(G) ≤ Si follows by induction, 1 ≤ i < k.
Such a result is also true for the operation ∗, and so the length of each of the lower
central series is either k or k + 1. �
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PROPOSITION 2.8. Assume G(∗) = G[U, V, h]. Then (G(∗))′ ⊆ G′ if and only if h ∈ G′.
When h ∈ G′ and G is nilpotent, then the nilpotency class of G(∗) does not exceed the
nilpotency class of G(·).

Proof. Let a and b be as in Proposition 2.5. If h ∈ G′, then a ∈ G′ implies b ∈ G′,
and (G(∗))′ ≤ G′ ≤ S. If a and b are such that a �= b, then b ∈ G′ immediately yields
h ∈ G′. The rest follows from G′ ≤ S. �

PROPOSITION 2.9. Assume G(∗) = G[U, V, h]. The following are equivalent:
(i) γi(G) and γi(G(∗)) coincide as groups for all i ≥ 2;

(ii) G′ = (G(∗))′; and
(iii) h ∈ G′ ∩ (G(∗))′.

Proof. Points (i) and (ii) are equivalent, since both G′ and (G(∗))′ always are
subgroups of S, and xyx−1y−1 = x ∗ y ∗ x∗ ∗ y∗ when x ∈ S, by Proposition 2.5. That
statement also yields the implication (iii) ⇒ (ii), while the converse follows from
Proposition 2.8. �

We conclude this section by a statement which has an obvious proof, but still seems
to be worth recording.

PROPOSITION 2.10. Assume G(∗) = G[S, h] or G(∗) = G[U, V, h]. Then 〈h〉 is a
normal subgroup of both G(·) and G(∗), and x〈h〉 �→ x ∗ 〈h〉 is an isomorphism G/〈h〉 ∼=
G(∗)/〈h〉.

3. Isomorphisms of related subgroups. Groups G1 and G2 are said to be 2-related,
if G1

∼= G(·) and G2
∼= G[S, h] for some group G. The relation is reflexive (take h =

1) and symmetric (if G(∗) = G[S, h], then G(·) can be identified with G(∗)[S, h−1]).
Similarly, we say that G1 and G2 are 4-related, if there exists G with G1

∼= G(·) and
G2

∼= G[U, V, h]. One gets again a reflexive and symmetric relation.
We say that G1 and G2 are 2,4-related if they are 2-related or 4-related. We refer to

the transitive closure of these relations, when we call G1 and G2 transitively 2-related
(or transitively 4-related, or transitively 2,4-related ).

PROPOSITION 3.1. Let G1 and G2 be groups with a common subgroup S, |G1 : S|=
2 = |G2 : S|. If there exist ui ∈ Gi \ S, i ∈ {1, 2}, with su1 = su2 for all s ∈ S, then G1 and
G2 are 2-related.

Proof. Define ϕ : G2 → G1 by ϕ(u2s) = u1s and ϕ(s) = s, for all s ∈ S. Then
ϕ(su2) = ϕ(u2su2 ) = u1su2 = u1su1 = su1. Define ∗ on G1 by x ∗ y = ϕ(ϕ−1(x)ϕ−1(y)).
For all s, t ∈ S we get s ∗ t = st, s ∗ tu1 = ϕ(stu2) = s · tu1 and u1s ∗ t = ϕ(u2st) =
u1s · t. Hence G1(∗) = G1[S, h] for some h ∈ S ∩ Z(G1), by Theorem 1.2. Since ϕ−1 :
G1(∗) → G2 is an isomorphism, the result follows. �

COROLLARY 3.2. Let G1 and G2 be groups with a common subgroup S, |G1 : S|= 2 =
|G2 : S|. If there exist ui ∈ G \ S, i ∈ {1, 2}, with su1 = su2 for all s ∈ S, and such that
u2

1 = u2
2, then G1 and G2 are isomorphic, and an isomorphism ϕ : G2

∼= G1 can be defined
by ϕ(s) = s and ϕ(su2) = su1 for all s ∈ S.

Proof. We have ϕ : G2
∼= G1(∗), where ∗ is defined as in the proof of Proposition 3.1.

The proof will be complete if we show x ∗ y = x · y for all x, y ∈ G1. This is needed
just for x = su1 and y = u1t, where s, t ∈ S, and su1 ∗ u1t = ϕ(su2 · u2t) = su2

2t = su2
1t =

su1 · u1t. �
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PROPOSITION 3.3. Assume S < G, |G : S| = 2 and h = zxz, where z ∈ Z(S) and x ∈
G \ S. Define α : G → G by α(s) = s and α(sx) = sxz, for all s ∈ S. Then h ∈ S ∩ Z(G),
and α : G[S, h] ∼= G is an isomorphism.

Proof. The element h belongs to S ∩ Z(G), by Lemma 1.6. By Proposition 2.3,
x∗ ∗ s ∗ x = x−1sx = (xz)−1s(xz), for all s ∈ S. Furthermore, x ∗ x = xxzxz = (xz)(xz),
and hence α is an isomorphism by Corollary 3.2 (with u2 = x and u1 = xz). �

THEOREM 3.4. Groups G1 and G2 are 2-related if and only if there exist groups
Hi ∼= Gi with S < Hi and |Hi : S| = 2, and elements ui ∈ Hi \ S, i ∈ {1, 2}, such that
su1 = su2 for all s ∈ S.

Proof. If such groups and elements exist, then G1 and G2 are 2-related by
Proposition 3.1. If G1 and G2 are 2-related, then there exists G = G(·) with G2

∼=
G(∗) = G[S, h] and G1

∼= G(·). Put H2 = G(∗), H1 = G(·), choose u1 = u2 ∈ G \ S, and
use Proposition 2.3. �

Proposition 3.1 and Corollary 3.2 correspond to Lemmas 1.4 and 1.5 of [3].

We now turn to 4-related groups.

PROPOSITION 3.5. Let G1 and G2 be groups with a common subgroup S, |G1 : S|= 4 =
|G2 : S|. If there exist ui, vi ∈ Gi \ S, uiS �= viS, i ∈ {1, 2}, with su1 = su2 and sv1 = sv2

for all s ∈ S, and such that u2
1 = u2

2 ∈ S and v2
1 = v2

2 ∈ S, then G1 and G2 are 4-related.

Proof. Define ϕ : G2 → G1 by ϕ(s) = s, ϕ(u2s) = u1s, ϕ(v2s) = v1s and ϕ(u2v2s) =
u1v1s, for all s ∈ S. Note that su1v1 = su2v2 for all s ∈ S, and hence ϕ(sw2) =
ϕ(w2sw2 ) = w1sw2 = w1sw1 = sw1, if wi stands for ui, vi or uivi, i ∈ {1, 2}. Conditions
u2

1 = u2
2 and v2

1 = v2
2 imply that ϕ is an isomorphism when restricted to mappings

S ∪ Su2 → S ∪ Su1 and S ∪ Sv2 → S ∪ Sv1, by Corollary 3.2. Define ∗ on G1 by
x ∗ y = ϕ(ϕ−1(x)ϕ−1(y)), and put U = S ∪ Su1 and V = S ∪ Sv1. We shall show that
x ∗ y = xy whenever x ∈ U or y ∈ V . The cases x, y ∈ U and x, y ∈ V follow from the
mentioned partial isomorphisms. Assume x = u1s and y = w1t, where s, t ∈ S and wi

stands for vi or uivi, i ∈ {1, 2}. Then x ∗ y = ϕ(u2s · w2t) = ϕ(u2w2sw2 t) = u1w1sw1 t =
u1s · w1t = xy (the case w1 = v1 is clear, and u2(u2v2) = u2

1v2 = v2(u2
1)v1 ). Similarly,

x ∗ y = ϕ(sw2 · tv2) = stw
−1
1 w1v1 = xy when y = tv1 and x = sw1, where s, t ∈ S and wi

equals ui or uivi, i ∈ {1, 2}. The rest follows from Theorem 1.2, since ϕ−1 : G1(∗) → G2

is an isomorphism. �
COROLLARY 3.6. Let G1 and G2 be groups with a common subgroup S, |G1 : S|= 4 =

|G2 : S|. Suppose that there exist ui, vi ∈ G \ S, uiS �= viS, i ∈ {1, 2}, with su1 = su2 and
sv1 = sv2 for all s ∈ S, and with u2

1 = u2
2 ∈ S and v2

1 = v2
2 ∈ S. Then (u1v1)2 = (u2v2)2

if and only if [u1, v1] = [u2, v2], and in such a case G1 and G2 are isomorphic, and an
isomorphism ϕ : G2 → G1 can be defined by ϕ(s) = s, ϕ(su2) = su1, ϕ(sv2) = sv1 and
ϕ(su2v2) = su1v1, for all s ∈ S.

Proof. We have [ui, vi]uivi = (v−2
i u−2

i )v
−1
i (uivi)2, i ∈ {1, 2}. Since [ui, vi] ∈ S and

su1v1 = su2v2 for all s ∈ S, and since (v−2
1 u−2

1 )v
−1
1 = (v−2

2 u−2
2 )v

−1
2 , there is [u1, v1] = [u2, v2]

if and only if (u1v1)2 = (u2v2)2. Suppose that these equalities hold and note that
our definition of ϕ coincides with the definition of ϕ : G2

∼= G1(∗) in the proof of
Proposition 3.5. We shall show that x ∗ y = x · y for all x, y ∈ G1. This is already
known for x ∈ U = S ∪ Su1 and y ∈ V = S ∪ Sv1. The mapping ϕ is an isomorphism
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when restricted to S ∪ Su2v2 → S ∪ Su1v1, by Corollary 3.2, and hence x ∗ y = x · y
also holds for x, y ∈ W = S ∪ Su1v1.

There are three remaining cases. Consider s, t ∈ S. Assume first y = u1t ∈
U \ S. If x = v1s ∈ V \ S then x ∗ y = ϕ(v2su2t) = ϕ(v2u2su2 t) = ϕ(u2v2[v2, u2]su2 t) =
u1v1[v1, u1]su1 t = v1s · u1t = xy. For the case x = u1v1s ∈ W \ S we get x ∗ y =
ϕ(u2

2v2[v2, u2]su2 t) = ϕ(v2(u2
2)v2 [v2, u2]su2 t) = v1(u2

1)v1 [v1, u1]su1 t = xy.
Finally, let us have y = u1v1t ∈ W \ S and x = v1s ∈ V \ S. Then x ∗ y =

ϕ(v2u2v2su2v2 t) = ϕ(u2u−2
2 (u2v2)2su2v2 t) = u1u−2

1 (u1v1)2su1v1 t = xy, and the proof is
complete. �

PROPOSITION 3.7. Assume U < G and V < G, where U �= V and |G : U| = |G :
V | = 2. Consider u ∈ U \ V, v ∈ V \ U, p ∈ Q(U \ V ) and q ∈ Q(V \ U), and put z =
pvq and h = zuvz. Define α : G → G by α(s) = s, α(su) = sup, α(sv) = svq and α(suv) =
suvz, for all s ∈ U ∩ V. Then h ∈ Q(U, V ), and α : G[U, V, h−1] ∼= G is an isomorphism.

Proof. The element h belongs to Q(U, V ), by Lemma 1.7. Put G(∗) = G[U, V, h−1].
Operations ∗ and · coincide on U and V , and hence we need to verify, by Corollary 3.6,
just u ∗ u = upup, v ∗ v = vqvq and w ∗ w = wzwz, where w = uv. However, pup = u,
as p ∈ Q(U \ V ), qvq = v, as q ∈ Q(V \ U), and w ∗ w = wwh = wwzwz = wzwz. �

Note that the definition of α does not depend on the choice of u ∈ U \ V and
v ∈ V \ U , by Lemma 1.7. Note also that from Lemma 1.4 one sees immediately that
the restrictions of α to U → U and V → V are isomorphisms.

THEOREM 3.8. Groups G1 and G2 are 4-related if and only if there exist groups Hi ∼=
Gi with S < Hi and |Hi : S| = 4, and elements ui, vi ∈ Hi \ S, i ∈ {1, 2}, with uiS �= viS,
u2

1 = u2
2, v2

1 = v2
2 , su1 = su2 and sv1 = sv2 , for all s ∈ S.

Proof. Use Proposition 3.5 if there exist groups Hi, i ∈ {1, 2}, and put H2 = G(∗)
and H1 = G(·), when G2

∼= G(∗) = G[U, V, h] and G1
∼= G(·). �

4. Agents form a vector space. When deciding which groups are 2,4-related to a
given group G = G(·), the number of situations to be considered can be often reduced
by applying isomorphism statements like Propositions 3.3 and 3.7. One can also use
the following lemma (which overlaps with [6, Lemmas 2.4 and 2.5]). The proof of the
lemma is easy and hence it is omitted.

LEMMA 4.1. Consider a group G = G(·) and an automorphism α ∈ Aut(G). Then
α : G[S, h] ∼= G[α(S), α(h)] and α : G[U, V, h] ∼= G[α(U), α(V ), α(h)].

Constructions of G[S, h] and G[U, V, h] can be subjected to a superimposition, thus
producing an affine behaviour. Propositions 4.2 and 4.3 describe this phenomenon, and
we use it below in Propositions 4.4 and 4.5.

PROPOSITION 4.2. Assume G1 = G[S, h1] and G2 = G[S, h1h2], where h1, h2 ∈ S ∩
Z(G). Then G2 = G1[S, h2].

Proof. Denote by ∗ the operation of G1 and by � the operation of G2. Consider
u, v ∈ G. If u ∈ S or v ∈ S, u � v = u ∗ v = uv. If u, v ∈ G \ S, then u � v = uvh1h2 =
(uvh1) ∗ h2 = u ∗ v ∗ h2. �

PROPOSITION 4.3. Assume G1 = G[U, V, h1] and G2 = G[U, V, h1h2], where h1, h2 ∈
Q(U, V ). Then G2 = G1[U, V, h2].

https://doi.org/10.1017/S0017089503001253 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089503001253


MULTIPLICATION TABLES OF GROUPS 303

Proof. Denote by ∗ the operation of G1 and by � the operation of G2. Consider
x, y ∈ G. If x ∈ U or y ∈ V , then x � y = x ∗ y = xy. Assume x ∈ G \ U . If y ∈ U \ V ,
then x � y = xyh1h2 = x ∗ y ∗ h2, and if y ∈ G \ (U ∪ V ), then x � y = xyh−1

2 h−1
1 =

xyh−1
1 h−1

2 = x ∗ y ∗ h−1
2 . �

PROPOSITION 4.4. Assume S < G and |G : S| = 2. Put K = {zxz; z ∈ Z(S) and x ∈
G \ S}. Then K ≤ S ∩ Z(G), and (S ∩ Z(G))/K is an elementary abelian 2-group. If
h1, h2 ∈ S ∩ Z(G) and h1h−1

2 ∈ K, then G[S, h1] ∼= G[S, h2].

Proof. If z ∈ Z(S) and x, y ∈ G \ S, then zxz = zyz ∈ S ∩ Z(G), by Lemma 1.6.
Fix x ∈ G \ S. We already know that K = {zxz; z ∈ Z(S)} ⊆ S ∩ Z(G). Furthermore,
(zxz)−1 = z−1(z−1)x = (z−1)xz−1 and (zx

1z1)(zx
2z2) = (z1z2)x(z1z2), for all z, z1, z2 ∈

Z(S). Hence K ≤ S ∩ Z(G). If h ∈ S ∩ Z(G), then hxh = h2 ∈ K , and thus (S ∩
Z(G))/K is an elementary abelian 2-group.

Note now that while K has been defined with respect to the group G = G(·), one
gets, by Proposition 2.3, the same subgroup when G(·) is replaced by G(∗) = G[S, h],
h ∈ S ∩ Z(G). Therefore it suffices to prove G[S, h] ∼= G for h ∈ K , by Proposition 4.2.
However, such an isomorphism exists by Proposition 3.3. �

PROPOSITION 4.5. Let U < G and V < G be subgroups of G with U �= V and |G :
U| = |G : V | = 2. Put S = U ∩ V and define W < G by S < W and W/S = U/S ·
V/S. Furthermore, put K = {zwz; z ∈ Q(U \ S)Q(V \ S) and w ∈ W \ S}. Then K ≤
Q(U, V ) and Q(U, V )/K is an elementary abelian 2-group. If h1, h2 ∈ Q(U, V ) and
h1h−1

2 ∈ K, then G[U, V, h1] ∼= G[U, V, h2].

Proof. Fix u ∈ U \ S and v ∈ V \ S. Every z ∈ Q(U \ S)Q(V \ S) can be written
as p1q, where p1 ∈ Q(U \ S) and q ∈ Q(V \ S), and p1 can be expressed as pv, p ∈
Q(U \ S), because Uv = U and Sv = S. There is zwz = zw′

z ∈ Q(U, V ) for all w,w′ ∈
W \ S, by Lemma 1.7. Hence K ⊆ Q(U, V ) and we can assume w = uv. Consider
z, z1, z2 ∈ Q(U \ S)Q(V \ S) and note that they belong to Z(S), by Proposition 1.3.
The equalities (zwz)−1 = z−1(z−1)w = (z−1)wz−1 and (zw

1 z1)(zw
2 z2) = (z1z2)w(z1z2) prove

that K is a subgroup of Q(U, V ). Q(U, V )/K is an elementary abelian 2-group, as
h2 = hwh ∈ K for every h ∈ Q(U, V ) ≤ Z(W ).

Group K does not change when G(∗) = G[U, V, h] replaces G(·) in the definition of
K , as ∗ and · agree on U and V , Q∗(U, V ) = Q(U, V ), and the conjugation agrees, by
Proposition 2.3, when one of the arguments is in S. Hence for a proof of G[U, V, h1] ∼=
G[U, V, h2] it suffices to show G[U, V, h] ∼= G, where h = zwz ∈ K , by Proposition 4.3.
However, this follows from Proposition 3.7. �

Sets (S ∩ Z(G))/K and Q(U, V )/K are vector spaces over the 2-element field. One
also gets a vector space when K is replaced just by (S ∩ Z(G))2 ≤ K or Q(U, V )2 ≤
K , respectively. The corresponding weaker form of Proposition 4.5 appeared in [6
Lemmas 2.6 and 2.7]. Unfortunately, in that paper the proof of its Lemma 2.7 is
hard to understand, since it uses, without saying so, a description of isomorphisms
corresponding to our Corollary 3.6.

The next statement is presented without a proof, since it is an immediate
consequence of Propositions 4.4 and 4.5.

COROLLARY 4.6. Assume G(∗) = G[S, h] or G(∗) = G[U, V, h], and suppose that h
is of a finite order. Then G(∗) ∼= G[S, h′] or G(∗) ∼= G[U, V, h′], respectively, for some h′

of order a power of two.
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In case of 4-related groups one gets another isomorphism by switching roles of U
and V . There is Q(U, V ) = Q(V, U) and hence for h ∈ Q(U, V ) we can construct both
G[U, V, h] and G[V, U, h−1]. Denote the corresponding group operations by ∗ and ◦,
respectively, and define α : G → G by α(x) = x when x ∈ U ∪ V and α(x) = xh−1 when
x ∈ G \ (U ∪ V ) = W \ S. Fix u ∈ U and v ∈ V . Then u ∗ u = u2 = u ◦ u, v ∗ v = v2 =
v ◦ v, u ◦ v = uvh−1 = (u ∗ v)h−1 = α(u ∗ v) and (u ◦ v) ◦ (u ◦ v) = (uvh−1)(uvh−1)h =
(uv)2h−1 = (u ∗ v) ∗ (u ∗ v). Hence one can apply Corollary 3.6 to G2 = G(◦),
G1 = G(∗), u1 = u2 = u and v1 = v2 = v, and we see that α is an isomorphism (as
was mentioned in [6]). We can state:

PROPOSITION 4.7. Let U < G and V < G be subgroups of index 2, U �= V. Then
G[U, V, h] ∼= G[V, U, h−1] for all h ∈ Q(U, V ).

5. Groups related to finite abelian groups.

PROPOSITION 5.1. Assume h ∈ H ≤ G = G(·). If G(∗) = G[S, h] and |H : H ∩ S| =
2, then H(∗) = H[S ∩ H, h]. If G(∗) = G[U, V, h] and |H : H ∩ U ∩ V | = 4, then
H(∗) = H[U ∩ H, V ∩ H, h]. If there exists, in addition, N < G such that N < S and
G = H × N, then G(∗) = H(∗) × N, in both cases.

Proof. Since H ≤ G(·) contains h, it is also a subgroup of G(∗), by Proposition 2.4.
In case G(∗) = G[S, h] we get h ∈ H ∩ S ∩ Z(H), and hence the definition of H(∗)
is just a restriction of the definition of G(∗). The same holds in the case G(∗) =
G[U, V, h], since h ∈ Q(U ∩ H, V ∩ H), and |H : H ∩ U ∩ V | = 4 implies H ∩ U ∩
V = (H ∩ U) ∩ (H ∩ V ) < H ∩ U < H and H ∩ U ∩ V < H ∩ V < H. The existence
of N < S with G = H × N means that both H(∗) and N are normal in G(∗), by
Proposition 2.4, and therefore G(∗) = H(∗) × N (note that operations ∗ and · coincide
on N). �

Proposition 5.1 is one of the tools needed to determine groups that are 2-related
or 4-related to finite abelian groups. We also need several standard properties of finite
abelian groups; the proofs are provided just for the sake of completeness.

LEMMA 5.2. Let G be a finite abelian p-group.
(i) If g, u ∈ G and N ≤ G are such that G = N × 〈u〉, g ∈ N and |g| ≤ |u|, then

G = N × 〈gu〉.
(ii) If u ∈ G \ Gp, then there exist N ≤ G and g ∈ Gp such that G = N × 〈gu〉.

(iii) If h ∈ G is of order p, then there exist N ≤ G and u ∈ G such that G = N × 〈u〉
and h ∈ 〈u〉.

Proof. Assume G = N × 〈u〉, g ∈ N and |g| ≤ |u|. If (ug)i ∈ N, then ui ∈ N, ui = 1
and gi = 1. Hence N ∩ 〈gu〉 = 1, and so G = N × 〈gu〉.

Assume u ∈ G \ Gp and let G = C1 × · · · × Ck be a decomposition to cyclic groups.
Then u = u1 . . . uk for ui ∈ Ci, 1 ≤ i ≤ k, and we can clearly assume that there exists r,
1 ≤ r ≤ k, such that |ui| = |Ci| exactly when 1 ≤ i ≤ r, and that |u1| ≥ · · · ≥ |ur|. From
point (i) of this lemma we then see that C1 can be replaced by 〈u1 . . . ur〉, and the rest
is easy.

To prove (iii), express h as h1 . . . hk, where hi ∈ Ci, 1 ≤ i ≤ k. We can assume that
there exists s, 1 < s ≤ k, such that hi �= 1 exactly when 1 ≤ i ≤ s, and that |C1| ≤ · · · ≤
|Cs|. Let |C1| = pt and let ui ∈ Ci, 1 ≤ i ≤ s, be such that (ui)pt−1 = hi. Then one can
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replace C1 by 〈u1 . . . us〉, again by point (i) of this lemma, and we can set u = u1 · · · us

and N = C2 × · · · × Ck. �
LEMMA 5.3. Let G be a finite p-group, and suppose that A × B < G is of index p.

Then there exist x ∈ G \ (A × B) and B1, C ≤ B such that G = 〈A, x〉 × B1, C ≤ 〈A, x〉
and B = C × B1, where C is cyclic or trivial.

Proof. Suppose first that there exists x ∈ G \ (A × B) with xp ∈ A. If xia lies in
B, for an integer i and a ∈ A, then i = pj for an integer j since otherwise x would be
an element of A × B. But xpja ∈ A, by our assumption on x, and so xia = 1. Hence
〈A, x〉 ∩ B = 1 and G = 〈A, x〉 × B.

Suppose now xp /∈ A, for every x ∈ G \ (A × B). Then xp = ab for some a ∈ A,
b ∈ B, and b /∈ Bp. Indeed, if b were equal to some bp

1, b1 ∈ B, we would have (xb−1
1 )p =

a ∈ A. Now, B = B1 × 〈gb〉, for some g = hp, h ∈ B, by point (ii) of Lemma 5.2. Since
x can be replaced by xh, we see that g = 1 can be assumed. We have A × B = A1 × B1,
where A1 = A × 〈b〉. Therefore G = 〈A1, x〉 × B1, by the first step of this proof, and
〈A1, x〉 = 〈A, b, x〉 = 〈A, xp, x〉 = 〈A, x〉. �

The above lemmas will be used just for p = 2. The latter one remains true when
G/(A × B) is assumed to be cyclic. However, the present form is sufficient for our
purposes.

Assume G(∗) = G[S, h] or G(∗) = G[U, V, h], where G = G(∗) is finite abelian. We
wish to describe possible isomorphism types of G(∗), and hence the order of h can
be assumed to be a power of two, by Corollary 4.6. The expression of G as H × N,
where H is the Sylow 2-subgroup and N is the subgroup of odd order elements, satisfies
the assumptions of Proposition 5.1, and we can therefore consider just the case of G a
2-group.

Let us take G(∗) = G[S, h]. We are interested only in the cases when G(∗)
is not isomorphic to G(·), and hence we can assume h /∈ S2, by Proposition 3.3.
Proposition 4.4 yields G[S, h] ∼= G[S, hg], for all g ∈ S2, and so, by point (ii) of
Lemma 5.2, we can also assume S = 〈h〉 × M, for some M ≤ G. Lemma 5.3 then
gives G(·) = 〈h, x〉 × N, for some x ∈ G \ S and N ≤ M. Put H = 〈h, x〉, and note that
H/〈h〉 is cyclic and that H(∗) is abelian, by Proposition 2.3. From Proposition 2.10 we
see that both H(·) and H(∗) are products of at most two cyclic groups. Since C2a × C2b

is 2-related to a C2a′ × C2b′ if and only if these groups have an isomorphic subgroup of
index 2, by Theorem 3.4, we conclude that these groups are 2-related if and only (a′, b′)
or (b′, a′) is equal to (a + 1, b − 1) or (a − 1, b + 1). We can state:

THEOREM 5.4. Let G1 and G2 be two finite non-isomorphic abelian groups. Then G1

and G2 are 2-related if and only if there exist integers a, b ≥ 0, a �= b, and an abelian
group N such that

G1
∼= C2a+1 × C2b × N and G2

∼= C2a × C2b+1 × N.

COROLLARY 5.5. All finite abelian 2-groups are transitively 2-related.

Let us now turn to the situation when G(∗) = G[U, V, h] and G(·) �∼= G(∗) is a finite
abelian 2-group. Then h has to be an involution, since it belongs to Q(U, V ).

Point (iii) of Lemma 5.2 yields the existence of w ∈ S and M < S, for which
h ∈ 〈w〉 and S = 〈w〉 × M. A double application of Lemma 5.3 allows us to express
G as 〈x, y, w〉 × N, where N < S. Proposition 5.1 makes it possible to treat just the
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group H = 〈x, y, w〉, and we shall consider separately cases of rank 2 and rank 3. The
case of rank 2 is covered by Proposition 5.6.

Assume H = 〈x, y, w〉 = 〈u1〉 × 〈u2〉 × 〈u3〉. Since H/H ∩ S ∼= G/S is a 4-group,
there exists a nontrivial product of a subset of {u1, u2, u3} that falls into S. This product
can replace one of its factors in the decomposition of H, by point (i) of Lemma 5.2.
Thus we can assume u3 ∈ S. Consider now v = v1v2v3 ∈ H, where vi ∈ 〈ui〉, 1 ≤ i ≤ 3,
are such that h ∈ 〈v〉, |vi| = |v| or vi = 1, for all i with 1 ≤ i ≤ 3, and |v| is equal to the
least |uj|, for which 1 ≤ j ≤ 3 and vj �= 1.

If |v| = |u1|, then H = (〈v〉 × 〈u2〉) × 〈u3〉, by point (i) of Lemma 5.2 (put N =
〈u2〉 × 〈u3〉, u = u1 and g = vu−1), and we are in the situation of rank 2 again, as u3 ∈ S
means that Proposition 5.1 can be applied once more.

Hence we can assume both |v| < |u1| and |v| < |u2|, which implies v ∈
〈u2

1, u2
2, u3〉 = H ∩ S and |u3| = |v3| = |v|. Thus H = 〈u1〉 × 〈u2〉 × 〈v〉, h ∈ 〈v〉, and

one can use Proposition 5.7.

PROPOSITION 5.6. Suppose H(∗) = H[U, V, h], where H = 〈x〉 × 〈y〉, |x| = 2a, |y| =
2b and a ≥ b ≥ 1. Then exactly one of the following cases takes place:

(i) a = 2, b = 1 and H(∗) ∼= Q8;
(ii) a ≥ 2, b = 1 and H(∗) ∼= Mod2a+1 ;

(iii) a ≥ 2, b = 2 and H(∗) ∼= 〈x, y, z; x2a = y2 = z2 = 1, yzy−1 = xzx−1 =
z, xyx−1 = yz〉 is a semidirect product of C2 × C2 and C2a ;

(iv) a ≥ 2, b ≥ 2 and H(∗) is a semidirect product of two cyclic groups,
where H(∗) ∼= 〈x, y; x2a = y2b = 1, xyx−1 = y1+2b−1〉 or H(∗) ∼= 〈x, y; x2a = y2b =
1, yxy−1 = x1+2a−1〉.

Proof. The only choice for S is 〈x2〉 × 〈y2〉, and the subgroups U , V and W match
the subgroups 〈x, y2〉, 〈y, x2〉 and 〈xy, x2〉 = 〈xy, y2〉 in some order. Since H can be
expressed also as 〈xy〉 × 〈y〉 (by point (i) of Lemma 5.2) we can assume that either
W = 〈y, x2〉 or W = 〈xy, y2〉, with no loss of generality. The roles of U and V are
interchangeable, by Proposition 4.7, and hence we also can assume U = 〈x, y2〉. Thus
the order of x in H(∗) always equals 2a.

Suppose first b = 1. Then S = 〈x2〉, h = x2a−1
and y ∗ x ∗ y∗ = xh = x1+2a−1

, by
Proposition 2.3, and so H(∗) ∼= Mod2a+1 if y ∗ y = 1. Now, y ∗ y = 1 when V = 〈y, x2〉,
while in the case W = 〈y, x2〉 and a ≥ 3 we get y′ = yx2a−2 ∈ W \ S, y′ ∗ x ∗ (y′)∗ =
y ∗ x ∗ y∗ and y′ ∗ y′ = y2x2a−1

h−1 = 1. The case W = 〈y, x2〉 and a = 2 yields y ∗ y =
y2h = h, which means that both x and y are of order 4 in H(∗), and therefore H(∗) ∼= Q8.

Assume now b ≥ 2. Then h ∈ {x2a−1
, y2b−1

, x2a−1
y2b−1}. Consider the automorphism

α of H(·) that sends x to x and y to yx2a−b
. (The existence of the automorphism α

follows from point (i) of Lemma 5.2.) Then α(U) = U and α(y2b−1
) = x2a−1

y2b−1
, which

means that the case h = x2a−1
y2b−1

needs not be considered, by Lemma 4.1. We always
have y ∗ x ∗ y∗ = xh and x ∗ y ∗ x∗ = yh, and hence one of the situations described
in point (iv) appears when the order of y in G(∗) equals 2b. This is certainly true
when V = 〈y, x2〉. Let us take W = 〈y, x2〉. Then y ∗ y = y2h, and hence the order of y
in G(∗) is 2b if h = x2a−1

or b ≥ 3. Assume b = 2 and y2 = h. Then y becomes an
involution in G(∗), and by setting z = h we get the defining relations of (iii). �

PROPOSITION 5.7. Suppose H(∗) = H[U, V, h], where H = 〈x〉 × 〈y〉 × 〈g〉, |x| = 2a,
|y| = 2b, a ≥ b ≥ 1, |g| = 2c, h = g2c−1

and U ∩ V = 〈x2, y2, g〉. Then either
(i) G(∗) ∼= 〈x, y, z; x2a = y2b = z2c = 1, xzx−1 = yzy−1 = z, xyx−1 = yz2c−1〉 is a

semidirect product of C2b × C2c and C2a ; or
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(ii) G(∗) ∼= 〈x, y; x2a = 1, y4 = 1, xyx−1 = y−1〉 is a semidirect product of C4 and
C2a , and b = c = 1.

Proof. Groups U , V , W match groups 〈x, S〉, 〈y, S〉 and 〈xy, S〉 in some order.
One can exchange x with xy (by point (i) of Lemma 5.2), and, independently, U with
V . Hence U = 〈x, S〉 = 〈x, y2, g〉 can be assumed.

From Proposition 2.3 we get x ∗ g ∗ x∗ = g, y ∗ g ∗ y∗ = g, and the orders of x and
g in G(∗) are 2a and 2c, respectively. If y ∈ W , then y ∗ y = y2h−1, and we see that the
order of y is equal to 2b if b ≥ 2 or y ∈ V . But then the defining relations of (i) apply,
as x ∗ y ∗ x∗ = yh holds, by Proposition 2.3, in every case.

Let us take W = 〈y, S〉 = 〈y, x2, g〉 and b = 1. If c ≥ 2, then one can set y′ = yg2c−2

and from y′ ∗ y′ = y2g2c−1
h−1 = 1 we easily derive that the defining relations of (i) can

be used in this case as well.
Suppose, finally, W = 〈y, S〉 and b = c = 1. Then y ∗ y = g = h, y is of order 4

and y∗ = yh. �
THEOREM 5.8. Let G = G(·) be a finite abelian group and let G(∗) = G[U, V, h],

where U, V < G are of index 2, U �= V, and h ∈ Q(U, V ). Suppose that G(∗) is not
isomorphic to G(·). Then there exists N < U ∩ V such that G(·) = H(·) × N and G(∗) =
H(∗) × N, where H(∗) and H(·) correspond to one of the cases that are described in
Propositions 5.6 and 5.7.

We have described the neighbourhood of finite abelian groups with respect to 2-
related and 4-related groups. In [6] one can find the description of such neighbourhoods
for groups D2n , Q2n and SD2n (the latter group is considered just for n ≥ 4, while the
former ones for n ≥ 3). These groups are mutually 2-related, and no other group is
2-related to any of them. Groups D2n and Q2n are 4-related to SD2n , and these groups
are also 4-related to D2n−1 × C2 and Q2n−1 × C2, respectively (where D4 = Q4 = C4).
The only other case when a group is 4-related to D2n , Q2n or SD2n concerns SD2n , which
is 4-related to a semidirect product of C2n−2 × C2 and C2.

The theory presented in this paper helped us to establish that any two 2-groups of
order 16 are transitively 2,4-related. For order 32 one gets a slightly different situation.
By using GAP we found an exceptional group of order 32, which is 2,4-related to
no non-isomorphic group. All other groups of order 32 are transitively 2,4-related.
The exceptional group (a semidirect product of C4 × C2 and C2) is presented in [6]
including the proof of its isolation. A report about the results of computations on 2-
groups of order ≤ 64 will appear separately later, and will describe all instances when
two corresponding groups are 2-related or 4-related.

We do not know how to decide effectively if two finite 2-groups G1 and G2

are transitively 2,4-related. However, there are some results in this direction, one of
which states that G1 and G2 are transitively 2,4-related when both of them possess an
elementary subgroup of index 2.

The constructions of G[S, h] and G[U, V, h] can be generalized to constructions, in
which S = U ∩ V is a normal subgroup of G, h ∈ S ∩ Z(G) or h ∈ Q(U, V ), and G/S
is a 2-group that is cyclic or dihedral, respectively. These constructions are described
in [5], and an instance when G/S is cyclic and of order 4 connects the exceptional group
of order 32 to the other groups of this order.

At this moment we do not know the properties of the generalized constructions in
the extent to which this paper covers the basic constructions – this is one of tasks for
the future. The aim of [5] has not been to look for such properties, but to show that
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an instance of these generalized constructions is always induced by a situation when,
for finite groups G(◦) and G(∗), n = |G| and d(◦, ∗) = n2/4, one can find subgroups
X < Y ≤ G(◦), |Y : X | = 2, where for every left coset α of Y and every right coset β

of Y there exists a left coset α0 ⊆ α of X and a right coset β0 ⊆ β of X such that for
every (x, y) ∈ α × β one has x ◦ y �= x ∗ y if and only if (x, y) ∈ α0 × β0.

This and other results give us hope that all methods to construct G(∗) and G(◦)
with d(∗, ◦) = n2/4 will be understood in future.
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3. A. Drápal, Non-isomorphic 2-groups coincide at most in three quarters of their
multiplication tables, European J. Combin. 21 (2000) 301–321.
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