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Abstract. Classification of AS-regular algebras is one of the major projects in
non-commutative algebraic geometry. In this paper, we will study when given AS-
regular algebras are graded Morita equivalent. In particular, for every geometric
AS-regular algebra A, we define another graded algebra A, and show that if two
geometric AS-regular algebras A and A′ are graded Morita equivalent, then A and
A′ are isomorphic as graded algebras. We also show that the converse holds in many
three-dimensional cases. As applications, we apply our results to Frobenius Koszul
algebras and Beilinson algebras.
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1. Introduction. Classification of AS-regular algebras is one of the major projects
in non-commutative algebraic geometry. In fact, the geometric classification of three-
dimensional AS-regular algebras due to Artin, Tate and Van den Bergh [2] was the
starting point of this field. This paper tries to answer the question when given AS-
regular algebras are graded Morita equivalent, that is, they have equivalent graded
module categories. There are two motivations to answer this question.

The first motivation comes from non-commutative algebraic geometry itself. It
is a common understanding that the classification of quantum projective planes
was regarded as settled since their homogeneous coordinate rings, namely, three-
dimensional quadratic AS-regular algebras, were classified [2]. However, it is still
interesting to know when two three-dimensional quadratic AS-regular algebras
determine isomorphic quantum projective planes in order to say that the classification
of quantum projective planes is complete. It was shown in [8, Theorem 5.2] that in many
cases, this question is equivalent to the question when two three-dimensional quadratic
AS-regular algebras are graded Morita equivalent (see [8] and [19] for details).

The second motivation comes from representation theory of finite-dimensional
algebras. It is known that every finite-dimensional algebra of global dimension 1 is a
path algebra of a finite acyclic quiver up to Morita equivalence, so such algebras can
be classified in terms of quivers. As an obvious next step, it is interesting to classify
finite-dimensional algebras of global dimension 2 or higher. Recently, Minamoto
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introduced a nice class of finite-dimensional algebras of finite global dimension, called
(quasi-)Fano algebras [6], which are very interesting class of algebras to study and
classify. It was shown that for every AS-regular algebra A, we can define another
algebra ∇A, called the Beilinson algebra associated to A, which turns out to be a
quasi-Fano algebra [7, Theorem 4.12], and that two AS-regular algebras A and A′

are graded Morita equivalent if and only if ∇A and ∇A′ are isomorphic as algebras
[7, Theorem 4.17]. Moreover, by extending the notion of AS-regularity, every quasi-
Fano algebra can be obtained as a Beilinson algebra of some AS-regular algebra, so
the classification of AS-regular algebras up to graded Morita equivalence is strongly
related to the classification of quasi-Fano algebras up to isomorphism (see [7] and
[11] for details). By this fact, we hope that this paper also appeals to researchers in
representation theory of finite-dimensional algebras.

Our main result is as follows. For every geometric AS-regular algebra A, we define
another graded algebra A, and show that if two geometric AS-regular algebras A and
A′ are graded Morita equivalent, then A and A′ are isomorphic as graded algebras.
We also show that the converse holds in many three-dimensional cases. We point out
that it is in general much easier to determine if two graded algebras are isomorphic as
graded algebras than to determine if they are graded Morita equivalent. We also point
out that every three-dimensional quadratic AS-regular algebra is geometric, and most
of known examples of four-dimensional quadratic AS-regular algebras are geometric,
so there are plenty of examples we can apply our results to. In the last section, we apply
our results to Frobenius Koszul algebras and Beilinson algebras.

2. AS-regular algebras. Since this paper is expected to be read by non-experts
as well as experts, we will first recall basic definitions and facts in non-commutative
algebraic geometry, which are needed in this paper.

Throughout this paper, we fix an algebraically closed field k of characteristic 0,
and we assume that all vector spaces and algebras are over k unless otherwise stated. In
this paper, a graded algebra means an �-graded algebra A = ⊕

i∈� Ai. We denote by
GrMod A the category of graded right A-modules, and by grmod A the full subcategory
consisting of finitely generated modules. Morphisms in GrMod A are right A-module
homomorphisms preserving degrees. Note that if A is noetherian, then grmod A is
an abelian category. We say that two graded algebras A and A′ are graded Morita
equivalent if GrMod A ∼= GrMod A′.

For a graded module M ∈ GrMod A and an integer n ∈ �, we define the truncation
M≥n := ⊕

i≥n Mi ∈ GrMod A and the shift M(n) ∈ GrMod A by M(n)i := Mn+i for
i ∈ �. Note that the rule M �→ M(n) is a k-linear autoequivalence for GrMod A and
grmod A, called the shift functor. For M, N ∈ GrMod A, we write Exti

A(M, N) =
Exti

GrMod A(M, N) and

Exti
A(M, N) :=

⊕
n∈�

Exti
A(M, N(n)).

We denote by V∗ the dual vector space of a vector space V . If M is a graded
right (respectively, left) module over a graded algebra A, then we denote by M∗ :=
Homk(M, k) the dual graded vector space of M by abuse of notation, i.e. (M∗)i :=
(M−i)∗. Note that M∗ has a graded left (resp. right) A-module structure.

Let A be a noetherian-graded algebra. We denote by tors A the full subcategory
of grmod A consisting of finite-dimensional modules over k, and tails A :=
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grmod A/ tors A the quotient category, which is called the non-commutative projective
scheme associated to A in [4]. If A is a commutative graded algebra finitely generated
in degree 1 over k, then tails A is equivalent to the category of coherent sheaves on
Proj A by Serre, justifying the terminology.

We often denote byM ∈ tails A the image of M ∈ grmod A. For M, N ∈ grmod A,
M ∼= N in tails A if and only if M≥n ∼= N≥n in GrMod A for some n ∈ �. Note that
the k-linear autoequivalence M �→ M(n) preserves finite-dimensional modules over k,
so it induces a k-linear autoequivalence M �→ M(n) for tails A, again called the shift
functor.

A connected graded algebra is a graded algebra A = ⊕
i∈� Ai such that A0 = k. For

a connected graded algebra A, we view k = A/A≥1 ∈ GrMod A as a graded A-module.
Recall that the Gelfand–Kirillov dimension of A is defined by

GKdim A := inf{d ∈ �+ | dimk Ai ≤ cid−1 for some constant c > 0, i � 0}.
An AS-regular algebra defined below is one of the main objects of study in non-
commutative algebraic geometry.

DEFINITION 2.1. [1]. A connected graded algebra A is called a d-dimensional AS-
regular algebra of Gorenstein parameter � if

(1) gldim A = d < ∞,
(2) GKdim A < ∞, and

(3) Exti
A(k, A) ∼=

{
k(�), if i = d,

0, if i �= d.

We now define the generalised Nakayama automorphism for an AS-regular
algebra, which plays an essential role in this paper. Let A be a graded algebra,
and τ ∈ AutkA a graded algebra automorphism. For a graded right A-module
M ∈ GrMod A, we define a new graded right A-module Mτ ∈ GrMod A by Mτ = M
as a graded vector space with the new right action m ∗ a := mτ (a) for m ∈ M and
a ∈ A. If M is a graded A-A bimodule, then Mτ is also a graded A-A bimodule by this
new right action. The rule M �→ Mτ is a k-linear autoequivalence for GrMod A and
grmod A. If A is noetherian, then (−)τ ∼= − ⊗A Aτ ∈ Autk(grmod A) commutes with
the shift functor (n) ∈ Autk(grmod A) and preserves tors A, so it induces a k-linear
autoequivalence (−)τ ∼= − ⊗A Aτ ∈ Autk(tails A) commuting with the shift functor
(n) ∈ Autk(tails A).

Let A be a connected graded algebra and m = A≥1 the maximal homogeneous
two-sided ideal of A. For M ∈ GrMod A, we define the i-th local cohomology of M by

Hi
m(M) := lim

n→∞ Exti
A(A/A≥n, M) ∈ GrMod A.

If A is a noetherian d-dimensional AS-regular algebra of Gorenstein parameter �,
then Hi

m(A) = 0 for all i �= d. The graded A-A bimodule ωA := Hd
m(A)∗ is called the

canonical module of A. It is known that there exists a graded algebra automorphism
ν ∈ AutkA such that ωA ∼= Aν−1 (−�) as graded A-A bimodules (c.f. [5, Theorem 1.2]).
We call this graded algebra automorphism ν ∈ AutkA the generalised Nakayama
automorphism of A. The canonical module induces the Serre functor defined below.

DEFINITION 2.2. Let C be a k-linear category such that dimk HomC(M,N ) < ∞
for all M,N ∈ C. An autoequivalence S ∈ Autk C is called the Serre functor for C if
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we have a functorial isomorphism

HomC(M,N ) ∼= HomC(N ,S(M))∗

for all M,N ∈ C.

Note that the Serre functor is unique if it exists. Let A be a noetherian
d-dimensional AS-regular algebra with the canonical module ωA. Since ωA ∼=
Aν−1 (−�), where ν ∈ AutkA is the generalised Nakayama automorphism, − ⊗A ωA ∼=
(−)ν−1 (−�) ∈ Autk(grmod A) induces an autoequivalence − ⊗L

A ωA ∈ Autk Db(tails A),
where Db(tails A) denotes the bounded derived category of tails A. It was shown in [13]
that − ⊗L

A ωA[d − 1] is the Serre functor for Db(tails A).

We will recall below geometric techniques to classify three-dimensional quadratic
AS-regular algebras due to Artin, Tate and Van den Bergh [2]. Note that every graded
algebra finitely generated in degree 1 over k can be presented as A = T(V )/I , where
V is a finite-dimensional vector space, T(V ) is the tensor algebra on V over k and I
is a homogeneous two-sided ideal of T(V ). Let A = T(V )/(R) be a quadratic algebra,
that is, R ⊂ V ⊗k V is a subspace and (R) is the two-sided ideal of T(V ) generated
by R. Since every element f ∈ R ⊂ V ⊗k V defines a bilinear form f : V∗ ⊗k V∗ ∼=
(V ⊗k V )∗ → k, we can define

V(R) := {(p, q) ∈ �(V∗) × �(V∗) | f (p, q) = 0 for all f ∈ R}.

DEFINITION 2.3. Let A = T(V )/(R) be a quadratic algebra. A geometric pair (E, σ )
consists of a subscheme E ⊂ �(V∗) and an automorphism σ ∈ Autk E.

(1) We say that A satisfies (G1) if there exists a geometric pair (E, σ ) such that

V(R) = {(p, σ (p)) ∈ �(V∗) × �(V∗) | p ∈ E}.
In this case, we write P(A) = (E, σ ).

(2) We say that A satisfies (G2) if there exists a geometric pair (E, σ ) such that

R = {f ∈ V ⊗k V | f (p, σ (p)) = 0 for all p ∈ E}.
In this case, we write A = A(E, σ ).

(3) A noetherian quadratic algebra A is called geometric if A satisfies both (G1)
and (G2) with A ∼= A(P(A)).

Note that every three-dimensional quadratic AS-regular algebra is geometric,
and most of known examples of four-dimensional quadratic AS-regular algebras are
geometric. As a typical example, a four-dimensional Sklyanin algebra is a geometric
AS-regular algebra. However, it was shown in [18] that there exists a family of four-
dimensional AS-regular algebras that do not satisfy (G2). As far as we know, there
exists no example of an AS-regular algebra that does not satisfy (G1).

The purpose of this paper is to provide a way to determine when geometric AS-
regular algebras are graded Morita equivalent. The notion of twisting system defined
below plays an essential role for graded Morita equivalence.

DEFINITION 2.4. [20]. Let A be a graded algebra. A twisting system θ of A is
a sequence {θi} of graded vector space automorphisms of A such that θl(aθm(b)) =
θl(a)θl+m(b) for all l, m, n ∈ � and all a ∈ Am, b ∈ An.
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Let θ be a twisting system of a graded algebra A. We define a new graded algebra Aθ ,
called a twist of A, by Aθ = A as a graded vector space with the new multiplication a ∗
b = aθm(b) for all a ∈ Am, b ∈ An. Similarly, for M ∈ GrMod A, we define a new graded
right Aθ -module Mθ by Mθ = M as a graded vector space with the new right action x ∗
a = xθm(a) for all x ∈ Mm, a ∈ Aθ

n. The rule M �→ Mθ defines an equivalence functor
GrMod A → GrMod Aθ . Conversely, every graded Morita equivalence is obtained in
this way (see [20] for details). Note that every graded algebra automorphism τ ∈ AutkA
defines a twisting system {τ i} of A. In this case, we write Aτ := A{τ i}.

Geometric pairs can be used to classify geometric algebras by the following
lemmas. Since these lemmas are refinements of [8, Theorem 4.7], we will leave the
proofs to the reader. If quadratic algebras A = T(V )/(R), A′ = T(V ′)/(R′) are graded
Morita equivalent, then V ∼= V ′ by [20], so we may assume that V = V ′ in the lemma
below.

LEMMA 2.5. Let A = T(V )/(R) and A′ = T(V )/(R′) be quadratic algebras satisfying
(G1) with P(A) = (E, σ ), P(A′) = (E′, σ ′).

(1) If A ∼= A′ as graded algebras, then there exists an automorphism τ of �(V∗)
which restricts to an isomorphism τ : E → E′ such that

E
τ−−−−→ E′

σ

⏐⏐� ⏐⏐�σ ′

E
τ−−−−→ E′

commutes.
(2) If GrMod A ∼= GrMod A′, then there exists a sequence of automorphisms τn

of �(V∗) which restrict to isomorphisms τn : E → E′ such that

E
τn−−−−→ E′

σ

⏐⏐� ⏐⏐�σ ′

E
τn+1−−−−→ E′

commute for all n ∈ �.

LEMMA 2.6. Let A = T(V )/(R) and A′ = T(V )/(R′) be quadratic algebras satisfying
(G2) with A = A(E, σ ), A′ = A(E′, σ ′).

(1) If there exists an automorphism τ of �(V∗) which restricts to an isomorphism
τ : E → E′ such that

E
τ−−−−→ E′

σ

⏐⏐� ⏐⏐�σ ′

E
τ−−−−→ E′

commutes, then A ∼= A′ as graded algebras.
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(2) If there exists a sequence of automorphisms τn of �(V∗) which restrict to
isomorphisms τn : E → E′ such that

E
τn−−−−→ E′

σ

⏐⏐� ⏐⏐�σ ′

E
τn+1−−−−→ E′

commute for all n ∈ �, then GrMod A ∼= GrMod A′.

In [2], three-dimensional quadratic AS-regular algebras were classified in terms of
geometric pairs. (In the classification, E ⊂ �(V∗) could be a non-reduced subscheme
and in this case, we need to modify the definition of a geometric algebra, for which
we refer to [8, Definition 4.3].) For the purpose of this paper, we define the types of
(reduced and reducible) geometric pairs (E, σ ) of three-dimensional quadratic AS-
regular algebras A = A(E, σ ), slightly modifying and extending the types defined in
[1] and [2].
� Type �2: E is �2, and σ ∈ Autk �2 = PGL3(k).
� Type S1: E is a triangle, and σ stabilises each component.
� Type S2: E is a triangle, and σ interchanges two of its components.
� Type S3: E is a triangle, and σ circulates three components.
� Type S′

1: E is a union of a line and a conic meeting at two points, and σ stabilises
each component and two intersection points.

� Type S′
2: E is a union of a line and a conic meeting at two points, and σ stabilises

each component and interchanges two intersection points.
� Type T1: E is a union of three lines meeting at one point, and σ stabilises each

component.
� Type T2: E is a union of three lines meeting at one point, and σ interchanges two of

its components.
� Type T3: E is a union of three lines meeting at one point, and σ circulates three

components.
� Type T ′

1: E is a union of a line and a conic meeting at one point, and σ stabilises
each component.

Let A = A(E, σ ) be a three-dimensional quadratic AS-regular algebra. If E is a
union of a line and a conic and σ interchanges these two components, then A(E, σ ) is
not AS-regular by [2, Proposition 4.11]. It follows that if E is a reduced and reducible
cubic in �2, then (E, σ ) is one of the above types.

3. Main results. In general, it is easier to determine if two graded algebras are
isomorphic as graded algebras than to determine if they are graded Morita equivalent.
In this section, for a geometric AS-regular algebra A, we will define a new graded
algebra A and compare the condition (A) GrMod A ∼= GrMod A′ and the condition
(B) A ∼= A′ as graded algebras.

3.1. The general case. A point module defined below plays an important role to
study a graded algebra in non-commutative algebraic geometry.

DEFINITION 3.1. [2]. Let A be a graded algebra finitely generated in degree 1 over
k. A graded module M ∈ GrMod A is called a point module if
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(1) M is cyclic, and

(2) dimk Mi =
{

1, if i ≥ 0,

0, if i < 0.

Note that if M is a point module, then M(i)≥0 are also point modules for all
i ∈ �. Let A = T(V )/I be a graded algebra finitely generated in degree 1. For a point
p ∈ �(V∗), define a graded module Mp := A/p⊥A ∈ GrMod A where p⊥ := {f ∈ A1 =
V | f (p) = 0}. It is easy to see that for points p, q ∈ �(V∗), Mp ∼= Mq if and only if
p = q.

Every point module is isomorphic to Mp for some p ∈ �(V∗), but the module of the
form Mp is not always a point module. Suppose that A satisfies (G1) with P(A) = (E, σ ).
Then Mp is a point module for any point p ∈ E. Moreover, by [9, Lemma 2.5], there
is a bijection between the set of (closed) points of E and isomorphism classes of point
modules via p �→ Mp, and σ ∈ Autk E is given by Mσ (p)

∼= Mp(1)≥0.
Note that if A = T(V )/I is a graded algebra finitely generated in degree 1, then

every graded algebra automorphism τ ∈ AutkA is uniquely determined by τ |A1 = τ |V ∈
GL(V ). If τ ∈ AutkA is a graded algebra automorphism, then the dual of the restriction
τ |V = τ |A1 induces an automorphism τ ∗ ∈ Autk �(V∗). It is easy to see that M ∈
GrMod A is a point module if and only if Mτ ∈ GrMod A is a point module. By
[10, Lemma 3.2], (Mp)τ ∼= Mτ ∗(p) for p ∈ �(V∗), so τ ∗ restricts to an automorphism
τ ∗ ∈ Autk E by abuse of notation. Moreover,

Mστ ∗(p)
∼= Mτ ∗(p)(1)≥0

∼= (Mp)τ (1)≥0

∼= (Mp(1)τ )≥0
∼= (Mp(1)≥0)τ

∼= (Mσ (p))τ ∼= Mτ ∗σ (p),

for p ∈ E, so τ ∗ commutes with σ on E. We can now define a new graded algebra A as
below.

DEFINITION 3.2. Let A be an AS-regular algebra of Gorenstein parameter � with
the generalised Nakayama automorphism ν ∈ AutkA. If A satisfies (G1) with P(A) =
(E, σ ), then we define a new graded algebra satisfying (G2) by A := A(E, ν∗σ �).

We now prepare two easy lemmas.

LEMMA 3.3. Let A = T(V )/(R) and A′ = T(V )/(R′) be quadratic algebras satisfying
(G1) with P(A) = (E, σ ), P(A′) = (E′, σ ′). If GrMod A ∼= GrMod A′, then there exists
an equivalence functor F : GrMod A → GrMod A′ which induces an isomorphism τ :
E → E′ by F(Mp) ∼= Mτ (p) for p ∈ E. Moreover, τ extends to an automorphism τ̄ ∈
Autk �(V∗).

Proof. If A and A′ are quadratic algebras such that GrMod A ∼= GrMod A′, then
there exists a twisting system θ of A such that A′ ∼= Aθ as graded algebras by [20,
Theorem 1.2], so we may assume that A′ = Aθ . We leave the reader to check that the
equivalence functor F : GrMod A → GrMod Aθ defined by F(M) = Mθ satisfies the
desired properties. �

LEMMA 3.4. Let A be a noetherian quadratic algebra satisfying (G1) with P(A) =
(E, σ ). For points p, q ∈ E, Mp ∼= Mq in tails A if and only if p = q.
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Proof. If p = q, then clearly Mp ∼= Mq. Conversely, if Mp ∼= Mq, then

Mσ i(p)
∼= Mp(i)≥0

∼= (Mp)≥i(i) ∼= (Mq)≥i(i) ∼= Mq(i)≥0
∼= Mσ i(q),

for some i ∈ �, so σ i(p) = σ i(q). Since σ ∈ Autk E is an automorphism, p = q. �
The theorem below shows that (A) ⇒ (B) holds for general geometric AS-regular

algebras.

THEOREM 3.5. Let A and A′ be noetherian quadratic AS-regular algebras satisfying
(G1). If (A) GrMod A ∼= GrMod A′, then (B) A ∼= A′ as graded algebras.

Proof. Let A = T(V )/(R), A′ = T(V )/(R′), P(A) = (E, σ ), P(A′) = (E′, σ ′) with
Gorenstein parameters � and �′ and the generalised Nakayama automorphisms
ν ∈ AutkA, ν ′ ∈ AutkA′. If GrMod A ∼= GrMod A′, then gldim A = gldim A′ =: d by
[20, Theorem 1.3]. By Lemma 3.3, there exists an equivalence functor F : GrMod A →
GrMod A′ which induces an isomorphism τ : E → E′ by F(Mp) ∼= Mτ (p) for p ∈ E.
Moreover, the equivalence functor F : GrMod A → GrMod A′ induces a triangle
equivalence functor F̄ : Db(tails A) → Db(tails A′), so we have a commutative diagram

Db(tails A)
F̄−−−−→ Db(tails A′)

−⊗L
AωA[d−1]

⏐⏐� ⏐⏐�−⊗L
A′ωA′ [d−1]

Db(tails A)
F̄−−−−→ Db(tails A′)

by uniqueness of the Serre functor. Since F̄ commutes with the suspension functor
[d − 1], we have a commutative diagram

Db(tails A)
F̄−−−−→ Db(tails A′)

−⊗L
Aω−1

A

⏐⏐� ⏐⏐�−⊗L
A′ω−1

A′

Db(tails A)
F̄−−−−→ Db(tails A′).

Since (
Mp ⊗A ω−1

A

)
≥0

∼= (Mp)ν(�)≥0
∼= Mν∗(p)(�)≥0

∼= Mσ �ν∗(p)
∼= Mν∗σ �(p)

for p ∈ E,

Mp ⊗L
A ω−1

A
∼= Mp ⊗A ω−1

A
∼= Mν∗σ �(p).

By Lemma 3.4, the above commutative diagram induces a commutative diagram

E
τ−−−−→ E′

ν∗σ �

⏐⏐� ⏐⏐�(ν ′)∗(σ ′)�′

E
τ−−−−→ E′.

Since τ extends to an automorphism τ̄ ∈ Autk �(V∗) by Lemma 3.3, A ∼= A′ as graded
algebras by Lemma 2.6. �
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3.2. The three-dimensional case. Unfortunately, there are examples of four-
dimensional geometric AS-regular algebras such that (B) ⇒ (A) does not hold [16,
Example 4.2]. On the other hand, (B) ⇒ (A) has been shown to hold for many three-
dimensional geometric AS-regular algebras [8, 16]. In this subsection, we will prove
that (B) ⇒ (A) holds for several more cases. In the proof of the theorem below, we will
see that the geometric technique is useful to determine graded Morita equivalence.

THEOREM 3.6. Let A = A(E, σ ) and A′ = A(E′, σ ′) be three-dimensional quadratic
AS-regular algebras with the generalised Nakayama automorphisms ν ∈ AutkA, ν ′ ∈
AutkA′. Suppose that (E, σ ) and (E′, σ ′) are of the same type �2, S1, S′

1, T1 or T ′
1. Then

(A) GrMod A ∼= GrMod A′ if and only if (B) A ∼= A′ as graded algebras.

Proof. For the types �2, S1, S′
1, the result follows from [16, Theorem 3.1], so it

remains to show it for the types T1 and T ′
1. By Theorem 3.5, it is enough to show

(B) ⇒ (A). In fact, we can show that (A) always holds for these two types. We will show
this fact for the type T1, and leave a proof for the type T ′

1 to the reader.
If (E, σ ) and (E′, σ ′) are of type T1, then we may assume that E = l1 ∪ l2 ∪ l3 where

l1 = V(x), l2 = V(y), l3 = V(x − y) and σ ∈ Autk E is given by

σ |l1 (0, b, c) = (0, b, αb + δc),

σ |l2 (a, 0, c) = (a, 0, βa + δc),

σ |l3 (a, a, c) = (a, a,−γ a + δc),

where α + β + γ �= 0, δ �= 0. In this case, A = A(E, σ ) is given by

A = k〈x, y, z〉/(yz − δzy − αy2 + (α + γ )yx, xz − δzx − βx2 + (β + γ )xy, xy − yx).

By a Hilbert series calculation, we can show that δ = 1 is necessary for A to be
a three-dimensional quadratic AS-regular algebra. Similarly, we may assume that
E′ = l1 ∪ l2 ∪ l3 and σ ′ ∈ Autk E′ is given by

σ |l1 (0, b, c) = (0, b, α′b + c),

σ |l2 (a, 0, c) = (a, 0, β ′a + c),

σ |l3 (a, a, c) = (a, a,−γ ′a + c),

where α + β + γ �= 0. For n ∈ �, we define τn ∈ Autk E by

τn|l1 (0, b, c) =
(

0, b,
n(−λ′α + λα′)

λ
b + λ′

λ
c
)

,

τn|l2 (a, 0, c) =
(

a, 0,
n(−λ′β + λβ ′)

λ
a + λ′

λ
c
)

,

τn|l3 (a, a, c) =
(

a, a,
n(−λ′(α + β) + λ(α′ + β ′))

λ
a + λ′

λ
c
)

,

where λ := α + β + γ, λ′ := α′ + β ′ + γ ′. It is easy to check that τn extend to

τ n =
⎛
⎝ 1 0 0

0 1 0
n(−λ′β+λβ ′)

λ

n(−λ′α+λα′)
λ

λ′
λ

⎞
⎠ ∈ PGL3(k) = Autk �2,
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and that τn induce the commutative diagrams

E
τn−−−−→ E′

σ

⏐⏐� ⏐⏐�σ ′

E
τn+1−−−−→ E′

for all n ∈ �, so it follows from Lemma 2.6 that (A) GrMod A ∼= GrMod A′ holds for
any A, A′. �

We will now extend the above theorem for any reduced and reducible cubic E
in �2. Let A be a graded algebra. Recall that an element w ∈ A is called regular
if aw = 0 implies a = 0 and wa = 0 implies a = 0. An element w ∈ A is called
normalising if Aw = wA. If w ∈ Ai is a homogeneous regular normalising element,
then the map τw : A → A defined by wτw(a) = aw is a graded algebra automorphism
of A.

Let A and A′ be connected graded algebras such that GrMod A ∼= GrMod A′.
Then A is a three-dimensional quadratic AS-regular algebra if and only if so is A′ by
[20, Theorems 1.2 and 1.3].

LEMMA 3.7. Let A = A(E, σ ) be a three-dimensional quadratic AS-regular algebra.
If (E, σ ) is of type X2, then there exists a homogeneous regular normalising element
w ∈ A1 such that Aτw is a three-dimensional geometric AS-regular algebra of type X1

where X = S, S′ or T.

Proof. First note that A is a domain by [3, Theorem 3.9], so every element of A is
regular. We will give a proof for the type T2, and leave the rest to the reader. If (E, σ )
is of type T2, then we may assume that E = l1 ∪ l2 ∪ l3 where l1 = V(x), l2 = V(y), l3 =
V(x − y), σ ∈ Autk E is given by

σ |l1 (0, b, c) = (b, 0, αb + c),

σ |l2 (a, 0, c) = (0, a, βa + c),

σ |l3 (a, a, c) = (a, a,−γ a + c),

where α + β + γ �= 0, and so A = A(E, σ ) is given by k〈x, y, z〉 with the defining
relations

yz − zx − αyx + (α + γ )y2, xz − zy − βxy + (β + γ )x2, x2 − y2.

It follows from

x(x − y) = (x − y)(−y),

y(x − y) = (x − y)(−x),

z(x − y) = (x − y)(αx + βy − z)

that x − y is normalising, so τ := τx−y defined by

τ (x) = −y, τ (y) = −x, τ (z) = αx + βy − z
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is a graded algebra automorphism of A. Twisting by τ yields that Aτ is k〈x, y, z〉 with
the defining relations

yz − zy + (α + β + γ )yx, xz − zx + (α + β + γ )xy, xy − yx,

which is a three-dimensional geometric AS-regular algebra of type T1. �
LEMMA 3.8. Let A = A(E, σ ) be a three-dimensional quadratic AS-regular algebra.

If (E, σ ) is of type Xi, then there exists a three-dimensional geometric AS-regular algebra
A′ = A(E′, σ ′) of type X1 such that GrMod A ∼= GrMod A′, where X = S, S′, T and
i = 1, 2, 3.

Proof. For types S2, S′
2 and T2, the result follows from Lemma 3.7, and for the

type S3, the result follows from [14, Lemma 1.5], so it remains to show it for type T3.
But the result for this type follows quickly by using Lemma 2.6 (2), so we leave the
proof to the reader. �

THEOREM 3.9. Let A = A(E, σ ) and A′ = A(E′, σ ′) be three-dimensional quadratic
AS-regular algebras such that E ∼= E′. Suppose that E = �2 or E is a reduced and
reducible cubic in �2. Then (A) GrMod A ∼= GrMod A′ if and only if (B) A ∼= A′ as
graded algebras.

Proof. By Theorem 3.5, it is enough to show (B) ⇒ (A). If E ∼= E′ ∼= �2, then
the result follows from Theorem 3.6. Otherwise, (E, σ ) and (E′, σ ′) are of types Xi, Xj

for X = S, S′, T, T ′ and i, j = 1, 2, 3, so there exist three-dimensional geometric AS-
regular algebras B and B′ of the same type X1 such that GrMod A ∼= GrMod B
and GrMod A′ ∼= GrMod B′ by Lemma 3.8. By Theorem 3.5, B ∼= A ∼= A′ ∼= B′, so
GrMod A ∼= GrMod B ∼= GrMod B′ ∼= GrMod A′ by Theorem 3.6. �

4. Applications. In this last section, we will apply the results in the previous
section to Frobenius Koszul algebras and Beilinson algebras.

4.1. Frobenius Koszul algebras. First, we apply our results to Frobenius Koszul
algebras. A graded algebra A is called h-homogeneous if A ∼= T(V )/(R), where R ⊂
V⊗h is a subspace for some h ≥ 2 and (R) is the two-sided ideal of T(V ) generated
by R. If A = T(V )/(R) is an h-homogeneous algebra, then we define the dual graded
algebra by A! := T(V∗)/(R⊥), where

R⊥ := {λ ∈ (V∗)⊗h ∼= (V⊗h)∗ | λ(r) = 0 for all r ∈ R}.

Clearly, A! is again an h-homogeneous algebra and (A!)! ∼= A as graded algebras. The
following result may be known. Due to the lack of a suitable reference, we will include
a proof for the second statement.

LEMMA 4.1. Let A = T(V )/(R) and A′ = T(V )/(R′) be h-homogeneous algebras.

(1) A ∼= A′ as graded algebras if and only if A! ∼= (A′)! as graded algebras.
(2) GrMod A ∼= GrMod A′ if and only if GrMod A! ∼= GrMod(A′)!.

Proof. We will give a proof for (2). Suppose that GrMod A ∼= GrMod A′. Since
A′ is isomorphic to a twist of A, there exist graded vector space isomorphisms
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φn : A′ → A such that φn(ab) = φn(a)φn+l(b) for all l, m, n ∈ � and a ∈ A′
l, b ∈ A′

m by
[20, Proposition 2.8]. We define graded vector space isomorphisms φn : T(V ) → T(V )
by

φn|V⊗l (v1 ⊗ v2 ⊗ · · · ⊗ vl) = φn|V (v1) ⊗ φn+1|V (v2) ⊗ · · · ⊗ φn+l−1|V (vl).

Let ψn|V∗ : V∗ → V∗ be isomorphisms induced by the dual of φn|V . Define graded
vector space isomorphisms ψn : T(V∗) → T(V∗) by

ψn|(V∗)⊗l (ξ1 ⊗ ξ2 ⊗ · · · ⊗ ξl) = ψn|V∗ (ξ1) ⊗ ψn+1|V∗ (ξ2) ⊗ · · · ⊗ ψn+l−1|V∗ (ξl)

for ξi ∈ V∗. By definition, ψn(ξ ⊗ η) = ψn(ξ )ψn+l(η) for all l, m, n ∈ � and ξ ∈
(V∗)⊗l, η ∈ (V∗)⊗m. If λ = ∑

i ξi1 ⊗ ξi2 ⊗ · · · ⊗ ξih ∈ R⊥, then for any f = ∑
i vi1 ⊗

vi2 ⊗ · · · ⊗ vih ∈ R′,(∑
i

ψn|V∗ (ξi1) ⊗ ψn+1|V∗ (ξi2) ⊗ · · · ⊗ ψn+h−1|V∗ (ξih)

)
(f )

=
∑

i

(ψn|V∗ (ξi1))(vi1) ⊗ (ψn+1|V∗ (ξi2))(vi2) ⊗ · · · ⊗ (ψn+h−1|V∗ (ξih))(vih)

=
∑

i

ξi1(φn|V (vi1)) ⊗ ξi2(φn+1|V (vi2)) ⊗ · · · ⊗ ξih(φn+h−1|V (vih))

= λ

(∑
i

φn|V (vi1) ⊗ φn+1|V (vi2) ⊗ · · · ⊗ φn+h−1|V (vih)

)
= 0,

so
∑

i ψn|V∗ (ξi1) ⊗ ψn+1|V∗ (ξi2) ⊗ · · · ⊗ ψn+h−1|V∗ (ξih) ∈ R′⊥. Moreover, let ξ ⊗ λ ⊗
η ∈ (V∗)⊗s ⊗ (V∗)⊗h ⊗ (V∗)⊗t for s, t ≥ 0. Then ξ ⊗ λ ⊗ η ∈ (V∗)⊗s ⊗ R⊥ ⊗ (V∗)⊗t if
and only if ψn(ξ ) ⊗ ψn+s(λ) ⊗ ψn+s+h(η) ∈ (V∗)⊗s ⊗ R′⊥ ⊗ (V∗)⊗t. Since

A!
i = (V∗)⊗i∑

s+t+h=i(V∗)⊗s ⊗ R⊥ ⊗ (V∗)⊗t
,

(A′)!
i = (V∗)⊗i∑

s+t+h=i(V∗)⊗s ⊗ R′⊥ ⊗ (V∗)⊗t
,

as k-vector spaces for all i ≥ h, graded vector space isomorphisms ψn : A! → (A′)!

are well-defined. By construction, ψn(ab) = ψn(a)ψn+l(b) for all l, m, n ∈ � and a ∈
A!

l, b ∈ A!
m, so A! is isomorphic to a twist of (A′)! by [20, Proposition 2.8]. Hence

GrMod A! ∼= GrMod(A′)! by [20, Theorem 1.2]. �
We now define Koszul algebras and graded Frobenius algebras.

DEFINITION 4.2. Let A be a connected graded algebra, and suppose k ∈ GrMod A
has a minimal free resolution of the form

· · · ��
⊕ri

j=1 A(−sij) �� · · · ��
⊕r0

j=1 A(−s0j) �� k �� 0.

The complexity of A is defined by

cA := inf{d ∈ �+ | ri ≤ cid−1 for some constant c > 0, i � 0}.
We say that A is Koszul if sij = i for all 1 ≤ j ≤ ri and all i ∈ �.
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It is known that if A is Koszul, then A is quadratic, and its dual graded algebra A!

is also Koszul, which is called the Koszul dual of A. In this case, cA = GKdim A!.

DEFINITION 4.3. A graded algebra A is called a graded Frobenius algebra of
Gorenstein parameter � if A∗ ∼= Aν−1 (−�) as graded A-A bimodules for some graded
algebra automorphism ν ∈ AutkA, called the Nakayama automorphism of A. We say
that A is graded symmetric if A∗ ∼= A(−�) as graded A-A bimodules.

Note that if A is a connected graded Frobenius algebra, then A is graded symmetric
if and only if the Nakayama automorphism ν of A is the identity. Let A be a connected
graded algebra. By [15, Proposition 5.10], A is an AS-regular Koszul algebra of
GKdimension d if and only if A! is a Frobenius Koszul algebra of complexity d,
so classifying AS-regular Koszul algebras of GKdimension d up to isomorphism
of graded algebras (respectively, up to graded Morita equivalence) is equivalent to
classifying Frobenius Koszul algebras of complexity d up to isomorphism of graded
algebras (respectively, up to graded Morita equivalence) by Lemma 4.1. In this case, if
the Gorenstein parameter of A is �, then it is easy to see that the global dimension of
A is � and the Gorenstein parameter of A! is −�.

DEFINITION 4.4. A quadratic algebra A is called co-geometric if A! = A(E, σ ) is
geometric. In this case, we write A = A!(E, σ ).

THEOREM 4.5. Let A = T(V )/(R) = A!(E, σ ) and A′ = T(V )/(R′) = A!(E′, σ ′)
be co-geometric Frobenius Koszul algebras of finite complexities and of Gorenstein
parameters −d,−d ′ with the Nakayama automorphisms ν ∈ AutkA, ν ′ ∈ AutkA′.
If GrMod A ∼= GrMod A′, then d = d ′ and A!(E, νσ d) ∼= A!(E′, ν ′(σ ′)d) as graded
algebras.

Proof. If GrMod A ∼= GrMod A′, then GrMod A! ∼= GrMod(A′)! by Lemma 4.1.
Since A! = A(E, σ ), (A′)! = A(E′, σ ′) are geometric AS-regular Koszul algebras of
global dimensions d, d ′, it follows that d = d ′, and the Gorenstein parameters of
A!, (A′)! are both d. Moreover, since the generalised Nakayama automorphisms of A!

and (A′)! are (−1)d−1ν∗ ∈ AutkA! and (−1)d−1(ν ′)∗ ∈ Autk(A′)! by [17, Theorem 9.2],
and they induce automorphisms ν ∈ Autk E and ν ′ ∈ Autk E′,

GrMod A ∼= GrMod A′

⇐⇒ GrMod A! ∼= GrMod(A′)!

=⇒ A(E, νσ d) ∼= A! ∼= (A′)! ∼= A(E′, ν ′(σ ′)d)

⇐⇒ A!(E, νσ d) ∼= A!
! ∼= (A′)!

! ∼= A!(E′, ν ′(σ ′)d),

by Lemma 4.1 and Theorem 3.5. �
COROLLARY 4.6. Let A = A!(E, σ ) and A′ = A!(E′, σ ′) be Frobenius Koszul algebras

of finite complexities and of Gorenstein parameter −3 with the Nakayama automorphisms
ν ∈ AutkA, ν ′ ∈ AutkA′ such that E ∼= E′. Suppose that E = �2 or E is a reduced
and reducible cubic in �2. Then GrMod A ∼= GrMod A′ if and only if A!(E, νσ 3) ∼=
A!(E′, ν ′(σ ′)3) as graded algebras.

A skew exterior algebra

A = k〈x1, . . . , xn〉/
(
αijxixj + xjxi, x2

i

)
,
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where αij ∈ k such that αijαji = αii = 1 for 1 ≤ i, j ≤ n is a typical example of a
Frobenius Koszul algebra. We apply our results to skew exterior algebras.

LEMMA 4.7. Let

A = k〈x1, . . . , xn〉/
(
αijxixj + xjxi, x2

i

)
,

A′ = k〈x1, . . . , xn〉/
(
α′

ijxixj + xjxi, x2
i

)
be skew exterior algebras.

(1) A ∼= A′ as graded algebras if and only if there exists a permutation θ ∈ Sn such
that α′

ij = αθ(i)θ(j) for 1 ≤ i, j ≤ n.
(2) GrMod A ∼= GrMod A′ if and only if there exists a permutation θ ∈ Sn and

0 �= m1, . . . , mn ∈ k such that α′
ij = mjm−1

i αθ(i)θ(j) for 1 ≤ i, j ≤ n.

Proof. (1) This follows from Lemma 4.1 (1) and [19, Lemma 2.3].
(2) This follows from Lemma 4.1 (2) and [19, Theorem 2.5]. �

It is known that every (ungraded) Frobenius algebra that is Morita equivalent to
symmetric algebra is symmetric. The situation in the graded case is different as the
following theorem shows.

THEOREM 4.8. Every skew exterior algebra is graded Morita equivalent to a graded
symmetric skew exterior algebra.

Proof. Let

A = k〈x1, . . . , xn〉/
(
αijxixj + xjxi, x2

i

)
be a skew exterior algebra and βi := α1iα2i · · ·αni for 1 ≤ i ≤ n. Since β1β2 · · · βn = 1,
we may choose mi = n

√
β i ∈ k such that m1m2 · · · mn = 1. We define a new skew exterior

algebra A′ by

A′ := k〈x1, . . . , xn〉/
(
α′

ijxixj + xjxi, x2
i

)
,

where α′
ij = mim−1

j αij. By Lemma 4.7, GrMod A ∼= GrMod A′. The Nakayama
automorphism ν ′ of A′ is given by

ν ′(xi) =(−1)n−1
∏

1≤t≤n

α′
itxi

=(−1)n−1mn
i m−1

1 m−1
2 · · · m−1

n αi1αi2 · · ·αinxi

=(−1)n−1xi,

for 1 ≤ i ≤ n (see the proof of [16, Theorem 4.1]), so if n is odd, then A′ is graded
symmetric.

If n is even, then define m′
1 := −m1, m′

i := mi for 2 ≤ i ≤ n and a new skew exterior
algebra A′′ by

A′′ := k〈x1, . . . , xn〉/
(
α′′

ij xixj + xjxi, x2
i

)
,
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where α′′
ij = m′

i(m
′
j)

−1αij. By Lemma 4.7, GrMod A ∼= GrMod A′′. The Nakayama
automorphism ν ′′ of A′′ is given by

ν ′′(x1) = (−1)n−1
∏

1≤t≤n

α′′
1tx1 = (−1)n−1(−1)n+1

∏
1≤t≤n

α′
1tx1 = x1,

ν ′′(xi) = (−1)n−1
∏

1≤t≤n

α′′
itxi = −(−1)n−1

∏
1≤t≤n

α′
itxi

= (−1)nxi = xi (2 ≤ i ≤ n),

so A′′ is graded symmetric. �

4.2. Beilinson algebras. Finally, we apply our results to Beilinson algebras.

DEFINITION 4.9. [7, 12]. Let A be an AS-regular algebra of Gorenstein parameter
� or a graded Frobenius algebra of Gorenstein parameter �. The Beilinson algebra of
A is defined by

∇A :=

⎛
⎜⎜⎜⎝

A0 A1 · · · Ar−1

0 A0 · · · Ar−2
...

...
. . .

...
0 0 · · · A0

⎞
⎟⎟⎟⎠ ,

where r = |�|.
THEOREM 4.10. If A and A′ are AS-regular Koszul algebras, then the following are

equivalent:

(1) GrMod A ∼= GrMod A′.
(2) ∇A ∼= ∇A′ as algebras.
(3) GrMod A! ∼= GrMod(A′)!.
(4) ∇(A!) ∼= ∇((A′)!) as algebras.

Proof. This follows from [7, Theorem 4.17, Theorem 4.24] and Lemma 4.1. �
If A is a d-dimensional AS-regular algebra, then ∇A is a (d − 1)-dimensional

quasi-Fano algebra introduced in [6], which is a nice class of a finite-dimensional
algebra of global dimension d − 1 (see [7] and [12] for details). By the above theorem,
classifying d-dimensional AS-regular algebras up to graded Morita equivalence is the
same as classifying Beilinson algebras of global dimension d − 1 up to isomorphism.
This observation is one of the motivations of this paper.

It is known that every finite-dimensional algebra of global dimension 1 is a path
algebra of a finite acyclic quiver up to Morita equivalence, so such algebras can be
classified in terms of quivers. As an obvious next step, it is interesting to classify finite-
dimensional algebras of global dimension 2. Such an algebra is a path algebra of a
quiver with relations, and, in general, it is not easy to check if two algebras given as path
algebras of quivers with relations are isomorphic as algebras by constructing an explicit
algebra isomorphism. On the other hand, it is much easier to check if two graded
algebras T(V )/I and T(V ′)/I ′ generated in degree 1 over k are isomorphic as graded
algebras since any such isomorphism is induced by the vector space isomorphism
V → V ′. In this sense, the geometric techniques developed in this paper are useful
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for the classification of a class of finite-dimensional algebras of global dimension 2,
namely, Beilinson algebras of global dimension 2.

EXAMPLE 4.11. Fix the Beilinson quiver

Q = •
x1 ��
y1 ��
z1 ��

•
x2 ��
y2 ��
z2 ��

• ,

and let B = kQ/I, B′ = kQ/I ′ and B′′ = kQ/I ′′ be the path algebras with admissible
relations (which must be generated by linear combinations of paths of length 2)

I = (y1z2 − αz1y2, z1x2 − βx1z2, x1y2 − γy1x2), αβγ �= 0, 1
I ′ = (y1z2 − α′x1x2, z1x2 − β ′y1y2, x1y2 − γ ′z1z2), α′β ′γ ′ �= 0, 1
I ′′ = (y1z2 − α′′z1y2 − x1x2, z1x2 − β ′′x1z2, x1y2 − β ′′y1x2), α′′(β ′′)2 �= 0, 1.

It is easy to see that they are the Beilinson algebras of the following three-dimensional
geometric AS-regular algebras

A = A(E, σ ) = k〈x, y, z〉/(yz − αzy, zx − βxz, xy − γyx),

A′ = A(E′, σ ′) = k〈x, y, z〉/(yz − α′x2, zx − β ′y2, xy − γ ′z2),

A′′ = A(E′′, σ ′′) = k〈x, y, z〉/(yz − α′′zy − x2, zx − β ′′xz, xy − β ′′yx)

of types S1, S3 and S′
1, respectively. It is not easy to see directly whether or not there

exists an algebra isomorphism among B, B′ and B′′. However, since E ∼= E′ �∼= E′′, we
see that

GrMod A′′
� GrMod A and GrMod A′′

� GrMod A′

by Lemma 2.5 (2), so we can conclude that

B′′
� B and B′′

� B′,

as algebras for any choice of parameters by Theorem 4.10. Moreover, it is not difficult
to compute

A = k〈x, y, z〉/(yz − αβγ zy, zx − αβγ xz, xy − αβγyx),

A′ = k〈x, y, z〉/(α′β ′γ ′yz − zy, α′β ′γ ′zx − xz, α′β ′γ ′xy − yx).

Since A and A′ are skew polynomial algebras, it is easy to check when they are
isomorphic as graded algebras [19, Lemma 2.3]. Using Theorem 4.10 and Theorem
3.9, the following are equivalent:

(1) B ∼= B′ as algebras.
(2) GrMod A ∼= GrMod A′.
(3) A ∼= A′ as graded algebras.
(4) α′β ′γ ′ = (αβγ )±1.
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