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A structure theorem for

operators with closed range

James Guyker

A characterization has previously been given for linear trans-

formations in Hilbert space whose first N + 1 powers are

partial isometries. An analogous characterization is now

obtained for transformations whose first N + 1 powers have

closed ranges. A hypothesis (that transformations have no

isometric part) is found to be unnecessary in previous work.

1 . Introduction

A (closed) subspace M of a Hilbert space H is said to reduce a

continuous linear transformation T on H if M is invariant under both

T and T* . The operator T is a partial isometry if \\Tf\\ = ||/|| for

every vector / in H which is orthogonal to the kernel of T , or

equivalently, if 7 = TT*T , [7].

In [8], Halmos and Wai I en showed that every partial isometry all of

whose positive integral powers are partial isometries is a unique direct

sum of unitary operators, pure isometries, pure co-isometries, and

truncated shifts, with each type of summand (each index for a truncated

shift) occurring at most once. Using [6] and the canonical model of de

Branges, Rovnyak [Z], an explicit description of the reducing subspaces of

partial isometries T such that T , T , ..., T are partial isometries

was obtained in [5] under the assumption that T has no isometric part,

that is, there is no nonzero vector f in H such that ||T /|| = ||/|| for
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I 70 James Guyker

every n = 1, 2 This resulted in a characterization of such partial

isometries as unique direct sums of truncated shifts T . of index j
3

(j = 1 , 2, ..., N) and partial isometries V with no isometric part whose

range includes the kernel of v , with each type of summand occurring at

most once, thereby extending the Halmos-Wallen Theorem.

In the present paper the problem of obtaining similar results for

operators T with closed range whose first N + 1 powers have closed

range is considered. Under the stronger assumptions that the kernels of

Jr and T* are invariant under TT* and T*T , respectively, for every

j = 1, 2, ..., N , the above structure theorem is shown to hold essentially

for T . A slightly more general concept of truncated shift is necessary,

although these generalized shifts enjoy many of the basic properties of

truncated shifts.

If F is a family of subsets of H , then v{F : F € F} will denote

the closed span of the union U{F : F € F} . For subspaces M and N of

H , if M J_ N , then M ® N will denote the orthogonal direct sum of M

and N ; if N c M , then M 0 N will be the orthogonal complement of N

in M .

2. Reducing subspaces of general ized t runcated s h i f t s

We r e c a l l t h a t for a given Hilbert space H- and in teger N > 1 , a

t runcated s h i f t of index N i s an operator T on the d i r e c t sum

H 0"H @ . . . © H of N copies of H which i s defined by

T
N[e

X' e
2> • • • ' e # ) = ( e 2 ' e 3 ' • * • ' eN' °) ' '-8-1 ' I f Al' A2' •••> AN a r e

opera tors on H , the diagonal operator D = (A , 4 , . . . , J4«) on

HQ® HQ® . . . ®HQ is given by

° ( e ! » e
2> • • • > e t f ) = K V ' 4 2 e 2 ' •••

An operator T on a Hilbert space H wi l l be called a generalized

truncated shi f t of index N i f the images T*3 ker T (j = 0, 1, . . . ,

form a family of pairwise orthogonal (closed) subspaces which spans H

such tha t TTi"> ker T = I"*" ker T for every j = 1 , 2, . . . , ff-1 .
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THEOREM 2.1. An operator T on a Hilbert space H is a generalized

truncated shift of index N > 2 if and only if there exist invertible

operators A , A , ..., A defined on a Hilbert space H such that T

is unitarily equivalent to the weighted truncated shift DT- on

HQ ®HQ ® ... ®HQ, where D = [A±, A2, ...,AN_±,o) and T^ is a

truncated shift of index N .

Proof. A direct computation shows that every weighted truncated shift

with invertible weights is a generalized truncated shift of the same index.

Conversely, let T be a generalized truncated shift of index N .

Since ker T = T1' T*3 ker T , there exists a unitary operator

. . T*3

operator

U . : ker T •* T*J ker T for each 3=1, 2, ..., N-l . Define the unitary
3

U : ker T ® ker T ® ... © ker T -»• H

by U[ev e2, ..., eff) = [e^, U^, V^y ..., U^eJ . The operator

A . = U~. ..TU . , where Un = I , defined on the kernel of T for every
3 3-1 3 Q

3 = 1, 2, ..., N-l , is invertible, and U~ TU = DT where

D = [A±, A2, ..., AN_±, 0) .

COROLLARY 2.1. The adjoint of a generalized truncated shift is a

generalized truncated shift of the same index.

Proof. The adjoint of DT where D = [A , A , .. ., A , 6) as in

Theorem 2.1 is unitarily equivalent to D'T^ where

D> = fyy-i' A*N_2- •••'
Av °) •

COROLLARY 2.2. The only generalized truncated shifts of index N

that are partial isometries are the truncated shifts of index N .

Proof. Let T be a partially isometric generalized truncated shift

of index N . For each j = 1, 2, ..., tf-1 , define the operator

U. : ker T •*• T*3 ker T by U .f = T*3 f for / in the kernel of T . Then
3 3
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U. is unitary for every j , since I""7 ker T is contained in the range
0

of T , and hence,for every vector / in the kernel of T ,

\\U-f\\ = W T * ^ * 0 ' 1 / ) f| = \ \ T * { T * 3 ' ~ 2 f ) \ \ = . . . = H/ll

f o r e v e r y , 7 = 1 , 2 , . . . , N-l .

As in the proof of Theorem 2.1, T is unitarily equivalent to DT ,

where D = (d , ,4 , ..., An ,, 0) and A. = U~} W. [u = j) . Let /

7—1be in the kernel of T . Since T* f is in the range of T , we have

that

A -P — If ^Tl "F — TI~ rprptt \ rp&v ™" -̂ 1 — Jl~ fp^kv ™" -f — Tl~ 71 "F ~ P

for every j = 1, 2, ..., tf-1 . Therefore 4. = 7 for every j and

^ = ^ •

The next result characterizes the reducing subspace structure of

generalized truncated shifts.

THEOREM 2 . 2 . Let T be an operator on a Hilbert space H such that

the kernel of T is invariant under T^T* for every k = 1 , 2, . . . , N-l,

and

H = v{T*n ker T : n = 0 , 1 , . . . , W-l} .

4 subspace M of H reduces T if and only if

M = y{T*nS : n = 0, 1, . . . . N-l}

for some unique subspace S of the kernel of T which is invariant under

•jrn^ for every k = 1, 2, . . . , N-l . In this case,

H QM = v{T*"(ker T 0 S) : n = 0, 1, . . . , N-l} .

Proof. Suppose M reduces T . Let P be the (orthogonal)

projection of H onto M . Then

M = PH = v{T*"p ker T : n = 0, 1, ..., N-l} ,
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and S = P ker T c ker T i s closed and invariant under XT* for every

k = 1, 2, . . . , N-l .

The form of H Q M i s obtained similarly, since H Q M = (l-P)H and

ker T = P ker T 0 (1-P) ker T .

Conversely, suppose M i s of the above form. For every

k, n = 0, 1, . . . , N-l , T* S i s orthogonal to T*"(ker T Q S) . Since

2"*^ = 0 and

H = v{T*n ke r T : n = 0 , 1 , . . . , N-l} ,

i t follows that

H Q M = v{T*n(ker TQS) : n = 0, 1 ff-l} ,

and therefore M reduces T .

As above,

M = v{T*WP ker T : n = 0, 1 iV-l} ,

where P is the projection onto M . Since S is contained in both M

and the kernel of T , we have that 5 = PS c P ker 7 c ker T . It follows

that P ker TQS is contained in both M and H Q M , and consequently

5 = P ker T .

COROLLARY 2 .3 . Let T = £ @2\,w??ere 2". is a generalized
3=1 3 3

truncated shift of index j . A subspaoe M reduces T if and only if

N
M = £ @ M., where M. reduces T. .

3=1 3 3 3

N
Proof. Clearly every subspace of the form £ ®M. , where M.

3=1 ° °
reduces T . , reduces T .

3

Let M reduce T and let P denote the projection onto M . Fix j

(1 S 3 5 N) . By the representation of T and the definition of

generalized truncated shift, i t follows that
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ker T. = ker T n ker T*3 n range T3 .
3

Since P commutes with T and T* for every i = 1, 2, . . . , j , we

have that S = P ker T. i s contained in ker T. and is invariant under
3 3

T\T*. for every k = 1, 2, ..., j'-l . Therefore by Theorem 2.2, if H .
3 3 3

is the domain of T. , then M. = £ @ T*.lS reduces T. , and

3-1 „ .
H . 0 M. = X @ 2"t (ker T.QS) .
J 3 i=0 J J

Since j was arbitrary ( 1 5 j S ff) , we thus conclude that M = Y. ® M• ,

3=1 °
where M. reduces T. .

3 3

COROLLARY 2 . 4 . Let T = DT be a weighted truncated shift of index

N defined on H = H ® H ® ... ® M for some Hilbert space H , where

D = [A , A , . . . , A , o) and A . is one-to-one for every

3=1, 2, . . . , ^-1 . A subspace M reduces T if and only if

N-l (• r n -\^ -I

M = S ® Y, © v { T T A.] f : f € s \

n=l U 1 3> >

for some unique subspace S of H which is invariant under

r k -i r k -i *
1 f A . I"] [" A . for every k = 1, 2, . . . , N-l . In this case
I ! 3) { x 3)

N-l ( , n w -,
H 0 M = (H © 5) © I ® v{ T T A .} f : f € H 0 s\ .0 n=l U ! <>J ° J

Proof. A direct computation using Theorem 2.2.

REMARK 2.1. In Corollary 2.1*, if A. is invertible for every
3

j = 1, 2, . . . , ff-1 , then

for every n = 1, 2, . . . , W-l

[ n \x r n \ £

~\~\A.\S and T T M (Hn0S) are closed
1 3) \ 1 3) u
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REMARK 2.2. In Corollary 2.k, i f A . i s one-to-one and hermitian for
3

every j = 1, 2, ..., #-1 , then an induction argument shows that

and

for every n = 1, 2, ..., N-l . In this case, the conditions

rk \ t k •> „
1 [" A . | | 4 . S c_ S for every fc = 1, 2, . . . , N-l are equivalent to

*• 1 3) \ i 3)

A JS c_S for every j = 1, 2, . . . , N-l .
3

Theorem 2.2 may be modified to hold for the case N = °° . As in

Corollary 2.U th is case includes the usual weighted shif ts with one-to-one

operator weights: i f {J4_, A , } i s a uniformly bounded sequence of

operators on a complex Hilbert space C , the weighted backward shif t W

with weights 4 , A , ... on the Hilbert space H2(C) = C Q C ® ... of

a l l square-summable sequences {a .} . _ , a . in C , with norm
3 3~V 3

UajH2 = 1 \aj\2 ' i s defined by w{aQ, a±, ...) = {A^, A^, . ..)

( [ 9 ] , [ ?0 ] ) . When A . = I for every j = 1, 2, . . . , W i s called the
3

uni la tera l backward shift and wil l be denoted W = £/* .

By a natural extension of Corollary 2.k and Remarks 2.1 and 2:.2 we

have the following consequences.

COROLLARY 2.5 (Lambert [ 9 ] ) . Let W be a weighted backward shift

t (
on H (C) with invertible weights A , A , . . . . A subs-pace M of H (C)

reduces W if and only if M = S © Y © 1~| f A .\ S for some unique

r k -i r k -v t

subspace S of C which is invariant under l~| f /I .1 "| \ A . for every
{ 2_ ^'{ l " J

= 1, 2, .... Xn t/2is eaee

H 9 M = (HQ 0 5) © £ @ [Pf 4 . [HQ Q S) .

COROLLARY 2.6 (Nikol'skiT [70]). Let W be a weighted backward
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2
shift on H (C) with one-to-one, hermitian weights A , A , . . . . 4

oo

sz*i>spaee A? o / H (C) reduces W if and only if M = £ © S for some
0

unique subspaae S of C which is invariant under A , A , ... .

3 . O p e r a t o r s wi th c l o s e d range

In this section the structure of partial isometries with no isometric

part whose first N + X positive integral powers are partial isometries as

obtained in [5] will be extended to certain operators whose first N + 1

powers have closed range. The relationship of these results to partial

isometries will be determined in the next section. We begin by

establishing a technical lemma for these operators.

LEMMA 3.1. The following are equivalent for an operator T with

closed range:

(1) the kernel of T is invariant under TPT*3 for every

0 = 1, 2, . . . , N ;

(2) the kernel of T~ is invariant under TT* for every

3 = 1, 2, . . . , N ;

(3) the image T*3~ ker T is invariant under TT* for every

3 = 1, 2, . . . , N .

In this case T , T , ..., T have closed ranges, and the kernel of

T? , for every j = 1, 2, . . . , N , is the orthogonal direct sum of the

subspaces T*1 ker T (i = 0, 1, . . . , j) .

Proof. ( l ) implies (2 ) . By induction assume that

T^T*3 ker T c ker T , lP has closed range, T*3~ ker T i s closed,

ker lP = Y. ® 2"^ k e r T » a n d TT* k e r ^~ E k e r 2*?~ f o r every

j = 1, 2, . . . , N . I t suffices to show that T has closed range,

T* ker T is closed, ker r = £, © T* ker 2" and
t=0
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TT* ker T^ c ker 2^ .

Let / be in the closure of the range of T* . Since T* has
Nclosed range, f = T* g for some g in H . Write g = T*h + k where h

is in H and k is in the kernel of T . Then, by ( l ) ,

2^+ 1/ = ^+1T*N+1h , so that / - T*N+1h is in both the kernel of Hfl+1

and the closure of the range of T* . Therefore / is in the range of

T*N+1 . I t follows that T*N+1 , and consequently T^*1 , have closed
ranges.

m
Similarly, let / be in the closure of T* ker T . As above,
N

f = T* g where g i s i n H , and i f g = T*h + k where h i s i n H and

k i s i n the ke rne l of T , then T^* 1 / = I^+1T*N+1h . By ( l ) , 2 ^ + 1 / = 0

ff+1 N W
and hence T* h = 0 . Therefore f = T* k is in T* ker T .

Next note that T*1 ker T is orthogonal to T*3 ker T for all

N
0 5 i + j £ N , and £ ® T*1 ker T is contained in the kernel of IT*

i=0

N
by (l). Let / be in ker T̂ "*"1 0 f, ® T*% ker T . By assumption f is

i=0

orthogonal to the kernel of T , so that f = T* g »where g is in H ,
Nsince T* has closed range. As above, if g = T*h + fe >where h is in

H and k is in the kernel of T , then / = T*Nk . Therefore / = 0 ,
N

and ker I^*1 = £ © T*t ker 21 .

F i n a l l y s i n c e TT*{T* ~ k e r T) C k e r TT b y ( l ) , a n d

/ _/!/—1 N—1 —N _JV

= ker r © T* ker T , i t follows that TT* ker T c ker T .

(2) implies ( l ) . By induction assume (2) and ^T**7 ker 7 c ker ?

for every j = 1, 2, . . . , tf-1 . Then 21* ker T is contained in the

kernel of T , and therefore
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T{^T*N ker 2") = 1^{TT*)T*N~X k e r T c / ker 2^ = {0} .

(2) implies (3) . By induction assume (2) and

TT* (2""7'"1 ker T] C I**7'"1 ker T

for every j = 1, 2 , . . . , N-l . Since (2) i s equivalent to ( l ) , the above

shows that T* ker T i s closed for every i = 0, 1, . . . , N-l , and

W-l
ker T = Y, ® T*V k e r r • Moreover by (2) , fT*^*^" 1 ker T) C ker 2^ .

i=0

Thus since IT* (T* " ker 2") is orthogonal to T*1 ker T for every

i = 0, 1, . . . , H-2 , i t follows that rr*(2"1^"1 ker 2") i s contained in

T*1*'1 k e r T .

(3) imp l i e s ( l ) . An immediate consequence of (3) and t h e i d e n t i t y

THEOREM 3.1. A necessary and sufficient condition that T be an

operator on Hilbert space with closed range such that the kernels of 1?

and T*J are invariant under TT* and T*T respectively for every

j = 1, 2, .. ., N is that T = T' © T © . . . ® T © V where T. is a

generalized truncated shift of index 3 and V is an operator with closed

range such thdt W*(ker V°) = ker V3' and V*v{ker V**) = ker V*0' for

every 3 = 1, 2, ..., N . Moreover, the representation so expressed is

unique, and a projection P commutes with T if and only if

P = P © P @ . . . © P © Q where P . and Q are projections which

commute with T. and V respectively {j = 1, 2, , N) .
3

Proof. Sufficiency follows directly from Corollary 2 .1 , Lemma 3.1,

and the definition of generalized truncated shift.

7 — 1
To show necessity let C . = ker T n Tr ker T* for every

3
3 = 1, 2 , . . . , N . Since the kernel of T* i s invariant under T*J~ lP~

by Lemma 3 .1 , we have tha t C . = ker T n ker T* n range Tr for every
3

3 = 1, 2, . . . , N .
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The l inear manifold T*%~ C. i s invariant under TT* for a l l
3

0 < i. < j 5 N : to verify t h i s , fix i and j (0 < i < j < N) and l e t

/ = T3' g be in C . where g i s in the kernel of T* . Since T* ker T*
3

i s invariant under T*T for every k = 1, 2, . . . , j - 2 by Lemma 3 . 1 ,

TT*lf = 2T*t'~1(!r*r)2"7~2g' is in the kernel of T*3~'L+X . Furthermore since

T*1' ker T i s invariant under TT* by Lemma 3 . 1 , TT*%f i s in

2"*t'~1(ker 2" n ker T*3) . Therefore TT*Vf i s in T*V~\ . , since the

3
kernel of T* i s the orthogonal direct sum of the subspaces T ker T*

(fe = 0, 1, . . . , 3-1) and TT*Vf i s orthogonal to T*V~'l'r ker 21* for a l l

k < J - l .

Let H. be the closed span of the images T* C . (i = 0, 1, ..., j'-l)
3 3

for every j = 1, 2, ..., N . Fix j (l S J 5 J) , Then H. reduces 2"

by the above, and C. is the kernel of T restricted to H. . Hence, by
3 3

Lemma 3.1, T* C. is closed, and since TT* has closed range and has
3

T*1' C. as an invariant subspace, it follows that TT*\T*^~ C. is closed
3 \ 3)

for every i = 1 , 2, ..., j-1 . Since TT^C . is dense in T*%~ u . , we
3 3

have that TT^C . = 2'*Z'~"X . for every £ = 1, 2, ..., j-1 . Therefore,
3 3

since j was arbitrary, the restriction of T to H . is a generalized

truncated shift T. of index j for every j = 1, 2, ..., N .
3

Since the kernel of T is invariant under T3' T*3~ by Lemma 3.1,

it follows that

C. = (ker T n ker T*3} 0 (ker T n ker T*3~ )
3

for every j = 1, 2, ..., tf . Consider the restriction V of T to the

N
orthogonal complement of J © H . . Clearly V*V ker V**7 c ker V**7 and
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VV* ker V3 c ker V3 for every 3 = 1, 2, . . . , tf . Thus, since

ker V = ker T n range 2^ , the image V*3 ker V i s contained in the range

of V for every j = 0, 1 , . . . . iV-1 . Therefore ker V3 Q W* ker V3 i s

contained in both the kernel of V* and the kernel of Tr , and

consequently ker Tr = W* ker r for every j = 1, 2, . . . , N . Similarly

ker V*3 = V*V ker K*J for every j = 1 , 2, . . . , N , since the images

V3 ker F* ( j = 0 , 1 N-l) are contained in the range of V* .

N
Next, l e t Af reduce T ~ Y. ®T.@V and l e t P be t h e p r o j e c t i o n

onto A/ . By t h e above c o n s t r u c t i o n ,

ff N-l
I © H . = X © ̂ ( k e r T n ker T*N) .

3=1 3 .7=0

N N
Since P commutes with T and P* , we have that ker T n ker T* is
invariant under P . Therefore

N N - l
P E © H . = X © r^P^ker T n ker T*")

J=l ° 3=0

N
i s contained in £ © H . , and thus M = M ® N , where Af reduces

J=l J

N
Y, ®T. and iV reduces V . The desired form of P now follows from

J=l J

Corollary 2.3.

Finally, uniqueness is a direct consequence of the explicit nature of

the above construction.

REMARK 3.1. In the above theorem, it follows from Lemma 3.1 that

T = V if and only if, in addition to the invariance conditions on T , the

kernel of I* is orthogonal to the kernel of H~ for every

3 = 1, 2, ..., N .

REMARK 3.2. For an operator V with closed range, the conditions

W* ker V3 = ker V3 and V*V ker V*3 = ker V*3 for every
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3 = 1, 2, ..., N are equivalent to v'v*3 ker V = ker V and

V*3]/3 ker V* = ker V* for every j = 1, 2, ..., N . In the next section,

these conditions will be simplified if V is a partial isometry.

Theorem 2.1 and the following result relate the decomposition in

Theorem 3.1 to partial isometries. We recall that every operator V on

Hilbert space has the polar decomposition V = AW where A = (W*) and

W is a partial isometry with initial set the orthogonal complement of the

kernel of V and final set the closure of the range of V [7].

PROPOSITION 3.1. Let V be an operator with closed range such that

W*(ker V3) = ker V3 for every 3 = 1, 2, ..., N . Then the partial

isometry W in the polar decomposition V = AW of V satisfies

WW* ker W® = ker ̂  and therefore W2, W^, ..., &^+1 are partial

isometries.

Proof. By induction assume that W* (ker ]r) = ker Tr for every

3 = 1, 2, ..., N , WW* ker l/"1 = ker i/"1 , and ker l/"1 = ker I^"1 .

By Lemma 3.1, ker V3 = ker V3'1 © V*3'1 ker V and

ker W3 = ker W3'1 @ W*3'1 ker W

for every j = 1, 2, .. . , N . Now ker V = ker W and

i/(7*ff"1 ker V) = / - V K * ) ^ " 2 ker V

c /"^ ker /-1 <= /-1 ker Z"1 = Z"1 ker Z"1 = {0} ,

since A is the strong limit of a sequence of polynomials in W* . Thus

we have that ker IT £ ker dr . Similarly ker AT c ker Z . Therefore

WW* ker (/ = JW* ker V* = JW*(77* ker Z ) = IV* ker V* = ker V* = ker l/ .

Finally w , J/ , .. ., if are partial isometries by [3, Theorem 2].

REMARK 3.3. In Theorem 3.1, if, in addition to the invariance

conditions on T , the kernel of T* is contained in the kernel of T ,

then V = AW where A = (W*r and (/* is an isometry.
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Let I1 be an operator on a Hilbert space H and suppose that T has

closed range. We reca l l tha t the generalized inverse of T , denoted by

T , i s the operator on H defined as follows: i f h = Tf + g i s the

unique decomposition of a vector h in H , where / i s orthogonal to the

kernel of T and g i s in the kernel of T* , then T+h = f [ / ] . By a

straightforward induction argument i t follows that condition ( l ) of Lemma

3.1 implies tha t the ident i ty (2*7+1)+ = (2I+)<7+1 holds on the range of

IT for every , 7 = 1 , 2 , . . . , N . The next resu l t characterizes those

operators sat isfying Theorem 3.1 for which th is ident i ty holds everywhere.

PROPOSITION 3.2. Let T be an operator such that T^+1 has closed

range for some positive integer N and let E = T[T } T . If

\\E\\ £ 1 , then TT* ker T c ker T . Conversely, if

TT* ker 2^ c ker T^ , T and 1^ have closed range, [H^+1)+ = T+[H^)+ ,

and T*V ker T* c ker T* , then \\E\\ £ 1 .

Proof. Assume \\E\\ 5 1 . Since E2 = E i t follows that E i s
m la, W + T . +

hermitian. Let / be in the kernel of T . Then T* [T* J T*f = 0 ,

and hence (T*N+1) *T*f = 0 . Therefore T*f i s in the kernel of T^+1 .

Since / was a rb i t r a ry , TT* ker T^ c ker T .

For the converse, note that E = E* = 0 on the kernel of T . Let

/ be orthogonal to the kernel of T . Then

Ef = ( r T + ) ( / 21*)/ = TT+f

and

Since T* r ker T* c ker T* and 2T+/ i s the projection of / onto the

range of T , i t follows tha t TT f is orthogonal to the kernel of T ,

and consequently E*f = Ef . Therefore E i s hermitian and idempotent,

and thus ||E|| £ 1 .

PROPOSITION 3.3. Let T be a contraction with closed range suah
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2 3 nJV+1
that T , T , ..., T are partial isometries. Then T satisfies the
hypotheses of Theorem 3.1.

Proof. Since (2*7+1)+ = T*3+1 for every j = 1, 2, . . . , N and

||T|| < 1 , th is resul t follows immediately from Proposition 3.2.

4. Power partial isometries

Partial isometries on Hilbert space all of whose positive integral

powers are partial isometries were introduced and characterized in [is].

These results were extended in [5] to partial isometries T whose first

N + 1 powers are partial isometries under the assumption that T has no

isometric part. A direct consequence of the previous sections and of the

following lemma makes this assumption unnecessary.

LEMMA 4.1. The following are equivalent for a partial isometry V :

(1) W* ker V = ker V for some positive integer N ;

(2) the image V*3~ (ker V) is contained in the range of V

for every j = 1, 2, ..., N .

(3) V^V*3 ker V = ker V and K*JV ker V* = ker V* for every

3 = 1, 2, ..., N .

In this case, v , v , ..., v are partial isometries.

Proof. (l) implies (2). By (l), since V is a partial isometry,

W* = I on the kernel of V" for every j = 1, 2, ..., N , and hence by

Lemma 3.1, ker V = X © v*° ker v • Therefore V*3 (ker V) c range V
3=0

for every j = 1, 2, ..., N .

(2) implies (3 ) . An immediate consequence of (2) and the ident i t ies

vJ _ yO-1^ VV*)V*'}'~1 and V^V3 = V*3'1

(3) implies (l). By Lemma 3.1, ker IT = Y, ® v*° ker v •> w

[3, Theorem 2], V , V , ..., V are partial isometries. Fix j
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(0 < 3 2 N-l) . Let / be in V*3 ker V . Then since V^V*3' is the

projection onto the range of ]r , we have that / = V*3g where

g = V3V*3g = V*f is in the kernel of V . Moreover,

W W * ) / = l^'+17*'7'+1
£r = g = V°'f . Therefore (l-W*)f is in both the

kernel of V3 and the kernel of V* , and consequently, by (3), W*f = f .

Since / and j were arbitrary, we conclude that W* ker v = ker F^ .

The following theorem is a consequence of Proposition 3.3, Theorem
3.1, Corollary 2.2, and Lemma U.I.

THEOREM 4 . 1 . A necessary and sufficient condition that T be a

partial isometry on Hilbert space such that T , IT, , T are partial

isometries is that T = T © T ® ... © T„ © V where T. is a truncated

shift of index j and V is a partial isometry such that the kernel of

V is contained in the range of V . Moreover, this representation is
unique, and a projection P commutes with T if and only if
P = P © P © . . . © PN © Q where P. and Q are projections which

commute with T. and V respectively {j = 1, 2, ..., N) .
3

Theorems 3.1 and \.\ have natural extensions to the case N = °° as

the following result indicates.

COROLLARY 4.1 (Halmos-Wallen). T3 is a partial isometry on HiZbert

space for every j = 1, 2, ... if and only if T = £ © T.\ © U^±® U+2® U,

where T. is a truncated shift of index j 3 U+ is a unilateral shift,

and V is unitary. Moreover, the representation so expressed is unique.

Proof. The proof follows from Theorem h.± as in the proof of [ 5 ,

Coro l la ry 3 . 2 ] .

COROLLARY 4.2 (Fishel [ 4 ] ) . Let T be a partial isometry on

HiWert space. Then T = U^@ £/+2© U uniquely, where V^ is a unilateral

shift and V is unitary, if and only if the kernel of T* is orthogonal to

the kernel of T3 for every j = 1, 2, . . . .

Proof. Lemma h.l, Theorem U. l , Remark 3 . 1 , and Corollary k.l.
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COROLLARY 4.3. Let T be a partial isometry on Hilbert space. Then
T = Tx® T2® . . . © T„ @ y* @ U uniquely, where T. is a truncated shift

of index j , U+ is a unilateral shift, and V is unitary, if and only if

T, IT, ..., r are partial isometries and the kernel of T* is

contained in the kernel of r .

Proof. Theorem U . I , Remark 3 . 3 , and Corol la ry U . I .
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