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Abstract

Healthcare workers’ (HCWs) safety and availability to care for patients are critical during a
pandemic such as the one caused by severe acute respiratory syndrome coronavirus 2. Among
providers of different specialities, it is critical to protect those working in hospital settings with a
high risk of infection. Using an agent-based simulation model, various staffing policies were
developed and simulated for 90 days using data from the largest health systems in South
Carolina. The model considers staffing policies that include geographic segregation, interper-
sonal contact limits, and a combination of factors, including the patient census, transmission
rates, vaccination status of providers, hospital capacity, incubation time, quarantine period, and
interactions between patients and providers. Comparing the existing practices to various risk-
adjusted staffing policies, model predictions show that restricted teaming and rotating schedules
significantly (p-value <0.01) reduced weekly HCW unavailability and the number of infected
HCWs by 22% and 38%, respectively, when the vaccination rates among HCWs were lower
(<75%). However, as the vaccination rate increases, the benefits of risk-adjusted policies
diminish; and when 90% of HCWs were vaccinated, there were no significant (p-value = 0.09)
benefits. Although these simulated outcomes are specific to one health system, our findings can
be generalised to other health systems with multiple locations.

Introduction

Since its outbreak, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected
more than 100million Americans and resulted in 1.1 million deaths in the USA [1]. According to
the US Department of Health and Human Services (HHS) report from January 2022, an
estimated 141,385 hospital beds were occupied by patients with coronavirus disease 2019
(COVID-19), approaching the record peak from January 2021 [2]. Additionally, the HHS report
observed that 25% of US hospitals were facing a critical staffing shortage, which was the highest
since the beginning of the COVID-19 pandemic [3, 4].

The perioperative team is considered a high-risk group for COVID-19 exposure as they come
in close contact with a patient’s airway and aerosols generated during certain medical procedures
where the SARS-CoV-2 virus remains infectious for hours [5–8]. Staffing shortages among
perioperative teams lead to delayed patient care and poorer healthcare outcomes, including
reduced quality-adjusted life years, disease-free survival, and, in the worst-case scenario, surgery
cancellations, which also negatively affect hospital finances [9–11].

Hence, protecting at-risk healthcare workers (HCWs) is critical, and knowing that new
pandemics beyond COVID-19 will inevitably emerge, a systematic decision support tool to
protect HCWs during a pandemic is needed. Over the last 2 years, various staffing strategies
have been tested or implemented in hospitals to protect HCWs, and we identified three
simulation-based studies [12]. The first study reported that longer shifts and avoiding
staggering rotations of HCW shifts could reduce infection among HCWs [13]. The second
study observed that the longer shifts with continuous breaks significantly reduced HCW
shortage, and the effect progressively increased as the probability of infection increased
[14]. Finally, the third study implemented a staffing policy where neurosurgery residents
were divided into two teams and alternated weekly with minimal contact, and it showed that
the teaming approach minimised the risk of exposure and provided the needed rest for
residents [15].

Although prior studies report the effectiveness of various strategies in reducing infections
amongHCWs and their unavailability, these have been restricted to a single, small facility and do
not account for how individual system factors interact with each other and impact the infection
spread. By including factors such as vaccination rate among HCWs, infection transmission rates
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at each facility, the number of patient–HCW and HCW–HCW
interactions, and patient census in the hospital, we developed
simulation models using the agent-based modelling (ABM)
approach to gain in-depth insights into disease spread and identify
the best staffing policy thatminimises infection spread and unavail-
ability among the perioperative team at Prisma Health, SC.

Methods

Data, assumptions, and model development

Data used in this study regarding bed capacity, locations, and
perioperative HCWs required were derived from Prisma Health
Upstate, which did not include any identifiers. The study was
provided with an institutional review board (IRB) exemption by
the Prisma Health IRB. The rest of the data used in the study were
collected frompublicly available epidemiologic data about COVID-
19. We consider three different locations of Prisma Health Upstate
and three different types of HCWs (anaesthesiologists, anaesthe-
tists, and nurses) who are part of the perioperative team. Among
these, locations 1 and 2 are regular facilities receiving patients of all
types, whereas location 3 was transitioned to treat only COVID-19
patients because of the surge experienced. There are 853 beds
available for patient care in total (facility 1: 700; facility 2: 108;
facility 3: 45), including inpatient beds and operating rooms (ORs).
In our model, we did not specifically focus on the OR workflow.
Instead, we focused on the inpatient beds and interactions out-of-
the-OR activity (recovery room, workstation, etc.). The primary
reason for this was that we assume that clinicians are masked and
protected in the OR, whereas they might not be in the recovery
room and workstation. We consider the number of interactions
between each patient and each HCW type as a key factor in our
ABM, which allows us to capture the impact ofHCWavailability on
their workload in terms of patient interactions and the likelihood of
getting infected. In ourmodel, although we use a fixed transmission
probability per interaction, the probability of an HCW getting
infected is not static. We consider it as a function of total HCWs
available to work, patient volume, and the average number of
interactions with patients, according to the following formula:

Patient–HCWcontact rate= ((COVID-19patient census� average
number of interactions required per patient)/number of available
HCWs)

Here the COVID-19 patient census would vary based on the
scenario under consideration (discussed in the next paragraph).
The average number of interactions required per patient is based on
the HCW type, where we assume nurses have more contact with
patients on average than anaesthetists. The number of HCWs
represents the healthy workforce of each HCW available in the
hospital. The motivation to use this equation here is to account for
the varyingHCWworkload during a shortage of workforce or surge
in COVID-19 patients without detailed modelling of the complex
workflow, which is significantly different for an OR versus an
inpatient bed. Due to the lack of detailed data on the number of
interactions required per patient with HCWs and the characterisa-
tion of interactions among HCWs themselves in their workspace,
we set these numbers in our experiments based on expert opinions
from HCWs in the Prisma Health Department of Anesthesiology
(see Table 1). Here the number of interactions follows the CDC’s
guidelines for close contact, which is less than 6 feet away from a
person for a total of 15 minutes or more. The interactions between

anaesthesiologists represent their interactions in the recovery
room, workstation, and so forth, and not while caring for patients.
For nurses, their interactions represent their interactions in work-
stations and while passing by between inpatient beds. The number
of interactions between anaesthetists represents those outside the
OR. While it could be possible that there might be no interaction
between eachHCW,we assume they could interact while passing by
inpatient beds, workstations, lockers, or while passing by ORs. For
the data on testing frequency and quarantine period, we followed
the policies and practices at Prisma Health during January 2022.
The data pertinent to COVID-19 transmission probabilities, incu-
bation time, presymptomatic time, asymptomatic and symptom-
atic probability, recovery period, and mortality rate were obtained
from publicly available Centers for Disease Control and Prevention
(CDC) guidelines and literature from February 2022 [16]. For
HCWs returning to work after mandatory quarantine, the possi-
bility of reinfection was considered since multiple studies reported
such cases [17, 18]. Finally, an infection possibility after vaccin-
ation, as represented in Table 1, was also considered, as prior
studies observed that no vaccination provided 100% protection
against COVID-19.

Although ourmodel does not explicitly consider factors outside
of the hospital, to replicate the population dynamics, we consider
three different scenarios for patient census represented by the
percentage of hospital bed occupancy by COVID-19 patients at
each facility: (i) low patient census (5–10%), (ii) medium patient
census (20–25%) and (iii) high patient census (>50%).

Table 1. Model parameters

Parameter Value

HCW-to-HCW transmission rate 4.00%

Number of interactions between
anaesthesiologists

3 per hour

Number of interactions between
nurses

3 per hour

Number of interactions between
anaesthetists

1 per hour

Number of interactions between
each HCW type

1 per hour

Patient transmission rate 0.04 or 0.004%

Interactions with
anaesthesiologists per patient

2

Interactions with nurses and
anaesthetists per patient

3

Incubation period Triangular (2,4,12) days

Presymptomatic period 0–2 days

Asymptomatic probability 40%

Workforce testing frequency 1 per week

Quarantine period 5/10/14 days based on vaccination

Mortality rate 1.8%

Vaccinated 0 or 50 or 75 or 90%

Reinfection probability 0.0004%

Transmission probability (after
vaccination)

12.5% of transmission rate
(0.125 � transmission rate)

Abbreviation: HCW, healthcare worker.
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Additionally, we also consider two infection transmission rates:
low and high transmission scenarios. Finally, we consider four
different scenarios where 0%, 50%, 75%, and 90% of HCWs are
vaccinated to evaluate the impact of vaccination rates. Although
these combinations of factors (patient census, transmission rates,
vaccination rates) do not come from actual scenarios at the partner
hospital, the research team aimed to model and investigate these
different scenarios to capture different population dynamics stages
(early stage, peak infection, and recovery) for COVID-19 or similar
pandemic. Table 1 summarises the key input parameters used for
our model.

We developed simulation models using ABMwhere each HCW
is considered a unique agent with specific parameters, attributes,
and rules by which they function in a hospital. Additionally, using
the ABM approach allowed us to track the current state (in terms of
Susceptible–Exposed–Infected–Recovered) of each HCW as the
simulation progressed. Before initiating the simulation, each agent
is first scheduled to work at a specific hospital location for a week.
Based on the policy under consideration, each HCW is assigned a
list of HCWs with whom they can potentially interact within the
hospital. We considered all HCWs as the susceptible population at
the beginning of the simulation and assumed they could be infected
by either patients or other HCWs. If infected, instead of going
directly into the state of being infectious, the HCW moves on first
to the exposed state, where they stay for a certain period of time
(referred to as the incubation period). In this exposed state, a
provider is infected but not infectious, meaning they cannot spread
the disease. Following the exposed state, they move on to the
so-called presymptomatic phase, where they do not present any
symptoms but are infectious, meaning they can potentially infect
other HCWs. The presymptomatic phase is followed by a symp-
tomatic or asymptomatic infectious state where symptomatic
HCWs start exhibiting COVID-19 symptoms as opposed to
asymptomatic HCWs who do not. Symptomatic HCWs are tested
immediately and follow appropriate quarantine protocols. Asymp-
tomatic HCWs continue to spread the infection to other HCWs
unless they test positive during routine weekly testing, after which
they follow quarantine protocols. Following quarantine proced-
ures, there is a small probability that an agent might expire, but
most of them would recover and enter the work system where they
could be reinfected. The different stages an HCW may progress
through during the simulation can be seen in Fig. 1.

Staffing policies and simulated cases

To identify the best staffing strategy that could minimise the
number of infections and unavailability among HCWs, we com-
pared six staffing policies under different scenarios of patient
volume, vaccination status, and infection transmission rates. Based
on expert opinions from the Department of Anesthesiology at
Prisma Health Upstate, we used the weekly availability of HCWs
and the total number of HCWs infected as the two primary out-
comes to compare various staffing policies. Below are the details of
staffing policies we investigate.

Policy 1: Inter-hospital mixing (baseline policy/current practice)
This policy corresponds to the current practice in the partner health
system, where an HCW is allowed to work in any facility. Specif-
ically, an HCW is assumed to have the option to switch facilities
and/or groups every week but will work at the same facility each

week. This policy allows the highest flexibility in staffing and
scheduling. In our simulation model, the assignments of HCWs
to facilities and groups are generated randomly.

Policy 2: Inter-group mixing
In this policy, we first divide HCWs into groups and restrict the
HCWs’ interactions by restricting their shift options only to those
available within a facility. Here anHCW is allowed to switch groups
within the same facility but cannot sign up for a shift in a different
facility.

Policy 3: No mixing
In this policy, we further restrict the interactions among HCWs by
segregating them into predefined groups within a single facility.

Figure 1. Healthcare worker (HCW) process flow map.
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They can only bid for a particular shift, and they stay with the same
team throughout the simulation study horizon.

Policies 4–6: Rotating schedule
With these policies, we reduce the number of HCWs present in the
hospital by implementing a rotation schedule. Specifically, at any
given time, we assign 67% of the HCWs to work and the other 33%
to stay at home, and these groups are rotated every 2 weeks. We
combine this rotating policywith the aforementioned three policies –
inter-hospital mixing, inter-groupmixing, and nomixing – to obtain
policies 4–6, respectively.

All of these policies were developed based on discussions with
the providers at Prisma Health Upstate to ensure their realism and
generality such that they can be adopted into any health systemwith
multiple facilities. Specifically, based on discussions with expert
clinicians working in perioperative settings, we used 7.5% of bed
capacity as the low capacity, 22.5% as medium capacity, and 65% as
a high capacity when these beds (inpatient beds þ OR) were
occupied by COVID-19 patients. We evaluate the performance of
different policies under multiple scenarios where we vary patient
census, vaccination status, and infection transmission probabilities.
As mentioned earlier, these scenarios are not actual scenarios
observed in the partner hospital. Instead, we consider various
combinations of these factors as they allow us to differentiate
between different types and sizes of healthcare facilities, reflect
the impact of state/local policies, and model both high- and low-
risk geographical locations. Specifically, we tested the six staffing
policies as below:

• Case 1: Low patient census and high patient transmission rate
• Case 2: Medium patient census and high patient transmission

rate
• Case 3: High patient census and high patient transmission

rate
• Case 4: Low patient census and low patient transmission rate
• Case 5: Medium patient census and low patient transmission

rate
• Case 6: High patient census and low patient transmission rate.

Two hundred replications of simulations were run for each com-
bination of the parameters such that the reported metrics for the
total number of infected HCWs were with a 99% confidence
interval of �.01. A one-way ANOVA was utilised to compare if
the total number of HCWs infected under each policy was statis-
tically significantly different. In case of significant differences for
the ANOVA, it was followed with a Tukey post-hoc to identify the
groups that varied statistically. For both statistical tests, an α= 0.01
was used.

Results

In this section, we summarise the performances of the six staffing
policies presented above. Given that there are a variety of com-
binations, we present results in such a way that cases 1–3 and 4–6
are averaged and represented in two separate tables for each
vaccination rate. In each schedule, the relative ratio of HCWs
was 64.3% nurses, 27.46% nurse anaesthetists, and 8.1% anaes-
thesiologists.

On investigating the scenario with a vaccination rate of 0%,
which corresponds to the early phase of the pandemic when no
vaccines are available, the model predictions showed a significant
difference (p-value <0.01) between the six policies in terms of the

total number of HCWs infected when patient transmission rates
were lower (cases 4–6) irrespective of the patient census, as repre-
sented in Table 2. Specifically, nomixing (policy 3) and rotation–no
mixing (policy 6) policies were significantly (p-value <0.01) better
than the inter-group and inter-hospital mixing policies as well as
their rotation versions (policies 1, 2, 4, and 5). Additionally, simu-
lated findings showed that inter-group mixing (policy 2) and its
rotation version (policy 5) were significantly (p-value= 0.01) better
than inter-hospital mixing and its rotation version (policies 1 and
4). Regarding the peak weekly unavailability of HCWs, model
outcomes were similar, where no mixing (policy 3) and its rotation
version (policy 6) outperformed other policies (policies 1, 2, 4, and
5) by improving weekly HCW availability by as much as 22%, as
shown in Table 3. Further, inter-group mixing (policy 2) and its
rotation version (policy 5) outperformed inter-hospital mixing and
its rotation version (policies 1 and 4) by improving weekly HCW
availability by 12%. Fig. 2 represents the weekly availability of
HCWs at a low transmission rate. Finally, comparing the rotation
policies (policies 4–6) to the respective restriction policies (policies
1–3), the model predictions did not vary significantly in terms of
weekly provider unavailability and the total number of HCWs
infected.

At the same vaccination rate (0%), when patient transmission
rates were higher (cases 1–3), the total number of HCWs infected
over the 90 days did not vary significantly (p-value = 0.38)
between the six staffing policies, as shown in Table 2, as eventually
all HCWs got infected. However, on comparing the weekly
unavailability of HCWs under each policy, no mixing (policy 3)
and its rotation version (policy 6) outperformed other policies
(policies 1, 2, 4, and 5) by improving weekly HCW availability by
as much as 11%, as shown in Table 3. Although not much, the
inter-group mixing (policy 2) and its rotation version (policy 5)
outperformed the inter-hospital mixing and its rotation version
(policies 1 and 4) by improving weekly HCW availability by 5%.
Fig. 2 represents the weekly availability of HCWs at a high
transmission rate, where it can be seen that HCW unavailability
peaks when transmission rates tend to be higher, representing an
increased likelihood of infection spread. Finally, for the weekly
unavailability of HCWs, irrespective of patient transmission rates,
the rotation policies (policies 4–6) could delay the peak of HCW
unavailability, reduce the duration of peak unavailability and
reduce the peak compared to respective restriction policies (pol-
icies 1–3) as shown in Table 3.

Next, we investigate the 50% vaccination scenario, and similar
to the 0% vaccination scenario, the total number of HCWs getting
infected at low patient transmission rates (cases 4–6) was signifi-
cantly (p-value = 0.01) different across the six policies. Specifically,
no mixing (policy 3) and rotation–no mixing (policy 6) policies
significantly (p-value <0.01) reduced the total number of HCWs
infected when compared to the inter-group, inter-hospital, and
rotation versions of these policies (policies 1, 2, 4, and 5), as
represented in Table 2. Likewise, inter-group mixing (policy 2)
and its rotation version (policy 5) performed significantly
(p-value = 0.03) better than inter-hospital mixing and its rotation
version (policies 1 and 4). In terms of the peak weekly unavailability
of HCWs, when patient transmission rates were low, no mixing
(policy 3) and its rotation version (policy 6) were the best but
outperformed inter-hospital mixing and its rotation version (pol-
icies 1 and 4) by improving the peak weekly HCW availability by as
much as 8%, as represented in Table 4. Further, from Table 4, it can
be observed that inter-group mixing (policy 2) and its rotation
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version (policy 5) outperformed inter-hospital mixing and its
rotation version (policies 1 and 4) by increasing the peak weekly
HCW availability by 7%. Fig. 3 represents the weekly availability of
HCWs at a low transmission rate.

At high transmission rates (cases 1–3), there were no signifi-
cant differences in the total number of HCWs who were infected,
as represented in Table 2, except for the low patient census
scenario where no mixing (policy 3) and its rotation version
(policy 6) significantly (p-value = 0.02) outperformed inter-
hospital mixing and its rotation version (policies 1 and 4). How-
ever, model predictions showed that no mixing (policy 3) and its
rotation version (policy 6) outperformed other policies (policies
1 and 4) by improving weekly HCW availability by as much as 7%,
as shown in Table 4. Further, inter-groupmixing (policy 2) and its
rotation version (policy 5) slightly outperformed inter-hospital
mixing and its rotation version (policies 1 and 4) by improving
weekly HCW availability by 4%. Fig. 3 represents the weekly
availability of HCWs at a high transmission rate, where it can
be noticed that as vaccination rates start to increase, the distinc-
tion between no mixing (policies 3 and 6) and inter-group mixing
policies (policies 2 and 5) reduces in terms of lowering weekly

HCW unavailability. However, these still outperform inter-
hospital mixing policies (policies 1 and 4). Finally, on comparing
the model predictions, we observed that the rotation policies
(policies 4–6) could delay the peak of HCW unavailability, reduce
the duration of peak unavailability and reduce the peak compared
to respective restriction policies (policies 1–3) irrespective of
patient transmission rates.

It is evident that both restriction and rotation policies can
help reduce the total number of HCWs getting infected and the
weekly unavailability of HCWs when vaccination rates among
providers are no more than 50%. To identify if these policies can
have the same impact as when vaccination rates increase, we
consider the scenario where 75% of HCWs were vaccinated. On
comparing the model predictions for the six staffing policies, we
observed that restriction and rotation policies did not add a
significant value in terms of reducing weekly HCW unavailability
irrespective of patient transmission rates, as represented in
Supplementary Figure S1 and Supplementary Table S1. However,
when patient transmission rates were lower (cases 4–6), nomixing
(policy 3) and rotation–no mixing (policy 6) were significantly
(p-value = 0.03) better than inter-hospital mixing, inter-group

Table 2. Total healthcare workers infected over 90 days at four vaccination rates

Vaccination (%) Cases Policy 1 Policy 2 Policy 3 Policy 4 Policy 5 Policy 6

0 1 98.7 � 0.10 97.2 � 0.90 91.8 � 0.91 98.0 � 0.22 97.1 � 0.80 91.6 � 0.71

2 98.6 � 0.11 98.7 � 0.32 98.4 � 0.62 98.2 � 0.70 98.7 � 0.39 98.1 � 0.56

3 98.9 � 0.09 99.0 � 0.11 98.7 � 0.41 98.9 � 0.01 99.0 � 0.00 99.0 � 0.00

4 83.2 � 1.05 50.1 � 0.91 26.1 � 1.10 83.0 � 1.10 50.1 � 0.87 26.4 � 0.44

5 98.0 � 0.12 82.7 � 0.42 59.4 � 0.01 98.3 � 0.62 81.7 � 0.66 59.0 � 0.14

6 98.8 � 0.90 95.5 � 0.19 83.3 � 0.45 98.9 � 0.87 94.7 � 0.70 80.9 � 1.01

50 1 47.9 � 1.22 46.0 � 0.98 40.6 � 0.90 48.2 � 1.01 45.8 � 0.71 41.0 � 0.88

2 48.0 � 0.34 48.1 � 0.55 47.9 � 0.81 48.5 � 0.15 48.3 � 0.11 48.0 � 0.56

3 49.1 � 0.75 49.0 � 0.43 48.3 � 0.33 49.4 � 0.12 48.6 � 0.10 48.3 � 0.31

4 29.0 � 0.33 13.3 � 0.45 7.9 � 0.24 28.7 � 0.80 13.0 � 1.01 8.1 � 0.94

5 45.9 � 0.54 28.5 � 0.62 20.1 � 0.12 45.8 � 0.79 28.4 � 0.90 20.2 � 0.56

6 48.7 � 0.32 43.0 � 0.74 36.7 � 0.85 48.9 � 0.62 43.0 � 0.55 36.6 � 0.41

75 1 23.0 � 0.65 21.1 � 0.40 19.5 � 0.70 22.8 � 0.58 21.0 � 0.90 19.5 � 0.11

2 24.2 � 0.45 23.8 � 0.87 24.0 � 0.09 24.0 � 0.80 23.8 � 0.94 23.7 � 0.16

3 25.5 � 0.33 25.0 � 0.61 25.1 � 0.33 25.0 � 0.23 25.1 � 0.77 24.4 � 0.29

4 8.0 � 0.85 6.7 � 0.89 4.0 � 0.80 8.0 � 0.67 6.5 � 0.22 3.9 � 0.75

5 19.2 � 1.13 13.3 � 0.81 9.3 � 0.47 19.3 � 0.90 13.2 � 0.34 9.2 � 0.40

6 24.3 � 0.72 20.5 � 1.22 16.3 � 0.29 24.3 � 0.73 20.8 � 0.32 16.3 � 0.87

90 1 7.2 � 0.17 7.2 � 0.87 5.8 � 0.67 7.2 � 0.30 7.1 � 0.91 5.8 � 0.62

2 9.4 � 0.30 9.4 � 0.04 8.6 � 0.20 9.1 � 0.69 9.1 � 0.80 8.0 � 0.99

3 10.1 � 0.39 10.1 � 0.65 10.0 � 0.89 10.3 � 0.20 10.0 � 0.92 9.9 � 0.41

4 1.9 � 0.66 1.6 � 0.57 1.4 � 0.42 2.1 � 0.46 1.6 � 0.85 1.5 � 0.98

5 4.3 � 0.75 3.5 � 0.31 3.1 � 0.51 4.0 � 0.90 3.2 � 0.72 3.0 � 0.57

6 8.1 � 0.83 7.7 � 0.49 7.0 � 1.10 8.1 � 1.10 7.5 � 0.56 6.9 � 0.75
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mixing, and their rotation versions (policies 1, 2, 4 and 5) in terms
of reducing the total number of HCWs infected, as presented
in Table 2. Here inter-group mixing and its rotation version
(policies 2 and 5) did not vary significantly (p-value = 0.07) from
inter-hospital mixing and its rotation version (policies 1 and 4).
Although the benefits of restriction and rotation policies have
started to diminish, it is apparent that they can still add value
(Table 2).

Finally, to understand if these restriction and rotation policies
can still add value, we consider an extreme scenario where 90%
of HCWs are vaccinated. Regardless of patient census and patient
transmission rates, the model predictions did not show a signifi-
cant (p-value = 0.12) difference in the total number of HCWs
infected, as shown in Table 2. Similarly, for the weekly unavail-
ability of HCWs, as observed under 75% vaccination, there was
no major difference as the maximum unavailability was only
3% for a week, as shown in Supplementary Figure S2 and
Supplementary Table S2. The findings suggest that restriction
policies and rotation policies do not add significant value when
vaccination rates are high and chances of infection after vaccin-
ation are lower. Depending on patient transmission rates, restric-
tion, and rotation policies can still be beneficial by flattening the
curve of HCW unavailability and delaying the peak compared to
the baseline policy.

Discussion

In this research, we explored the impact of segregating and
rotating HCW staffing shifts in a large health system having
multiple locations to address staff unavailability due to infections
during the COVID-19 pandemic and, moreover, prepare for a
similar future potential pandemic. Although prior studies have
reported that rotation schedules and continuous breaks could
improve HCWavailability and reduce rates of infection in a single
location, none of these studies has considered varying patient
census, transmission rates, vaccination rates and multiple hos-
pital locations [13–15]. We investigated rotation policies along
with novel policies that segregate HCWs into smaller groups
within a facility and restricted them to a single facility. By simu-
lating various scenarios with different factors, including patient
census, transmission rates, vaccination rates at multiple hospital
locations, and other COVID-19 data, we observed that risk-
adjusted staffing could reduce both total HCW unavailability
and most severe staff shortages. Specifically, findings from our
simulation model suggest that segregating HCWs into smaller
groups within a facility, restricting them to a single facility,
and rotating (alternating) HCW shifts can significantly reduce
COVID-19 exposure and infection spread, thereby reducing
HCW shortage. The findings about rotation schedules align well

Table 3. Confidence intervals for a few policies (most significant) where the total of healthcare workers were infected over 90 days at four vaccination rates

Vaccination (%) Patient transmission rates Policies with significant differences

0 Low transmission P3–P1, CI [�57.2, �56.1]

P3–P2, CI [�24.3, �23.0]

P2–P1, CI [�33.2, �32.7]

P6–P4, CI [�56.8, �55.7]

P6–P5, CI [�24.1, �23.2]

P5–P4, CI [�33.1, �32.0]

0 High transmission No significant differences

50 Low transmission P3–P1, CI [�25.5, �24.8]

P3–P2, CI [�7.7, �6.9]

P2–P1, CI [�17.2, �16.5]

P6–P4, CI [�25.0, �14.0]

P6–P5, CI [�7.1, �6.5]

P5–P4, CI [�16.6, �15.9]

50 High transmission No significant differences

Except for low census

75 Low transmission P3–P1, CI [�8.0, �7.1]

P3–P2, CI [�4.5, �3.2]

P6–P4, CI [�7.8, �7.0]

P6–P5, CI [�3.9, �3.2]

75 High transmission No significant differences

90 Low transmission No significant differences

90 High transmission No significant differences
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with prior single-site studies; in addition, we also provided empir-
ical performances of two additional policies (segregation within a
facility and restricting to a single facility) through our simulation
models, which other health systems can implement to improve
HCW availability.

Moreover, the restricted team mixing and rotating staffing
schedules always performed similar to or better than the current
practice, and our model predictions showed that the value of
rotating and restriction policies diminished as vaccination rates
among HCWs increased. Specifically, when 50% or lesser of HCWs
were vaccinated, the restriction and rotation policies significantly

reduced both the weekly unavailability of HCWs and the total
number of HCWs getting infected by as much as 22% and 38%
compared to the current practice (p-value <0.01). However, when
75% of HCWs were vaccinated, these policies were only helpful
in reducing the total number of HCWs getting infected
(p-value = 0.03), and when 90% of HCWs were vaccinated, these
restrictions did not have any significant effect (p-value = 0.09).
These findings from our simulation model indicate that the vac-
cination status of HCW population should also be considered as a
key variable while developing staffing strategies and schedules
during a pandemic.

Figure 2. Weekly healthcare worker (HCW) availability at low and high transmission rates with 0% vaccination.
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While our study focused on anaesthesiologists, anaesthetists,
and nurses in the perioperative population, these findings might
be generalisable to other departments with a high risk of infect-
ivity and HCW unavailability. Similarly, our findings are based
on COVID-19 data, but we believe these findings can be helpful in
preparing hospitals, especially larger health systems with mul-
tiple locations, against future pandemics or similar viral infec-
tions. Additionally, the input parameters of the simulation model
can be easily customised for different infectious disease scenarios,
allowing its use in other pandemics or conditions where HCWs
could be unavailable. Moreover, these models can be shared with
other health systems where they can manipulate facility-specific
numbers (beds, locations, number of HCWs, etc.) to match their
needs.

Finally, we would like to point out a few limitations of this study.
First, the analysis and results are based on simulated findings as
opposed to empirical results. However, our simulated results are

reported with a 99% confidence interval. Another limitation is that
we assume that each patient, on average, comes in contact with a
provider a certain number of times, and providers interact with
each other at a particular rate. Although these assumptions are
based on expert opinions from anaesthesiologists working in the
partner hospital, including the second author, we recognise the fact
that the number of actual interactions could be higher in the OR
when HCWs could be in close contact most of the time, or lower
while providing care on inpatient beds, depending on the scenario.
However, to reduce the complexity of modelling these different
workflows, we decided to use the average, as we aimed to compare
various staffing policies (flexible vs. restricted) during various
stages of a pandemic (early, medium, and late) without changing
any workflow/processes. In the future, the model could be updated
to incorporate a detailed workflow. Another limitation is associated
with modelling and replicating the partner hospital’s activities.
While physicians were involved throughout the model

Table 4. Average weekly healthcare worker availability for low and high transmission rates at 0% vaccination

Transmission rate Week Policy 1 (%) Policy 2 (%) Policy 3 (%) Policy 4 (%) Policy 5 (%) Policy 6 (%)

Low transmission rate 1 100 100 100 100 100 100

2 100 100 100 100 100 100

3 95 97 97 98 98 99

4 85 90 93 89 93 95

5 72 81 89 72 81 89

6 65 77 87 62 75 86

7 68 79 87 65 77 85

8 77 83 88 74 80 86

9 83 85 89 83 84 89

10 87 87 90 87 87 90

11 90 90 91 90 89 91

12 92 92 92 93 92 92

13 94 93 93 94 93 93

High transmission rate 1 100 100 100 100 100 100

2 97 97 97 98 98 98

3 79 79 83 88 88 91

4 54 56 64 66 67 74

5 47 51 57 47 51 58

6 60 63 65 55 59 62

7 77 77 77 74 74 74

8 88 87 85 85 85 84

9 94 92 90 94 92 90

10 96 95 93 96 95 93

11 97 96 94 97 96 94

12 98 97 95 98 97 95

13 98 97 96 98 97 96
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development process to replicate the actions, we acknowledge that
certain assumptions (interactions) and simplifications of complex
workflow in the model could limit the ability to replicate the
activities at the partner hospital completely. Comparing the two
studies that investigated unscheduled absences among HCWs in a
similar setting, which reported an increase in the odds of unsched-
uled absences with an increase in asymptomatic COVID-19
patients, while our findings align with the observation of increased
unavailability among HCWs, our numbers look comparatively
inflated [19, 20]. One of the primary reasons for the discrepancy

in findings is that different performancemetrics are used by the two
studies. Moreover, it can be observed from our results that the
inflated numbers are reported for the worst-case scenario (high
COVID-19 patient census and low vaccination); during other
scenarios (high vaccination and low patient census), our findings
are similar to those reported in the literature. Finally, the time until
provider availability after infection is based on recovery time and
the isolation guidelines from the CDC, but we recognise that some
hospitals may have different practices, and these durations
might vary.

Figure 3. Weekly healthcare worker (HCW) availability at low and high transmission rates with a 50% vaccination.
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