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A structure theorem for

operators with closed range

James Guyker

A characterization has previously been given for linear trans-
formations in Hilbert space whose first & + 1 powers are
partial isometries. An analogous characterization is now
obtained for transformations whose first N + 1 powers have
closed ranges. A hypothesis (that transformations have no

isometric part) is found to be unnecessary in previous work.

1. Introduction

A (closed) subspace M of a Hilbert space H is said to reduce a
continuous linear transformation 7 on H if M is invariant under both
T and T* . The operator T is a partial isometry if ||ITf]] = {{fll for
every vector f in H which is orthogonal to the kernel of T , or
equivalently, if T = TT*T , [7].

In [8], Halmos and Wallen showed that every partial isometry all of
whose positive integral powers are partial isometries is a unique direct
sum of unitary operators, pure isometries, pure co-isometries, and
truncated shifts, with each type of summand (each index for a truncated
shift) occurring at most once. Using [6] and the canonical model of de
Branges, Rovnyak [?], an explicit description of the reducing subspaces of

+
partial isometries T such that T2, T3, ey TN 1 are partial isometries

was obtained in [5] under the assumption that 7 has no isometric part,
that is, there is no nonzero vector f in H such that HTan = \Ifll for
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every n =1, 2, ... . This resulted in a characterization of such partial

isometries as unique direct sums of truncated shifts Tj of index J
(=1, 2, ..., N) and partial isometries V with no isometric part whose

range includes the kernel of V” , with each type of summand occurring at

most once, thereby extending the Halmos-Wallen Theorem.

In the present paper the problem of obtaining similar results for
operators T with closed range whose first N + 1 powers have closed

range is considered. Under the stronger assumptions that the kernels of

Tj and T*j are invariant under TT* and T*T , respectively, for every
Jg=1,2, ..., N , the above structure theorem is shown to hold essentially
for T . A slightly more general concept of truncated shift is necessary,
although these generalized shifts enjoy many of the basic properties of

truncated shifts.

If F is a family of subsets of H , then Vv{F : F € F} will denote
the closed span of the union U{F : F € F} . For subspaces ¥ and N of
H, if M _]_ N , then M ® N will denote the orthogonal direct sum of ¥
and N ; if Nc M, then MQON will be the orthogonal complement of N

in M.

2. Reducing subspaces of generalized truncated shifts
We recall that for a given Hilbert space Ho and integer N =1 , a

truncated shift of index ~N is an operator TIV on the direct sum

H0 @'HO ®...8 H0 of N copies of H0 which is defined by

T

N[el’ € +ees eN) = (ez, g5 wees e 0) , [8]. If 4,4 cees Ay are

1 72?

the diagonal operator D = (A A ooy AN] on

operators on H 15 4y

0 L]
Ho® H0 ® ... @HO is given by

Dle;, ey vvs ep) = (A1, Age,, -, 4]
An operator T on a Hilbert space H will be called a generalized

truncated shift of index N if the images T*) ker 7 (j =0, 1, ..., N-1)

form a family of pairwise orthogonal (closed) subspaces which spans H

such that TT* ker T = T‘*J-l ker T for every J =1,2, ..., N-1 .
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THEOREM 2.1. An operator T on a Hilbert space H 1is a generalized

truncated shift of index N = 2 <if and.only if there exist invertible
operators A, , A2, cees AIV—l defined on a Hilbert space HO such that T
18 unitarily equivalent to the weighted truncated shift pT, on

Hy®@Hy @ ... &@H , where D = (Al, Ays wves Ay 1s 0) and Ty isa
truncated shift of index N .

Proof. A direct computation shows that every weighted truncated shift

with invertible weights is a generalized truncated shift of the same index.
Conversely, let T be a generalized truncated shift of index N .
Since ker T = TjT*'j ker T , there exists a unitary operator
Uj : ker T » T*j ker T for each g =1, 2, ..., N-1 . Define the unitary
operator
U:ker T®ker T® ... ®ker T > H

by U(el, €ps ens eIV) = (el, Uieps Ugess +ons UIV-leN) . The operator

Aj = U;llTUj , where UO = I , defined on the kernel of T for every
j=1,2, ..., N-1 , is invertible, and vl = DT, where
D= (Al, Ays wos Ay 15 0)

COROLLARY 2.1. The adjoint of a generalized truncated shift is a

generalized truncated shift of the same index.
Proof. The adjoint of DI, where D= (Al, /12, cees AIV—l’ 0) as in

Theorem 2.1 is unitarily equivalent to D'TN where
D' = {43 1, A% o, ..., 4%, 0) .

COROLLARY 2.2. The only generalized truncated shifts of index N
that are partial isometries are the truncated shifts of index N .

Proof. Let T be a partially isometric generalized truncated shift

of index N . For each 4 =1,2, ..., N-1 , define the operator

Uj :ker T > T* ker T by Ujf = T*Jf for f in the kernel of T . Then
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Uj is unitary for every j , since T"J_l ker T is contained in the range

of T ,and hence,for every vector f in the kernel of T ,

j-1 -2
lo_fll = I (e 0 = I (A0 = = e
for every J =1, 2, ..., N-1 .
As in the proof of Theorem 2.1, T is unitarily equivalent to DTIV s
where D = (4., 4 A 0) and 4, =07 1w, (U =1 . Let f
10 Aps ees Ay g s 1TV o .
be in the kernel of T . Since T*J-lf is in the range of T , we have
that
-1 -1 J-1 -1, . 4-1 -1
A.f =U.7TU.f = U,  TT*\T* = U, T* =U. . U. =
= VAT = UL IHIT) = 0 T = 0t U (F = f
for every J§ =1, 2, ..., N-1 . Therefore Aj =TI for every J and
DTN = TN .

The next result characterizes the reducing subspace structure of

generalized truncated shifts.
THEOREM 2.2. Let T be an operator on a Hilbert space H such that

the kernel of T 1is invariant under TkT*k for every k =1,2, ..., N-1,
and

H=v[r*" kxer T: n=0, 1, ..., #-1}

A subspace M of H reduces T if and only if
M=v{r"s : n=0, 1, ..., N-1}

for some unique subspace S of the kernel of T which is invariant under

TkT*k for every k =1, 2, ..., N-1 . In this case,

HoM=v{T"(ker TO®S) : n=0, 1, ..., ¥-1} .

Proof. Suppose M reduces T . Let P be the (orthogonal)

projection of H onto M . Then

M=PH=v{r*"PkerT:n=0,01, ..., 81} ,
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and § =P ker Tc ker T is closed and invariant under TkT*k for every
kK=1,2, ..., ¥N-1 .

The form of H @ M 1is obtained similarly,since HQ@ M = (1-P)H and
ker T=Pker T@® (1-P) ker T .

Conversely, suppose M 1is of the above form. For every

k,m=0,1, ..., -1, T*kS is orthogonal to T*'(ker TQ S) . Since

pa o}
\

=v{?*" ker T : n=0,1, ..., N-1} ,

it follows that

HQM=v[r*(ker TG S) : n=0, 1, ..., #-1} ,
and therefore M reduces T .

As above,

M=v{r*"Pker T : n=0,1, ..., ¥-1} ,

where P 1is the projection onto M . Since S 1is contained in both M
and the kernel of T , we have that S =PSc P ker TC ker T . It follows
that P ker T@ S 1is contained in both M and H @ M , and consequently
S =Pker T .

N ~
COROLLARY 2.3. Let T = % @Tj , where Tj is a generalized

J=1
truncated shift of index J . A subspace M reduces T <f and only if
N "
M=) @M., vhere M., reduces T, .
. J dJd J
J=1
N
Proof. Clearly every subspace of the form Z @Mj , where Mj
J=1

reduces f’j , reduces T .

Let M reduce T and let P denote the projection onto M . Fix J
(1 =4 =0N) . By the representation of T and the definition of

generalized truncated shift, it follows that
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ker %.7 = ker T n ker T n range 1‘7_1 .
Since P commutes with T° and T*° for every 1 =1,2, ..., g , we

have that S = P ker Tj is contained in ker f’J. and is invariant under

".}];’.}‘37( for every k =1, 2, ..., j-1 . Therefore by Theorem 2.2, if Hj

~ j-l ~ y ~
is the domain of T. , then M, = Z @ T**S reduces T, , and
J i I J

j-l A 2
H.QM, = % (ker 7.0 5) .
i®" gO@J(er 769

N
Since Jj was arbitrary (1= §=< N) , we thus conclude that M = Z C] M,j ,
J=1

where M. reduces T. .
d d

COROLLARY 2.4, Let T = DTy be a weighted truncated shift of index

N defined on H = H0 ® Ho @...8 HO for some Hilbert space HO , where
D= (Al, Ays wens Ay oo 0) and Aj is one-to-one for every
J=1,2, ..., 1 . A subspace M reduces T <if and only if

M= s@:iev{[fTAj]*w Fe s}

for some unique subspace S of Ho which is invariant under

k k
[TT AJ.) [_I_I' Aj)* for every k=1, 2, ..., N-1 . In this case
1 1

HOM = {HOQS)@Nil@V{[]fTAj)*f: fEHOQS}.

n=1
Proof. A direct computation using Theorem 2.2.

REMARK 2.1. In Corollary 2.4, if Aj is invertible for every

n * n %
j=1,2, ..., N-1 , then [I I AJ.] S and [l I AJ.) (Hoes) are closed
1 1

for every n =1, 2, ..., N-1 .
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REMARK 2.2. 1In Corollary 2.4, if Aj is one-to-one and hermitian for
every j =1, 2, ..., N-1 , then an induction argument shows that
n * n *
[Ta,) s=5 anda |{TT 4.l H.08 =H_ G5
1 J 1 J 0 0

for every n=1,2, ..., N-1 . In this case, the conditians
k k %

{I | Aj][l l Aj] Sc S for every k =1,2, ..., N-1 are equivalent to
1 1

AJ.SES for every j =1, 2, ..., N-1 .

Theorem 2.2 may be modified to hold for the case N = . As in
Corollary 2.4 this case includes the usual weighted shifts with one-to-one

operator weights: if {Al’ A } is a uniformly bounded sequence of

2,
operators on a complex Hilbert space C , the weighted backward shift W

with weights 4., 4,, ... on the Hilbert space H2(C) =C@®C® ... of

2,
all square-summable sequences {aj}O;:O N aJ. in C , with norm

2 2 . :
Il{aj}ll =y lajl , is defined by W(ao, a, ) o= (Alal, 4a,, .

([91, [10]). When Aj =T forevery §=1,2, ... , W is called the
unilateral backward shift and will be denoted W = Ui .

By a natural extension of Corollary 2.4 and Remarks 2.1 and 2.2 we

have the following consequences.
COROLLARY 2.5 (Lambert [9]). Let W be a weighted backward shift

on HA(C) with imvertible weights 4, A A subspace M of HA(C)

2,

«© [ n *
reduces W if and only if ¥=S® ) @ TT AJ.) S for some wnique
=1 J=1

x K 1.
subspace S of C which is invariant under [-[—]' Aj) [-[—[' Aj] for every
1

k=1,2, ... . In this case
Y n *
Hou=(H,05) 8 ¥ @[T‘[’AJ.) (Hy©5) .
n=1 J=1

COROLLARY 2.6 (Nikol'skiT [10]1). Let W be a weighted backward

https://doi.org/10.1017/50004972700007991 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700007991

176 James Guyker

shift on HZ(C) with one-to-ome, hermitian weights A, 4 .4

1’2

oo

subspace M of H2(C) reduces W if and only if M=) @S for some
0

unique subspace S of C which is imvariant under Al, A2,

3. Operators with closed range

In this section the structure of partial isometries with no isometric
part whose first N + 1 positive integral powers are partial isometries as
obtained in [5] will be extended to certain operators whose first N + 1
powers have closed range. The relationship of these results to partial
isometries will be determined in the next section. We begin by

establishing a technical lemma for these operators.

LEMMA 3.1. The following are equivalent for an operator T with

closed range:

(1) the kernel of T 1is imariant under 77 p#d for every
i=1,2, .., N;

(2) the kermel of 1 is imariant under TT* for every
Jg=1,2, ..., N

(3) the image 97t yer T ie imvariant under TT* for every

i=1,2, ..., N.

In this case T2, T3, cees Ilﬂﬂ have closed ranges, and the kernel of

I+t , for every J =1, 2, ..., N, is the orthogonal direct sum of the
subspaces 7+ ker 7 (4 = 0, 1, ..., )
Proof. (1) implies (2). By induction assume that

74 ker T Cker T, 7  has closed range, 497 yer 7 is closed,
jdzd A j-1 j-1
ker T = 2 ®T*" ker T , and TT* ker 7 < ker Tj for every
1=0
. . T1V+1
Jj=1,2, ..., N . It suffices to show that has closed range,

N .
7Y ker 7 is closed, ker - Y @ 74* ker T and
1=0
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TT* ker TNEker i

N

let f be in the closure of the range of T*Nﬂ' . Since T# has

closed range, f = T*Ng for some g in H . Write g = T*h + k wvhere h
is in H and %k is in the kernel of T . Then, by (1),

TN+lf = TN+1T*N+1h » 50 that f - T*N+lh is in both the kernel of 7% %

-+
and the closure of the range of T*N 1 . Therefore f is in the range of
+ +
T*N 1 . It follows that T*N 1 , and consequently TN+1 , have closed
ranges.

Similarly, let f be in the closure of T*N ker T . As above,
= T*Ng where g is in H , and if g = T* + k where %4 is in H and
k is in the kernel of T , then ‘_T'Nﬂf = TN+1T*N+lh . By (1), ’.7'N+1f =0

and hence T*''p =0 . Therefore f =Tk is in T4 ker 7 .

Next note that T*7' ker T is orthogonal to 7 ker 7 for all

N .
I+
0<i#j<N,and ) @ 7% ker T is contained in the kernel of TV .
=0

N .
4+
by (1). Let § bein ker 7V''Q ¥ @T+° ker T . By assumption f is
1=0
o el L
orthogonal to the kernel of , so that f = T*'g, where g is in H ,
since T*N has closed range. As above, if g = T*h + k , where h is in

H and k% is in the kernel of T , then f = T*Nk . Therefore f =0,

N .
and ker 7T = Z@T*tkerT.
=0

N-

Finally since TT*(T* L ker T) < ker il by (1), and

ker 7 = ker ' * @ 7! ker 7 , it follows that T7* ker 7% C ker .
(2) implies (1). By induction assume (2) and T/7%/ ker T < ker T
N-1

for every j =1,2, ..., N-1 . Then T% ker T is contained in the

kernel of TN , and therefore
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(14" wer ) = ()7L ker 7 17 ker 7V = {0} .
(2) implies (3). By induction assume (2) and
rr# (19 ker 1) < 149! ker 7

for every 4 =1, 2, ..., N-1 . Since (2) is equivalent to (1), the above

shows that T*ﬂ' ker T is closed for every 4 =0, 1, ..., N-1 , and
N1 Z N-1

ker ™ - Y @®T* ker T . Moreover by (2), TT*(T* “* ker T) < ker Vil
£=0 -

Thus since IT#* (T*N'l ker T} is orthogonal to T*i ker T for every
i=0,1, ..., N-2 , it follows that TT*{7*" L xer T) is contained in
L yer 7 .

(3) implies (1). An immediate consequence of (3) and the identity
Prd = Pl (gpayped-1

THEOREM 3.1. 4 necessary and sufficient condition that T be an
operator on Hilbert space with closed range such that the kernels of T‘7

and T* arve imvariant under TT* and T*T respectively for every
j=1,2, ..., N ig that T = ’1"1@5"2@ @'.?'”@V where ﬁ’j is a

generalized truncated shift of index § and V is an operator with closed

range such that VV*(ker VJ) = ker V‘7 and V*V(ker V*j) = ker e for
every 4 =1, 2, ..., N . Moreover, the representation so expressed is
unique, and a projection P commtes with T <if and only if

P=P, ®P,®...0P,0¢ where Pj and @ are projections which

commute with %j and V vrespectively (j =1,2, ..., N) .

Proof. Sufficiency follows directly from Corollary 2.1, Lemma 3.1,

and the definition of generalized truncated shift.
R _ Tj—l *
To show necessity let Cj =ker T n ker T* for every

§j=1,2, ..., N . Since the kernel of T* is invariant under pad ~Lgd =1
by Lemma 3.1, we have that Cj = ker T n ker T*J N range ‘.7“7-l for every

i=1,2, ..., .
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The linear manifold T*t-le is invariant under TT* for all
0<Z<j=N: toverify this, fix ¢ and j (0<% < j =N) and let
_ Tj—l . .. " . Ik %
f= g be in Cj where g is in the kernel of T* . Since ker T
is invariant under T*T for every k =1, 2, ..., j-2 by Lemma 3.1,
J-i+1

TTAvF = TT"t_l(T’*T)T'J-2 is in the kernel of T* Furthermore since
g

T*t_l ker T is invariant under TT* by Lemma 3.1, TT*tf is in

T*z-l(ker T n ker T*/) . Therefore TT*"f is in T*t-lcj, since the

kernel of T*/ is the orthogonal direct sum of the subspaces Tk ker T*

(k =0, 1, ..., j-1) and TT*'f is orthogonal to T*' ‘7 ker T* for all
k< g-1.

Let Hj be the closed span of the images T*ﬁcj (Z=0,1, ..., g-1)
for every J=1,2, ..., N . Fix § (L= j=<0N) . Then Hj reduces T

by the above, and Cj is the kernel of T restricted to Hj . Hence, by

Lemma 3.1, T*tcj is closed, and since TT* has closed range and has

1l

as an invariant subspace, it follows that TT*[T*t_lcj] is closed
. . ) Lo A

for every 7 =1, 2, ..., g-1 . Since I7T Cj is dense in T i we

have that TT*th = T*z_lcj for every 4 =1, 2, ..., J-1 . Therefore,

since j was arbitrary, the restriction of T to Hj is a generalized

truncated shift 33 of index J for every 4 =1,2, ..., N .

Since the kernel of T is invariant under T‘7-1T’“7_l by Lemma 3.1,
it follows that

Cj = (ker T n ker T*J) © (ker T n ker T*J-l)
for every j =1,2, ..., N . Consider the restriction V of T to the

N . .
orthogonal complement of . @ H Clearly VAV ker v#J C ker v*  ana

PE N
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VV* ker T/‘7 C ker V‘7 for every J =1, 2, ..., ¥ . Thus, since

ker V = ker T n range TN , the image V*j ker V 1is contained in the range
of V forevery J=0,1, ..., N-1 . Therefore ker V‘7 © VV* ker V‘7 is
contained in both the kernel of V* and the kernel of V‘7 , and
consequently ker VJ = YV* ker V‘7 for every j =1, 2, ..., N . Similarly
ker V"‘j = V*V ker V*j for every j =1, 2, ..., N , since the images

W ker vt (d =0,1, ..., N-1) are contained in the range of V*

N
Next, let M reduce T = Z @T.®V and let P be the projection
= Y
onto M . By the above construction,

N N-1 . P
Y ®H, =Y @T*J(kerTﬁker 7+")
j:l dJ j:o

Since P commutes with T and T*N, we have that ker T N ker T*N is

invariant under P . Therefore

N N-1 . ¥
PY ®H,= Y ®1p(ker T n ker T*")
PR =

N
is contained in z ®H. , and thus M =M @® N, where M reduces

=

N
z @Tj and N reduces V . The desired form of P now follows from
i=1

Corollary 2.3.

Finally, uniqueness is a direct consequence of the explicit nature of

the above construction.

REMARK 3.1. In the above theorem, it follows from Lemma 3.1 that
T =V if and only if, in addition to the invariance conditions on T , the
kernel of T* is orthogonal to the kernel of TJ for every
J=1,2, ..., V.

REMARK 3.2. For an operator V with closed range, the conditions

.

W* xer W =ker W and V*V ker V¥ = ker V*Y for every

https://doi.org/10.1017/50004972700007991 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700007991

Operators with closed range 181

Jj=1,2, ..., N are equivalent to Wv* ker V = ker V and

VW ker V* = ker V* for every J =1, 2, ..., N . In the next section,

these conditions will be simplified if V 1is a partial isometry.

Theorem 2.1 and the following result relate the decomposition in

Theorem 3.1 to partial isometries. We recall that every operator V on

Hilbert space has the polar decomposition V = AW where 4 = (VV*)% and
W 1is a partial isometry with initial set the orthogonal complement of the
kernel of V and final set the closure of the range of V [7].

PROPOSITION 3.1. Let V be an operator with closed range such that

VV* (ker VJ] =ker W forevery j=1, 2, ..., N. Then the partial
igometry W 1in the polar decomposition V =AW of V satisfies

WW* ker W = ker a and therefore W2, W3, cees W are partial

igometries.

Proof. By induction assume that VV* [ker VJ) = ker Vj for every
J=1,2, ..., N, Ww* kerWN—l=kerWN_l , and kerWN-l=kerVN_l .
By Lemma 3.1, ker W = ker WL ® y*9 "L xer v ana

ker W = ker Wt @ w9 yer w
for every g =1,2, ..., N . Now ker V = ker W and
A" xer v) = v )2 ker v
c W4 xer V1 c L ker WL = L ker WL = {0} ,
since A is the strong limit of a sequence of polynomials in VV* . Thus

we have that ker VN_C_ ker WN . Similarly ker W‘N < ker VN . Therefore
W*kerh}v=WW* kerVN=WW*(VV*kerVN) =VV*kerVN=kerVN=kerWN .

Finally W2, W3, cees WN+1 are partial isometries by [3, Theorem 2].
REMARK 3.3. In Theorem 3.1, if, in addition to the invariance
conditions on T , the kernel of T* 1is contained in the kernel of Iﬂ s

then V = AW where A4 = (VV*)% and W* is an isometry.
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Let T be an operator on a Hilbert space H and suppose that T has
closed range. We recall that the generalized inverse of T , denoted by
Tt , is the operator on H defined as follows: if h = Tf + g is the
unique decomposition of a vector k in H ,vwhere f 1is orthogonal to the
kernel of T and g is in the kernel of T* , then ' = F [1]. Bya
straightforward induction argument it follows that condition (1) of Lemma
J+l

3.1 implies that the identity (77*1)* = (r) holds on the range of

T‘7+1 for every J =1, 2, ..., N . The next result characterizes those
operators satisfying Theorem 3.1 for which this identity holds everywhere.
Vi

PROPOSITION 3.2. Let T be an operator such that has closed

range for some positive integer N ad let E = T(.’Z’N+l] M If

IE|l| = 1, then TT* ker TNE ker TN . Comversely, if

I7* ker ' cker ', T and T have closed range, (Pt = T+(TN]+ s

and T ker T C ker T* , then |[E|l = 1.

Proof. Assume [[E|] =1 . Since E2 =F it follows that E is

t

T*N+l) +

hermitian. Let f be in the kernel of ™ . Then 1% T*f =0 ,

N+1

+
and hence (T* ]+T*f = 0 . Therefore T*f is in the kernel of L

Since f was arbitrary, IT* ker T”g_ker TN .

For the converse, note that E = E* = 0 on the kernel of T” . Let
f be orthogonal to the kermel of ™. Then
Ef = (TT*)(1”+T”]f = rrtf
and
E*f = (T*”(T*”))'}(T*“T*)f = (TN+TN](TT+)f .

Since T*NTN ker T* € ker T* and TT+f is the projection of f onto the

range of T , it follows that TT+f is orthogonal to the kernel of TN s
and consequently E*f = Ef . Therefore E is hermitian and idempotent,

and thus |E|]l =1 .

PROPOSITION 3.3. ILet T be a contraction with closed range such
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that T2, T3, cees e are partial isometries. Then T satisfies the

hypotheses of Theorem 3.1.

Proof. Since (T‘7+l)+ = 149" por every § =1, 2, ..., N and
|7} = 1 , this result follows immediately from Proposition 3.2.

4. Power partial isometries

Partial isometries on Hilbert space all of whose positive integral
powers are partial isometries were introduced and characterized in [§].
These results were extended in [5] to partial isometries T whose first
N + 1 powers are partial isometries under the assumption that T has no
isometric part. A direct consequence of the previous sections and of the

following lemma makes this assumption unnecessary.

LEMMA 4.1. The following are equivalent for a partial isometry V :
(1) VV* ker A= ker T for some positive integer N ;

(2) the image v#9"Y(ker V) is contained in the range of V
for every J =1,2, ..., N .

(3) Wt xer V =ker V and VAV ker V* = ker V* for every
F=1,2, .., N .
In this case, V2, V3, vy VN-"l are partial isometries.
Proof. (1) implies (2). By (1), since V is a partial isometry,

VW* = I on the kernel of W for every j=1,2, ..., N , and hence by
N-1 . i 1
Lemma 3.1, ker VN = E (O] V“J ker V . Therefore y#d (ker V) C range V
=0
for every j=1,2, ..., N .
(2) implies (3). An immediate consequence of (2) and the identities

Wrd = W™t ana vV = Lt
¥-1 .
(3) implies (1). By Lemma 3.1, ker V' = Y ®v* ker V , and by
Jg=0

+ .
[3, Theorem 2], V2, V3, ceey VN 1 are partial isometries. Fix J
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(0= 4 =N-1) . Llet f be in V"‘j ker V . Then since V‘iV*j is the
projection onto the range of V‘7 , we have that f = V*jg where

g = VjV*jg = ij is in the kernel of V . Moreover,

Vj(VV*)f = Vj+lV*j+lg =g-= ij . Therefore (1-VV*)f is in both the
kernel of V‘7 and the kernel of V* , and consequently, by (3), VW*f = f .
Since f and jJ were arbitrary, we conclude that VV* ker VN = ker VN .

The following theorem is a consequence of Proposition 3.3, Theorem
3.1, Corollary 2.2, and Lemma 4.1.

THEOREM 4.1. A4 necessary and sufficient condition that T be a

partial isometry om Hilbert space such that T2, T3, cees ™l are partial
isometries is that T = 7, ® T, d...® 7, @V where Tj i8 a truncated

shift of index J and V 1is a partial isometry such that the kernel of

W is contained in the range of V . Moreover, this representation is
unique, and a projection P commutes with T if and only if
P =P ® P, ®...0 P, ® Q@ where Pj and @ are projections which

commute with Tj and V vrespectively (j=1,2, ..., N)
Theorems 3.1 and 4.1 have natural extensions to the case N = as
the following result indicates.

COROLLARY 4.1 (Halmos-Wallen). ¥ isa partial isometry on Hilbert

space for every J=1,2, ... tfadonly if T = E:@) Tj] @Uil@ U+2® U,

where Tj i8 a truncated shift of index § , U_ is a unilateral shift,

and U 1is wnitary. Moreover, the representation so expressed is unique.

Proof. The proof follows from Theorem 4.1 as in the proof of [5,
Corollary 3.2].

COROLLARY 4.2 (Fishel [4]). Let T be a partial isometry on
Hilbert space. Then T =Ui®U @ U uniquely where U is a unilateral
shift and U <is unitary, if and only if the kermel of T* is orthogonal to

the kernel of 'l for every j =1, 2, ...

Proof. Lemma 4.1, Theorem 4.1, Remark 3.1, and Corollary b4.l.
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COROLLARY 4.3. Let T be a partial isometry on Hilbert space. Then

T=1 @ T, ®...® Ty @ U ®U uniquely, where Tj i8 a truncated shift

of index J , U, is a unilateral shift, and U is wnitary, if and only if

T2, ’_7'3, cees TAH.l are partial isometries and the kermel of T* 4s

contained in the kernel of bl .

[11]

[2]

[31

[41

[5]

£él

[71

[81

[9]

Proof. Theorem 4.1, Remark 3.3, and Corollary L.1.
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