BULL. AUSTRAL. MATH. SOC. VOL. 18 (1978), 169-186.

A structure theorem for operators with closed range

James Guyker

A characterization has previously been given for linear transformations in Hilbert space whose first N + 1 powers are partial isometries. An analogous characterization is now obtained for transformations whose first N + 1 powers have closed ranges. A hypothesis (that transformations have no isometric part) is found to be unnecessary in previous work.

1. Introduction

A (closed) subspace M of a Hilbert space H is said to reduce a continuous linear transformation T on H if M is invariant under both T and T^{*} . The operator T is a partial isometry if ||Tf|| = ||f|| for every vector f in H which is orthogonal to the kernel of T, or equivalently, if $T = TT^{*}T$, [7].

In [8], Halmos and Wallen showed that every partial isometry all of whose positive integral powers are partial isometries is a unique direct sum of unitary operators, pure isometries, pure co-isometries, and truncated shifts, with each type of summand (each index for a truncated shift) occurring at most once. Using [6] and the canonical model of de Branges, Rovnyak [2], an explicit description of the reducing subspaces of partial isometries T such that $T^2, T^3, \ldots, T^{N+1}$ are partial isometries was obtained in [5] under the assumption that T has no isometric part, that is, there is no nonzero vector f in H such that $||T^nf|| = ||f||$ for

Received 15 November 1977. The author wishes to express his appreciation to Louis de Branges for his helpful suggestions concerning this paper.

every n = 1, 2, ... This resulted in a characterization of such partial isometries as unique direct sums of truncated shifts T_j of index j (j = 1, 2, ..., N) and partial isometries V with no isometric part whose range includes the kernel of V^N , with each type of summand occurring at most once, thereby extending the Halmos-Wallen Theorem.

In the present paper the problem of obtaining similar results for operators T with closed range whose first N + 1 powers have closed range is considered. Under the stronger assumptions that the kernels of T^{j} and $T^{\star j}$ are invariant under TT^{\star} and $T^{\star}T$, respectively, for every j = 1, 2, ..., N, the above structure theorem is shown to hold essentially for T. A slightly more general concept of truncated shift is necessary, although these generalized shifts enjoy many of the basic properties of truncated shifts.

If F is a family of subsets of H, then $v\{F : F \in F\}$ will denote the closed span of the union $\bigcup\{F : F \in F\}$. For subspaces M and N of H, if $M \perp N$, then $M \oplus N$ will denote the orthogonal direct sum of M and N; if $N \subseteq M$, then $M \oplus N$ will be the orthogonal complement of N in M.

2. Reducing subspaces of generalized truncated shifts

We recall that for a given Hilbert space H_0 and integer $N \ge 1$, a truncated shift of index N is an operator T_N on the direct sum $H_0 \oplus H_0 \oplus \ldots \oplus H_0$ of N copies of H_0 which is defined by $T_N(e_1, e_2, \ldots, e_N) = (e_2, e_3, \ldots, e_N, 0)$, [8]. If A_1, A_2, \ldots, A_N are operators on H_0 , the diagonal operator $D = (A_1, A_2, \ldots, A_N)$ on $H_0 \oplus H_0 \oplus \ldots \oplus H_0$ is given by

$$D(e_1, e_2, \ldots, e_N) = (A_1e_1, A_2e_2, \ldots, A_Ne_N)$$
.

An operator T on a Hilbert space H will be called a generalized truncated shift of index N if the images T^{*j} ker T (j = 0, 1, ..., N-1)form a family of pairwise orthogonal (closed) subspaces which spans Hsuch that TT^{*j} ker $T = T^{*j-1}$ ker T for every j = 1, 2, ..., N-1. THEOREM 2.1. An operator T on a Hilbert space H is a generalized truncated shift of index $N \ge 2$ if and only if there exist invertible operators $A_1, A_2, \ldots, A_{N-1}$ defined on a Hilbert space H_0 such that T is unitarily equivalent to the weighted truncated shift DT_N on $H_0 \oplus H_0 \oplus \ldots \oplus H_0$, where $D = (A_1, A_2, \ldots, A_{N-1}, 0)$ and T_N is a truncated shift of index N.

Proof. A direct computation shows that every weighted truncated shift with invertible weights is a generalized truncated shift of the same index.

Conversely, let T be a generalized truncated shift of index N. Since ker $T = T^j T^{*j}$ ker T, there exists a unitary operator U_j : ker $T \to T^{*j}$ ker T for each j = 1, 2, ..., N-1. Define the unitary operator

U : ker $T \oplus$ ker $T \oplus \ldots \oplus$ ker $T \to H$

by $U(e_1, e_2, \ldots, e_N) = (e_1, U_1e_2, U_2e_3, \ldots, U_{N-1}e_N)$. The operator $A_j = U_{j-1}^{-1}TU_j$, where $U_0 = I$, defined on the kernel of T for every $j = 1, 2, \ldots, N-1$, is invertible, and $U^{-1}TU = DT_N$ where $D = (A_1, A_2, \ldots, A_{N-1}, 0)$.

COROLLARY 2.1. The adjoint of a generalized truncated shift is a generalized truncated shift of the same index.

Proof. The adjoint of DT_N where $D = (A_1, A_2, \dots, A_{N-1}, 0)$ as in Theorem 2.1 is unitarily equivalent to $D'T_N$ where $D' = (A_{N-1}^*, A_{N-2}^*, \dots, A_1^*, 0)$.

COROLLARY 2.2. The only generalized truncated shifts of index N that are partial isometries are the truncated shifts of index N.

Proof. Let T be a partially isometric generalized truncated shift of index N. For each j = 1, 2, ..., N-1, define the operator U_j : ker $T + T^{*j}$ ker T by $U_j f = T^{*j} f$ for f in the kernel of T. Then U_j is unitary for every j, since T^{*j-1} ker T is contained in the range of T, and hence, for every vector f in the kernel of T,

$$\|U_{j}f\| = \|T^{*}(T^{*j-1}f)\| = \|T^{*}(T^{*j-2}f)\| = \dots = \|f\|$$

for every j = 1, 2, ..., N-1.

As in the proof of Theorem 2.1, T is unitarily equivalent to DT_N , where $D = (A_1, A_2, \ldots, A_{N-1}, 0)$ and $A_j = U_{j-1}^{-1}TU_j$ $(U_0 = I)$. Let fbe in the kernel of T. Since $T^{*j-1}f$ is in the range of T, we have that

$$A_{j}f = U_{j-1}^{-1}TU_{j}f = U_{j-1}^{-1}TT^{*}(T^{*j-1}f) = U_{j-1}^{-1}T^{*j-1}f = U_{j-1}^{-1}U_{j-1}f = f$$
for every $j = 1, 2, ..., N-1$. Therefore $A_{j} = I$ for every j and $DT_{N} = T_{N}$.

The next result characterizes the reducing subspace structure of generalized truncated shifts.

THEOREM 2.2. Let T be an operator on a Hilbert space H such that the kernel of T is invariant under T^kT^{*k} for every k = 1, 2, ..., N-1, and

$$H = v\{T^{*''} \text{ ker } T : n = 0, 1, \dots, N-1\}.$$

A subspace M of H reduces T if and only if

$$M = \bigvee \{ T^* S : n = 0, 1, \dots, N-1 \}$$

for some unique subspace S of the kernel of T which is invariant under $T^k T^{*k}$ for every k = 1, 2, ..., N-1. In this case,

$$H \ominus M = v \{ T^*(\ker T \ominus S) : n = 0, 1, ..., N-1 \}$$
.

Proof. Suppose M reduces T. Let P be the (orthogonal) projection of H onto M. Then

$$M = PH = v\{T^{*n}P \text{ ker } T : n = 0, 1, ..., N-1\},$$

and S = P ker $T \subseteq$ ker T is closed and invariant under $T^k T^{*k}$ for every $k = 1, 2, \ldots, N-1$.

The form of $H \ominus M$ is obtained similarly, since $H \ominus M = (1-P)H$ and ker T = P ker $T \ominus (1-P)$ ker T.

Conversely, suppose M is of the above form. For every k, n = 0, 1, ..., N-1, $T^*{}^kS$ is orthogonal to $T^*{}^n(\ker T \ominus S)$. Since $T^*{}^N = 0$ and

$$H = v\{T^{*^{n}} \text{ ker } T : n = 0, 1, ..., N-1\}$$

it follows that

$$H \ominus M = v \{ T^{*^n} (\ker T \ominus S) : n = 0, 1, ..., N-1 \}$$

and therefore M reduces T .

As above,

$$M = v \{ T^{*n} P \text{ ker } T : n = 0, 1, \dots, N-1 \}$$

where P is the projection onto M. Since S is contained in both Mand the kernel of T, we have that $S = PS \subseteq P$ ker $T \subseteq \ker T$. It follows that $P \ker T \ominus S$ is contained in both M and $H \ominus M$, and consequently $S = P \ker T$.

COROLLARY 2.3. Let $T = \sum_{j=1}^{N} \oplus \hat{T}_{j}$, where \hat{T}_{j} is a generalized truncated shift of index j. A subspace M reduces T if and only if $M = \sum_{j=1}^{N} \oplus M_{j}$, where M_{j} reduces \hat{T}_{j} .

Proof. Clearly every subspace of the form $\sum_{j=1}^{N} \bigoplus M_j$, where M_j reduces \hat{T}_j , reduces T.

Let *M* reduce *T* and let *P* denote the projection onto *M*. Fix j $(1 \le j \le N)$. By the representation of *T* and the definition of generalized truncated shift, it follows that

$$\ker \hat{T}_j = \ker T \cap \ker T^{\star j} \cap \operatorname{range} T^{j-1}$$

Since P commutes with T^i and $T^{\star i}$ for every i = 1, 2, ..., j, we have that $S = P \ker \hat{T}_j$ is contained in $\ker \hat{T}_j$ and is invariant under $\hat{T}_j^k \hat{T}_j^{\star k}$ for every k = 1, 2, ..., j-1. Therefore by Theorem 2.2, if H_j is the domain of \hat{T}_j , then $M_j = \sum_{i=0}^{j-1} \bigoplus \hat{T}_j^{\star i} S$ reduces \hat{T}_j , and $H_j \bigoplus M_j = \sum_{i=0}^{j-1} \bigoplus \hat{T}_j^{\star i} (\ker \hat{T}_j \bigoplus S)$.

Since j was arbitrary $(1 \le j \le N)$, we thus conclude that $M = \sum_{j=1}^{N} \bigoplus M_j$, where M_j reduces \hat{T}_j .

COROLLARY 2.4. Let $T = DT_N$ be a weighted truncated shift of index N defined on $H = H_0 \oplus H_0 \oplus \ldots \oplus H_0$ for some Hilbert space H_0 , where $D = (A_1, A_2, \ldots, A_{N-1}, 0)$ and A_j is one-to-one for every $j = 1, 2, \ldots, N-1$. A subspace M reduces T if and only if

$$M = S \oplus \sum_{n=1}^{N-1} \oplus \bigvee \left\{ \left(\prod_{j=1}^{n} A_{j} \right)^{*} f : f \in S \right\}$$

for some unique subspace S of H_0 which is invariant under $\left(\prod_{j=1}^{k} A_j\right) \left(\prod_{j=1}^{k} A_j\right)^*$ for every k = 1, 2, ..., N-1. In this case $H \ominus M = \left(H_0 \ominus S\right) \oplus \sum_{n=1}^{N-1} \oplus v \left\{\left(\prod_{j=1}^{n} A_j\right)^* f : f \in H_0 \ominus S\right\}.$

Proof. A direct computation using Theorem 2.2. REMARK 2.1. In Corollary 2.4, if A_j is invertible for every j = 1, 2, ..., N-1, then $\left(\prod_{1}^{n} A_j\right)^* S$ and $\left(\prod_{1}^{n} A_j\right)^* (H_0 \ominus S)$ are closed for every n = 1, 2, ..., N-1. REMARK 2.2. In Corollary 2.4, if A_j is one-to-one and hermitian for every j = 1, 2, ..., N-1, then an induction argument shows that

$$\left(\prod_{j=1}^{n} A_{j}\right)^{*} S = S \text{ and } \left(\prod_{j=1}^{n} A_{j}\right)^{*} \left(H_{0} \ominus S\right) = H_{0} \ominus S$$

for every n = 1, 2, ..., N-1. In this case, the conditions $\left(\prod_{j=1}^{k} A_{j}\right) \left(\prod_{j=1}^{k} A_{j}\right)^{*} S \subseteq S$ for every k = 1, 2, ..., N-1 are equivalent to $A_{j} S \subseteq S$ for every j = 1, 2, ..., N-1.

Theorem 2.2 may be modified to hold for the case $N = \infty$. As in Corollary 2.4 this case includes the usual weighted shifts with one-to-one operator weights: if $\{A_1, A_2, \ldots\}$ is a uniformly bounded sequence of operators on a complex Hilbert space C, the weighted backward shift Wwith weights A_1, A_2, \ldots on the Hilbert space $H^2(C) = C \oplus C \oplus \ldots$ of all square-summable sequences $\{a_j\}_{j=0}^{\infty}$, a_j in C, with norm $\|\{a_j\}\|^2 = \sum |a_j|^2$, is defined by $W(a_0, a_1, \ldots) = (A_1a_1, A_2a_2, \ldots)$ ([9], [10]). When $A_j = I$ for every $j = 1, 2, \ldots, W$ is called the unilateral backward shift and will be denoted $W = U_1^*$.

By a natural extension of Corollary 2.4 and Remarks 2.1 and 2.2 we have the following consequences.

COROLLARY 2.5 (Lambert [9]). Let W be a weighted backward shift on $\mathbb{H}^2(\mathbb{C})$ with invertible weights A_1, A_2, \ldots . A subspace M of $\mathbb{H}^2(\mathbb{C})$ reduces W if and only if $M = S \oplus \sum_{n=1}^{\infty} \oplus \left(\prod_{j=1}^{n} A_j\right)^* S$ for some unique subspace S of C which is invariant under $\left(\prod_{j=1}^{k} A_j\right) \left(\prod_{j=1}^{k} A_j\right)^*$ for every $k = 1, 2, \ldots$. In this case

$$H \ominus M = (H_0 \ominus S) \oplus \sum_{n=1}^{\infty} \oplus \left(\prod_{j=1}^{n} A_j\right)^* (H_0 \ominus S) .$$

COROLLARY 2.6 (Nikol'skii [10]). Let W be a weighted backward

shift on $H^2(C)$ with one-to-one, hermitian weights $A_1, A_2, \ldots A$ subspace M of $H^2(C)$ reduces W if and only if $M = \sum_{0}^{\infty} \bigoplus S$ for some unique subspace S of C which is invariant under A_1, A_2, \ldots .

3. Operators with closed range

In this section the structure of partial isometries with no isometric part whose first N + 1 positive integral powers are partial isometries as obtained in [5] will be extended to certain operators whose first N + 1powers have closed range. The relationship of these results to partial isometries will be determined in the next section. We begin by establishing a technical lemma for these operators.

LEMMA 3.1. The following are equivalent for an operator T with closed range:

- (1) the kernel of T is invariant under $T^{j}T^{*j}$ for every j = 1, 2, ..., N;
- (2) the kernel of T^{j} is invariant under TT^{*} for every j = 1, 2, ..., N;
- (3) the image T^{*j-1} ker T is invariant under TT* for every j = 1, 2, ..., N.

In this case T^2 , T^3 , ..., T^{N+1} have closed ranges, and the kernel of T^{j+1} , for every j = 1, 2, ..., N, is the orthogonal direct sum of the subspaces T^{*i} ker T (i = 0, 1, ..., j).

Proof. (1) implies (2). By induction assume that $T^{j}T^{\star j}$ ker $T \subseteq$ ker T, T^{j} has closed range, $T^{\star j-1}$ ker T is closed, ker $T^{j} = \sum_{i=0}^{j-1} \oplus T^{\star i}$ ker T, and TT^{\star} ker $T^{j-1} \subseteq$ ker T^{j-1} for every j = 1, 2, ..., N. It suffices to show that T^{N+1} has closed range, $T^{\star N}$ ker T is closed, ker $T^{N+1} = \sum_{i=0}^{N} \oplus T^{\star i}$ ker T and TT^* ker $T^N \subseteq$ ker T^N .

Let f be in the closure of the range of $T^{*^{N+1}}$. Since T^{*^N} has closed range, $f = T^{*^N}g$ for some g in H. Write $g = T^{*h} + k$ where his in H and k is in the kernel of T. Then, by (1), $T^{N+1}f = T^{N+1}T^{*^{N+1}h}$, so that $f - T^{*^{N+1}h}$ is in both the kernel of T^{N+1} and the closure of the range of $T^{*^{N+1}}$. Therefore f is in the range of $T^{*^{N+1}}$. It follows that $T^{*^{N+1}}$, and consequently T^{N+1} , have closed ranges.

Similarly, let f be in the closure of $T^{*^N} \ker T$. As above, $f = T^{*^N}g$ where g is in H, and if $g = T^*h + k$ where h is in H and k is in the kernel of T, then $T^{N+1}f = T^{N+1}T^{*N+1}h$. By (1), $T^{N+1}f = 0$ and hence $T^{*^{N+1}}h = 0$. Therefore $f = T^{*^N}k$ is in $T^{*^N} \ker T$.

Next note that T^{\star^i} ker T is orthogonal to T^{\star^j} ker T for all $0 \leq i \neq j \leq N$, and $\sum_{i=0}^{N} \oplus T^{\star^i}$ ker T is contained in the kernel of T^{N+1} by (1). Let f be in ker $T^{N+1} \oplus \sum_{i=0}^{N} \oplus T^{\star^i}$ ker T. By assumption f is orthogonal to the kernel of T^N , so that $f = T^{\star^N}g$, where g is in H, since T^{\star^N} has closed range. As above, if $g = T^{\star}h + k$, where h is in H and k is in the kernel of T, then $f = T^{\star^N}k$. Therefore f = 0, and ker $T^{N+1} = \sum_{i=0}^{N} \oplus T^{\star^i}$ ker T.

Finally since $TT^*(T^{*^{N-1}} \ker T) \subseteq \ker T^N$ by (1), and ker $T^N = \ker T^{N-1} \oplus T^{*^{N-1}} \ker T$, it follows that $TT^* \ker T^N \subseteq \ker T^N$.

(2) implies (1). By induction assume (2) and $T^{j}T^{\star j}$ ker $T \subseteq \ker T$ for every j = 1, 2, ..., N-1. Then $T^{\star N-1}$ ker T is contained in the kernel of T^{N} , and therefore

 $T\{T^{N}T^{*N} \text{ ker } T\} = T^{N}(TT^{*})T^{*N-1} \text{ ker } T \subseteq T^{N} \text{ ker } T^{N} = \{0\} .$ (2) implies (3). By induction assume (2) and

 $TT^*(T^{*j-1} \text{ ker } T) \subset T^{*j-1} \text{ ker } T$

for every j = 1, 2, ..., N-1. Since (2) is equivalent to (1), the above shows that T^{*i} ker T is closed for every i = 0, 1, ..., N-1, and ker $T^{N} = \sum_{i=0}^{N-1} \bigoplus T^{*i}$ ker T. Moreover by (2), $TT^{*}(T^{*N-1} \text{ ker } T) \subseteq \text{ker } T^{N}$. Thus since $TT^{*}(T^{*N-1} \text{ ker } T)$ is orthogonal to T^{*i} ker T for every i = 0, 1, ..., N-2, it follows that $TT^{*}(T^{*N-1} \text{ ker } T)$ is contained in T^{*N-1} ker T.

(3) implies (1). An immediate consequence of (3) and the identity $T^{j}T^{\star j} = T^{j-1}(TT^{\star})T^{\star j-1}$.

THEOREM 3.1. A necessary and sufficient condition that T be an operator on Hilbert space with closed range such that the kernels of T^{j} and T^{*j} are invariant under TT^{*} and T^{*T} respectively for every j = 1, 2, ..., N is that $T = \hat{T}_{1} \oplus \hat{T}_{2} \oplus ... \oplus \hat{T}_{N} \oplus V$ where \hat{T}_{j} is a generalized truncated shift of index j and V is an operator with closed range such that $VV^{*}(\ker V^{j}) = \ker V^{j}$ and $V^{*}V(\ker V^{*j}) = \ker V^{*j}$ for every j = 1, 2, ..., N. Moreover, the representation so expressed is unique, and a projection P commutes with T if and only if $P = P_{1} \oplus P_{2} \oplus ... \oplus P_{N} \oplus Q$ where P_{j} and Q are projections which commute with \hat{T}_{j} and V respectively (j = 1, 2, ..., N).

Proof. Sufficiency follows directly from Corollary 2.1, Lemma 3.1, and the definition of generalized truncated shift.

To show necessity let $C_j = \ker T \cap T^{j-1} \ker T^*$ for every j = 1, 2, ..., N. Since the kernel of T^* is invariant under $T^{*j-1}T^{j-1}$ by Lemma 3.1, we have that $C_j = \ker T \cap \ker T^{*j} \cap \operatorname{range} T^{j-1}$ for every j = 1, 2, ..., N. The linear manifold $T^{*i-1}C_{j}$ is invariant under TT^{*} for all $0 < i < j \le N$: to verify this, fix i and j $(0 < i < j \le N)$ and let $f = T^{j-1}g$ be in C_{j} where g is in the kernel of T^{*} . Since T^{k} ker T^{*} is invariant under $T^{*}T$ for every $k = 1, 2, \ldots, j-2$ by Lemma 3.1, $TT^{*i}f = TT^{*i-1}(T^{*}T)T^{j-2}g$ is in the kernel of T^{*j-i+1} . Furthermore since T^{*i-1} ker T is invariant under TT^{*} by Lemma 3.1, $TT^{*i}f$ is in $T^{*i-1}(ker T \cap ker T^{*j})$. Therefore $TT^{*i}f$ is in $T^{*i-1}C_{j}$, since the kernel of T^{*j} is the orthogonal direct sum of the subspaces T^{k} ker $T^{*}(k=0, 1, \ldots, j-1)$ and $TT^{*i}f$ is orthogonal to $T^{*i-1}T^{k}$ ker T^{*} for all k < j-1.

Let H_j be the closed span of the images $T^{*i}C_j$ (i = 0, 1, ..., j-1)for every j = 1, 2, ..., N. Fix j $(1 \le j \le N)$. Then H_j reduces Tby the above, and C_j is the kernel of T restricted to H_j . Hence, by Lemma 3.1, $T^{*i}C_j$ is closed, and since TT^* has closed range and has $T^{*i-1}C_j$ as an invariant subspace, it follows that $TT^*(T^{*i-1}C_j)$ is closed for every i = 1, 2, ..., j-1. Since $TT^{*i}C_j$ is dense in $T^{*i-1}C_j$, we have that $TT^{*i}C_j = T^{*i-1}C_j$ for every i = 1, 2, ..., j-1. Therefore, since j was arbitrary, the restriction of T to H_j is a generalized truncated shift \hat{T}_j of index j for every j = 1, 2, ..., N.

Since the kernel of ${\it T}$ is invariant under ${\it T}^{j-1}{\it T^{\star j-1}}$ by Lemma 3.1, it follows that

$$C_j = \{ \ker T \cap \ker T^{*j} \} \ominus \{ \ker T \cap \ker T^{*j-1} \}$$

for every j = 1, 2, ..., N. Consider the restriction V of T to the orthogonal complement of $\sum_{j=1}^{N} \oplus H_j$. Clearly $V^*V \ker {V^*}^j \subseteq \ker {V^*}^j$ and

 $VV^* \ker V^j \subseteq \ker V^j$ for every j = 1, 2, ..., N. Thus, since ker $V = \ker T \cap \operatorname{range} T^N$, the image $V^{*j} \ker V$ is contained in the range of V for every j = 0, 1, ..., N-1. Therefore ker $V^j \ominus VV^* \ker V^j$ is contained in both the kernel of V^* and the kernel of V^j , and consequently ker $V^j = VV^* \ker V^j$ for every j = 1, 2, ..., N. Similarly ker $V^{*j} = V^*V \ker V^{*j}$ for every j = 1, 2, ..., N, since the images $V^j \ker V^*$ (j = 0, 1, ..., N-1) are contained in the range of V^* .

Next, let *M* reduce $T = \sum_{j=1}^{N} \oplus \hat{T}_{j} \oplus V$ and let *P* be the projection onto *M*. By the above construction,

$$\sum_{j=1}^{N} \oplus H_{j} = \sum_{j=0}^{N-1} \oplus T^{*j} (\ker T \cap \ker T^{*N})$$

Since P commutes with T and $T^*{}^N$, we have that ker $T \cap \ker {T^*}^N$ is invariant under P. Therefore

$$P \sum_{j=1}^{N} \oplus H_{j} = \sum_{j=0}^{N-1} \oplus T^{*j} P(\ker T \cap \ker T^{*N})$$

is contained in $\sum_{j=1}^{N} \oplus H_j$, and thus $M = \hat{M} \oplus N$, where \hat{M} reduces

 $\sum_{j=1}^{N} \bigoplus \hat{T}_{j} \text{ and } N \text{ reduces } V \text{ . The desired form of } P \text{ now follows from }$ Corollary 2.3.

Finally, uniqueness is a direct consequence of the explicit nature of the above construction.

REMARK 3.1. In the above theorem, it follows from Lemma 3.1 that T = V if and only if, in addition to the invariance conditions on T, the kernel of T^* is orthogonal to the kernel of T^j for every j = 1, 2, ..., N.

REMARK 3.2. For an operator V with closed range, the conditions VV^* ker V^j = ker V^j and V^*V ker V^{*j} = ker V^{*j} for every

j = 1, 2, ..., N are equivalent to $V^{j}V^{*j}$ ker $V = \ker V$ and $V^{*j}V^{j}$ ker $V^{*} = \ker V^{*}$ for every j = 1, 2, ..., N. In the next section, these conditions will be simplified if V is a partial isometry.

Theorem 2.1 and the following result relate the decomposition in Theorem 3.1 to partial isometries. We recall that every operator V on Hilbert space has the polar decomposition V = AW where $A = (VV^*)^{\frac{1}{2}}$ and W is a partial isometry with initial set the orthogonal complement of the kernel of V and final set the closure of the range of V [7].

PROPOSITION 3.1. Let V be an operator with closed range such that $VV^*(\ker V^j) = \ker V^j$ for every j = 1, 2, ..., N. Then the partial isometry W in the polar decomposition V = AW of V satisfies $WW^* \ker W^N = \ker W^N$ and therefore $W^2, W^3, ..., W^{N+1}$ are partial isometries.

Proof. By induction assume that $VV^*(\ker V^j) = \ker V^j$ for every j = 1, 2, ..., N, $WW^* \ker W^{N-1} = \ker W^{N-1}$, and $\ker W^{N-1} = \ker V^{N-1}$. By Lemma 3.1, $\ker V^j = \ker V^{j-1} \oplus V^{*j-1} \ker V$ and

 $\ker W^{j} = \ker W^{j-1} \oplus W^{j-1} \ker W$

for every j = 1, 2, ..., N. Now ker $V = \ker W$ and

since A is the strong limit of a sequence of polynomials in VV^* . Thus we have that ker $V^N \subseteq \ker W^N$. Similarly ker $W^N \subseteq \ker V^N$. Therefore $WW^* \ker W^N = WW^* \ker V^N = WW^* (VV^* \ker V^N) = VV^* \ker V^N = \ker V^N = \ker W^N$.

Finally W^2 , W^3 , ..., W^{N+1} are partial isometries by [3, Theorem 2].

REMARK 3.3. In Theorem 3.1, if, in addition to the invariance conditions on T, the kernel of T^* is contained in the kernel of T^{N} , then V = AW where $A = (VV^*)^{\frac{1}{2}}$ and W^* is an isometry.

Let T be an operator on a Hilbert space H and suppose that T has closed range. We recall that the generalized inverse of T, denoted by T^+ , is the operator on H defined as follows: if h = Tf + g is the unique decomposition of a vector h in H, where f is orthogonal to the kernel of T and g is in the kernel of T^* , then $T^+h = f$ [1]. By a straightforward induction argument it follows that condition (1) of Lemma 3.1 implies that the identity $(T^{j+1})^+ = (T^+)^{j+1}$ holds on the range of T^{j+1} for every j = 1, 2, ..., N. The next result characterizes those operators satisfying Theorem 3.1 for which this identity holds everywhere.

PROPOSITION 3.2. Let T be an operator such that T^{N+1} has closed range for some positive integer N and let $E = T(T^{N+1})^+ T^N$. If $||E|| \leq 1$, then TT^* ker $T^N \subseteq \ker T^N$. Conversely, if TT^* ker $T^N \subseteq \ker T^N$, T and T^N have closed range, $(T^{N+1})^+ = T^+(T^N)^+$, and $T^*^N T^N$ ker $T^* \subseteq \ker T^*$, then $||E|| \leq 1$.

Proof. Assume $||E|| \leq 1$. Since $E^2 = E$ it follows that E is hermitian. Let f be in the kernel of T^N . Then $T^{*N}(T^{*N+1})^+T^*f = 0$, and hence $(T^{*N+1})^+T^*f = 0$. Therefore T^*f is in the kernel of T^{N+1} . Since f was arbitrary, TT^* ker $T^N \subseteq \ker T^N$.

For the converse, note that $E = E^* = 0$ on the kernel of T^N . Let f be orthogonal to the kernel of T^N . Then

$$Ef = (TT^{+}) (T^{N^{+}}T^{N}) f = TT^{+}f$$

and

$$E^{*}f = (T^{*}(T^{*})^{+})(T^{*}T^{*})f = (T^{*}T^{*})(TT^{+})f$$

Since $T^*{}^N T^N$ ker $T^* \subseteq \ker T^*$ and $TT^+ f$ is the projection of f onto the range of T, it follows that $TT^+ f$ is orthogonal to the kernel of T^N , and consequently $E^* f = Ef$. Therefore E is hermitian and idempotent, and thus $||E|| \leq 1$.

PROPOSITION 3.3. Let T be a contraction with closed range such

182

that T^2 , T^3 , ..., T^{N+1} are partial isometries. Then T satisfies the hypotheses of Theorem 3.1.

Proof. Since $(T^{j+1})^+ = T^{*j+1}$ for every j = 1, 2, ..., N and $||T|| \le 1$, this result follows immediately from Proposition 3.2.

4. Power partial isometries

Partial isometries on Hilbert space all of whose positive integral powers are partial isometries were introduced and characterized in [8]. These results were extended in [5] to partial isometries T whose first N + 1 powers are partial isometries under the assumption that T has no isometric part. A direct consequence of the previous sections and of the following lemma makes this assumption unnecessary.

LEMMA 4.1. The following are equivalent for a partial isometry V :

- (1) $VV^* \ker V^N = \ker V^N$ for some positive integer N;
- (2) the image $V^{*j-1}(\ker V)$ is contained in the range of V for every j = 1, 2, ..., N.
- (3) $V^{j}V^{*j}$ ker $V = \ker V$ and $V^{*j}V^{j}$ ker $V^{*} = \ker V^{*}$ for every j = 1, 2, ..., N.

In this case, V^2 , V^3 , ..., V^{N+1} are partial isometries.

Proof. (1) implies (2). By (1), since V is a partial isometry, $VV^* = I$ on the kernel of V^j for every j = 1, 2, ..., N, and hence by Lemma 3.1, ker $V^N = \sum_{j=0}^{N-1} \bigoplus V^{*j}$ ker V. Therefore $V^{*j-1}(\ker V) \subseteq \operatorname{range} V$ for every j = 1, 2, ..., N.

(2) implies (3). An immediate consequence of (2) and the identities $v^j v^{*j} = v^{j-1}(vv^*)v^{*j-1}$ and $v^{*j}v^j = v^{*j-1}(v^*v)v^{j-1}$.

(3) implies (1). By Lemma 3.1, ker $V^N = \sum_{j=0}^{N-1} \bigoplus V^{*j}$ ker V, and by [3, Theorem 2], V^2 , V^3 , ..., V^{N+1} are partial isometries. Fix j

 $(0 \le j \le N-1)$. Let f be in V^{*j} ker V. Then since $V^{j}V^{*j}$ is the projection onto the range of V^{j} , we have that $f = V^{*j}g$ where $g = V^{j}V^{*j}g = V^{j}f$ is in the kernel of V. Moreover, $V^{j}(VV^{*})f = V^{j+1}V^{*j+1}g = g = V^{j}f$. Therefore $(1-VV^{*})f$ is in both the kernel of V^{j} and the kernel of V^{*} , and consequently, by (3), $VV^{*}f = f$. Since f and j were arbitrary, we conclude that VV^{*} ker $V^{N} = \ker V^{N}$.

The following theorem is a consequence of Proposition 3.3, Theorem 3.1, Corollary 2.2, and Lemma 4.1.

THEOREM 4.1. A necessary and sufficient condition that T be a partial isometry on Hilbert space such that T^2 , T^3 , ..., T^{N+1} are partial isometries is that $T = T_1 \oplus T_2 \oplus \ldots \oplus T_N \oplus V$ where T_j is a truncated shift of index j and V is a partial isometry such that the kernel of V^N is contained in the range of V. Moreover, this representation is unique, and a projection P commutes with T if and only if $P = P_1 \oplus P_2 \oplus \ldots \oplus P_N \oplus Q$ where P_j and Q are projections which commute with T_j and V respectively $(j = 1, 2, \ldots, N)$.

Theorems 3.1 and 4.1 have natural extensions to the case $N = \infty$ as the following result indicates.

COROLLARY 4.1 (Halmos-Wallen). T^{j} is a partial isometry on Hilbert space for every j = 1, 2, ... if and only if $T = \left(\sum_{1}^{\infty} \oplus T_{j}\right) \oplus U_{+1}^{*} \oplus U_{+2} \oplus U$, where T_{j} is a truncated shift of index j, U_{+} is a unilateral shift, and U is unitary. Moreover, the representation so expressed is unique.

Proof. The proof follows from Theorem 4.1 as in the proof of [5, Corollary 3.2].

COROLLARY 4.2 (Fishel [4]). Let T be a partial isometry on Hilbert space. Then $T = U_{+1}^* \oplus U_{+2} \oplus U$ uniquely, where U_{+i} is a unilateral shift and U is unitary, if and only if the kernel of T^* is orthogonal to the kernel of T^{j} for every j = 1, 2, ...

Proof. Lemma 4.1, Theorem 4.1, Remark 3.1, and Corollary 4.1.

COROLLARY 4.3. Let T be a partial isometry on Hilbert space. Then $T = T_1 \oplus T_2 \oplus \ldots \oplus T_N \oplus U_+^* \oplus U$ uniquely, where T_j is a truncated shift of index j, U_+ is a unilateral shift, and U is unitary, if and only if T^2 , T^3 , ..., T^{N+1} are partial isometries and the kernel of T^* is contained in the kernel of T^N .

Proof. Theorem 4.1, Remark 3.3, and Corollary 4.1.

References

- [1] Adi Ben-Israel, Thomas N.E. Greville, Generalized inverses: theory and applications (John Wiley & Sons, New York, London, Sydney, Toronto, 1974).
- [2] Louis de Branges, James Rovnyak, "Canonical models in quantum scattering theory", Perturbation theory and its applications in quantum mechanics, 295-392 (Proc. Adv. Sem. Math. Res. Center, U.S. Army, Theoret. Chem. Instit., University of Wisconsin, Madison, 16. John Wiley & Sons, New York, London, Sydney, 1966).
- [3] Ivan Erdelyi, "Partial isometries closed under multiplication on Hilbert spaces", J. Math. Anal. Appl. 22 (1968), 546-551.
- [4] B. Fishel, "Partial isometries which are sums of shifts", Math. Proc. Cambridge Philos. Soc. 78 (1975), 107-110.
- [5] James Guyker, "On partial isometries with no isometric part", Pacific J. Math. 62 (1976), 419-433.
- [6] James Guyker, "Reducing subspaces of contractions with no isometric part", Proc. Amer. Math. Soc. 45 (1974), 411-413.
- [7] Paul R. Halmos, A Hilbert space problem book (Van Nostrand, Princeton, New Jersey; Toronto; London; 1967).
- [8] P.R. Halmos & L.J. Wallen, "Powers of partial isometries", J. Math. Mech. 19 (1970), 657-663.
- [9] Alan Lambert, "Unitary equivalence and reducibility of invertibly weighted shifts", Bull. Austral. Math. Soc. 5 (1971), 157-173.

[10] Н.К. Нинольсчий [N.K. Nikol'skiĭ], "Об инвариантных подпространствах взвешенных операторов сдвига" [Invariant subspaces of weighted shift operators], Mat. Sb. (N.S.) 74 (116) (1967), 171-190. English Transl.: Math. USSR Sb. 3 (1967), 159-176.

Department of Mathematics, State University of New York, College at Buffalo, Buffalo, New York, USA.

186