On complemented chief factors of finite soluble groups

D.W. Barnes

Let $G = H_0 > H_1 > \ldots > H_r = 1$ and $G = K_0 > K_1 > \ldots > K_r = 1$ be two chief series of the finite soluble group G. Suppose M_i complements H_i/H_{i+1} . Then M_i also complements precisely one factor K_j/K_{j+1} of the second series, and this K_j/K_{j+1} is G-isomorphic to H_i/H_{i+1} . It is shown that complements M_i can be chosen for the complemented factors H_i/H_{i+1} of the first series in such a way that distinct M_i complement distinct factors of the second series, thus establishing a one-to-one correspondence between the complemented factors of the two series. It is also shown that there is a one-to-one correspondence between the factors of the two series (but not in general constructible in the above manner), such that corresponding factors are G-isomorphic and have the same number of complements.

Throughout this note, G is a finite soluble group. Let A be an irreducible G-module which occurs as a complemented chief factor of G, and let $C = C_G(A)$. Let R = R(A) be the intersection of all normal subgroups D of G such that D < C and C/D is isomorphic to A (as G-module). Clearly C/R is isomorphic to the direct sum of d copies of A for some d. In [3], Gaschütz proves that the number of complemented factors isomorphic to A in a chief series of G is d. This follows at

Received 6 March 1972. This note elaborates arguments of Gaschütz; see [2, Satz 3], [3, Satz 4.1], and also Carter, Fischer, and Hawkes [1, Lemma 2.6].

once from

LEMMA 1. Let H/K be a chief factor of G. Then H/K is complemented and isomorphic to A if and only if $C \ge HR > KR$.

Proof. Suppose $H/K \simeq A$ and let M be a complement to H/K in G. Then $H \cap \operatorname{Core}_{G}(M) = K$ and $H.\operatorname{Core}_{G}(M) = C_{G}(H/K) = C$. Thus $C \geq HR \geq KR$, $C/\operatorname{Core}_{G}(M) \simeq H/K \simeq A$, and $\operatorname{Core}_{G}(M) \geq R$. If KR = HR, then

$$\operatorname{Core}_{C}(M) = KR.\operatorname{Core}_{C}(M) = H.\operatorname{Core}_{C}(M) = C$$
,

and we have $K = H \cap \operatorname{Core}_{C}(M) = H$. Therefore HR > KR.

Suppose conversely that $C \ge HR > KR$. Then $H/K \simeq HR/KR$ which, being a chief factor of G between C and R, is isomorphic to A. Since C/R is a completely reducible module, there exists a maximal submodule D/R of C/R such that $D \cap HR = KR$. Since $C_{G/D}(C/D) = C/D$, G/D splits over C/D and all complements to C/D in G/D are conjugate. If M/D is a complement to C/D, then M complements H/K. Thus H/Kis complemented.

We have seen that H/K has one conjugacy class of complements for each maximal submodule D/KR of C/KR not containing HR/KR. We now determine explicitly the number of these.

LEMMA 2. Let A be an irreducible G-module and let F be the endomorphism ring of A. Let V be the direct sum of d copies of A and let H be a minimal submodule of V. Then the number of maximal submodules of V not containing H is $|F|^{d-1}$.

Proof. By Schur's Lemma, F is a field (commutative since finite). $V = \{(a_1, \ldots, a_d) \mid a_i \in A\}$ and we have maps $\varepsilon_i : A \to V$ defined by $\varepsilon_i(a) = (0, 0, \ldots, a, 0, \ldots)$ where the non-zero entry is in the *i*th place. Let M be any maximal submodule of V. Then there is a homomorphism $\alpha : V \to A$ with ker $\alpha = M$. For each *i*, we have $\lambda_i \in F$ defined by $\lambda_i = \alpha \varepsilon_i : A \to A$, and $(a_1, \ldots, a_d) \in M$ if and only if

102

$$\begin{split} & \sum_{i=1}^{d} \lambda_i(a_i) = 0 \ . \ \text{Conversely, for any } \lambda_1, \ \dots, \ \lambda_d \in F \ , \ \text{not all zero,} \\ & \text{putting } \alpha(a_1, \ \dots, \ a_d) = \sum_{i=1}^{d} \lambda_i(a_i) \ \text{defines an epimorphism } \alpha : V \neq A \\ & \text{whose kernel is a maximal submodule of } V \ . \ \text{For } \lambda \in F \ , \ \lambda \neq 0 \ , \\ & (\lambda\lambda_1, \ \dots, \ \lambda\lambda_d) \ \text{defines the same maximal submodule as } (\lambda_1, \ \dots, \ \lambda_d) \ . \\ & \text{Thus the number of maximal submodules is } \frac{q^d-1}{q-1} \ , \ \text{where } q = |F| \ . \ \text{The} \\ & \text{number containing } H \ \text{ is } \frac{q^d-1-1}{q-1} \ \text{ and the result follows.} \end{split}$$

Since the number of complements in a conjugacy class is |A| provided $C \neq G$, by pairing complemented factors H_i/H_{i+1} and K_j/K_{j+1} isomorphic to A, for which H_iR/R and K_jR/R appear at the same level in the lattice of submodules of C/R, we have

THEOREM 1. Let $G = H_0 > H_1 > \ldots > H_r = 1$ and $G = K_0 > K_1 > \ldots > K_r = 1$ be two chief series of the finite soluble group G. Then there exists a one-to-one correspondence between the factors of the two series, such that corresponding factors are G-isomorphic and have the same number of complements.

We now prove

THEOREM 2. Let $G = H_0 > H_1 > \ldots > H_n = 1$ and $G = K_0 > K_1 > \ldots > K_n = 1$ be two chief series of the finite soluble group G. Then complements M_i can be chosen for the complemented factors H_i/H_{i+1} of the first series, in such a way that distinct M_i complement distinct factors of the second series.

By the discussion above, it is sufficient to prove

LEMMA 3. Let $V = U_0 > U_1 > \ldots > U_d = 0$ and $V = V_0 > V_1 > \ldots > V_d = 0$ be composition series of the completely reducible module V. Then there exist maximal submodules W_1, W_2, \ldots, W_d of V such that

$$U_i = W_1 \cap W_2 \cap \dots \cap W_i$$
 and $V_i = W_{\alpha_1} \cap W_{\alpha_2} \cap \dots \cap W_{\alpha_i}$

for some permutation $\alpha_1, \ldots, \alpha_d$ of 1, 2, ..., d.

Proof. The result clearly holds for d = 1. We use induction over d. For some k, $V_k \notin U_1$ but $V_{k+1} \leq U_1$. By the complete reducibility, there exists a minimal submodule Z such that $V_k = 2 + V_{k+1}$. By induction, there exist maximal submodules T_2, \ldots, T_d of U_1 such that $U_i = T_2 \cap \ldots \cap T_i$ and $V_i \cap U_1 = T_{\beta_2} \cap \ldots \cap T_{\beta_j}$ for some β_2, \ldots, β_j . Put $W_1 = U_1$, $W_i = T_i + Z$ $(i = 2, \ldots, d)$. Since $V/Z \simeq U_1$ and $T_i = W_i \cap U_1$, these W_1, \ldots, W_d satisfy the requirements.

References

- [1] Roger Carter, Bernd Fischer, Trevor Hawkes, "Extreme classes of finite soluble groups", J. Algebra 9 (1968), 285-313.
- [2] Wolfgang Gaschütz, "Die Eulersche Funktion endlicher auflösbarer Gruppen", Illinois J. Math. 3 (1959), 469-476.
- [3] Wolfgang Gaschütz, "Praefrattinigruppen", Arch. Math. 13 (1962), 418-426.

Department of Pure Mathematics, University of Sydney, Sydney, New South Wales.

104