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Abstract

We consider estimation of the spot volatility in a stochastic boundary model with one-
sided microstructure noise for high-frequency limit order prices. Based on discrete, noisy
observations of an Itô semimartingale with jumps and general stochastic volatility, we
present a simple and explicit estimator using local order statistics. We establish consis-
tency and stable central limit theorems as asymptotic properties. The asymptotic analysis
builds upon an expansion of tail probabilities for the order statistics based on a gener-
alized arcsine law. In order to use the involved distribution of local order statistics for
a bias correction, an efficient numerical algorithm is developed. We demonstrate the
finite-sample performance of the estimation in a Monte Carlo simulation.
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1. Introduction

Time series of intraday prices are typically described as a discretized path of a continuous-
time stochastic process. To have arbitrage-free markets the log-price process should be a
semimartingale. Risk estimation based on high-frequency data at the highest available observa-
tion frequencies has to take microstructure frictions into account. Disentangling these market
microstructure effects from the dynamics of the long-run price evolution has led to observation
models with additive noise; see, for instance, [2, 13, 19]. The market microstructure noise,
modelling among other effects the oscillation of traded prices between bid and ask order levels
in an electronic market, is classically a centred (white) noise process with expectation equal to
zero. These models can explain many stylized facts of high-frequency data. Having available
full limit order books including data of submissions, cancellations, and executions of bid and
ask limit orders, however, it is not clear which time series to consider at all. While challeng-
ing the concept of one price process it raises the question of whether the information can be
exploited more efficiently, in particular to improve risk quantification. The stochastic boundary
model considered for limit order prices of an order book has been discussed by [5], [20], and
[8, Chapter 1.8]. It preserves the concept of an underlying efficient, semimartingale log-price
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Spot volatility estimation under irregular noise 859

which determines the long-run price dynamics and an additive, exogenous noise which models
market-specific microstructure frictions. Its key idea is that ask order prices should (in most
cases) lie above the unobservable efficient price and bid prices below the efficient price. This
leads to observation errors which are irregular in the sense of having non-zero expectation and
a distribution with a lower- or upper-bounded support. Considering without loss of generality
a model for (best) ask order prices, we obtain lower-bounded observation errors and use local
minima for the estimation. Modelling (best) bid prices instead would yield a model with upper-
bounded observation errors and local maxima could be used for an analogous estimation. Both
can be combined in practice.

It is known that the statistical and probabilistic properties of models with irregular noise
are very different than for regular noise and require other methods; see, for instance, [17, 23,
24]. Therefore, our estimation methods and asymptotic theory are quite different compared
to the market microstructure literature, while we can still profit from some of the techniques
used there. In [5] an estimator for the quadratic variation of a continuous semimartingale,
that is, the integrated volatility, was proposed with convergence rate n−1/3, based on n discrete
observations with one-sided noise. Optimality of the rate was proved in the standard asymptotic
minimax sense. The main insight was that this convergence rate is better than the optimal rate,
n−1/4, under regular market microstructure noise.

A recent strand of literature proposes structural, parametric market microstructure noise
models incorporating information based on observed order book quantities as volume or trade
types; see [9–11, 18]. Splitting the noise into a parametric function of such quantities and resid-
ual noise, a plug-in estimation of integrated volatility can also yield faster convergence rates
than in the classical model with uninformative noise. While this effect of improved volatility
estimation appears to be a similarity to our work, our viewpoint on market microstructure is
quite distinct. We focus on a model with one-sided instead of centred noise, but we neither
impose a parametric assumption on the noise, nor do we include additional trading informa-
tion. Such refinements of a one-sided noise model, as discussed in the mentioned works for
the centred noise model, might be of interest for future research when microstructure effects
of bid and ask quotes are better understood. This could potentially further improve volatility
estimation.

Inference on the spot volatility is one of the most important topics in the financial literature;
see, for instance, [4, 22] and the references therein. In this work, we address spot volatil-
ity estimation for the model from [5]. Using local minima over blocks of shrinking lengths
hn ∝ n−2/3 ∝ (nhn)−2, the resulting distribution of local minima in [5] became involved and
infeasible, such that a central limit theorem for the integrated volatility estimator could not be
obtained. Our spot volatility estimator is related to a localized version of the estimator from [5],
combined with truncation methods to eliminate jumps of the semimartingale. For the asymp-
totic theory, however, we follow a different approach choosing blocks of lengths hn, where
hnn2/3 → ∞ slowly. This allows us to establish stable central limit theorems with the best
achievable rate, arbitrarily close to n−1/6, in the important special case of a semimartingale
volatility. We exploit this to construct pointwise asymptotic confidence intervals.

Although the asymptotic theory relies on block lengths that are slightly unbalanced by
smoothing out the impact of the noise distribution on the distribution of local minima asymp-
totically, our numerical study demonstrates that the confidence intervals work well in realistic
scenarios with block lengths which optimize the estimation performance. Robustness to differ-
ent noise specifications is an advantage that is naturally implied by our approach. Our estimator
is surprisingly simple: it is a local average of squared differences of block-wise minima times

https://doi.org/10.1017/jpr.2023.96 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.96


860 M. BIBINGER

a constant factor which comes from moments of the half-normal distribution of the minimum
of a Brownian motion over the unit time interval. This estimator is consistent. However, the
stable central limit theorem at a fast convergence rate requires a subtle bias correction which
incorporates a more precise approximation of the asymptotic distribution of local minima. For
that purpose, our analysis is based on a generalization of the arcsine law which gives the dis-
tribution of the proportion of time over some interval that a Brownian motion is positive. In
order to compute the bias-correction function numerically, we introduce an efficient algorithm.
Reducing local minima over many random variables to iterated minima of two random vari-
ables in each step combined with a convolution step can be interpreted as a kind of dynamic
programming approach. It turns out to be much more efficient compared to the natural approx-
imation by a Monte Carlo simulation and is a crucial ingredient of our numerical application.
Our convergence rate is much faster than the optimal rate, n1/8, for spot volatility estimation
under regular noise [4, 14]. The main contribution of this work is to develop the probabilistic
foundation for the asymptotic analysis of the estimator and to establish the stable central limit
theorems, asymptotic confidence, and a numerically practicable method.

The methods and proof techniques to deal with jumps are inspired by the truncation methods
pioneered in [21] and summarized in [15, Chapter 13]. Overall, the strategy and restrictions
on jump processes are to some extent similar, while several details under irregular noise using
order statistics are rather different compared to settings without noise or with regular centred
noise as in [7].

We introduce and further discuss our model in Section 2. Section 3 presents estimation
methods and Section 4 asymptotic results. The numerical application is considered in Section 5
and a Monte Carlo simulation study illustrates the appealing finite-sample performance of the
method. All proofs are given in Section 6.

2. Model with lower-bounded, one-sided noise and assumptions

Consider an Itô semimartingale

Xt = X0 +
∫ t

0
as ds +

∫ t

0
σs dWs +

∫ t

0

∫
R

δ(s, z)1{|δ(s,z)|≤1} (μ − ν)(ds, dz)

+
∫ t

0

∫
R

δ(s, z)1{|δ(s,z)|>1} μ(ds, dz), t ≥ 0, (1)

with a one-dimensional standard Brownian motion (Wt), defined on some filtered probability
space (�X,FX, (FX

t ), PX). For the drift process (at) and the volatility process (σt) we impose
the following quite general assumptions.

Assumption 1. The processes (at)t≥0 and (σt)t≥0 are locally bounded. The volatility process
is strictly positive, inft∈[0,1] σt > 0, PX-almost surely. For all 0 ≤ t + s ≤ 1, t ≥ 0, s ≥ 0, with
some constants Cσ > 0, and α > 0,

E[(σt+s − σt)
2] ≤ Cσ s2α . (2)

Condition (2) introduces a regularity parameter α, governing the smoothness of the volatil-
ity process. The parameter α is crucial, since it will naturally influence the convergence rates
of spot volatility estimation. Inequality (2) is less restrictive than α-Hölder continuity, since
it does not rule out volatility jumps. For instance, any compound Poisson jump process with
a jump size distribution having finite second moments satisfies (2) with α = 1

2 . Since second
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moments in (2) of such a process are bounded by a constant times (s2 + s), i.e. the second
moment of a Poisson distribution with parameter s, this readily follows. Similar bounds for
more general jump processes are given, for instance, in [15, Section 13]. This is important as
empirical evidence for volatility jumps, in particular simultaneous price and volatility jumps,
has been reported for intraday high-frequency financial data [6, 28]. The presented theory is,
moreover, for general stochastic volatilities, also allowing for rough volatility. Rough frac-
tional stochastic volatility models recently became popular and are used, for instance, in the
macroscopic model of [12, 25].

The jump component of (1) is illustrated as in [15] and related literature, where the
predictable function δ is defined on � ×R+ ×R, and the Poisson random measure μ is
compensated by ν(ds, dz) = λ(dz) ⊗ ds, with a σ -finite measure λ. We impose the following
standard condition with a generalized Blumenthal–Getoor or jump activity index r, 0 ≤ r ≤ 2.

Assumption 2. Assume that supω,x |δ(t, x)|/γ (x) is locally bounded with a non-negative,
deterministic function γ which satisfies

∫
R

(γ r(x) ∧ 1) λ(dx) < ∞.

We use the notation a ∧ b = min(a, b), and a ∨ b = max(a, b), throughout this paper.
Assumption 2 is most restrictive in the case r = 0, when jumps are of finite activity. The
larger r is, the more general jump components are allowed. We will develop results under
mild restrictions on r.

The process (Xt), which can be decomposed into

Xt = Ct + Jt, (3)

with a continuous component (Ct) and a càdlàg jump component (Jt), provides a model for the
latent efficient log-price process in continuous time.

High-frequency (best) ask order prices from a limit order book at times tni , 0 ≤ i ≤ n, on the
fix time interval [0, 1] cannot be adequately modelled by discrete recordings of (Xt). Instead,
we propose the additive model with lower-bounded, one-sided microstructure noise:

Yi = Xtni
+ εi, i = 0, . . . , n, εi

iid∼ Fη, εi ≥ 0. (4)

The crucial property of the model is that the support of the noise is lower bounded. It is not
that important that this boundary is zero—it could be a different constant, or even a regularly
varying function over time. The methods and results presented are robust with respect to such
model generalizations. We set the bound equal to zero, which appears to be the most natural
choice for limit orders.

Assumption 3. The independent and identically distributed (i.i.d.) noise (εi)0≤i≤n has a
cumulative distribution function (CDF) Fη satisfying

Fη(x) = ηx(1 + O(1)) as x ↓ 0. (5)

This is a nonparametric model in that the extreme value index is −1 for the minimum domain
of attraction close to the boundary. This standard assumption on one-sided noise has already
been used in [17, 24] within different frameworks. We do not require assumptions about the
maximum domain of attraction, moments, and the tails of the noise distribution. Parametric
examples which satisfy (5) are, for instance, the uniform distribution on some interval, the
exponential distribution, and the standard Pareto distribution with heavy tails.

The i.i.d. assumption on the noise is crucial, and generalizations to weakly dependent
noise will require considerable work and new proof concepts. Heterogeneity, that is, a
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time-dependent noise level η(t), could be included in our asymptotic analysis under mild
assumptions.

3. Construction of spot volatility estimators

We partition the observation interval [0, 1] into h−1
n equispaced blocks, h−1

n ∈N, and take
local minima on each block. We hence obtain, for k = 0, . . . , h−1

n − 1, the local, block-wise
minima

mk,n = min
i∈In

k

Yi, In
k = {i ∈ {0, . . . , n} : tni ∈ [khn, (k + 1)hn)}.

While h−1
n is an integer, nhn is in general not integer valued. For a simple interpretation, how-

ever, we can think of nhn as an integer-valued sequence which gives the number of noisy
observations per block in the case of equidistant observations. A spot volatility estimator
could be obtained as a localized version of the estimator from [5, (2.9)] for the integrated
volatility in the analogous model. The idea is that differences mk,n − mk−1,n of local min-
ima estimate differences of efficient prices, and a sum of squared differences can be used to
estimate the volatility. However, things are not that simple. To determine the expectation of
squared differences of local minima we introduce the function

�n(σ 2) = π

2(π − 2)
h−1

n E

[(
min

i∈{0,...,nhn−1} (σBi/n + εi) − min
i∈{1,...,nhn}

(σ B̃i/n + εi)
)2]

, (6)

where (Bt) and (B̃t) denote two independent standard Brownian motions. In [5], the block
length balanced the order of block-wise minimal errors (nhn)−1 under (5) and the order h1/2

n of
the movement of the stochastic semimartingale boundary over a block. For hnn2/3 → ∞, �n

tends to the identity function, so we have that

�n(σ 2) = σ 2 + O(1) as n → ∞. (7)

In this asymptotic regime local minima are mainly determined by local minima of the boundary
process, such that the first-order approximation equals (6) when neglecting the noise (εi) on
the right-hand side. The half-normal distribution of the minimum of a Brownian motion over
an interval and its moments then readily yield (7). A formal proof of (7) is contained in Step 3
of the proof of Theorem 1 in Section 6.2. Note that we defined �n differently than in [5], e.g.
in their (A.35), with the additional factor π/(π − 2). By the simple asymptotic approximation
in (7), we do not require �−1

n for a consistent estimator.
When there are no price jumps, a simple consistent estimator for the spot squared volatility

σ 2
τ is given by

σ̂ 2
τ− = π

2(π − 2)Kn

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

h−1
n (mk,n − mk−1,n)2 (8)

for suitable sequences hn → 0 and Kn → ∞. Using only observations before time τ , the esti-
mator is available online at time τ ∈ (0, 1] during a trading day. For τ close to 0, when
�h−1

n τ� ≤ Kn, the factor K−1
n can be adjusted to get an average. Since this is unimportant for

asymptotic theory, we keep K−1
n for simple notation. Working with ex post data over the whole

interval, instead of using only observations before time τ , we may also use

σ̂ 2
τ+ = π

2(π − 2)Kn

(�h−1
n τ�+Kn)∧(h−1

n −1)∑
k=�h−1

n τ�+1

h−1
n (mk,n − mk−1,n)2, (9)
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or an estimator with an average centred around time τ ∈ (0, 1). The difference between the
two estimators (9) and (8) can be used to infer a possible jump in the volatility process at time
τ ∈ (0, 1), as in [6].

To construct confidence intervals for the spot volatility, it is useful to also establish a spot
quarticity estimator:

σ̂ 4
τ − = π

4(3π − 8)Kn

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

h−2
n

(
mk,n − mk−1,n)4. (10)

A spot volatility estimator that is robust with respect to jumps in (Xt) is obtained with
threshold versions of these estimators. We truncate differences of local minima whose abso-
lute values exceed a threshold un = β · hκ

n , κ ∈ (0, 1
2

)
, with some positive constant β, which

leads to

σ̂
2,(tr)
τ− = π

2(π − 2)Kn

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

h−1
n (mk,n − mk−1,n)21{|mk,n−mk−1,n|≤un}, (11)

and analogous versions of the estimators (9) and (10).

4. Asymptotic results

We establish asymptotic results for equidistant observations, tni = i/n. We begin with the
asymptotic theory in a setup without jumps in (Xt).

Theorem 1. (Stable central limit theorem for continuous (Xt).) Set hn such that hnn2/3 → ∞
and Kn = CKhδ−2α/(1+2α)

n for arbitrary δ, 0 < δ < 2α/(1 + 2α), and some constant CK > 0. If
(Xt) is continuous, i.e. Jt = 0 in (3), under Assumptions 1 and 3, the spot volatility estimator

(8) is consistent, σ̂ 2
τ−

P→ σ 2
τ−, and satisfies the stable central limit theorem

K1/2
n

(
σ̂ 2

τ− − �n
(
σ 2

τ−
)) st−→N

(
0,

7π2/4 − 2π/3 − 12

(π − 2)2
σ 4

τ−
)

. (12)

There is only a difference between σ 2
τ and its left limit σ 2

τ− in the case of a volatility jump
at time τ . In particular, the estimator is also consistent for σ 2

τ for any fix τ ∈ (0, 1). The con-

vergence rate K−1/2
n gets arbitrarily close to n−2α/(3+6α), which is optimal in our model. The

optimal rate is attained, according to [5], for hn ∝ n−2/3 and Kn ∝ h−2α/(1+2α)
n , i.e. δ ↓ 0. In

the important special case when α = 1
2 , for a semimartingale volatility, the rate is arbitrar-

ily close to n−1/6. This is much faster than the optimal rate of convergence in the model
with additive centred microstructure noise, which is known to be n−1/8 [4, 14]. The constant
in the asymptotic variance is obtained from several variance and covariance terms including
(squared) local minima, and is approximately 2.44. The function �n was shown to be mono-
tone and invertible in [5], and �n and its inverse �−1

n can be approximated using Monte Carlo
simulations, see Section 5.1. The asymptotic distribution of the estimator does not hinge on
the noise level η, which is different to methods for centred noise. Hence, we do not require any
pre-estimation of noise parameters and the theory directly extends to a time-varying noise level
η(t) in (5) under the mild assumption that 0 < η(t) < ∞ for all t. The stable convergence in (12)
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is stronger than weak convergence and is important, since the limit distribution is mixed nor-
mal depending on the stochastic volatility. We refer to [15, Section 2.2.1] for an introduction
to stable convergence. For a normalized central limit theorem, we can use the spot quarticity
estimator (10).

Proposition 1. (Feasible central limit theorem.) Under the conditions of Theorem 1, the spot
quarticity estimator (10) is consistent, such that we get for the spot volatility estimation the
normalized central limit theorem

K1/2
n

π − 2√
σ̂ 4

τ −(7π2/4 − 2π/3 − 12)

(
σ̂ 2

τ− − �n
(
σ 2

τ−
)) d−→N (0, 1).

Proposition 1 yields asymptotic confidence intervals for spot volatility estimation. For q ∈
(0, 1), we have

P

(
σ 2

τ− ∈
[
�−1

n

(
σ̂ 2

τ− −
√

σ̂ 4
τ −(7π2/4 − 2π/3 − 12)

π − 2
K−1/2

n �−1(1 − q/2)

)
,

�−1
n

(
σ̂ 2

τ− +
√

σ̂ 4
τ −(7π2/4 − 2π/3 − 12)

π − 2
K−1/2

n �−1(1 − q/2)

)])
→ 1 − q

by the monotonicity of �−1
n , with � the CDF of the standard normal distribution. Since

�−1
n is differentiable by [5, (A.35)] and the derivative is

(
�−1

n

)′ = 1 + O(1) by (7), the delta
method (for stable convergence) also yields asymptotic confidence intervals and the central
limit theorem

K1/2
n

(
�−1

n

(
σ̂ 2

τ−
)− σ 2

τ−
) st−→N

(
0,

7π2/4 − 2π/3 − 12

(π − 2)2
σ 4

τ−
)

. (13)

We cannot simply replace �n
(
σ 2

τ−
)

in (12) by its first-order approximation σ 2
τ−, or �−1

n

(
σ̂ 2

τ−
)

in (13) by σ̂ 2
τ−, since the biases do not converge to zero sufficiently fast. That is, (σ̂ 2

τ− −
σ 2

τ−) =OP

(
K−1/2

n
)

does not hold true in general. Furthermore, if the condition hnn2/3 → ∞ is
violated, the central limit theorems do not apply.

Theorem 2. (Stable central limit theorem with jumps in (Xt).) Set hn such that hnn2/3 → ∞
and Kn = CKhδ−2α/(1+2α)

n for arbitrary δ, 0 < δ < 2α/(1 + 2α), and some constant CK > 0.
Under Assumptions 1, 2, and 3, with

r <
2 + 2α

1 + 2α
,

the truncated spot volatility estimator (11) with

κ ∈
(

1

2 − r

α

2α + 1
,

1

2

)
is consistent, σ̂

2,(tr)
τ−

P→ σ 2
τ−, and satisfies the stable central limit theorem

K1/2
n

(
σ̂

2,(tr)
τ− − �n

(
σ 2

τ−
)) st−→N

(
0,

7π2/4 − 2π/3 − 12

(π − 2)2
σ 4

τ−
)

.
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In order to obtain a central limit theorem at (almost) optimal rate, we thus have to impose
mild restrictions on the jump activity. For the standard model with a semimartingale volatil-
ity, i.e. α = 1

2 , we need r < 3
2 , and for α = 1 we have the stronger condition that r < 4

3 . These
conditions are equivalent to those of [7, Theorem 1], which gives a central limit theorem for
spot volatility estimation under similar assumptions on (Xt), but with a slower rate of conver-
gence for centred microstructure noise. Using a truncated quarticity estimator with the same
thresholding again yields a feasible central limit theorem and asymptotic confidence intervals.

Remark 1. From a theoretical point of view we might ponder why we do not work out an
asymptotic theory for hn ∝ n−2/3 when noise and efficient price both influence the asymptotic
distribution of the local minima. However, in this balanced case, the asymptotic distribution is
infeasible. For this reason, [5] could not establish a central limit theorem for their integrated
volatility estimator. Moreover, their estimator was only implicitly defined depending on the
unknown function �−1

n . Even imposing a parametric assumption on the noise as an exponen-
tial distribution would not render a feasible limit theory for hn ∝ n−2/3—see the discussion in
[5]. Choosing hn such that hnn2/3 → ∞ slowly instead yields a simple, explicit, and consistent
estimator and a feasible central limit theorem for spot volatility estimation. In particular, we
use �n only for the bias correction of the simple estimator, while the estimator itself and the
(estimated) asymptotic variance do not hinge on �n. Central limit theorems for spot volatility
estimators are in general only available at almost optimal rates, when the variance dominates
the squared bias in the mean squared error; see, for instance, Theorem 13.3.3 and the remarks
below it in [15]. Therefore, (12) is the best achievable central limit theorem. Moreover, our
choice of hn avoids strong assumptions on the noise that would be inevitable for smaller blocks.
Our numerical work will demonstrate that the asymptotic results presented are useful in prac-
tice and facilitate efficient inference on the spot volatility. In particular, Section 5.2 revolves
around the question of how to choose block lengths in practice.

5. Implementation and simulations

5.1. Monte Carlo approximation of �n

Although the function �n from (6) tends to the identity asymptotically, it has a crucial role
as a bias correction of our estimator in (12). We can compute the function numerically based
on a Monte Carlo simulation. Hence, we have to compute �n(σ 2) as a Monte Carlo mean over
many iterations and over a fine grid of values for the squared volatility. Then, we can also
numerically invert the function and use �−1

n (·). To make this procedure feasible without too
high a computational expense we require an algorithm to efficiently sample from the law of
the local minima for some given n and block length hn.

Consider, for nhn ∈N with Zi
iid∼N (0, 1) and the observation errors (εk)k≥0, the minimum

Mnhn
1 := min

k=1,...,nhn

(
σ√
n

k∑
i=1

Zi + εk

)

for some fixed σ > 0, and, for l ∈ {0, . . . , nhn},

Mnhn
l := min

k=l,...,nhn

(
σ√
n

k∑
i=0

Zi + εk

)
,
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where we set Z0 := 0. Since

�n(σ 2) = 1

2

π

π − 2
h−1

n E
[(

Mnhn−1
0 − Mnhn

1

)2]
,

with Mnhn−1
0 generated independently from Mnhn

1 , we want to simulate samples distributed as

Mnhn−1
0 and Mnhn

1 , respectively. Note that for finite nhn there is no exact equality between the

moments of Mnhn−1
0 and Mnhn

1 , which can be relevant in particular for moderate values of nhn.
As in the simulation of Section 5.2, we implement exponentially distributed observation errors
(εk), with some given noise level η. In data applications, we can do the same with an estimated
noise level

η̂ =
(

1

2n

n∑
i=1

(Yi − Yi−1)2

)−1/2

= η +OP(n−1/2).

This estimator works for all noise distributions with finite fourth moments. In view of the
discussion of the model in [5], exponentially distributed noise is the most natural example sat-
isfying (5). Simulations with other noise distributions lead to similar results. This is expected,
since the estimator only hinges on local minima and their distribution is asymptotically more
determined by the Brownian motion than by the noise distribution. To simulate the local min-
ima for given n, hn, η, and squared volatility σ 2 in an efficient way we use a specific dynamic
programming principle. Observe that

Mnhn
1 = σ√

n
Z1 + min

(
ε1, Mnhn

2

)
= σ√

n
Z1 + min

(
ε1,

σ√
n

Z2 + min
(
ε2, Mnhn

3

))

= σ√
n

Z1 + min

(
· · · min

(
εnhn−2,

σ√
n

Znhn−1 + min

(
εnhn−1,

σ√
n

Znhn + εnhn

))
· · ·

)
.

In the baseline noise model εk
iid∼ Exp(η), the random variable (σ/

√
n)Znhn + εnhn has an

exponentially modified Gaussian (EMG) distribution. With any fixed noise distribution,
we can easily generate realizations from this convolution. A pseudorandom variable dis-
tributed as Mnhn

1 is now generated following the last transformation in the reverse direction.
Algorithmically, this reads

1. Generate Unhn ∼ EMG(σ 2/n, η) ∼ Exp(η) + (σ/
√

n)Norm(1)

2. Unhn−1 = min(Unhn, Exp(η)) + (σ/
√

n)Norm(1)

3. Iterate until U1

where the end point U1 has the target distribution of Mnhn
1 . In each iteration step, we thus take

the minimum of the current state of the process with one independent exponentially distributed
random variable and the convolution with one independent normally distributed random vari-
able. To sample from the distribution of Mnhn−1

0 instead, we use the same algorithm and just
drop the convolution with the normal distribution in the last step.

This algorithm facilitates a many times faster sampling from the distribution of local minima
and numerical approximation of �n compared to running for each value a standard Monte
Carlo simulation in that local minima are computed over blocks of length hn.
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FIGURE 1. Monte Carlo means to estimate �n(σ 2) over a fine grid (interpolated line) for n = 23 400 and
n · hn = 15. Left: the dotted line shows the identity function. Right: the dotted line is a linear function

with slope 1.046.

Figure 1 plots the result of the Monte Carlo approximation of �n(σ 2) for n = 23 400 and
n · hn = 15 on a grid of 1500 values of σ 2. In this case, hn is quite small, but this configuration
turns out to be useful in Section 5.2. We know that �n(σ 2) is monotone, such that the oscilla-
tion of the function in Figure 1 is due to the inaccuracy of the Monte Carlo means, although
we use N = 100 000 iterations for each grid point. Nevertheless, we can see that the function
is rather close to a linear function with slope 1.046 based on a least squares estimate. The
left panel of Figure 1 draws a comparison to the identity function which is illustrated by the
dotted line, while the right panel draws a comparison to the linear function with slope 1.046.
We see that it is crucial to correct for the bias in (12) when using such small values of hn.
Although the function �n(σ 2) is not exactly linear, a simple bias correction dividing estimates
by 1.046 is almost as good as using the more precise numerical inversion based on the Monte
Carlo approximation. Since the Monte Carlo approximations of �n(σ 2) look close to linear
functions in all the cases considered, we report the estimated slopes based on least squares and
N = 100 000 Monte Carlo iterations for different values of hn in Table 1 to summarize con-
cisely the distance between the function �n(σ 2) and the identity. Simulating all iterations for
all grid points with our algorithm takes only a few hours with a standard computer.

5.2. Simulation study of estimators

We simulate n = 23 400 observations corresponding to one observation per second over a
(NASDAQ) trading day of 6.5 hours. The efficient price process is simulated from the model

dXt = νtσt dWt,

dσ 2
t = 0.0162 · (0.8465 − σ 2

t ) dt + 0.117 · σt dBt,

νt = (6 − sin(3π t/4)) · 0.002, t ∈ [0, 1].

The factor (νt) generates a typical U-shaped intraday volatility pattern. (Wt, Bt) is a two-
dimensional Brownian motion with leverage d[W, B]t = −0.2 dt. The stochastic volatility
component has several realistic features and the simulated model is in line with recent
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TABLE 1. Regression slopes to measure the bias of estimator (8) and deviation �n(σ 2) − σ 2.

n · hn 10 15 25 39 78 234
h−1

n 2340 1560 936 600 300 100
hn · n2/3 0.350 0.524 0.874 1.36 2.73 8.18
Slope 1.077 1.046 1.025 1.016 1.008 1.003
Approx. bias 7.7% 4.6% 2.5% 1.6% 0.8% 0.3%

FIGURE 2. True and estimated spot volatility with pointwise confidence sets.

literature; see [6] and references therein. We do not include a drift in Xt to avoid intro-
ducing another process or more parameters. Any drift evolving within a reasonable range
of values will not affect the numerical results presented. Observations with lower-bounded,
one-sided microstructure noise are generated by Yi = Xi/n + εi, 0 ≤ i ≤ n, with exponentially

distributed noise εi
iid∼ Exp(η), with η = 10 000. The noise variance is then rather small, but

this is in line with stylized facts of real NASDAQ data such as, for instance, those analyzed
in [4, 6]. Note that the noise level estimate is analogous to the one used for regular market
microstructure noise. Typical noise levels obtained e.g. for Apple are approximately 15 000,
and approximately 4000 for 3M; see the supplement of [4].

Figure 2 shows a fixed path of the squared volatility. We fix this path for the following Monte
Carlo simulation and generate new observations of (Xt) and (Yi) in each iteration according to
our model. The dashed line in Figure 2 gives the estimated volatility by the Monte Carlo means
over N = 50 000 iterations based on n · hn = 15 observations per block using the non-adjusted
estimator (8), but with windows which are centred around the block on which we estimate the
spot volatility, i.e. windows centred around the time τ , and with Kn = 180. We plot estimates
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TABLE 2. Summary statistics of estimation for different values of hn and Kn. MSD = mean standard
deviation, MAB = mean absolute bias, MABC = MAB of bias-corrected estimator.

Kn = 120 Kn = 180 Kn = 240

nhn MSD MAB MABC MSD MAB MABC MSD MAB MABC

10 14.6 7.59 0.73 12.0 7.51 0.90 10.5 7.60 1.13
15 14.4 4.59 0.88 11.8 4.57 1.17 10.3 4.46 1.43
25 14.3 2.56 1.24 11.8 2.63 1.66 10.3 2.86 1.91
78 14.7 2.44 2.52 12.3 3.53 3.42 11.0 4.33 4.16

All values multiplied by a factor of 106.

on each block, where the estimates close to the boundaries rely on fewer observations. The
solid line gives the bias-corrected volatility estimates using the numerically evaluated function
�n, based on the algorithm from Section 5.1 with n · hn = 15 and n = 23 400. We determined
the values n · hn = 15 and Kn = 180 as suitable values to obtain a small mean squared error. In
fact, the choice of Kn = 180 is rather large in favour of a smaller variance that yields a rather
smooth estimated spot volatility in Figure 2. The estimated volatility hence appears smoother
compared to the true semimartingale volatility, but the intraday pattern is captured well by our
estimation. We expect that this is typically an appealing implementation in practice as smaller
Kn results in a larger variance. Choosing Kn = 180 rather large, we have to use quite small
block sizes hn to control the overall bias of the estimation. Since hn · n2/3 ≈ 0.52 is small, the
bias correction becomes crucial here. Still, our asymptotic results work well for this imple-
mentation. This can be seen by the comparison of pointwise empirical 10% and 90% quantiles
from the Monte Carlo iterations illustrated by the grey area and the 10% and 90% quantiles
of the limit normal distribution with the asymptotic variance from (12). The latter are drawn
as dotted lines for the blocks with distance larger than Kn/2 from the boundaries, where the
variances are of order K−1

n . Close to the boundaries the empirical variances increase due to the
smaller number of blocks used for the estimates. Moreover, the bias correction, which is almost
identical to dividing each estimate by 1.046, correctly scales the simple estimates which have
a significant positive bias for the chosen tuning parameters. Overall, our asymptotic results
provide a good finite-sample fit even though we have hn · n2/3 < 1 here. Note, however, that
σt · η ≈ 100, and our asymptotic expansion in fact requires that h3/2

n nσtη is large when tak-
ing constants into account. Since the simulated scenario uses realistic values, we recommend
similar block lengths for applications to real high-frequency financial data. According to the
summary statistics in the supplement of [4], some assets exhibit higher noise-to-signal ratios,
and for those larger blocks are preferable.

Table 2 summarizes the performance of the estimation along different choices of nhn and
Kn using the following quantities:

MSD: the mean standard deviation of N iterations averaged over all grid points;

MAB: the mean absolute bias of N iterations averaged over all grid points and for the
estimator (8) without any bias correction;

MABC: the mean absolute bias of N iterations averaged over all grid points and for the esti-
mator (8) with a simple bias correction dividing estimates by the factors given in
Table 1.
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All the results are based on N = 50 000 Monte Carlo iterations. First of all, the values used
for Figure 2 are not unique minimizers of the mean squared error. Several other combinations
given in Table 2 render equally good results. Overall, the performance is comparable within
a broad range of block lengths and window sizes. The variances decrease for larger Kn, while
the bias increases with larger Kn for fixed hn. Important for the bias is the total window size,
Kn · hn, over which the volatility is approximated by a constant for the estimation. The variance
only depends on Kn: changing the block length for fixed Kn does not significantly affect the
variance. While the MSD is hence almost constant within the columns of Table 2, the bias after
correction, MABC, increases from the top down due to the increasing window size. Without
the bias correction two effects interfere for MAB. Larger blocks reduce the systematic bias
due to �n(σ 2

t ) − σ 2
t , but the increasing bias due to the increasing window size prevails for

n · hn = 78, and the two larger values of Kn.

6. Proofs

6.1. Law of the integrated negative part of a Brownian motion

A crucial lemma for our theory is on an upper bound for the CDF of the integrated negative
part of a Brownian motion. We prove a lemma based on a generalization of Lévy’s arcsine law
by [27]. The result is in line with the conjecture in [16, (261)], where one finds an expansion
of the density with a precise constant for the leading term. Denote by f+ the positive part and
by f− the negative part of some real-valued function f .

Lemma 1. For a standard Brownian motion (Wt)t≥0,

P

( ∫ 1

0
(Wt)− dt ≤ x

)
=O(x1/3), x → 0.

Proof. Observe the equality in distribution
∫ 1

0 (Wt)− dt
d= ∫ 1

0 (Wt)+ dt, such that

P

( ∫ 1

0
(Wt)− dt ≤ x

)
= P

( ∫ 1

0
(Wt)+ dt ≤ x

)
, x > 0.

For any ε > 0, the inequality∫ 1

0
(Wt)+ dt ≥

∫ 1

0
Wt · 1(Wt > ε) dt ≥ ε

∫ 1

0
1(Wt > ε) dt

leads us to

P

( ∫ 1

0
(Wt)+ dt ≤ x

)
≤ P

(
ε

∫ 1

0
1(Wt > ε) dt ≤ x

)
= P

(
1 −

∫ 1

0
1(Wt ≤ ε) dt ≤ x/ε

)

= P

( ∫ 1

0
1(Wt ≤ ε) dt ≥ 1 − x/ε

)
.

Using [27, (15) and (16)], we obtain

P

( ∫ 1

0
1(Wt ≤ ε) dt ≥ 1 − x/ε

)
= 1

π

∫ 1

1−x/ε

exp(−ε2/(2u))√
u(1 − u)

du + 2�(ε) − 1,
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with � the CDF of the standard normal distribution. Thereby, we obtain

P

( ∫ 1

0
(Wt)+ dt ≤ x

)
≤ 1

π

∫ 1

1−x/ε

exp(−ε2/(2u))√
u(1 − u)

du + 2
∫ ε

0

exp(−u2/2)√
2π

du,

and elementary bounds give the upper bound

P

( ∫ 1

0
(Wt)+ dt ≤ x

)
≤ 2

π

√
x

ε

1√
1 − x/ε

+ 2ε√
2π

.

Choosing ε = x1/3, we obtain the upper bound

P

( ∫ 1

0
(Wt)+ dt ≤ x

)
≤ 2

π
x1/3 1√

1 − x2/3
+ 2x1/3

√
2π

. �

6.2. Asymptotics of the spot volatility estimation in the continuous case

Proof of Theorem 1. In the following, we write An � Bn for two real sequences if there exists
some n0 ∈N and a constant K such that An ≤ KBn for all n ≥ n0.

Step 1 In the first step, we prove the approximation

σ̂ 2
τ− = π

2(π − 2)Kn

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

h−1
n (mk,n − mk−1,n)2

= π

2(π − 2)Kn

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

h−1
n (m̃k,n − m̃∗

k−1,n)2 +OP

(
hα∧1/2

n

)
with

m̃k,n = min
i∈In

k

(εi + σ(k−1)hn(Wtni
− Wkhn)), m̃∗

k−1,n = min
i∈In

k−1

(εi − σ(k−1)hn (Wkhn − Wtni
)).

We show that, for k ∈ {1, . . . , h−1
n − 1},

mk,n − mk−1,n = m̃k,n − m̃∗
k−1,n + OP

(
h1/2

n

)
. (14)

We subtract Xkhn from mk,n and mk−1,n, and use that, for all i,

(Yi − Xkhn) − (Xtni
− (Xkhn + σ(k−1)hn (Wtni

− Wkhn))) = (σ(k−1)hn(Wtni
− Wkhn) + εi).

This implies that

min
i∈In

k

(Yi − Xkhn) − max
i∈In

k

(Xtni
− (Xkhn + σ(k−1)hn (Wtni

− Wkhn))) ≤ min
i∈In

k

(σ(k−1)hn(Wtni
− Wkhn) + εi).
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Changing the roles of (Yi − Xkhn) and (σ(k−1)hn(Wtni
− Wkhn) + εi), we obtain by the analogous

inequalities and the triangle inequality, with Mt := Xkhn + ∫ t
khn

σ(k−1)hn dWs, that

|mk,n − Xkhn − m̃k,n| ≤ max
i∈In

k

|Xtni
− Mtni

|

≤ sup
t∈[khn,(k+1)hn]

|Xt − Mt|

≤ sup
t∈[khn,(k+1)hn]

∣∣∣∣Ct − Ckhn −
∫ t

khn

σ(k−1)hn dWs

∣∣∣∣.
We write (Ct) for (Xt) to emphasize continuity, see (3). Then (14) follows from

sup
t∈[khn,(k+1)hn]

∣∣∣∣Ct − Ckhn −
∫ t

khn

σ(k−1)hn dWs

∣∣∣∣= OP(h1/2
n ), (15)

and the analogous estimate for mk−1,n and m̃∗
k−1,n. We decompose

sup
t∈[khn,(k+1)hn]

∣∣∣∣Ct − Ckhn −
∫ t

khn

σ(k−1)hn dWs

∣∣∣∣≤ sup
t∈[khn,(k+1)hn]

∣∣∣∣ ∫ t

khn

(σs − σ(k−1)hn) dWs

∣∣∣∣
+ sup

t∈[khn,(k+1)hn]

∫ t

khn

|as| ds.

Under Assumption 1, we can assume that (σt) and (at) are bounded on [0, 1] by the localization
from [15, Section 4.4.1]. Using Itô’s isometry and Fubini’s theorem, we obtain that

E

[( ∫ t

khn

(σs − σ(k−1)hn) dWs

)2]
=E

[ ∫ t

khn

(σs − σ(k−1)hn )2 ds

]
=
∫ t

khn

E[(σs − σ(k−1)hn )2] ds,

such that Assumption 1 yields, for any t ∈ [khn, (k + 1)hn],

E

[( ∫ t

khn

(σs − σ(k−1)hn ) dWs

)2]
≤ Cσ

∫ t

khn

(s − (k − 1)hn)2α ds

≤ Cσ (2α + 1)−1(t − (k − 1)hn)2α+1 =O(h2α+1
n

)
.

By Doob’s martingale maximal inequality and since supt∈[khn,(k+1)hn]
∫ t

khn
|as| ds =OP(hn),

sup
t∈[khn,(k+1)hn]

∣∣∣∣Ct − Ckhn −
∫ t

khn

σ(k−1)hn dWs

∣∣∣∣=OP

(
h(1/2+α)∧1

n

)
.

We conclude that (15) holds, since α > 0. Since

h−1
n (mk,n − mk−1,n)(mk,n − m̃k,n) =OP

(
hα∧1/2

n

)
,

and analogously for (mk−1,n − m̃∗
k−1,n), we conclude Step 1 by writing

(mk,n − mk−1,n)2 − (m̃k,n − m̃∗
k−1,n)2 = (mk,n − mk−1,n + m̃k,n − m̃∗

k−1,n)

× (mk,n − m̃k,n + m̃∗
k−1,n − mk−1,n).
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Step 2 We bound the bias of the spot volatility estimation using Step 1. For �h−1
n τ� > Kn, we

obtain from the definition of the function �n in (6) that

E[σ̂ 2
τ− − �n(σ 2

τ−)] = π

2(π − 2)Kn

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

h−1
n E[(mk,n − mk−1,n)2] −E[�n(σ 2

τ−)]

= 1

Kn

π

2(π − 2)

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

h−1
n E

[(
m̃k,n − m̃∗

k−1,n

)2]−E
[
�n
(
σ 2

τ−
)]+O(hα∧1/2

n

)

= 1

Kn

π

2(π − 2)

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

2(π − 2)

π
E
[
�n
(
σ 2

(k−1)hn

)]−E
[
�n
(
σ 2

τ−
)]+O(hα∧1/2

n

)

� 1

Kn

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

E
[
σ 2

(k−1)hn
− σ 2

τ−
]+O(hα∧1/2

n

)

� 1

Kn

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

E
[
σ(k−1)hn − στ−

]+O(hα∧1/2
n

)

� 1

Kn

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

(
E
[(

σ(k−1)hn − στ−
)2])1/2 +O(hα∧1/2

n

)
=O((Knhn)α) = O

(
hα/(1+2α)

n

)= O
(
K−1/2

n

)
.

The first � estimate is in fact an equality up to an additional factor (1 + O(1)), since � ′
n(x) =

1 + O(1) for all x ≥ 0, exploiting the abovementioned differentiability based on [5, (A.35)].
For the asymptotic upper bounds we used the binomial formula

σ 2
(k−1)hn

− σ 2
τ− = (σ(k−1)hn − στ−)(σ(k−1)hn + στ−) ≤ 2C(σ(k−1)hn − στ−),

exploiting as in Step 1 that (σt) is bounded with some upper bound C, and Hölder’s inequality
to conclude with (2) from Assumption 1. Finally, we used that

(
α ∧ 1

2

)
> α/(2α + 1) for all α.

Step 3 For the consistency of σ̂ 2
τ−, we prove that

E
[
σ̂ 2

τ− − σ 2
τ−
]= O(1). (16)

This includes a proof of (7). Denote by Pσ(k−1)hn
the regular conditional probabilities condi-

tioned on σ(k−1)hn , and by Eσ(k−1)hn
the expectations with respect to the conditional measures.

We obtain by the tower rule that

E
[
h−1

n

(
m̃k,n − m̃∗

k−1,n)2]=E
[
h−1

n Eσ(k−1)hn

[(
m̃k,n − m̃∗

k−1,n)2]]
=E

[
Eσ(k−1)hn

[(
h−1/2

n m̃k,n)2]+Eσ(k−1)hn

[(
h−1/2

n m̃∗
k−1,n)2]

− 2Eσ(k−1)hn

[
h−1/2

n m̃k,n
]
Eσ(k−1)hn

[
h−1/2

n m̃∗
k−1,n

]]
(17)

by the conditional independence of m̃k,n and m̃∗
k−1,n.

https://doi.org/10.1017/jpr.2023.96 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.96


874 M. BIBINGER

We establish and use an approximation of the tail probabilities of (m̃k,n) and (m̃∗
k−1,n),

respectively. For x ∈R, we have

Pσ(k−1)hn

(
h−1/2

n min
i∈In

k

(
εi + σ(k−1)hn(Wtni

− Wkhn)
)
> xσ(k−1)hn

)
= Pσ(k−1)hn

(
min
i∈In

k

(
h−1/2

n

(
Wtni

− Wkhn

)+ h−1/2
n σ−1

(k−1)hn
εi
)
> x

)

=Eσ(k−1)hn

[ �(k+1)nhn�∏
i=�knhn�+1

P
(
εi > h1/2

n σ(k−1)hn

(
x − h−1/2

n (Wtni
− Wkhn)

) |FX)]

=Eσ(k−1)hn

[
exp

( �(k+1)nhn�∑
i=�knhn�+1

log
(
1 − Fη

(
h1/2

n σ(k−1)hn

(
x − h−1/2

n (Wtni
− Wkhn)

))))]

by the tower rule for conditional expectations, and since εi
iid∼ Fη. We have

Wtni
− Wkhn =

i−�knhn�∑
j=1

Ũj, Ũj
iid∼N (0, n−1), j ≥ 2, Ũ1 ∼N (0, tn�knhn�+1 − khn

)
,

Uj = h−1/2
n Ũj, Uj

iid∼N (0, (nhn)−1), j ≥ 2, U1 ∼N (0, h−1
n

(
tn�knhn�+1 − khn

))
.

From (5), and with a first-order Taylor expansion of z �→ log(1 − z), we have

log(1 − Fη(y))
(5)= log(1 − ηy(1 + O(1))) = −ηy + O(ηy) = −ηy+ + O(ηy)

as y → 0, where we add the positive part in the last equality since Fη(y) = 0 for any y ≤ 0. We
obtain

Pσ(k−1)hn

(
h−1/2

n min
i∈In

k

(
εi + σ(k−1)hn

(
Wtni

− Wkhn

))
> xσ(k−1)hn

)

=Eσ(k−1)hn

[
exp

(
−h1/2

n σ(k−1)hnη

�(k+1)nhn�∑
i=�knhn�+1

(
x −

i−�knhn�∑
j=1

Uj

)
+

(1 + O(1))

)]

=Eσ(k−1)hn

[
exp

(
−h1/2

n nhnσ(k−1)hnη

∫ 1

0
(Bt − x)− dt(1 + O(1))

)]
.

In the last equality we used that the Riemann sums tend almost surely to the integral with
a standard Brownian motion (Bt)t≥0 in the integrand. Since the expression in the expecta-
tion is bounded, as a product of conditional probabilities, by 1, we conclude with dominated
convergence. If nh3/2

n → ∞, we deduce that
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Pσ(k−1)hn

(
h−1/2

n min
i∈In

k

(
εi + σ(k−1)hn

(
Wtni

− Wkhn

))
> xσ(k−1)hn

)
= P

(
inf

0≤t≤1
Bt ≥ x

)
+Eσ(k−1)hn

[
1
(

inf
0≤t≤1

Bt < x
)

exp

(
−h3/2

n nσ(k−1)hnη

∫ 1

0
(Bt − x)− dt(1 + O(1))

)]
= P

(
inf

0≤t≤1
Bt ≥ x

)
+ P

(
inf

0≤t≤1
Bt < x

)
· O(1). (18)

We do not have a lower bound for
∫ 1

0 (Bt − x)− dt. However, using that the first entry time Tx

of (Bt) in x, conditional on {inf0≤t≤1 Bt < x}, has a continuous conditional density f (t | Tx < 1),
by Lemma 1 and properties of the Brownian motion we obtain, for any δ > 0,

Eσ(k−1)hn

[
1
(

inf
0≤t≤1

Bt < x
)

exp

(
−h3/2

n nσ(k−1)hnη

∫ 1

0
(Bt − x)− dt

)]
≤ exp

(−(h3/2
n n

)δ
σ(k−1)hnη

)
P

(
inf

0≤t≤1
Bt < x

)
+ P

(
inf

0≤t≤1
Bt < x,

∫ 1

0
(Bt − x)− dt ≤ (h3/2

n n
)−1+δ

)

≤
(

exp
(−(h3/2

n n
)δ

σ(k−1)hnη
)+

∫ 1

0
P

( ∫ 1

s
(Bt)− dt ≤ (h3/2

n n
)−1+δ

)
f (s | Tx < 1) ds

)
× P

(
inf

0≤t≤1
Bt < x

)
≤
(

exp
(−(h3/2

n n
)δ

σ(k−1)hnη
)

+
∫ 1

0
P

(
(1 − s)

∫ 1

0
(Bt)− dt ≤ (h3/2

n n
)−1+δ

)
f (s | Tx < 1) ds

)
P

(
inf

0≤t≤1
Bt < x

)
.

We focus on the second addend of the first factor, since the exponential term decays faster. It
is bounded by a constant times∫ 1

0
P

(
(1 − s)

∫ 1

0
(Bt)− dt ≤ (h3/2

n n
)−1+δ

)
ds

≤
∫ 1−bn

0
P

(
(1 − s)

∫ 1

0
(Bt)− dt ≤ (h3/2

n n
)−1+δ

)
ds +

∫ 1

1−bn

ds

≤ P

(
bn

∫ 1

0
(Bt)− dt ≤ (h3/2

n n
)−1+δ

)
+ bn =O((h3/2

n nb−1
n

)−(1+δ)/3 + bn
)

for any sequence (bn), bn ∈ (0, 1), where we used Lemma 1. Choosing a bn which minimizes
the order yields

Eσ(k−1)hn

[
1
(

inf
0≤t≤1

Bt < x
)

exp

(
−h3/2

n nσ(k−1)hnη

∫ 1

0
(Bt − x)− dt

)]
= P

(
inf

0≤t≤1
Bt < x

)
· Rn

https://doi.org/10.1017/jpr.2023.96 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2023.96


876 M. BIBINGER

almost surely, with a remainder that satisfies Rn =O((h3/2
n n

)−(1+δ)/4). From the unconditional
Lévy distribution of Tx, f (s | Tx < 1) is explicit, but we omit its precise form which does not
influence the asymptotic order. Under the condition nh3/2

n → ∞, the minimum of the Brownian
motion over the interval hence dominates the noise in the distribution of local minima, different
than for the choice hn ∝ n−2/3. By the reflection principle,

P

(
− inf

0≤t≤1
Bt ≥ x

)
= P

(
sup

0≤t≤1
Bt ≥ x

)
= 2P(B1 ≥ x) = P(|B1| ≥ x) (19)

for x ≥ 0.
Using the illustration of moments by integrals over tail probabilities we exploit this, and

a completely analogous estimate for m̃∗
k−1,n, to approximate conditional expectations. This

yields, for all k ∈ {1, . . . , h−1
n − 1},

Eσ(k−1)hn

[
h−1/2

n m̃k,n
]= ∫ ∞

0
Pσ(k−1)hn

(
h−1/2

n m̃k,n > x
)

dx

−
∫ ∞

0
Pσ(k−1)hn

(−h−1/2
n m̃k,n > x

)
dx

= −
∫ ∞

0
Pσ(k−1)hn

(
σ(k−1)hn sup

0≤t≤1
Bt > x

)
dx + OP(1)

= −
∫ ∞

0
Pσ(k−1)hn

(σ(k−1)hn |B1| > x) dx + OP(1)

= −Eσ(k−1)hn

[
σ(k−1)hn |B1|

]+ OP(1)

= −
√

2

π
σ(k−1)hn + OP(1).

We used (19). An analogous computation yields the same result for m̃∗
k−1,n:

Eσ(k−1)hn

[
h−1/2

n m̃∗
k−1,n

]= −
√

2

π
σ(k−1)hn + OP(1).

For the second conditional moments, we obtain, for all k ∈ {1, . . . , h−1
n − 1},

Eσ(k−1)hn

[
h−1

n

(
m̃k,n

)2]= 2
∫ ∞

0
xPσ(k−1)hn

(∣∣h−1/2
n m̃k,n

∣∣> x
)

dx

= 2
∫ ∞

0
xPσ(k−1)hn

(
σ(k−1)hn sup

0≤t≤1
Bt > x

)
dx + OP(1)

= 2
∫ ∞

0
xPσ(k−1)hn

(σ(k−1)hn |B1| > x) dx + OP(1)

= σ 2
(k−1)hn

+ OP(1).

The last identity uses the illustration of the second moment of the normal distribution as an
integral over tail probabilities. An analogous computation yields

Eσ(k−1)hn

[
h−1

n

(
m̃∗

k−1,n

)2]= σ 2
(k−1)hn

+ OP(1).
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Inserting the identities for the conditional moments in (17) yields

E
[
h−1

n

(
m̃k,n − m̃∗

k−1,n)2]= 2

(
1 − 2

π

)
E
[
σ 2

(k−1)hn

]+ O(1)

such that

E
[
σ̂ 2

τ− − σ 2
τ−
]= π

2(π − 2)Kn

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

h−1
n E

[(
m̃k,n − m̃∗

k−1,n)2]−E[σ 2
τ−] + O(1)

= 1

Kn

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

E
[
σ 2

(k−1)hn
− σ 2

τ−
]+ O(1) = O(1).

This proves (16). Since the next step shows that the variance of the estimator tends to zero,
consistency holds true.

Step 4 We determine the asymptotic variance of the estimator. Illustrating moments as inte-
grals over tail probabilities, with the analogous approximation as above, we obtain, for all
k ∈ {1, . . . , h−1

n − 1},

varσ(k−1)hn

(
m̃2

k,n

)=Eσ(k−1)hn

[
m̃4

k,n

]− (
Eσ(k−1)hn

[
m̃2

k,n

])2
= 2σ 4

(k−1)hn
h2

n + OP(h2
n),

covσ(k−1)hn

(
m̃2

k,n, m̃k,nm̃∗
k−1,n

)=Eσ(k−1)hn

[
m̃3

k,n

]
Eσ(k−1)hn

[
m̃∗

k−1,n

]
−Eσ(k−1)hn

[
m̃2

k,n

]
Eσ(k−1)hn

[m̃k,n]Eσ(k−1)hn

[
m̃∗

k−1,n

]
= 2

π
σ 4

(k−1)hn
h2

n + OP(h2
n),

varσ(k−1)hn

(
m̃k,nm̃∗

k−1,n

)=Eσ(k−1)hn

[
m̃2

k,n

]
Eσ(k−1)hn

[(
m̃∗

k−1,n

)2]
− (

Eσ(k−1)hn

[
m̃k,n

]
Eσ(k−1)hn

[
m̃∗

k−1,n

])2
= σ 4

(k−1)hn

(
1 − 4

π2

)
h2

n +OP(h2
n).

We have used the first four moments of the half-normal distribution and their illustration via
integrals over tail probabilities. The dependence structure between m̃k,n and m̃∗

k,n also affects

the variance of σ̂ 2
τ−. We perform approximation steps for covariances similar to those for the

moments of local minima above, using
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h−1
n covσ(k−1)hn

(
m̃k,n, m̃∗

k,n

)
=
∫ ∞

−∞

∫ ∞

−∞

(
Pσ(k−1)hn

(
h−1/2

n m̃k,n > x, h−1/2
n m̃∗

k,n > y
)

− Pσ(k−1)hn

(
h−1/2

n m̃k,n > x
)
Pσ(k−1)hn

(
h−1/2

n m̃∗
k,n > y

))
dx dy

=
∫ ∞

0

∫ ∞

0

(
Pσ(k−1)hn

(
σ(k−1)hn sup

0≤t≤1
Bt > x, σ(k−1)hn

(
sup

0≤t≤1
Bt − B1

)
> y

)
− Pσ(k−1)hn

(
σ(k−1)hn sup

0≤t≤1
Bt > x

)
Pσ(k−1)hn

(
σ(k−1)hn

(
sup

0≤t≤1
Bt − B1

)
> y

))
dx dy

+ OP(1).

This shows that the joint distribution of (m̃k,n, m̃∗
k,n) relates to the distribution of the minimum

and the difference between the minimum and the endpoint of Brownian motion over an interval,
or equivalently the distribution of the maximum and the difference between the maximum and
the endpoint. The latter is readily obtained from the joint density of the maximum and the
endpoint, which is a well-known result on stochastic processes; see, e.g., [26]. Utilizing this,
we obtain, for all k ∈ {1, . . . , h−1

n − 1},

covσ(k−1)hn

(
m̃k,n, m̃∗

k,n

)=
(

1

2
− 2

π

)
hnσ

2
(k−1)hn

(
1 +OP

(
hα

n

))+ OP(hn).

The additional remainder of order hα
n in probability is due to the different approximations of

(σt) in m̃k,n and m̃∗
k,n. This implies that, for all k ∈ {1, . . . , h−1

n − 1},

covσ(k−1)hn

(
m̃k,nm̃∗

k−1,n, m̃k+1,nm̃∗
k,n

)
= (

Eσ(k−1)hn

[
m̃k,nm̃∗

k,n

]−Eσ(k−1)hn

[
m̃k,n

]
Eσ(k−1)hn

[
m̃∗

k,n

])
Eσ(k−1)hn

[
m̃∗

k−1,n

]
E
[
m̃k+1,n

]
= σ 4

(k−1)hn

(
1

π
− 4

π2

)
h2

n + OP

(
h2

n

)
.

With analogous steps, we deduce two more covariances which contribute to the asymptotic
variance:

covσ(k−1)hn

(
m̃2

k,n,
(
m̃∗

k,n

)2)= −h2
n

σ 4
(k−1)hn

2
+ OP

(
h2

n

)
,

covσ(k−1)hn

((
m̃∗

k,n

)2
, mkm̃∗

k−1,n

)= −h2
n

2

3π
σ 4

(k−1)hn
+ OP

(
h2

n

)
.

All covariance terms which enter the asymptotic variance are of one of these forms. For the
conditional variance given σ 2

τ−, we obtain
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varσ 2
τ−
(
σ̂ 2

τ−
)

= 1

K2
n

π2

4(π − 2)2

( �h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

h−2
n varσ 2

τ−
(
m̃2

k,n + (m̃∗
k,n)2 − 2m̃k,nm̃∗

k−1,n

)

−
�h−1

n τ�−1∑
k=(�h−1

n τ�−Kn)∨2

4h−2
n covσ 2

τ−
(
m̃k,nm̃∗

k−1,n, m̃2
k−1,n + (m̃∗

k−1,n)2 − 2m̃k−1,nm̃∗
k−2,n

))

+ OP

(
K−1

n

)
= 1

K2
n

π2

4(π − 2)2

( �h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

h−2
n

(
2varσ 2

τ−
(
m̃2

k,n

)+ 4varσ 2
τ−
(
m̃k,nm̃∗

k−1,n

)
+ 2covσ 2

τ−
(
m̃2

k,n, (m̃∗
k,n)2)− 4covσ 2

τ−
(
m̃2

k,n, m̃k,nm̃∗
k−1,n

)− 4covσ 2
τ−
(
(m̃∗

k,n)2, m̃k,nm̃∗
k−1,n

))

+
�h−1

n τ�−1∑
k=(�h−1

n τ�−Kn)∨2

4h−2
n

(
2covσ 2

τ−
(
m̃k,nm̃∗

k−1,n, m̃k−1,nm̃∗
k−2,n

)− covσ 2
τ−
(
m̃k,nm̃∗

k−1,n, m̃2
k−1,n

)

− covσ 2
τ−
(
m̃k,nm̃∗

k−1,n, (m̃∗
k−1,n)2)))+ OP

(
K−1

n

)
= 1

Kn

π2

4(π − 2)2
σ 4

τ−
(

8 − 16

π2
− 1 − 8

π
+ 8

3π
+ 2

(
4

3π
− 16

π2

))
+ OP

(
K−1

n

)
= 1

Kn

1

(π − 2)2

(
7π2

4
− 2π

3
− 12

)
σ 4

τ− + OP

(
K−1

n

)
.

Step 5 For a central limit theorem, the squared bias needs to be asymptotically negligible
compared to the variance, which is satisfied for Kn = O(h−2α/(1+2α)

n ). By the existence of
higher moments of m̃k,n and m̃∗

k−1,n, a Lyapunov-type condition is straightforward, such that

asymptotic normality conditional on σ 2
τ− is implied by a classical central limit theorem for m-

dependent triangular arrays such as the one in [3]. A feasible central limit theorem is implied
by this conditional asymptotic normality in combination with FX-stable convergence. For the
stability, we show that the αn = K1/2

n
(
σ̂ 2

τ− − σ 2
τ−
)

satisfy

E[Zg(αn)] →E[Zg(α)] =E[Z]E[g(α)] (20)

for any FX-measurable bounded random variable Z and continuous bounded function g, where

α = σ 2
τ−

1

(π − 2)

√
7π2

4
− 2π

3
− 12 U,

with U a standard normally distributed random variable which is independent of FX . By the
above approximations it suffices to prove this for the statistics based on m̃k,n and m̃∗

k−1,n from
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(14), and Z measurable with respect to σ
( ∫ t

0 σs dWs, 0 ≤ t ≤ 1
)
. Set

An = [τ − (Kn + 1)hn, τ ], X̃(n)t =
∫ t

0
1An (s)σ�sh−1

n �hn
dWs, X̄(n)t = Xt − X̃(n)t.

Denote with Hn the σ -field generated by X̄(n)t and FX
0 . The sequence (Hn)n∈N is isotonic with

limit
∨

n Hn = σ (
∫ t

0 σs dWs, 0 ≤ t ≤ 1). Since E[Z |Hn] → Z in L1(P) as n → ∞, it is enough
to show that E[Zg(αn)] →E[Z]E[g(α)] for Z being Hn0 -measurable for some n0 ∈N. Observe
that αn includes only increments of local minima based on X̃(n)t, which are uncorrelated from
those of X̄(n)t. For all n ≥ n0, we hence obtain E[Zg(αn)] =E[Z]E[g(αn)] →E[Z]E[g(α)] by
a standard central limit theorem. This shows (20), and completes the proof of (12). �

Proof of Proposition 1. For the quarticity estimator (10), when �h−1
n τ� > Kn we have

E
[
σ̂ 4

τ − − σ 4
τ−
]= π

4(3π − 8)Kn

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

h−2
n E

[
m̃4

k,n + (m̃∗
k−1,n)4 − 4m̃3

k,nm̃∗
k−1,n

− 4m̃k,n(m̃∗
k−1,n)3 + 6m̃2

k,n(m̃∗
k−1,n)2

]
−E[σ 4

τ−] +O(hα∧1/2
n

)
=
(

π

4(3π − 8)

(
6 − 16

π
− 16

π
+ 6

)
− 1

)
E[σ 4

τ−] + O(1)

= O(1)

by using the same moments as in the computation of the asymptotic variance. We can bound
its variance by

var
(
σ̂ 4

τ −
)≤ π2

16(3π − 8)2K2
n

2Knh−4
n var

((
m̃k,n − m̃∗

k−1,n

)4)+ O
(
K−1

n

)
≤ 1

Kn

π2

8(3π − 8)2
h−4

n E
[(

m̃k,n − m̃∗
k−1,n

)8]+ O
(
K−1

n

)
≤ 1

Kn

π2

8(3π − 8)2
h−4

n 256E
[
m̃8

k,n

]+ O
(
K−1

n

)=O(K−1
n ),

which readily implies Proposition 1. �

6.3. Asymptotics of the truncated spot volatility estimation with jumps

Proof of Theorem 2. Denote by DX
k := mk,n − mk−1,n, k = 1, . . . , h−1

n − 1, the differences
of local minima based on the observations (4), with the general semimartingale (3) with jumps.
Denote by DC

k := m̃k,n − m̃∗
k−1,n, k = 1, . . . , h−1

n − 1, the differences of the unobservable local

minima considered in Section 6.2. In particular, the statistics DC
k are based only on the contin-

uous part (Ct) in (3) such that the jumps are eliminated. Theorem 2 is implied by Proposition 1
if we can show that

π

2(π − 2)Kn

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

h−1
n

((
DX

k

)21{|DX
k |≤un} − (

DC
k

)2)=OP

(
hα/(2α+1)

n

)= OP

(
K−1/2

n

)
.
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We decompose this difference of the truncated estimator, which is based on the available obser-
vations with jumps, and the non-truncated estimator, which uses non-available observations
without jumps, in the following way:

π

2(π − 2)Kn

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

h−1
n

((
DX

k

)21{|DX
k |≤un} − (

DC
k

)2)

= π

2(π − 2)Kn

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

h−1
n

(
1{|DC

k |>cun}
((

DX
k

)21{|DX
k |≤un} − (

DC
k

)2)
+ 1{|DC

k |≤cun}1{|DX
k |≤un}

((
DX

k

)2 − (
DC

k

)2)− 1{|DC
k |≤cun}1{|DX

k |>un}
(
DC

k

)2)
with some arbitrary constant c ∈ (0, 1). Without loss of generality we can set β = 1 in
this proof, i.e. un = hκ

n . We consider the three addends, which are different error terms,
separately by

• large absolute statistics based on the continuous part (Ct);

• non-truncated statistics which contain (small) jumps;

• the truncation also of the continuous parts in the statistics (DX
k ) which exceed the

threshold.

The probability P(|DC
k | > cun) can be bounded using the estimate from (18) and Gaussian

tail bounds. Observe that the remainder in (18) is non-negative. This yields that, for some
y > 0, we have

P
(
h−1/2

n

∣∣m̃k,n
∣∣> y

)≤ P

(
sup

0≤t≤1
Bt > y

)
,

which is intuitive, since the errors (εi) are non-negative. We apply the triangular inequality and
then Hölder’s inequality to the expectation of the absolute first error term and obtain, for any
p ∈N,

π

2(π − 2)Kn
E

[∣∣∣∣∣
�h−1

n τ�−1∑
k=(�h−1

n τ�−Kn)∨1

h−1
n 1{|DC

k |>cun}
((

DX
k

)21{|DX
k |≤un} − (

DC
k

)2)∣∣∣∣∣
]

≤ π

2(π − 2)Kn

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

h−1
n E

[
1{|DC

k |>cun}
∣∣(DX

k

)21{|DX
k |≤un} − (

DC
k

)2∣∣]

≤ π

2(π − 2)Kn

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

h−1
n

(
P
(|DC

k | > cun
)
2
(
u4

n +E
[(

DC
k

)4]))1/2
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≤ π

2(π − 2)Kn

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

h−1
n

(
P
(
h−1/2

n |DC
k | > chκ−1/2

n

))1/2√2u2
n

≤ π

2(π − 2)Kn

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

h−1
n

(
2P

(
|B1| > c

2
hκ−1/2

n

))1/2√
2u2

n

≤
√

2π

(π − 2)Kn

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

h2κ−1
n exp

(
−c2

4
h2κ−1

n

)

=O(h(−p+1)(2κ−1)
n

)= O
(
hα/(2α+1)

n

)
.

Since 2κ − 1 < 0 and p is arbitrarily large, we conclude that the first error term is asymptoti-
cally negligible. We will use the elementary inequalities

DX
k = min

i∈In
k

(Ci/n + Ji/n + εi) − min
i∈In

k−1

(Ci/n + Ji/n + εi)

≤ min
i∈In

k

(Ci/n + εi) + max
i∈In

k

Ji/n − min
i∈In

k−1

(Ci/n + εi) − min
i∈In

k−1

Ji/n

= DC
k + max

i∈In
k

Ji/n − min
i∈In

k−1

Ji/n +OP

(
hα∧1/2

n

)
,

DX
k = min

i∈In
k

(Ci/n + Ji/n + εi) − min
i∈In

k−1

(Ci/n + Ji/n + εi)

≥ min
i∈In

k

(Ci/n + εi) + min
i∈In

k

Ji/n − min
i∈In

k−1

(C i
/

n + εi) − max
i∈In

k−1

Ji/n

= DC
k + min

i∈In
k

Ji/n − max
i∈In

k−1

Ji/n +OP

(
hα∧1/2

n

)
.

Therefore, we can bound |DX
k − DC

k | by

sup
i∈In

k ,j∈In
k−1

|J i
n
− J j

n
| ≤ sup

s∈[khn,(k+1)hn],t∈[(k−1)hn,khn]
|Js − Jt|

≤ sup
s∈[khn,(k+1)hn]

|Js − Jkhn | + sup
t∈[(k−1)hn,khn]

|Jkhn − Jt|,

and the remainder term of the approximation for the continuous part, which is OP

(
hα∧1/2

n
)
.

Since the compensated small jumps of a semimartingale admit a martingale structure, Doob’s
inequality for càdlàg L2-martingales can be used to bound these suprema. Based on these
preliminaries, we obtain, for the expected absolute value of the second error term,
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π

2(π − 2)Kn
E

[∣∣∣∣∣
�h−1

n τ�−1∑
k=(�h−1

n τ�−Kn)∨1

h−1
n 1{|DC

k |≤cun}1{|DX
k |≤un}

((
DX

k

)2 − (
DC

k

)2)∣∣∣∣∣
]

≤ π

2(π − 2)Kn

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

h−1
n E

[
1{|DC

k |≤cun}1{|DX
k |≤un}

∣∣(DX
k

)2 − (
DC

k

)2∣∣]

� 1

Kn

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

h−1
n E

[
sup

i∈In
k ,j∈In

k−1

|Ji/n − Jj/n|2 ∧ (1 + c)2u2
n

]

� 1

Kn

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

h−1
n E

[
sup

t∈[khn,(k+1)hn]
|Jt − Jkhn |2 ∧ u2

n

]

� 1

Kn

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

h−1
n E

[|J(k+1)hn − Jkhn |2 ∧ u2
n

]=O(u2−r
n

)
.

Applying the elementary inequalities from above, a cross term in the upper bound for(
DX

k

)2 − (
DC

k

)2 is of smaller order and directly neglected. It can be handled using the Cauchy–
Schwarz inequality. In the last step, we adopt a bound on the expected absolute thresholded
jump increments from [1, (54)]. For the negligibility of the second error term, we thus get the
condition that

κ(2 − r) ≥ α

1 + 2α
. (21)

Doob’s inequality also yields

P

(
sup

t∈[khn,(k+1)hn]
|Jt − Jkhn | ≥ (1 − c)un

)
≤ E[|J(k+1)hn − Jkhn |r∧1]

((1 − c)un)r∧1
+O(hn) =O(hnu−r

n

)
.

For this upper bound, we decomposed the jumps in the sum of large jumps and the martingale
of compensated small jumps, to which we applied Doob’s inequality. We derive the following
estimate for the expectation of the third (absolute) error term:

π

2(π − 2)Kn

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

h−1
n E

[
1{|DC

k |≤cun}1{|DX
k |>un}

(
DC

k

)2]

≤ π

2(π − 2)Kn

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

h−1
n E

[
1{2 sups∈[(k−1)hn,(k+1)hn] |Js−Jkhn |≥(1−c)un}

(
DC

k

)2]

� 1

Kn

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

h−1
n P

(
sup

t∈[khn,(k+1)hn]
|Jt − Jkhn | ≥ (1 − c)un

)
E
[(

DC
k

)2]
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� 1

Kn

�h−1
n τ�−1∑

k=(�h−1
n τ�−Kn)∨1

(
E[|J(k+1)hn − Jkhn |r∧1]

((1 − c)un)r∧1
+O(hn)

)
=O(hnu−r

n

)
.

For the negligibility of the third error term, we thus get the condition that

1 − κr ≥ α

1 + 2α
. (22)

Since, under the conditions of Theorem 2, (21) and (22) are satisfied, the proof is finished by
the negligibility of all addends in the decomposition above. �
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