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BIRATIONAL GEOMETRY OF SEXTIC DOUBLE SOLIDS
WITH A COMPOUND An SINGULARITY

ERIK PAEMURRU

Abstract. Sextic double solids, double covers of P3 branched along a sextic

surface, are the lowest degree Gorenstein terminal Fano 3-folds, hence are

expected to behave very rigidly in terms of birational geometry. Smooth sextic

double solids, and those which are Q-factorial with ordinary double points, are

known to be birationally rigid. In this paper, we study sextic double solids with

an isolated compound An singularity. We prove a sharp bound n≤ 8, describe

models for each n explicitly, and prove that sextic double solids with n > 3 are

birationally nonrigid.
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§1. Introduction

We work with projective varieties over C. Classification of algebraic varieties is one of

the fundamental goals in algebraic geometry. The Minimal Model Program says that every

variety is birational to either a minimal model or a Mori fiber space. Two Mori fiber spaces

are birational if they are connected by a sequence of Sarkisov links (see [17], [26]). In the

extreme case, the Mori fiber space is birationally rigid, meaning that it is essentially the

unique Mori fiber space in its birational class.

Examples of Mori fiber spaces include Fano varieties. The first birational rigidity result

was in the seminal paper by Iskovskikh and Manin [28] for smooth quartic 3-folds in P4.

A wealth of examples of birationally rigid varieties was given in [15], [19], by showing

that every quasismooth member of the 95 families of Fano 3-folds that are hypersurfaces in

weighted projective spaces is birationally rigid. One major consequence of birational rigidity

is nonrationality. Birational rigidity remains an active area of research (see [3], [13], [16],

[22], [23], [38], [45]).

Among smooth Fano 3-folds, the projective space has the highest degree (64), and sextic

double solids, double covers of P3 branched along a sextic surface, have the least degree (2).

In [29], it is proved that smooth sextic double solids are birationally rigid. It is interesting

to see how this changes as we impose singularities on the variety. The paper [46] proved that

sextic double solids stay birationally rigid if we impose an ordinary double point, meaning

the 3-fold A1 singularity x2
1+x2

2+x2
3+x2

4. A sextic double solid can have up to 65 singular

points (see [6], [31], [51]), and for each n≤ 65, there exists a sextic double solid with exactly

n ordinary double points and smooth otherwise (see [5], [12]). A sextic double solid with

only ordinary double points is birationally rigid if and only if it is factorial, which is true,

for example, if it has at most 14 ordinary double points (see [14, Th. B]).

The next natural question is to consider more complicated singularities in the Mori

category. We study sextic double solids with an isolated compound An singularity, also

called a cAn singularity, meaning that the general section through the point is the Du Val

An singularity x1x2+xn+1
3 . A cAn singularity is locally analytically given by x1x2+h(x3,x4)

where the least degree among monomials in h is n+1. The first main result of the paper is

describing sextic double solids with an isolated cAn singularity.

Theorem (see Theorem A). If a sextic double solid has an isolated cAn point, then

n≤ 8.

Moreover, in Theorem A, we explicitly parametrize all sextic double solids with an

isolated cAn singularity for every n ≤ 8. These form 11 families, as there are four families

for cA7. Every family except for family 7.4 contains members that are Mori fiber spaces

over a point.
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BIRATIONAL GEOMETRY OF SEXTIC DOUBLE SOLIDS WITH A COMPOUND AN SINGULARITY 3

Table 1. Birational models for general sextic double solids that are Mori fiber spaces with an isolated cAn

singularity

Y0 Y2

cAn ∈X6 ⊆ P(14,3) Z

ϕ ψ

Weighted

cAn Weighted blowup or Z

blowup ϕ fibration ψ

cA4 (3,2,1,1) 10 Atiyah flops ( 14 ,
1
4 ,

3
4 )

1
4 (1,1,3) ∈ Z5,6

⊆ P(13,2,3,4)
cA5 (3,3,1,1) 4 Atiyah flops (3,3,1,1) cA5 ∈ Z6 ⊆ P(14,3),

X � Z if general
cA6 (4,3,1,1) 2 Atiyah flops, then (3,1,1,1) cA3 ∈ Z5 ⊆ P(14,2)

(4,1,1,−2,−1;2)-flip
cA7, 1 (4,4,1,1) two (4,1,1,−2,−1;2) (1,1,1,1) ODP ∈ Z3,4 ⊆ P(14,22)

flips
cA7, 2 (4,4,1,1) Atiyah flop, then (3,3,2,1) cA2 ∈ Z2,4 ⊆ P(15,2)

two (4,1,−1,−3)-flips
cA7, 3 (4,4,1,1) 2 Atiyah flops dP2-fibration P1

cA8 (5,4,1,1) (4,1,1,−2,−1;2)-flip (3,2,2,1,5) cD4 ∈ Z3,3 ⊆ P(15,2)

We say a few words on bounding the number of cAn singularities. It is clear that an

isolated cAn singularity has Milnor number at least n2. Since the third Betti number of

a smooth sextic double solid is 104 (see [30, Table 12.2]), an argument similar to [2, §3.2]
shows that the total Milnor number of a sextic double solid which is a Mori fiber space is

at most 104. This gives the bounds that a Mori fiber space sextic double solid can have up

to 1 cA8 singularity, or up to 2 cA7 singularities, or up to 2 cA6 singularities, . . ., or up to

26 cA2 singularities. We do not expect these bounds to be sharp, as already for ordinary

double points it gives an upper bound of 104, far from the actual 65. Using Theorem A, it

is possible to construct sextic double solids with a cA8 point, a cA3 point, and two ordinary

double points with both total Milnor and total Tjurina number at least 66.

The second main result is the following theorem.

Theorem (see Theorem B and Proposition 5.6). A general sextic double solid which is

a Mori fiber space with an isolated cAn singularity where n≥ 4 is not birationally rigid.

Birational nonrigidity for a sextic double solid X is proved by describing a birational

model, meaning a Mori fiber space T → S such that X and T are birational. We find

the birational models by explicitly constructing a Sarkisov link for each family of sextic

double solids, under the generality conditions described in Definition 5.1. Table 1 gives an

overview of the Sarkisov linksX←Y0 ���Y2 →Z and the birational models, which are either

fibrations Y2 → Z or Fano varieties Z. In the latter case, Y2 → Z is a divisorial contraction

to the given singular point. The morphism Y0 →X is a divisorial contraction with center

the cAn point. The birational maps Y0 ��� Y2 are isomorphisms in codimension 1.
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4 E. PAEMURRU

Note that when we say that a birational map Y0 ��� Y1 is k Atiyah flops, then we mean

that algebraically it is one flop, contracting k curves to k points and extracting k curves,

and locally analytically around each of those points, it is an Atiyah flop. Similarly for flips.

Also note that the Sarkisov link to a sextic double solid with a cA4 singularity was already

described in [43, §9, No. 9], starting from a general quasismooth complete intersection

X5,6 ⊆ P(1,1,1,2,3,4).

We briefly describe the proof. The first step in the Sarkisov link starting from a Fano

variety X is a divisorial contraction Y → X. Kawakita described divisorial contractions

to cAn points locally analytically, showing that they are certain weighted blowups. To

construct Sarkisov links, we need a global description. In Proposition 4.6 and Lemma 4.9,

we show how to construct divisorial contractions to cAn points algebraically on affine

hypersurfaces, and use this in Section 5 to construct divisorial contractions Y → X for

(projective) sextic double solids X. Using unprojection techniques (see [44] for a general

theory of unprojection), we find an embedding of Y inside a toric variety T, such that the

2-ray link of T restricts to a Sarkisov link for X (following [4], [10]).

If we try the same methods as in the proof of Theorem B on sextic double solids with a cAn

singularity where n≤ 3, then we do not find any new birational models. More precisely, a

(3,1,1,1)-Kawakita blowup of a cA3 singularity on a general Mori fiber space sextic double

solid initiates a Sarkisov link to itself X ��� X. A (2,2,1,1)-Kawakita blowup for a cA3

singularity, a (2,1,1,1)-Kawakita blowup for an x1x2+x3
3+x3

4 singularity, and the (usual)

blowup for an ordinary double point on a general Mori fiber space sextic double solid initiate

bad links, which end in either a nonterminal 3-fold or a K3-fibration. These are 2-ray links

which are not Sarkisov links, where in the last step of the 2-ray game only K -trivial curves

are contracted, leaving the Mori category. We expect that general Mori fiber space sextic

double solids with a cA3 singularity are birationally rigid, and with certain cA2 or cA1

singularities are birationally superrigid.

Organization of the paper

In Sections 2.1, 2.3, and 2.5, we give known results that we use, respectively, in Sections

3–5. In Section 3, we construct a parameter space of sextic double solids in Theorem A with

an isolated cAn singularity. In Section 4, we explain the relationship between algebraic

and local analytic weighted blowups, and in Proposition 4.6 and the technical Lemma

4.9, we show how to construct divisorial contractions to cAn points algebraically on affine

hypersurfaces. In Section 5, we construct birational models for general sextic double solids

which are Mori fiber spaces with an isolated cAn singularity where n≥ 4, thereby showing

that they are not birationally rigid. We treat the seven families separately.

§2. Preliminaries

An algebraic variety is an integral separated scheme of finite type over the complex

numbers C. When we say morphism, we mean a morphism over C.

We study sextic double solids, which are double covers of the projective 3-space branched

along a sextic surface. We use the following equivalent characterization.

Definition 2.1. A sextic double solid is the variety given by the zero locus of an

irreducible polynomial w2+g in the weighted projective space P(1,1,1,1,3) with variables

x,y,z, t,w, where g ∈ C[x,y,z, t] is homogeneous of degree 6.
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BIRATIONAL GEOMETRY OF SEXTIC DOUBLE SOLIDS WITH A COMPOUND AN SINGULARITY 5

2.1 Singularity theory

We recall some results from the singularity theory of complex analytic spaces and terminal

singularities.

We denote the variables on Cn by x= (x1, . . . ,xn), where n is a positive integer. Let C{x}
denote the convergent power series ring. The zero set of an ideal I ⊆ C{x} is denoted by

V(I), where I is either an ideal of regular functions or holomorphic functions, depending on

the context. Given a point P ∈ V(I), the pair (V(I),P ) denotes the (possibly reducible or

non-reduced) complex space subgerm of (Cn,P ) given by I. Given a regular or holomorphic

function f on a variety or a complex space X, denote the nonzero locus of f by Xf . Given

positive integer weights w = (w1, . . . ,wn) for x, we can write a nonzero polynomial or

power series f as a sum of its weighted homogeneous parts fi. Then, the weight of f,

denoted wt(f), is the least nonnegative integer d such that fd �= 0. We define wt(0) =∞. If

w= (1, . . . ,1), then d is called the multiplicity, denoted mult(f). A hypersurface singularity

is a complex analytic space germ (not necessarily irreducible or reduced) that is isomorphic

to (V(f),0) for some f ∈C{x}. A singularity is isolated if it has a smooth analytic punctured

neighborhood.

Definition 2.2 [25, Def. 2.9]. Let f,g ∈ C{x}.

(a) We say f and g are right equivalent if there exists a biholomorphic map germ

ϕ : (Cn,0)→ (Cn,0) such that g = f ◦ϕ.
(b) We say f and g are contact equivalent if there exist a biholomorphic map germ

ϕ : (Cn,0)→ (Cn,0) and a unit u ∈ C{x1, . . . ,xn} such that g = u(f ◦ϕ).

Remark 2.3 [25, Rem. 2.9.1(3)]. Two convergent power series f,g ∈ C{x} are contact

equivalent if and only if the complex analytic space germs (V(f),0) and (V(g),0) are

isomorphic.

We use the following proposition in Section 3 to parametrize sextic double solids with a

cA1 singularity.

Proposition 2.4 [25, Rem. 2.50.1]. Let f,g ∈ C{x1, . . . ,xn} be two contact equivalent

power series with zero constant term. Then their multiplicity m (as defined above) is the

same and, furthermore, fm and gm are the same up to an invertible linear change of

coordinates.

We use the following proposition in Section 3 to construct sextic double solids with a

cAn singularity where n ≥ 2, as well as in Section 4 to describe weighted blowups of cAn

points.

Proposition 2.5. Let F = x2
1+ · · ·+x2

k + f and G = x2
1+ · · ·+x2

k + g, where f and g

are convergent power series in C{xk+1, . . . ,xn} with zero constant term. Then F and G are

contact (resp. right) equivalent if and only if f and g are contact (resp. right) equivalent.

Proof. By a result of Mather and Yau [40] (see also [25, Th. 2.26]), f and g are

contact equivalent if and only if the Tjurina algebras Tf and Tg are isomorphic. A simple

computation shows that Tf
∼= TF and Tg

∼= TG, which proves the proposition for contact

equivalence.
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6 E. PAEMURRU

The proof for right equivalence is similar. Namely, we use a statement analogous to [40]:

two elements h,k ∈ C{x} with zero constant term are right equivalent if and only if the

Milnor algebras Mh and Mk are isomorphic as algebras over the ring C{t}, where t acts on
Mh (resp. Mk) by multiplying by h (resp. k) (see [25, Th. 2.28]).

Reid defined in [47, Def. 2.1] that a compound Du Val singularity is a three-dimensional

singularity where a hypersurface section is a Du Val singularity, also called a surface ADE

singularity. The singularity is denoted cAn, cDn, or ce : n, respectively, if the general

hyperplane section is an An, Dn, or En singularity, respectively. Reid showed in [48, Th. 0.6]

that a three-dimensional hypersurface singularity is terminal if and only if it is an isolated

compound Du Val singularity.

In this paper, we focus on the most general class of compound Du Val singularities,

namely cAn singularities. Since a surface An singularity is given by x2+y2+zn+1, we have

the following corollary.

Corollary 2.6. Let n be a positive integer. A singularity is of type cAn if and only

if it is isomorphic to the complex analytic space subgerm (V(x2
1+x2

2+g),0) of (C4,0) with

variables x1,x2,x3,x4 for some convergent power series g ∈ C{x3,x4} of multiplicity n+1.

For a proof of Corollary 2.6, see [35, Th. 2.8].

The simplest example of a cA1 singularity is the ordinary double point, given by x2+

y2+ z2+ t2.

Remark 2.7. Terminal sextic double solids have only isolated hypersurface singulari-

ties, therefore only cAn, cDn, and ce : n singularities. Sextic double solids are Gorenstein,

since by [24, Cor. 21.19] every variety with local complete intersection singularities is

Gorenstein.

2.2 Q-factoriality

Definition 2.8. A Weil divisor D on a normal algebraic variety is Q-Cartier if a

positive integer multiple of D is Cartier. A normal algebraic variety X is factorial (resp.

Q-factorial), if every Weil divisor on X is Cartier (resp. Q-Cartier).

Definition 2.9. A Fano variety is a normal projective algebraic variety with an ample

Q-Cartier anti-canonical divisor.

To prove factoriality of certain singular sextic double solids, we use the following

proposition by Namikawa.

Proposition 2.10 [42, Prop. 2]. Let X be a Fano 3-fold with Gorenstein terminal

singularities and D its general effective anti-canonical divisor. Then, the natural homomor-

phism Pic(X)→ Pic(D) is an injection.

Remark 2.11. The proof of [42, Prop. 2] contains a few typos that do not affect the

result:

(1) The sentence “Since Pic(X) ∼= Pic(U), we have shown that. . .” should be replaced

with “Since Pic(X) injects into Pic(U), we have shown that. . ..” The isomorphism of

Pic(X) and Pic(U) would imply that every X that is smooth along D is factorial,

which is not true. To see that Pic(X) injects into Pic(U) for every Zariski open set U
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BIRATIONAL GEOMETRY OF SEXTIC DOUBLE SOLIDS WITH A COMPOUND AN SINGULARITY 7

containing D, note that since the complement of U in X is of codimension at least 2, the

class groups Cl(X) and Cl(U) are isomorphic. We have a map Pic(X)→ Pic(U), since

every Weil divisor which is Cartier on X is Cartier on U. The map Pic(X)→ Pic(U)

is injective.

(2) The sentence “Thus, the complement X −U is of codimension 2 in X ” should be

replaced with “Thus, the complement X−U is of codimension at least 2 in X.”

(3) The sentence “There is a Zariski open subset U of W . . .” should be replaced with

“There is a Zariski open subset U of X . . ..”

We remind that a terminal variety is log terminal (see [37, Def. 2.34]). The Picard number

of log terminal sextic double solids is 1 by the following proposition.

Proposition 2.12. Let X be a log terminal complete intersection Fano variety of

dimension n≥ 3 in a weighted projective space P. Then the Picard number of X is 1.

Proof. By [30, Prop. 2.1.2], we have natural isomorphisms Pic(P) ∼= H2(Pan
top,Z) and

Pic(X) ∼= H2(Xan
top,Z), where Pan

top, respectively Xan
top denotes the underlying topological

space of the analytification of P, respectively X. By [41, Proposition 1.4], the restriction

map Hi(Pan
top,C)→Hi(Xan

top,C) is an isomorphism for is an isomorphism for i < n. By [53,

Corollary 1], X and P are simply connected. The proposition now follows from universal

coefficient theorems.

To show that some sextic double solids are not Q-factorial, we use the lemma below.

Lemma 2.13. Let X be a projective variety of Picard number one. Let D be a non-zero

effective Q-Cartier divisor and C a closed curve in X. Then D ·C > 0.

Proof. Replacing D by a suitable multiple, it suffices to consider the case where D is

Cartier. There are no non-zero effective principal divisors on a normal projective variety.

Therefore, since X has Picard number one, either D or −D is ample. Since D intersects

some closed integral curve positively,D is ample by Kleiman’s criterion. Again by Kleiman’s

criterion, D intersects C positively.

2.3 Weighted blowups

We remind the definition of weighted blowups, Definition 2.15.

Definition 2.14. Let ϕ : Y →X and ϕ′ : Y ′ →X ′ be birational morphisms of varieties

(or bimeromorphic holomorphisms of complex analytic spaces). We say that an isomorphism

X →X ′ lifts if there exists an isomorphism Y ∼= Y ′ such that the diagram

Y Y ′

X X ′

ϕ ϕ′
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8 E. PAEMURRU

commutes. We say that ϕ and ϕ′ are equivalent if there exists an isomorphism X ∼=X ′ that

lifts. We say ϕ and ϕ′ are locally equivalent if there exist isomorphic open subsets U ⊆X

and U ′ ⊆X ′ containing the centers of the morphisms ϕ and ϕ′ such that the restrictions

ϕ|ϕ−1U : ϕ−1U → U and ϕ′|ϕ′−1U ′ : ϕ′−1U ′ → U ′ are equivalent.

If we consider the complex analytic space corresponding to a variety or when we wish to

emphasize that we are working in the category of complex analytic spaces, we sometimes

say analytically equivalent or locally analytically equivalent.

Definition 2.15. Let n be a positive integer, and let w = (w1, . . . ,wn) be positive

integers, called the weights of the blowup. Define a C∗-action on Cn+1 by λ ·(u,x1, . . . ,xn) =

(λ−1u,λw1x1, . . . ,λ
wnxn) and define T by the geometric quotient (Cn+1 \V(x1, . . . ,xn))/C

∗

(or its analytification). Then the map ϕ : T → Cn, [u,x1, . . . ,xn] �→ (uw1x1, . . . ,u
wnxn) is

called the w-blowup ofCn. If Z ⊆ Cn is a closed subvariety (or a closed complex subspace

Z ⊆D where D⊆Cn is open) and Z̃ is the closure of ϕ−1(Z \{0}) in T (in ϕ−1D), then the

restriction ϕ|Z̃ : Z̃ →Z is called the w-blowup of Z. Let ρ : Y →X be a surjective birational

morphism of varieties (or a surjective bimeromorphic holomorphism of complex spaces).

Given an open subset U ⊆X containing the center of ρ and an isomorphism U ∼= Z ⊆ Cn

taking a point P ∈ X to the origin 0, the map ρ is called the w-blowup of X at P if the

isomorphism U ∼= Z lifts to ρ−1U → Z̃.

Remark 2.16.

(a) A weighted blowup crucially depends on both the isomorphism U ∼=X ′ and a choice of

coordinates x1, . . . ,xn, even though it is not explicit in the notation.

(b) Replacing w by (w1/g, . . . ,wn/g) in Definition 2.15, where g is the greatest common

divisor of w1, . . . ,wn, gives an isomorphic blowup over X.

(c) By [21, Th. 5.1.11], the weighted blowup of an affine space in Definition 2.15 coincides

with the toric description of subdividing a cone in [36, Prop.–Def. 10.3].

We give alternative definitions of weighted blowup in Definitions 2.17 and 2.18 that we

use in Corollary 4.4.

Definition 2.17. Let n ∈ Z≥1 and w ∈ Zn
≥1. Let X = SpecC[x]/I be an affine variety.

Define the Z≥0-graded C-algebra

RX = C
[{

tdx̄i

∣∣ i ∈ {1, . . . ,n}, d ∈ {0, . . . ,wi}
}]

,

where t denotes the grading and x̄i ∈ C[x]/I denotes the image of xi ∈ C[x]. Define the

morphism ProjRX →X.

Definition 2.18. Let n ∈ Z≥1 and w ∈ Zn
≥1. Let D ⊆ Cn be an open subset. Let

X ⊆D be a closed complex analytic space. For every open V ⊆D, we denote the image of

f ∈ OCn(V ) in OX(X ∩V ) by f̄ . Define the finitely presented Z≥0-graded OX -algebra BX

to be the sheafification of the presheaf AX given by

AX(U) =OX(U)
[{

tdx̄i

∣∣ i ∈ {1, . . . ,n}, d ∈ {0, . . . ,wi}
}]

,

where U ⊆X is open and t denotes the grading. By [11, Prop. II.3.19], we have a morphism

ProjanBX →X, where Projan is the analytic homogeneous spectrum.
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Lemma 2.19. The morphisms in Definitions 2.17 and 2.18 are w-blowups.

Proof. First, we show that Definition 2.17 is the w-blowup when X is the affine

space An = SpecC[x1, . . . ,xn]. Let S = C[u,x] be the Z-graded C-algebra with grading

(−1,wtx1, . . . ,wtxn) for u,x. Let S≥0 be the nonnegatively graded part of S. By definition

of the geometric quotient, the weighted blowup of An is given by ProjS≥0 → An. The

Z≥0-graded C-algebra isomorphism

S≥0 →RAn

u �→ t−1, xi �→ twtxixi

induces an isomorphism ProjR→ ProjS≥0 over An.

We show that Definition 2.17 is the w-blowup for any X. Define N = n · lcm(w1, . . . ,wn).

If M = xa1
1 · . . . ·xan

n is any monomial such that
∑

aiwi >N , then M is divisible by x
N/(nwk)
k

for some k. It follows that the N th Veronese subring R
(N)
X of RX is generated by its degree 1

part (RX)N . Therefore, ProjRX is isomorphic over X to Bl(RX)N X, where Bl(RX)N X →X

is blowup of X along (RX)N . Since the intersection of Spec(RAn)N and X is Spec(RX)N ,

we find that Bl(RX)N X is the strict transform of X under the blowup of An along (RAn)N ,

which coincides with the closure of the inverse image of X \V(x1, . . . ,xn) in Bl(RAn)N An.

We show that Definition 2.18 is the w-blowup. We similarly prove that ProjanBX is

the closure of the inverse image of X \{0} in ProjanBD. Now, it suffices to note that the

analytification of ProjRAn → An is ProjanBCn → Cn.

In Corollary 4.4, we give a simple criterion for a local biholomorphism to lift to weighted

blowups.

2.4 Divisorial contractions

The first step in a Sarkisov link from a Fano variety is a divisorial contraction.

Definition 2.20. A divisorial contraction is a proper birational morphism ϕ : Y →X

between normal varieties with terminal singularities such that

(1) the exceptional locus of ϕ is a prime divisor and

(2) −KY is ϕ-ample.

Kawakita [32] described divisorial contractions with center a cAn point by weighted

blowups. Notational differences from [32, Th. 1.13] are that below we have left out the

description for cA1 singularities and an exceptional case for cA2. Also, we have written out

the converse statement more explicitly (that being a Kawakita blowup implies that it is a

divisorial contraction).

Theorem 2.21 [32, Th. 1.13]. Let P be a cAn point where n ≥ 3 of a variety X with

terminal singularities. Let ϕ : Y →X be a morphism of varieties such that the restriction

ϕ|Y \E : Y \E → X \ {P} is an isomorphism, where the closed subvariety E is given by

ϕ−1{P}. If ϕ is a divisorial contraction, then ϕ is locally analytically equivalent to the

(r1, r2,a,1)-blowup of V(x1x2+g(x3,x4))⊆ C4 at 0 with variables x1,x2,x3,x4 where
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(1) a divides r1+ r2 and is coprime to both r1 and r2,

(2) g has weight r1+ r2, and

(3) the monomial x
(r1+r2)/a
3 appears in g with nonzero coefficient.

Moreover, any ϕ which is locally analytically equivalent to a weighted blowup as above is a

divisorial contraction, even for n= 2.

Any weighted blowup that is locally analytically equivalent to ϕ in Theorem 2.21 for

n≥ 2 is called a (r1, r2,a,1)-Kawakita blowup, or simply a Kawakita blowup.

2.5 Sarkisov links

One of the possible outcomes of the minimal model program is a Mori fiber space.

Definition 2.22. A Mori fiber space is a morphism of normal projective varieties

ϕ : X → S with connected fibers such that

(1) X is Q-factorial and has terminal singularities,

(2) the anti-canonical class −KX is ϕ-ample,

(3) X/S has relative Picard number 1, and

(4) dimS < dimX.

If dimS > 0, then we say ϕ is a strict Mori fiber space.

The main examples of Mori fiber spaces we see in this paper are Fano 3-folds that are

projective, Q-factorial, with terminal singularities and Picard number 1, considered as a

morphism over a point.

Any birational map between two Mori fiber spaces is a composition of Sarkisov links (see

[17] or [26]). Below, we describe the two possible types of Sarkisov links starting from a

Fano variety.

Definition 2.23. A Sarkisov link of type I (resp. II) between a Fano variety X and a

strict Mori fiber space Yk → Z (resp. Fano variety Z ) is a diagram of the form

Y0 . . . Yk

X Z

ϕ ψ

where X, Y0, . . ., Yk, Z are normal, projective, and Q-factorial, the varieties X, Y0, . . ., Yk

have terminal singularities, Z has terminal singularities if it three-dimensional, X has Picard

number 1, ϕ : Y0 →X is a divisorial contraction, Y0 ��� · · · ��� Yk is a sequence of anti-flips,

flops, and flips, and ψ : Yk → Z is a strict Mori fiber space (resp. divisorial contraction). If

we do not require the varieties X,Y0, . . .Yk (resp. X,Y0, . . .Yk,Z) to be terminal and we do

not require −KY0 to be ϕ-ample and we do not require −KYk
to be ψ-ample but all the

other properties hold, then the diagram above is called a 2-ray link [10, Def. 2.1].

Definition 2.24. A Fano 3-fold X that is a Mori fiber space is birationally rigid if for

any Mori fiber space Y → S such that X and Y are birational, we have that S is a point

and X and Y are isomorphic.

In Section 5, we show that a general sextic double solid X with a cAn singularity with

n ≥ 4 which is a Mori fiber space is not birationally rigid. We show this by explicitly
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constructing a Sarkisov link between X and another Mori fiber space. We find the Sarkisov

link by restricting from a toric 2-ray link, as described in Construction 2.25.

See [20] for the definition of Cox rings for toric varieties (where it is called the

homogeneous coordinate ring) and [27, Def. 2.6] for the definition of Cox rings for Mori

dream spaces. Note that isomorphic varieties can have different Cox rings. By [20, Th. 3.7],

closed subschemes of a toric variety T with only cyclic quotient singularities are given by

homogeneous ideals in the Cox ring CoxT , which is a polynomial ring.

Construction 2.25. Let X be a Fano variety embedded in a weighted projective

space P, where X is a Mori fiber space, and let Y0 →X be a divisorial contraction from a

projective Q-factorial variety Y. By [2, Lem. 2.9], the divisorial contraction Y0 →X can be

part of a Sarkisov link only if Y0 is a Mori dream space.

By [27, Prop. 2.11], we can embed a Mori dream space Y0 into a projective toric variety

T0 with cyclic quotient singularities such that the Mori chambers of Y0 are unions of finitely

many Mori chambers of T0. Moreover, we can embed Y0 in such a way that Y0 is given by

a homogeneous ideal IY in CoxT0, and the toric 2-ray link

T0 T1 · · · Tr

P W0 · · · ST

restricts to a 2-ray link

Y0 Y1 · · · Yr

X W0 · · · S,

where each Yi ⊆ Ti is given by the same ideal IY ⊆ CoxT0 = · · · = CoxTr, and Wi ⊆ Wi

is given by the ideal IY ∩C[ν0, . . . ,νs], where Wi is given by ProjC[ν0, . . . ,νs] for some

polynomials νj ∈ CoxT0 that depend on i (see [4, Rem. 4]). In this case, Cox(T0)/IY is

a Cox ring for Y0 and we say that IY 2-ray follows T0. In contrast to [4, Def. 3.5], we

emphasize the ideal IY , since there could be other ideals I satisfying V(IY ) = V(I) such

that the toric 2-ray link restricts to a 2-ray link for IY but not for I.

Note that some of the small birational maps Ti ��� Ti+1 may restrict to isomorphisms

Yi → Yi+1. If all the varieties Yi are terminal and the anti-canonical divisor −KY0 of Y0 is

inside the interior int(MovY0) of the movable cone, then the 2-ray link for Y0 is a Sarkisov

link (see [2, Lem. 2.9]), otherwise it is called a bad link.

In Section 5, where X is a sextic double solid and the center of Y0 →X is a cAn point, we

use a projective version of Corollary 4.10 to construct the divisorial contraction Y0 →X,

which is the restriction of a toric weighted blowup T̄0 → P. This gives us an embedding

Y0 →V(IȲ )⊆ T̄0 where IȲ might not 2-ray follow T̄0. We use unprojection to modify T̄0 to

find an embedding Y0 →V(IY )⊆ T0 such that IY 2-ray follows T0. See [49, §2.1] for a simple

example of unprojection, and §§5.2, 5.5, 5.6, and 5.8 for applications of unprojection.

To explain the notation we use for 2-ray links, we do an example in detail, namely

the 2-ray link for the ambient space of the sextic double solid with a cA4 singularity in

Section 5.2.
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Example 2.26 (2-ray link for P(1,1,1,1,3,5)). Denote the variables on P(1,1,1,1,3,5)

by x,y,z, t,α,ξ. We perform the weighted blowup T0 → P(1,1,1,1,3,5) with weights

(1,1,2,3,6) for variables y,z, t,α,ξ, where the center is the point Px = [1,0,0,0,0,0].

We define T0 as a geometric quotient. By a slight abuse of notation, we denote the

variables on C7 by u,x,y,z,α,ξ, t, repeating the symbols for P(1,1,1,1,3,5). Define a (C∗)2-

action on C7 for all (λ,μ) ∈ (C∗)2 by

(λ,μ) · (u,x,y,z,α,ξ, t) = (μ−1u,λx,λμy,λμz,λ3μ3α,λ5μ6ξ,λμ2t).

Define the irrelevant ideal I0 = (u,x)∩ (y,z,α,ξ, t), and define T0 by the geometric quotient

C7 \V(I0)/(C∗)2. We use the notation

u x y z α ξ t

T0 :
(

0 1 1 1 3 5 1
)
.−1 0 1 1 3 6 2

to describe this construction of T0. Note that we order the variables u,x, . . . , t such that

the corresponding rays
(

0
−1

)
, (10), . . ., (

1
2)are ordered anticlockwise around the origin. The

vertical bar indicates that the irrelevant ideal is (u,x)∩ (y,z,α,ξ, t). The Cox ring of T0 is

given by CoxT0 =C[u,x,y,z,α,ξ, t]. The weighted blowup T0 → P(1,1,1,1,3,5) is given by

[u,x,y,z,α,ξ, t] �→ [x,uy,uz,u2t,u3α,u6ξ]. (2.1)

We describe the cones of the toric variety T0 (Figure 1). By [27], T0 is a Mori dream

space. The Picard group of T0 is generated by V(u), the reduced exceptional divisor, and

V(x), the strict transform of a plane not passing through Px, which have bidegree
(

0
−1

)
and

(10), respectively. The variety T0 is Q-factorial, and any two divisors with the same bidegree

are linearly equivalent. As in [10, §4.1.3], the effective cone Eff(T0) is given by 〈V(u),V(x)〉,
a cone in the group N1(T0) of divisors of T0 up to numerical equivalence with coefficients in

R. As in [4, §3.2], the movable cone Mov(T0) is 〈V(x),V(ξ)〉, and it is divided into the nef

cone Nef(T0) = 〈V(x),V(y)〉 of T0 and 〈V(y),V(ξ)〉, which is the pullback of the nef cone

of the small Q-factorial modification T1 of T0. The cones 〈V(x),V(y)〉 and 〈V(y),V(ξ)〉 are
called Mori chambers. The variety T1 is defined by

u x y z α ξ t

T1 :
(

0 1 1 1 3 5 1
)
.−1 0 1 1 3 6 2

Here, T1 is the geometric quotient (C7 \ I1)/(C∗)2, where the irrelevant ideal I1 is given

by (u,x,y,z,α)∩ (ξ, t), which is indicated by the position of the vertical bar in the action

matrix. The Cox ring of T1 is equal to the Cox ring of T0, namely CoxT1 =C[u,x,y,z,α,ξ, t].

The weighted blowup morphism T0 → P(1,1,1,1,3,5) can be read off from the action-

matrix of T0. Consider the ray given by V(x) in N1(T0). The union of the linear systems

|(n0 )| where n≥ 0 has a C-algebra basis x,uy,uz,u2t,u3α,u6ξ. So, the ample model (see [7,

Def. 3.6.5]) of the divisor class V(x) is the morphism

T0 → Proj
⊕
n≥0

H0(T0,OT0(n(
1
0))) = ProjC[x,uy,uz,u2t,u3α,u6ξ] = P(1,1,1,1,3,5)
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Figure 1.

Cones of T0.

given by

[u,x,y,z,α,ξ, t] �→ [x,uy,uz,u2t,u3α,u6ξ],

which is precisely the weighted blowup T0 → P(1,1,1,1,3,5) given in Equation (2.1).

As in [10, §2.1], there are two projective morphisms of relative Picard number 1 from T0

up to isomorphisms, corresponding to the ample models of divisors in the two edges of the

nef cone of T0. The ample model of any divisor in the interior of the nef cone of T0 gives

an embedding of T0 into a weighted projective space. The ample model of V(y) ∈ N1(T0)

is given by

T0 → ProjC[y,z,α,uξ,ut,xξ,xt]⊆ P(1,1,3,5,1,6,2)

[u,x,y,z,α,ξ, t] �→ [y,z,α,uξ,ut,xξ,xt].

Denoting W0 = ProjC[y,z,α,uξ,ut,xξ,xt], we see that the morphism T0 → W0 contracts

V(ξ, t) to the surface P(1,1,3)⊆W0 and is an isomorphism elsewhere. The ample model of

V(y) ∈N1(T1) is given similarly by

T1 → ProjC[y,z,α,uξ,ut,xξ,xt] =W0,

contracting V(u,x) to P(1,1,3). This induces a birational map T0 ��� T1, a small Q-factorial

modification, given by

[u,x,y,z,α,ξ, t] �→ [u,x,y,z,α,ξ, t].

Note that this is the identity map on the affine space A7, but it is not an isomorphism

between T0 and T1 since the irrelevant ideals are different. The diagram T0 →W0 ← T1 is

a flop.

Note that multiplying the action matrix of T0 or T1 with a matrix in GL(2,Q) is equivalent

to choosing a different basis for the group (C∗)2, so the geometric quotients T0 and T1 stay

the same (see [1, Lem. 2.4]). If we multiply with a matrix with negative determinant, then

we change the order of the rays in N1(T0) from anticlockwise to clockwise.

Similarly, there are only two projective morphisms of relative Picard number 1 from T1:

the contraction T1 →W0 and the ample model of V(ξ). We multiply the action matrix of

T1 by the matrix
(
6 −5
2 −1

)
with determinant 4 to find
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u x y z α ξ t

T1 :
(
5 6 1 1 3 0 −4

)
.

1 2 1 1 3 4 0

The ample model of V(ξ) is given by

T1 → P(1,1,1,2,3,4)

[u,x,y,z,α,ξ, t] �→
[
t
5
4u,t

1
4 y, t

1
4 z, t

3
2x,t

3
4α,ξ

]
.

Note that this is a morphism of varieties despite having fractional powers (see [9]).

The 2-ray link that we have found for P(1,1,1,1,3,5) is summarized by the diagram

below.

T0 T1

P(14,3,5) W0 P(13,2,3,4)

For more examples on toric 2-ray links, see [10, §4].

§3. Constructing sextic double solids with a cAn singularity

In this section, we give a bound n ≤ 8 for an isolated cAn singularity on a sextic

double solid, and we explicitly describe all sextic double solids that contain an isolated

cAn singularity where n ≤ 8. The main tool we use for this is the splitting lemma from

singularity theory, first introduced in [50], which is used for separating the quadratic terms

and the higher-order terms of a power series.

3.1 Splitting lemma from singularity theory

The splitting lemma below is taken from [25, Th. 2.47], with a slight modification in

notation. Specifically, we write v(x+ p) instead of x+ g, where v is a unit in the power

series ring and p does not depend on x, as we use this form in Section 5 for constructing

birational models.

Theorem 3.1 (Splitting lemma). Let m be a positive integer, and let y denote variables

(y1, . . . ,ym). Let f ∈C{x,y} be a convergent power series of multiplicity 2, with degree two

part of the form x2+ (terms in y). Then, there exist unique v ∈ C[[x,y]] and p,h ∈ C[[y]],

where v is a unit and the multiplicity of p is at least 2, such that

f = (v(x+p))2+h.

Moreover, the power series h,p, and v are absolutely convergent around the origin, and the

multiplicity of h is at least 2. It follows immediately that f is right equivalent to x2+h.

Proof. It is proved in [25, Th. 2.47] that there exist unique g ∈ C[[x,y]] and h ∈ C[[y]],

where the multiplicity of g is at least 2, such that f = (x+g)2+h. Moreover, it is proved that

the power series g and h are absolutely convergent around the origin, and the multiplicity

of h is at least 2.

By the Weierstrass preparation theorem (see [25, Th. 1.6]), there exist a unique unit

v ∈ C{x,y} and a unique p ∈ C{y} such that x+g = v(x+p).
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Below, we give explicit recurrent formulas for g,h,p,v of the splitting lemma in terms of

the coefficients of f.

Proposition 3.2 (Explicit splitting lemma). Below, we use the same notation as in

the splitting lemma Theorem 3.1 and its proof. Denote

f =
∑
i,d≥0

xifi,d, g =
∑
i,d≥0

xigi,d, h=
∑
d≥0

hd, p=
∑
d≥0

pd, v =
∑
i,d≥0

xivi,d,

where fi,d,gi,d,hd,pd,vi,d ∈ C[y] are homogeneous of degree d. Then,

g1,0 = 0,

gi,d =
1

2

⎛
⎝fi+1,d−

d∑
k=0

min(i+1,i+d−k−1)∑
j=max(0,2−k)

gj,kgi+1−j,d−k

⎞
⎠ , if (i,d) �= (1,0), (3.1)

hd = f0,d−
d−2∑
j=2

g0,jg0,d−j , (3.2)

pd = g0,d−
d−1∑
j=2

v0,d−jpj , (3.3)

v0,0 = 1,

vi,d = gi+1,d−
d∑

j=2

(vi+1,d−jpj) , if (i,d) �= (0,0). (3.4)

Proof. Taking the degree d part of the coefficient of xi+1 in f = (x+ g)2 + h where

i ≥ 0, we find Equation (3.1). Taking all degree d terms of f = (x+ g)2+h that are not

divisible by x, we find Equation (3.2). Taking the degree d part of the coefficient of xi+1

in x+ g = v(x+p) where i ≥ 0, we find Equation (3.4), and taking all degree d terms not

divisible by x, we find Equation (3.3).

Example 3.3. Using the notation of Proposition 3.2, the first few homogeneous parts

of h are given in terms of coefficients of f by

h2 = f0,2,

h3 = f0,3,

h4 = f0,4−
f2
1,2

4
,

h5 = f0,5−
f2
1,2f2,1

4
− f1,2f1,3

2
,

h6 = f0,6−
f3
1,2f3,0

8
+

f2
1,2f2,2

4
−

f2
1,2f

2
2,1

4
+

f1,2f1,3f2,1
2

− f1,2f1,4
2

−
f2
1,3

4
.

3.2 Parameter spaces of sextic double solids

We apply the explicit splitting lemma (Proposition 3.2) to describe the equation of a

sextic double solid X ⊆ P(1,1,1,1,3) that has a singular point at Px = [1,0,0,0,0].
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Notation 3.4. Let X be the subscheme of P(1,1,1,1,3), with variables x,y,z, t,w,

defined by f, where

f =−w2+x4(t2+Q2)

+x3(4t3a0+4t2a1+2ta2+a3)

+x2(2t4b0+2t3b1+2t2b2+2tb3+ b4)

+x(2t5c0+2t4c1+2t3c2+2t2c3+2tc4+ c5)

+ t6d0+2t5d1+ t4d2+2t3d3+ t2d4+2td5+d6,

(3.5)

where the polynomials aj , bj , cj ,dj ∈C[y,z] and Qj ∈C[y,z, t] are homogeneous of degree j.

We define the following 11 technical conditions, where i ∈ {1,2,3,4}:

(1) (This condition is always true).

(2) Q2 = 0.

(3) Condition (2) holds and a3 = 0.

(4) Condition (3) holds and b4 = a22.

(5) Condition (4) holds and c5 = 2a2b3−4a1a
2
2.

(6) Condition (5) holds and d6 = 2a2c4+ b23−8a1a2b3−2a22b2+4a0a
3
2+16a21a

2
2.

(7.i)Condition (6) holds and there exist polynomials q,r,s,e ∈C[y,z] that are, respectively,

homogeneous of degrees i− 1, 3− i, 4− i, i+1, where 0 is considered to be the only

polynomial homogeneous of degree −1, such that

a2 = qr,

b3 = qs+4a1qr,

c4 = 2a1qs−6a0q
2r2+8a21qr+er,

d5 = 2b2qs−8a21qs−es− b1q
2r2+ c3qr.

(8) Condition (7.1) holds and there exist a constant A0 ∈C and a polynomial B1 ∈C[y,z]

homogeneous of degree 1 such that

e2 = 4A0r2+ b2−6a21,

c3 = 6a0s3−4A0s3+4a0a1r2−8A0a1r2+B1r2+2a1b2−4a31,

d4 =−2s3B1+16r22A
2
0−8b2r2A0+16a21r2A0+4b1s3

−8a0a1s3−2b0r
2
2+2c2r2+ b22−4a21b2+4a41.

Note that zero is homogeneous of every nonnegative degree, so, for example, in Condition

(7.1), the term e can be zero.

Next, define the set of 11 rational indices

Inds := {1, 2, 3, 4, 5, 6, 7.1, 7.2, 7.3, 7.4, 8}.

Let �k� denote the greatest integer not greater than k. For every k ∈ Inds, let Rk denote

the C-algebra freely generated by the coefficients of the polynomials

• Q2,ai, bi, ci,di if k ≤ 6,

• ai, bi, ci,di, q,r,s,e if k ∈ {7.1, 7.2, 7.3, 7.4}, and
• ai, bi, ci,di, q,r,s,e,A0,B1 if k = 8,
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Table 2. Dimension of the space of sextic double solids with an isolated cA�k�

k 1 2 3 4 5 6 7.1, 7.2, 7.3, 7.4 8

dimSpecRk 80 74 70 65 59 52 45 36
Expected moduli space dim 67 64 60 55 49 42 34 25

where we consider the coefficients to be variables satisfying Condition (k). Define

Fk = Spec(Rk[x,y,z, t,w]/(f)) ,

where f ∈Rk[x,y,z, t,w] is the polynomial in Equation (3.5). Let family k denote the set of

fibers of Fk → SpecRk over closed points. We say that a general sextic double solid in family

k satisfies a property if the property is satisfied by all the fibers of Fk → SpecRk over the

closed points of some Zariski open dense set in SpecRk. We say that an analytically very

general sextic double solid in family k satisfies a property if there is a Zariski open dense

subset U of SpecRk such that the property is satisfied by all the fibers of Fk → SpecRk

over the closed points of U that are in the complement of some countable union of closed

analytic proper subsets.

Remark 3.5.

(a) The following are equivalent in Notation 3.4:

(i) X is a sextic double solid,

(ii) X is a variety,

(iii) f is irreducible, and

(iv) f +w2 is not the square of a polynomial in C[x,y,z, t].

Note that if (V(f),0) is a cAn singularity for some n, then f is irreducible.

(b) Every closed point of SpecRk bijectively corresponds to a choice of complex coeffi-

cients of

• Q2,ai, bi, ci,di if k ≤ 6,

• ai, bi, ci,di, q,r,s,e if k ∈ {7.1, 7.2, 7.3, 7.4}, and
• ai, bi, ci,di, q,r,s,e,A0,B1 if k = 8,

so determines a unique polynomial f ∈C[x,y,z, t,w]. For every closed point P ∈ SpecRk

such that f is irreducible, the fiber of Fk → SpecRk over P is a sextic double solid.

(c) The varieties SpecRk are affine spaces, and their dimensions are given in Table 2. The

affine spaces SpecR7.1, SpecR7.2, SpecR7.3, and SpecR7.4 all have the same dimension.

(d) Let k ∈ Inds, and let f ∈C[x,y,z, t,w] in Notation 3.4 satisfy Condition (k). The graded

C-algebra automorphisms σ of C[x,y,z, t,w], which fix the point Px = [1,0,0,0,0] and

take f to another polynomial σ(f) of the form in Notation 3.4 satisfying Condition (k),

are given by

⎛
⎜⎜⎜⎜⎝
x

y

z

t

w

⎞
⎟⎟⎟⎟⎠ �→

⎛
⎝α R3

M3

±1

⎞
⎠
⎛
⎜⎜⎜⎜⎝
x

y

z

t

w

⎞
⎟⎟⎟⎟⎠
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when k = 1, and given by⎛
⎜⎜⎜⎜⎝
x

y

z

t

w

⎞
⎟⎟⎟⎟⎠ �→

⎛
⎜⎜⎝
α R2 β

M2 C2

α−2

±1

⎞
⎟⎟⎠
⎛
⎜⎜⎜⎜⎝
x

y

z

t

w

⎞
⎟⎟⎟⎟⎠

when k ≥ 2, where Mi ∈ GL(i,C) are matrices, Ri ∈ Ci are row vectors, C2 ∈ C2 is a

column vector, and α ∈ C∗,β ∈ C are scalars. These automorphisms form an algebraic

group which is of dimension 13 if k = 1 and of dimension 10 if k ≥ 2.

If k > 7, then we also have the C∗-action

λ · q := λq, λ · r := λ−1r, λ ·s := λ−1s, λ · e := λe,

which leaves f invariant.

If a coarse moduli space of sextic double solids with an isolated cA�k� singularity

exists, then we expect its dimension to differ from dimSpecRk by 13 if k = 1, by 10

if 2 ≤ k ≤ 6, and by 11 if k > 7. The moduli space of smooth sextic double solids has

dimension 68. Table 2 shows the expected moduli space dimensions.

(e) If X has an isolated singularity at Px, then by using the C∗-action described in (d) for

k > 7 and Proposition 3.8, we can set q = 1, r = 1, and s= 1, respectively, for families

7.1, 7.3, and 7.4.

We state the main theorem of this section, describing sextic double solids with an isolated

cAn singularity.

Theorem A. For every positive integer n, both of the following hold:

(a) If a sextic double solid has an isolated cAn singularity, then n≤ 8.

(b) Every sextic double solid with an isolated cAn singularity P is isomorphic to a variety

X in Notation 3.4 satisfying Condition (l) for some l ∈ Inds such that �l�= n, with the

isomorphism sending P to Px = [1,0,0,0,0].

Furthermore, for every k ∈ Inds, all of the following hold:

(c) If k ≥ 2, then every scheme X in Notation 3.4 satisfying Condition (k) has either a

(possibly non-isolated) cAm singularity or the singularity (V(x2
1 +x2

2),0) ⊆ (C4,0) at

Px, where m≥ �k� and C4 has variables x1,x2,x3,x4.

(d) A general sextic double solid in family k is smooth outside a cA�k� singularity at Px.

(e) An analytically very general sextic double solid in family k is factorial, except for

k = 7.4. No terminal variety in family 7.4 is Q-factorial.

Remark 3.6.

(a) By Proposition 2.12, all log terminal sextic double solids have Picard number 1.

Therefore, by Theorem A(d) and (e), an analytically very general sextic double solid

in each family k ∈ Inds\{7.4} is a Mori fiber space over a point.

(b) Let k ∈ Inds\{1,8}. Let X satisfy Condition (k) but not Condition (l) for any l ∈ Inds

satisfying �l�= �k�+1. The proof of Theorem A(b) implies that if one of the following

holds:
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• k < 6,

• Px is an isolated singularity, or

• �k�= 7, r and s are coprime, and q and e are coprime,

then X has a cA�k� singularity at Px.

3.3 Bound n ≤ 8 for an isolated cAn singularity

In this section, we prove Theorem A(a) and (c), showing that the parameter spaces in

Notation 3.4 describe sextic double solids with a cAn singularity. In addition, we prove

Theorem A(b), namely the bound n ≤ 8 for an isolated cAn singularity. The bound n ≤ 8

for an isolated cAn singularity is proved by explicitly describing a curve of singularities for

n > 9.

First, we state a few lemmas needed for the proof.

Lemma 3.7. If X in Notation 3.4 satisfies Condition (6) and Px is an isolated singularity

of X, then a2 �= 0 or b3 �= 0.

Proof. If Condition (6) holds and a2 = b3 = 0, then a3 = b4 = c5 = d6 = 0. Let C be

the curve defined by the ideal (t,w,2xc4+2d5). Note that C contains Px. Taking partial

derivatives, we see that every point of C is a singular point of X.

The following proposition is useful when using Notation 3.4.

Proposition 3.8. If X in Notation 3.4 satisfies Condition (k) and Px is an isolated

singularity of X where k > 7, then q and e are coprime and r and s are coprime as

polynomials in C[y,z].

Proof. Let D ∈C[y,z] be a common prime divisor of r and s or a common prime divisor

of q and e. Then D divides a2, b3, c4,d5, and D2 divides a3, b4, c5,d6. Let C be the curve

defined by the ideal (D,t,w). Note that C contains Px. Taking partial derivatives, we see

that X is singular at every point of C

Lemma 3.9. Let r,s ∈ C[y,z] have no common prime divisors, and let q ∈ C[y,z] be

nonzero. Let hn ∈ C[y,z] be of the form hn = qα(rβCr − sγCs) where Cr,Cs ∈ C[y,z] and

α,β,γ are nonnegative integers. Then

hn = 0 ⇐⇒ there exists C ∈ C[y,z] such that Cr = sγC and Cs = rβC.

Proof. Obvious.

Proof of Theorem A(b). First, we prove that every sextic double solid Y ⊆ P(1,1,1,1,3)

with a singular point P (not necessarily of type cAn) is isomorphic to some X in

Notation 3.4, with the isomorphism sending P to Px = [1,0,0,0,0]. For this, it suffices

to note that Notation 3.4 describes all sextic double solids with a singular point at Px, and

that we can move any point of Y to Px using an automorphism of P(1,1,1,1,3). This proves

the case n= 1. For the rest of the proof, X is given by some f in Notation 3.4 with a (not

necessarily isolated) cAn singularity at Px and n is at least 2.

Let Xan denote the analytification of X. By Propositions 2.4 and 2.5 and Corollary 2.6,

after applying a suitable linear invertible coordinate change on y,z, t, Condition (2) holds.

This proves the case n= 2. For the rest of the proof, Condition (2) holds and n is at least 3.

Let

Xx = Spec(C[y,z, t,w]/(f(1,y,z, t,w)))
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denote the affine open of X given by inverting x. Let g ∈ C{y,z, t} and h ∈ C{y,z} be the

unique convergent power series of multiplicity at least 2 such that

f(1,y,z, t,w) =−w2+(t+g)2+h.

Since by assumption (Xan,Px) is a cAn singularity, Propositions 2.4 and 2.5 and

Corollary 2.6 imply that h2 = · · ·= hn = 0, where hj ∈ C[x3,x4] is the homogeneous degree

j part of h.

Using the explicit splitting lemma (Proposition 3.2), it is straightforward to compute

that h2 = · · · = hn = 0 is equivalent to satisfying Condition (n) when n ≤ 6, even if Px is

not an isolated singularity. This proves the cases n ∈ {3, . . . ,6}. For the rest of the proof,

Condition (6) holds, (Xan,Px) is an isolated cAn singularity, and n is at least 7.

By Lemma 3.7, a2 �= 0 or b3 �= 0. Define q to be a homogeneous greatest common divisor

of a2 and b3. Define r and s ∈C[y,z] to be the unique homogeneous polynomials such that

a2 = qr,

b3 = qs+4a1qr.

Then r and s are coprime. Using the explicit splitting lemma (Proposition 3.2), we compute

that

h7 = q(r(−12a0q
2rs+4b2qs−2b1q

2r2+2c3qr−2d5)−s(2c4−4a1qs)).

Using Lemma 3.9, the equations h2 = · · · = h7 = 0 imply the existence of a polynomial

e ∈ C[y,z] such that

c4 = 2a1qs−6a0q
2r2+8a21qr+er,

d5 = 2b2qs−8a21qs−es− b1q
2r2+ c3qr.

Therefore, h2 = · · ·= h7 = 0 implies Condition (7.i), where i is defined by

i := deggcd(a2, b3)+1,

where deggcd(a2, b3) is the degree of a greatest common divisor of a2 ∈ C[y,z] and

b3 ∈ C[y,z]. This proves n= 7.

Next, we show that if h2 = · · · = h8 = 0 and one of Conditions (7.2)–(7.4) holds, then

r and s have a common prime divisor or q and e have a common prime divisor, which

contradicts Proposition 3.8. In Condition (7.2), we calculate that h8+e2r2 is divisible by q,

giving r =Cq for some C ∈C. Substituting into h8, we compute that h8−2qes2 is divisible

by q2. Therefore, q and s have a common prime divisor, giving that r and s have a common

prime divisor, a contradiction. Conditions (7.3) and (7.4) are similar.

Hence, if h2 = · · · = h8 = 0, then Condition (7.1) holds. Using the explicit splitting

lemma, we calculate h8, and using Lemma 3.9, we can show that h2 = · · ·= h8 = 0 implies

Condition (8).

Proof of Theorem A(a). Assume that X is a sextic double solid with an isolated cAn

singularity where n ≥ 9. Using the notation in the proof of Theorem A(b), we find that

Condition (8) holds and h2 = · · ·= h9 = 0. Using the explicit splitting lemma, we compute

h9, and using Lemma 3.9, we find that there exists B0 ∈ C such that
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A0 = a0,

B1 = b1,

d3 =−s3B0+2b0s3−2a20s3+ c1r2−4a0b1r2

+16a20a1r2+ b1b2−4a0a1b2−2a21b1+8a0a
3
1,

c2 = r2B0−6a20r2+2a0b2+2a1b1−12a0a
2
1.

Substituting into f gives

x3a3+x2b4+xc5+d6 = (s3+2a1r2+xr2)
2,

x3a2+x2b3+xc4+d5 = (s3+2a1r2+xr2)(−2a0r2+ b2−2a21+2xa1+x2).

Define the curve C by the ideal (w,t,s3+2a1r2+xr2). Taking partial derivatives, we find

that X is singular at every point of C, a contradiction.

Proof of Theorem A(c). Let Xan denote the analytification of X. Using the explicit

splitting lemma (Proposition 3.2), we can compute that the complex space germ (Xan,Px)

is isomorphic to (V(−w2 + t2 + h)), where h ∈ C[y,z] is zero or has multiplicity at least

�k�+1. By Propositions 2.4 and 2.5 and Corollary 2.6, X has either a (possibly non-

isolated) cAm singularity or the singularity (V(x2
1+x2

2),0)⊆ (C4,0) at Px, where m≥ �k�
and C4 has variables x1,x2,x3,x4.

3.4 Smoothness outside the isolated cAn point

In this section, we prove Theorem A(d) using dimension count arguments, showing that

a general sextic double solid with an isolated cAn singularity is smooth outside the cAn

point.

Lemma 3.10. For every k ∈ Inds, a general member of family k in Notation 3.4 is

smooth at every point with t-coordinate nonzero.

Proof. Let Âk denote the set of closed points Q of SpecRk such that the fiber of

Fk → SpecRk over Q has a singular point at Pt = [0,0,0,1,0]. We find

f(Pt) = d0,
∂f

∂x
(Pt) = 2c0,

∂f

∂y
(Pt) = 2

∂d1
∂y

,
∂f

∂z
(Pt) = 2

∂d1
∂z

,
∂f

∂t
(Pt) = 6d0.

By the Jacobian criterion ([39, Exer. 4.2.10]), Âk is the set of closed points of

Ak = VSpecRk

(
d0, c0,

∂d1
∂y

,
∂d1
∂z

)
.

We see that dimAk = dimSpecRk−4.

The C-algebra automorphism x �→ x+αxt, y �→ y+αyt, z �→ z+αzt of C[x,y,z, t,w]

defines a morphism

πAk
: SpecAk×SpecC[αx,αy,αz]→ SpecRk

with closed image. The set of closed points Q of SpecRk, where the fiber of Fk → SpecRk

over Q has a singular point with t-coordinate nonzero, is precisely the set of closed points

of the image of πAk
. The image of πAk

has codimension at least 1.

Lemma 3.11. For every k ∈ Inds, a general member of family k in Notation 3.4 is

smooth at every point different from Px that has t-coordinate zero.
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Proof. Let P = [0,β,γ,0,0] ∈ P(1,1,1,1,3), where (β,γ) ∈ C2 \{(0,0)}. We find

f(P ) = d6(P ),
∂f

∂x
(P ) = c5(P ),

∂f

∂y
(P ) =

∂d6
∂y

(P ),
∂f

∂z
(P ) =

∂d6
∂z

(P ),
∂f

∂t
(P ) = 2d5(P ).

Define the linear polynomial l = γy−βz. By the Jacobian criterion ([39, Exer. 4.2.10]), P

is a singular point of X if and only if the following divisibility constraint is satisfied:

l divides c5 and d5 and l2 divides d6. (3.6)

The set of closed points Q ∈ SpecRk, where the fiber of Fk → SpecRk over Q is singular at

P for some (β,γ) ∈ C2 \ {(0,0)}, coincides with the set of closed points of a closed subset

Bk of SpecRk. We show that dimBk is at most dimSpecRk−2.

• If k ≤ 4, then the 19 coefficients of c5,d5, and d6 are algebraically independent in Rk. By

the divisibility constraint (3.6), dimBk = dimSpecRk−3.

• If k = 5, then the 20 coefficients of a2, b3,d5, and d6 are algebraically independent in Rk.

We have c5 = a2(2b3− 4a1a2). If l divides c5, then l divides a2 or l divides b3− 2a1a2.

By the divisibility constraint (3.6), in both cases we have three less degrees of freedom.

More formally, Bk is the union of the images of two morphisms, both having codimension

exactly 3 in SpecRk. Therefore, dimBk = dimSpecRk−3.

• If k = 6, then the 23 coefficients of a2, b3, c4,d5 are algebraically independent in Rk.

We have c5 = a2(2b3 − 4a1a2) and d6 = a2 · (2c4 +G) + b23 for a polynomial G ∈ C[y,z]

homogeneous of degree 4 which does not contain c4.

If l divides a2, then using the divisibility constraint (3.6), we find that l divides b3.

Now, l2 divides a2 or l divides 2c4 +G. So, there are three less degrees of freedom in

choosing a2, b3, c4, and d5.

If l does not divide a2, then l divides b3 − 2a1a2, so b3 = 2a1a2 +Ql for some

homogeneous quadratic form Q ∈ C[y,z]. From l | d6, we find that l divides c4− a2b2+

2a0a
2
2 + 2a21a2, so c4 = Cl + a2b2 − 2a0a

2
2 − 2a21a2 for some homogeneous cubic form

C ∈C[y,z]. From l2 | d6, we find that l divides C−4Qa1. Therefore, after fixing a0,a1,a2,

and b2, there are at least two less degrees of freedom in choosing b3, c4, and d5.

In both cases, we see that dimBk ≤ dimSpecRk−2.

• If �k�= 7, then

c5 = 4q2r(2s+a1r),

d5 =−es+ q(2b2s−a21s−4b1qr
2+ c3r),

d6 = 4q(er2+ q(s2+a1rs−8a0qr
3− b2r

2+a21r
2)).

Let us consider f for a closed point in Bk. If l | q, then since q and e are coprime, we

have l | r and l | s, a contradiction. If l | r, then since l | d6, we find l | s, a contradiction.

Therefore, l divides neither q nor r.

So, l divides 2s+a1r. Using l2 | d6, we see that l2 divides −32a0q
2r−4b2q+3a21q+4e.

After fixing a0,a1, b2, q, and r, we see that there are at least two less degrees of freedom

in choosing s and e. So, we have dimBk ≤ dimSpecRk−2.
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• If k = 8, then

c5 = 2r2(s3+2a1r2),

d5 = r2(r2B1−8s3A0−8a1r2A0+6a0s3− b1r2+4a0a1r2+2a1b2−4a31)

+s3(b2−2a21),

d6 = r2(8r
2
2A0+4a1s3−8a0r

2
2 +4a21r2)+s23.

We consider f for a closed point in Bk. If l | r2, then l | s3, a contradiction. So, l divides

s3+2a1r2. Since l divides d6, we have l | r32(A0−a0). So, A0 = a0. Since l divides d5, we

see that l | r22(B1− b1). We find that the coefficients of f have at least two less degrees

of freedom, namely A0 = a0, and the polynomials B1− b1 and s3+2a1r2 have a common

prime divisor. So, we have dimBk ≤ dimSpecRk−2.

The C-algebra automorphism x �→ x+αy of C[x,y,z, t,w] defines a morphism

πBk,1 : SpecBk×SpecC[α]→ SpecRk,

and the C-algebra automorphism x �→ x+αz of C[x,y,z, t,w] defines a morphism

πBk,2 : SpecBk×SpecC[α]→ SpecRk.

Every closed point Q of SpecRk, where the fiber of Fk → SpecRk over Q has a singular

point different from Px with t-coordinate zero, belongs to the image of πBk,1 or πBk,2. The

union of the images of πBk,1 and πBk,2 has codimension at least 1.

Proof of Theorem A(d). It follows from Lemmas 3.10 and 3.11 that a general sextic

double solid in family k has exactly one singular point, namely the point Px. The singularity

of X at Px is of type cA�k� if the homogeneous part h�k�+1 ∈C[y,z] of h is nonzero, where h

is as in the proof of Theorem A(b). Since this is an open condition, a general sextic double

solid in family k has a cA�k� singularity at Px.

3.5 Factoriality

Lemma 3.12 [33, Lemma 5.1]. A terminal Gorenstein Fano 3-fold is factorial if and

only if it is Q-factorial.

Lemma 3.13. There are no Q-factorial log terminal sextic double solids in family 7.4.

Proof. Let X be a log terminal variety in family 7.4. The Cartier divisor VX(t) is the

sum of the two prime divisors D1 = V(t,q−w) and D2 = V(t,q+w). Let lεC[y,z] be a

non-zero linear form that does not divide q. Define the curve C = V (q+w,x, l). If D1 is

Q-Cartier, then D1 ·C = 0, which contradicts Proposition 2.12 and lemma 2.13. Therefore,

neither D1 nor D2 is Q-Cartier.

Our proof of factoriality relies on the following corollary of Proposition 2.10.

Corollary 3.14. Let X be a Gorenstein terminal Fano 3-fold which is smooth along its

general effective anti-canonical divisor D. Then the natural homomorphism Cl(X)→Pic(D)

from the class group of X is injective.

Proof. Let U be any Zariski open set in the smooth locus of X that contains D. By

Remark 2.11(1), we have an isomorphism of class groups Cl(X)∼=Cl(U). Since U is smooth,

we have an isomorphism Cl(U)∼=Pic(U). It follows from the proof of [42, Prop. 2] that we

can choose a small enough U such that Pic(U) injects into Pic(D).
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Corollary 3.15. Let X be a terminal Gorenstein Fano 3-fold and D a smooth effective

anti-canonical divisor such that X is smooth along D and D has Picard number 1. Then X

is factorial.

Proof. By adjunction, every smooth anti-canonical divisor of a Fano variety is a K3

surface. A very general projective K3 surface has Picard number 1. Therefore, X is smooth

along an analytically very general anti-canonical divisor with Picard number 1. By Corollary

3.14, X is Q-factorial. By Lemma 3.12, X is factorial.

Lemma 3.16. For every k ∈ Inds \ {7.4} and for an analytically very general sextic

double solid X in family k, the subvariety VX(x) is smooth and has Picard number 1.

Proof. Let Sk be the C-algebra freely generated by the 28 coefficients, considered as

variables, of polynomials g ∈ C[y,z, t] homogeneous of degree 6. By Remark 3.5(b), closed

points P of SpecRk bijectively correspond to polynomials fP ∈C[x,y,z, t,w] in Notation 3.4.

Let θ : C[x,y,z, t,w] → C[y,z, t] be the homomorphism x �→ 0, w �→ 0. Let πk : SpecRk →
SpecSk be the morphism of affine spaces given on closed points by fP �→ θ(fP ). The

C-algebra automorphisms t �→ αy+βz+ t of C[y,z, t] induce a morphism τ : SpecSk×A2 →
SpecSk. Define ρk to be the composition

ρk := τ ◦ (πk× idA2) : SpecRk×A2 → SpecSk.

We can compute that the rank of the Jacobian matrix of ρk at some specified point is 28

for all k ∈ Inds \ {7.4}. It follows that ρk is a dominant morphism of affine spaces for all

k ∈ Inds\{7.4}.
The closed points Q of SpecSk bijectively correspond to polynomials gQ ∈ C[y,z, t]

homogeneous of degree 6, and therefore also to subschemes ZQ of P(1,1,1,3) with variables

y,z, t,w given by −w2 + gQ. Smooth schemes ZQ ⊆ P(1,1,1,3) are K3 surfaces that are

called sextic double planes. It is known that a very general projective K3 surface has Picard

number 1. It follows that an analytically very general sextic double solid X in family

k ∈ Inds\{7.4} satisfies that VX(x) has Picard number 1.

Proof of Theorem A(e). By Theorem A(d), a general sextic double solid in family

k is terminal and is smooth along the anti-canonical divisor V(x). By Corollary 3.15

and Lemma 3.16, an analytically very general sextic double solid in family k �= 7.4 is

factorial.

Remark 3.17. In some cases, we can prove that it suffices if the sextic double solid is

only general in Theorem A(e) as opposed to analytically very general :

(a) A general sextic double solid in family 1 has only one singularity and that singularity

is an ordinary double point. Every sextic double solid which is smooth outside an

ordinary double point is factorial and has Picard number 1 (see [14, Th. B]).

(b) A general sextic double solid in family 4 is factorial, since in Section 5.2 we construct

a Sarkisov link to a complete intersection Z5,6 ⊆ P(1,1,1,2,3,4) which is Q-factorial if

it is general.

3.6 Other cAn singularities

Although the primary interest is in isolated cAn singularities since these are terminal, it

is also possible to study non-isolated singularities with the same methods.
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We describe uncountably many examples of sextic double solids with a non-isolated cAn

singularity for all 9≤ n≤ 11.

Proposition 3.18. Let 8≤ n≤ 11. Let r2 and s3 be coprime, and let q0 be nonzero. Let

X in Notation 3.4 satisfy Condition (n) but not satisfy Condition (n+1), where Conditions

(9)–(12) are defined below:

(9) Condition (8) of Notation 3.4 is satisfied, and there exists B0 ∈ C such that

A0 = a0,

B1 = b1,

d3 =−s3B0+2b0s3−2a20s3+ c1r2−4a0b1r2

+16a20a1r2+ b1b2−4a0a1b2−2a21b1+8a0a
3
1,

c2 = r2B0−6a20r2+2a0b2+2a1b1−12a0a
2
1.

(10) Condition (9) is satisfied and

B0 = b0,

d2 = 2c0r2−8a0b0r2+16a30r2+2b0b2−4a20b2+ b21−8a0a1b1−4a21b0+24a20a
2
1,

c1 = 2a0b1+2a1b0−12a20a1,

(11) Condition (10) is satisfied and

c0 = 2a0b0−4a30,

d1 = b0b1−2a20b1−4a0a1b0+8a30a1,

(12) Condition (11) is satisfied and d0 = b20−4a20b0+4a40.

Then Px is a cAn singularity of X. Moreover, if n≥ 9, then the singularity is non-isolated.

Proof. Use the explicit splitting lemma (Proposition 3.2) and repeatedly apply

Lemma 3.9 similarly to the proof of Theorem A(b).

Remark 3.19.

(1) By the proof of Theorem A(a), if X in Proposition 3.18 satisfies Condition (9), then

X is singular along the curve C : V(t,w,s3+2a1r2+xr2) passing through Px. We can

compute that at a general point of C, the singularity is locally analytically C1×ODP,

that is, it is isomorphic to the germ (Z,0) where Z is V(x2
1+x2

2+x2
3)⊆C4 with variables

x1,x2,x3,x4.

(2) Translating the point Pt = [0,0,0,1,0] to [1,0,0,0,0], we can find conditions similar to

Notation 3.4 for having a cAn singularity at Pt ∈X, which can be used to construct

general sextic double solids with two cAn singularities. The following is a simple

example with cA5 singularities at Px and at Pt:

V(−w2+x4t2+x2t4+y6+z6)⊆ P(1,1,1,1,3).

§4. Divisorial contractions with center a cAn point

In this section, we discuss weighted blowups from both algebraic and local analytic points

of view. In Proposition 4.6, we show that to check whether a weighted blowup is a Kawakita

blowup (see Theorem 2.21), it suffices to compute the weight of the defining power series.
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Using this, in the technical Lemma 4.9, we show how to algebraically construct Kawakita

blowups of cAn points on affine hypersurfaces.

4.1 Weight-respecting maps

Let n and m be positive integers. Let x = (x1, . . . ,xn) and y = (y1, . . . ,ym) denote the

coordinates on Cn and Cm, respectively. Choose positive integer weights for x and y.

Definition 4.1. Let X ⊆ Cn and X ′ ⊆ Cm be complex analytic spaces. We say that a

biholomorphic map ψ : X →X ′ taking 0 to 0 is weight-respecting if denoting its inverse by θ,

we can locally analytically around the origins write ψ = (ψ1, . . . ,ψm) and θ = (θ1, . . . , θn)

where for all i and j, the power series ψj ∈C{x} and θi ∈C{y} satisfy wt(ψj)≥wt(yj) and

wt(θi)≥ wt(xi).

It is known that a biholomorphic map taking the origin to the origin lifts to a unique

biholomorphic map of the blown-up spaces under the usual weights (1, . . . ,1) (see, e.g., [25,

Rem. 3.17.1(4)]). It is easy to come up with examples where a biholomorphic map does not

lift under weighted blowups. We give one example below.

Example 4.2. Let X ⊆ C3 be the complex analytic space given by V(f) where

f = x2
2x3+x3

1+ax1x
2
3+ bx3

3

for some a,b ∈C∗. Define X ′ ⊆C3 by V(f ′) where f ′ = f(x1,x2,−x2+x3). Choose weights

(1,1,2) for (x1,x2,x3). Then, X andX ′ are biholomorphic and wtf =wtf ′, but the weighted

blowups of X and X ′ are not locally analytically equivalent.

Proof. Let ψ : X → X ′ be any local biholomorphism taking the origin to the origin.

Composing with a suitable weight-respecting biholomorphic map and using Corollary 4.4,

it suffices to consider the case where ψ is a linear biholomorphism. Since the elliptic curve

defined by f in P2 with variables x1,x2,x3 has only two automorphisms, there are only four

possibilities for a linear biholomorphism X →X ′, namely (x1,x2,x3) �→ (x1,±x2,±x2+x3).

Let Y →X and Y ′ →X ′ be the (1,1,2)-blowups of X and X ′, respectively. Then Y is

given by V(g) where

g(u,x1,x2,x3) = ux2
2x3+x3

1+au2x1x
2
3+ bu3x3

3.

Denoting the points of Y and Y ′ by [u,x1,x2,x3], the lifted map ψY : Y → Y ′ is given by

[u,x1,x2,x3] �→ [u,x1,±x2,±x2/u+x3], which is not holomorphic on the exceptional locus

V(u).

On the other hand, a weight-respecting coordinate change does lift to weighted blowups

(see Corollary 4.4).

Lemma 4.3. Let X ⊆ Cn and X ′ ⊆ Cm be complex analytic spaces strictly containing

the origins and ψ : X →X ′ a biholomorphism. Then ψ is weight-respecting if and only if ψ

induces an isomorphism of the Z≥0-graded OX′-algebras BX′ and ψ∗BX of Definition 2.18.

Proof. “=⇒.” The induced morphism BX′ → ψ∗BX is given by

BX′(U)→BX(ψ−1U)

tdȳj �→ tdψ̄j ,
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where U ⊆ X ′ is open. Since wtψj ≥ wtyj , the morphism BX′ → ψ∗BX is well-defined.

Similarly, we define a morphism BX′ ← ψ∗BX , which is its inverse.

“⇐=.” Let twtyjΨj be the image of twtyjyj under BX′(X ′) → ψ∗BX(X). There exists

ψj ∈ C{x} such that wtψj ≥ wtyj and ψ̄j = Ψj . Similarly, we can find θi, showing that ψ

is weight-respecting.

Corollary 4.4. A weight-respecting biholomorphism ψ from X ⊆Cn to X ′ ⊆Cm lifts

to the weighted blown-up spaces.

4.2 Kawakita blowup in analytic neighborhoods

In the following, we focus on Kawakita blowups (see Theorem 2.21). Unlike Example 4.2,

for cAn singularities, having the correct weight for the defining power series is enough for

the local analytic equivalence of weighted blowups.

Notation 4.5. We choose positive integer weights w = (r1, r2,a,1) for variables

x= (x1,x2,x3,x4) on C4 and define n= (r1+ r2)/a−1 such that

• a divides r1+ r2 and is coprime to both r1 and r2,

• r1 ≥ r2, and

• n≥ 2.

Proposition 4.6. Using Notation 4.5, let f ∈ C{x} be such that V(f) has an isolated

cAn singularity at the origin and f has weight r1+r2. Then, the w-blowup of V(f)⊆ C4 is

a w-Kawakita blowup.

Proof. First, we remind that the terms homogeneous, degree, and multiplicity are

with respect to the standard weights (1, . . . ,1). Let the quadratic part of f denote the

homogeneous part of f of degree 2. After a suitable invertible linear weight-respecting

coordinate change, the quadratic part of f is x1x2.

We find that f = x1x2 + x1G+H, where G ∈ C{x1, . . . ,x4} has weight at least r2
and multiplicity m ≥ 2, and H ∈ C{x2,x3,x4}. The coordinate change x2 �→ x2 −Gm,

where Gm is the homogeneous degree m part of G, takes f to x1x2 + x1G
′ +H ′, where

G′ has multiplicity at least m+1. By induction, this defines the unique formal power

series K ∈ C[[x1, . . . ,x4]] of multiplicity at least 2 and weight at least r2 such that the

transformation x2 �→ x2 +K takes f to the form x1x2 +H ′′ where H ′′ ∈ C[[x2,x3,x4]].

Similarly, we transform f into x1x2 + h where h ∈ C[[x3,x4]], using x1 �→ x1 +L where

L ∈ C[[x2,x3,x4]].

We show how to find a convergent weight-respecting coordinate change which changes f

to x1x2+h. Instead of the coordinate changes x2 �→ x2+K, x1 �→ x1+L, which might not

be convergent, we do a coordinate change ΘN with truncated power series K≤N and L≤N of

homogeneous parts ofK and L of degree at most N. The coordinate change Ψ: x1 �→x1+ix2,

x2 �→ x1 − ix2 takes x1x2 into x2
1 + x2

2. Now we use the splitting lemma, which gives a

convergent coordinate change ΦN which respects the weighting when N is large enough, to

give f the form x2
1+x2

2+h(x3,x4) where h converges. Applying Ψ−1, we get x1x2+h. Note

that the coordinate changes Ψ and Ψ−1 might not respect the weighting w, but the total

coordinate change Ψ−1 ◦ΦN ◦Ψ◦ΘN is weight-respecting if N is large enough.

Since the singularity is cAn where n=(r1+r2)/a−1, h must contain a monomial of degree

(r1+r2)/a. Since x1x2+h has weight r1+r2, if a > 1, then the coefficient of x
(r1+r2)/a
3 in h
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is nonzero. If a= 1, then after a suitable invertible linear coordinate change on C{x3,x4},
the coefficient of x

(r1+r2)/a
3 in h is nonzero.

We found that we can transform f into the form x1x2 + h where the coefficient

of x
(r1+r2)/a
3 in h is nonzero, by using only weight-respecting coordinate changes. By

Corollary 4.4, the weighted blowup of f is locally analytically equivalent to the weighted

blowup of x1x2+h, which is precisely a Kawakita blowup.

Given a variety X with an isolated cAn point P, we show that any two w-Kawakita

blowups Y →X and Y ′ →X of the point P are locally analytically equivalent. Note that

they need not be globally algebraically equivalent. For example, [18, Rem. 2.4] describes

two different (2,1,1,1)-Kawakita blowups of a cA2 singularity on a quartic 3-fold.

Proposition 4.7. Any two w-Kawakita blowups of locally biholomorphic singularities

are locally analytically equivalent.

Proof. Let f = x1x2+ g(x3,x4) and f ′ = x1x2+ g′(x3,x4) be contact equivalent, where

g,g′ ∈C{x3,x4} have weight r1+r2 and x
(r1+r2)/a
3 appears in both g and in g′ with nonzero

coefficient. It suffices to show that there exist a weight-respecting map from V(f) to V(f ′).

Since f and f ′ are contact equivalent, there exist a unit u ∈ C{x} and a local

biholomorphism ψ : (C4,0)→ (C4,0) such that f ′ = u(f ◦ψ). Note that f ′ and f ◦ψ have

the same weight r1+r2, and x
(r1+r2)/a
3 appears in f ◦ψ with nonzero coefficient. It suffices

to show that there exist a weight-respecting map from V(f) to V(f ◦ψ).
Using arguments similar to the proof of Proposition 4.6, we can find a weight-respecting

biholomorphic map germ θ : (C4,0) → (C4,0) such that f ◦ψ ◦ θ is of the form x1x2+ g′′

where g′′ ∈ C{x3,x4} contains x(r1+r2)/a and has weight r1 + r2. It suffices to show that

there exist a weight-respecting map from V(f) to V(f ◦ψ ◦θ).
By Proposition 2.5, g and g′′ are right equivalent, meaning there exists an automorphism

Φ of C{x3,x4} such that Φ(g) = g′′. Since x
(r1+r2)/a
3 has nonzero coefficient in both g and

g′′, and both g and g′′ have weight r1 + r2, the image of x3 has weight a under both

Φ and Φ−1. Define the biholomorphic map germ ϕ : (V(f ◦ψ ◦ θ),0) → (V(f),0) by x �→
(x1,x2,Φ(x3),Φ(x4)). By Corollary 4.4, the w-blowups of V(f ◦ψ ◦ θ)⊆ C4 and V(f)⊆ C4

are locally analytically equivalent.

4.3 Kawakita blowups on affine hypersurfaces

In this section, we see how to construct weighted blowups for affine hypersurfaces with

a cAn singularity where n≥ 2 such that locally analytically they are Kawakita blowups.

Most cAn singularities do not admit (r1, r2,a,1)-Kawakita blowups where a≥ 2. Below,

we define the type of an isolated cAn singularity, which for n ≥ 2 is equal to the highest

integer a such that it admits some (r1, r2,a,1)-Kawakita blowup locally analytically. General

sextic double solids with an isolated cAn singularity have a type 1cAn singularity.

Definition 4.8. Let (X,P ) be the complex analytic space germ of an isolated cAn

singularity. Let a be the largest integer such that (X,P ) is isomorphic to some germ

(V(x1x2 + g),0) where g ∈ C{x3,x4} has weight a(n+1) under the weighting (a,1) for

(x3,x4). Then, we say that the cAn singularity is of type a.

It is not obvious how to globally algebraically construct a Kawakita blowup for a variety

with a cAn singularity. We show this for affine hypersurfaces in the technical Lemma 4.9.
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We use a projectivization of Corollary 4.10 in Section 5 for constructing Kawakita blowups

of sextic double solids.

We describe the notation for Lemma 4.9. Choose positive integers n,r1, r2, and a as in

Notation 4.5. Let F ∈ C[x1,x2,x3,x4] have multiplicity at least 3, and let

f =−x2
1+x2

2+F

be such that V(f)⊆C4 has terminal singularities and has a cAn singularity of type at least

a at the origin. Let q,w be the power series when splitting with respect to x1 (Theorem 3.1),

and p,v be the power series when splitting with respect to x2, that is,

f =−((x1+ q)w)2+((x2+p)v)2+h, (4.1)

where q ∈ C{x2,x3,x4} and p ∈ C{x3,x4} both have multiplicity at least 2, and w ∈
C{x1,x2,x3,x4} and v ∈C{x2,x3,x4} are units, and h∈C{x3,x4} has multiplicity at least 3.

If a > 1, then perform a coordinate change on x3,x4 for f such that h has weight r1+ r2.

Now choose weights

w =wt(α,β,x3,x4) = (r1, r2,a,1)

for the variables α,β,x3,x4 on C4 and

w′ =wt(α,β,x1,x2,x3,x4) = (r1, r2, m, min(r2,multp), a, 1)

for the variables α,β,x1,x2,x3,x4 on C6, where m=min(r2,multq). Writing a power series

s ∈ C{x1,x2,x3,x4} as a sum of its w′-weighted homogeneous parts s =
∑∞

i=0 si, let s<k

denote
∑

i<k si and s≥k denote
∑

i≥k si. Define the ideal

I = (f, −α+(x1+ q<r1)w<r1−m+(x2+p<r1)v<r1−r2 , −β+x2+p<r2)

of C[α,β,x1,x2,x3,x4], where v<r1−r2 is defined to be 1 when r1 = r2 and where w<r1−m

is defined to be 1 when r1 =m. Note that the affine varieties V(f)⊆C4 and V(I)⊆C6 are

isomorphic.

Lemma 4.9. Using the notation above, the w′-blowup of V(I) is a w-Kawakita blowup.

Proof. The morphism

ϕ : C4 → C4

(x1,x2,x3,x4) �→ ((x1+ q<r1)w<r1−m+(x2+p<r1)v<r1−r2 , x2+p<r2 , x3, x4)

has a local analytic inverse ϕ−1, given by

ϕ−1 : (C4,0)→ (C4,0)

(α,β,x3,x4) �→ ((α− (β−p<r2 +p<r1)v
′)u− q′, β−p<r2 , x3, x4),

where u ∈ C{α,β,x3,x4} is a unit, v′ = v<r1−r2(β − p<r2 ,x3,x4) and q′ = q<r1(β −
p<r2 ,x3,x4). Define the map germ

ψ : (C4,0)→ (C6,0)

(α,β,x3,x4) �→ (α,β,ϕ−1(α,β,x3,x4)).

The restriction of ψ to V(I)→V(f ◦ψ) is a weight-respecting local biholomorphism, whose

inverse is a projection. Therefore, the w-blowup of V(f ◦ψ) is equivalent to the w′-blowup

https://doi.org/10.1017/nmj.2024.17 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2024.17


30 E. PAEMURRU

of V(I). If the w-weight of f ◦ψ is r1+r2, then by Proposition 4.6, the w-blowup of V(f ◦ψ)
is the w-Kawakita blowup map germ. Using Equation (4.1), it suffices to show that

wt[((x1+ q)w+(x2+p)v)◦ψ] = r1, (4.2)

wt[(−(x1+ q)w+(x2+p)v)◦ψ] = r2. (4.3)

Since ψ is weight-respecting, we have

wt[(x1+ q)w≥r1−m ◦ψ)]≥ r1,

wt[q≥r1w<r1−m ◦ψ)]≥ r1,

wt[(x2+p)v≥r1−r2 ◦ψ]≥ r1,

wt[p≥r1v<r1−r2 ◦ψ]≥ r1.

Since ((x1+ q<r1)w<r1−m+(x2+p<r1)v<r1−r2)◦ψ = α, this proves Equation (4.2). Using,

in addition, that wt[(x2+p<r1)v<r1−r2 ◦ψ] = r2, Equation (4.3) follows.

Corollary 4.10. Using the notation above, if F ∈C[x2,x3,x4], or equivalently, if q=0

and w = 1, then define the ideal J ⊆ C[α,β,x2,x3,x4] by

J = (−(α− (x2+p<r1)v<r1−r2)
2+x2

2+F, −β+x2+p<r2), (4.4)

where v<r1−r2 is defined to be 1 if r1 = r2. Then, V(J) and V(f) are isomorphic affine

varieties, and the (r1, r2,min(r2,multp),a,1)-blowup of V(J) is a w-Kawakita blowup. If in

addition r1 = r2, then define the ideal J ′ ⊆ C[x1,β,x2,x3,x4] by

J ′ = (f,−β+x2+p<r2). (4.5)

Then, V(J ′) and V(f) are isomorphic affine varieties, and the (r1, r2,min(r2,multp),a,1)-

blowup of V(J ′) is a w-Kawakita blowup.

Proof. The isomorphism between V(I) and V(J) is a projection, with inverse given by

x1 �→ α− (β−p<r2 +p<r1)v<r1−r2 , which is weight-respecting. If r1 = r2, the isomorphism

between V(J) and V(J ′) is given by x1 �→ α−β, which is weight-respecting.

The power series p, v, q, w can be expressed in terms of the coefficients of F using the

explicit splitting lemma, Proposition 3.2.

§5. Birational models of sextic double solids

In this section, we prove Theorem B on birational nonrigidity of certain sextic double

solids. First, we give the generality conditions that we use.

Definition 5.1. Let X be a sextic double solid in Notation 3.4. Let P(1,1,3) have

variables y,z,w, and let P1 have variables y,z. Define the following generality conditions,

depending on the family that X lies in:

(4) V(2wa2+ c5,w
2−d6)⊆ P(1,1,3) is 10 distinct points,

(5) V(a2,−w2+d6)⊆ P(1,1,3) is 4 distinct points,

(6) c4−2a1b3−a2b2+2a0a
2
2+6a21a2 ∈ C[y,z] is nonzero, and V(a2)⊆ P1 is two distinct

points, and for both of these points P, one of b3(P ), c4(P ) or d5(P ) is nonzero,

(7.1) V(−e2+4a0r2+ b2−6a21)⊆ P1 is two distinct points,

(7.2) r1 and q1 are coprime in C[y,z],
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(7.3) q2 ∈ C[y,z] is not a square,

(8) a0 �=A0.

Theorem B. Every terminal Q-factorial sextic double solid with a cAn singularity with

n ≥ 4 that satisfies the generality conditions in Definition 5.1 has a Sarkisov link starting

with a weighted blowup with center the cAn point.

We treat each of the seven families separately. We use the notation in Construction

2.25 and Example 2.26 for the 2-ray links. We write the cA4 case in more detail. Below,

when we say that a birational map is m Atiyah flops, then we mean that the base of

the flop is m points, above each we are contracting a curve and extracting a curve, and

locally analytically above each of the points it is an Atiyah flop. Similarly for flips. Below,

for a morphism Φ: T0 → P, we let Φ∗ : CoxP→ CoxT0 denote a corresponding C-algebra

homomorphism of Cox rings (this is described explicitly in the proof of Proposition 5.4).

5.1 Singularities after divisorial contraction

The non-Gorenstein singularities on Y for an ordinary type divisorial contraction

Y → X with center a cAn singularity can be easily found using the result by Kawakita,

Theorem 2.21. On the other hand, the structure or the number of Gorenstein singularities

is unclear. We show in Proposition 5.3 that if X in one of the 11 families is general, then Y

has no Gorenstein singularities. We do not give the generality conditions of Proposition 5.3

explicitly. We do not need Proposition 5.3 for proving Theorem B.

Lemma 5.2. Let a,b ∈ C[y,z] be nonzero homogeneous polynomials with dega ≥ degb

such that for every homogeneous polynomial c∈C[y,z] of degree dega−degb, the polynomial

a+bc is divisible by the square of a linear form. Then a and b are both divisible by the square

of the same linear form.

Proof. Suffices to prove that for polynomials f,g ∈C[x], if f+λg has a repeated root for

infinitely λ ∈ C, then f and g have a common repeated root. Dividing f and g by suitable

linear polynomials, it suffices to consider the case where every common root of f and g is

a common repeated root of f and g.

If the set

A= {α ∈ C | α is a repeated root of f +λαg for some λα ∈ C}

is finite, then there exist α ∈ C and λ1 �= λ2 such that α is a repeated root of both f +λ1g

and f +λ2g. It follows that α is a repeated root of both f and g.

Without loss of generality, both f and g are nonconstant. Subtracting g · d(f +λg)

dx
from

dg

dx
· (f +λg), we find that a repeated root of f +λg is necessarily a root of f

dg

dx
− g

df

dx
. If

f
dg

dx
= g

df

dx
, then a prime factor of g is a prime factor of f. If f

dg

dx
�= g

df

dx
, then the set A

is finite. In both cases, f and g have a common repeated root.

Proposition 5.3. Let X be a member of family k ∈ Inds of Notation 3.4 which is smooth

outside a cA�k� singularity at Px = [1,0,0,0,0]. Let Y →X be a divisorial contraction with

center Px, which is an (r1, r2,1,1)-Kawakita blowup. If X is general, then Y has a quotient
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singularity 1/r1(1,1, r1− 1) if r1 > 1 and a quotient singularity 1/r2(1,1, r2− 1) if r2 > 1

and is smooth elsewhere.

Proof. We show that Y has only up to two quotient singularities on the exceptional

divisor and is smooth elsewhere. Since Y →X is an (r1, r2,1,1)-Kawakita blowup, we can

consider the local analytic coordinate system around Px where X is given by wt+h(y,z)

where h ∈ C{y,z} has multiplicity n+ 1. The variety Y is locally analytically around

the exceptional divisor given by wt+ 1
un+1h(uy,uz) inside the geometric quotient (C5 \

V(w,t,y,z))/C∗ where the C∗-action is given by λ · (u,w,t,y,z) = (λ−1u,λr1w,λr2t,λy,λz).

The singular locus of Y is given by

SingY = V

(
u,w,t,hn+1,

∂hn+1

∂y
,
∂hn+1

∂z
,hn+2

)
∪{Pw}if r1>1∪{Pt}if r2>1,

where hi denotes the homogeneous degree i part of h, and Pw and Pt are the points

[0,1,0,0,0] and [0,0,1,0,0], respectively. We see that Y is singular outside of Pw and Pt if

and only if there exists a homogeneous linear form L ∈ C[y,z] such that L2 divides hn+1

and L divides hn+2. For all k ∈ Inds, exactly one of the following holds:

• Y \{Pw,Pt} is smooth for a general X in family k, or

• for all X in family k, there exists a homogeneous linear form L ∈ C[y,z] such that L2

divides hn+1 and L divides hn+2.

We write the proof for family 8 in detail, the proofs for the other 10 families are similar.

Using the explicit splitting lemma (Proposition 3.2), we compute that

h9 =Q−2d3r
3
2 = 8(a0−A0)s

3
3+ r2R,

where Q,R ∈ C[y,z] are homogeneous of degrees 9 and 7, respectively, and Q does not

contain the polynomial d3. Assume that for all X in family 8, there exists L such that L2

divides h9. Using Lemma 5.2 with (a,b,c) = (Q, r32,−2d3), we find that a prime divisor of

r2 divides h9. Therefore, a general member X of family 8 satisfies that r2 and s3 have a

common prime divisor, contradicting Theorem A(d) and Proposition 3.8. So, for a general

X in family 8, Y \{Pw,Pt} is smooth.

5.2 cA4 model

Note that Okada described a Sarkisov link starting from a general complete intersection

Z5,6 ⊆ P(1,1,1,2,3,4) to a sextic double solid (see entry No. 9 of the table in [43, §9]). We

show the converse:

Proposition 5.4. A sextic double solid with a cA4 singularity satisfying Definition 5.1

has a Sarkisov link to a complete intersection Z5,6 ⊆ P(1,1,1,2,3,4), starting with a

(3,2,1,1)-blowup of the cA4 point, then 10 Atiyah flops, and finally a Kawamata divisorial

contraction (see [34]) to a terminal quotient 1/4(1,1,3) point. Under further generality

conditions (Proposition 5.3), Z is quasismooth.
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Proof. We exhibit the diagram below.

Y0 Y1

cA4 ∈X ⊆ P(14,3) W0 1/4(1,1,3) ∈ Z5,6 ⊆ P(13,2,3,4)

(3,2,1,1)

10×(1,1,−1,−1)

( 1
4 ,

1
4 ,

3
4 )

The corresponding diagram for the ambient toric spaces is given in detail in Example 2.26.

By Theorem A, every sextic double solid X̂ with an isolated cA4 singularity can be

given by

X̂ : V(f̂)⊆ P(1,1,1,1,3)

with variables x,y,z, t,w where

f̂ =−w2+x4t2+2x3ta2+x3t2A1+x2a22+x2tB3+xC5+D6,

where a2 ∈C[y,z] is homogeneous of degree 2, and Ai,Bi,Ci,Di ∈C[y,z, t] are homogeneous

of degree i.

Below, we perform the following constructions:

(1) We define a weighted projective space P= P(1,1,1,1,3,5).

(2) We define a subvariety X of P by explicitly describing a homogeneous ideal.

(3) We show that X and X̂ are isomorphic by constructing an explicit isomorphism.

(4) We construct a toric variety T0.

(5) We define a morphism Φ: T0 → P.

(6) We construct a subvariety Y0 of T0 by explicitly describing a bihomogeneous ideal IY
of the Cox ring of T0.

(7) We restrict the morphism Φ to Y0 and check that its image is X.

Although computational, the above steps are completely elementary. The reason for these

constructions is that, as we prove below, the morphism Y0 →X is the (3,2,1,1)-Kawakita

blowup and IY 2-ray follows T0.

The reader might have the philosophical question of how the author found the varieties

P,X,T0 and Y0, described below, and why they are defined exactly as they are. In

Remark 5.5, we describe the methods we used to arrive at the construction of P,X,T0 and

Y0. Note that the choices involved in (1), (2), (4), and (6) above are somewhat arbitrary.

Namely, there exist other varieties P,X,T0 and Y0 such that Y0 → X is the (3,2,1,1)-

Kawakita blowup and IY 2-ray follows T0.

We start by constructing X. Define the bidegree (5,6) complete intersection X, isomorphic

to X̂, by

X : V(f,−xξ+α2−D6)⊆ P(1,1,1,1,3,5)

with variables x,y,z, t,α,ξ, where

f =−ξ+2αa2+2αxt+x2t2A1+xtB3+C5.
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The isomorphism is given by

X̂ →X

[x,y,z, t,w] �→
[
x,y,z, t,α′,2α′a2+2α′xt+x2t2A1+xtB3+C5

]
,

where α′ = w+x2t+xa2, with inverse

[x,y,z, t,α,ξ] �→ [x,y,z, t,α−x2t−xa2].

We describe the divisorial contraction ϕ : Y0 →X. Define the toric variety

u x y z α ξ t

T0 :
(

0 1 1 1 3 5 1
)
,−1 0 1 1 3 6 2

as in Example 2.26. Let Φ be the ample model of V(x), that is,

Φ: T0 → P(1,1,1,1,3,5)

[u,x,y,z,α,ξ, t] �→ [x,uy,uz,u2t,u3α,u6ξ].

Let Y0 be the strict transform of X. Let Φ∗ denote the corresponding C-algebra homomor-

phism, namely

Φ∗ : C[x,y,z, t,α,ξ]→ C[u,x,y,z,α,ξ, t]

Φ∗ : x �→ x, y �→ uy, z �→ uz, t �→ u2t, α �→ u3α, ξ �→ u6ξ.

Define

AY =A1(y,z,ut), BY =B3(y,z,ut), CY = C5(y,z,ut), DY =D6(y,z,ut)

and define the polynomial g =Φ∗f/u5, that is,

g =−uξ+2αa2+2αxt+x2t2AY +xtBY +CY .

Then, Y0 is given by

Y0 : V(IY )⊆ T0 where IY = (g,−xξ+α2−DY ).

We will see later that IY 2-ray follows T0. Note that there exist other ideals that define the

same variety Y0 ⊆ T0 (see [20, Cor. 3.9]), but where the ideal might not 2-ray follow T0. Also

note that we have not (and do not need to) prove that the ideal IY is saturated with respect

to u, although in general, saturating might help in finding the ideal that 2-ray follows T0.

The morphism Y0 →X is the restriction of T0 → P(1,1,1,1,3,5). Locally, (Y0)x →Xx is the

(3,2,1,1)-blowup of V(f ′)⊆ C4 with variables α,t,y,z, where

f ′ =−α2+2αa2+2αt+ t2A1+ tB3+C5+D6.

Since wtf ′ = 5, by Proposition 4.6, (Y0)x →Xx is a (3,2,1,1)-Kawakita blowup.

The first diagram in the 2-ray game for Y0 is 10 Atiyah flops, under Definition 5.1. We

describe the diagram Y0 →W0 ← Y1 globally. Multiplying the action matrix of T0 by the

matrix
(

1 0
−1 1

)
, define
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u x y z α ξ t

T1 :
(

0 1 1 1 3 5 1
)
.−1 −1 0 0 0 1 1

Define Y1 by V(IY )⊆ T1. Define the morphisms Y0 →W0 and Y1 →W0 as the ample models

of V(y). The exceptional locus of Y0 → W0 is E−
0 = V(ξ, t) ⊆ Y0, the exceptional locus of

Y1 →W0 is E+
1 = V(u,x)⊆ Y1, and the base of the flop is

{Pi}= V(2αa2+C5(y,z,0), α
2−D6(y,z,0))⊆ P(1,1,3)⊆W0,

where P(1,1,3) has variables y,z,α. If a2, C5(y,z,0) and D5(y,z,0) are general enough, that

is, if Definition 5.1 is satisfied, then the base of the flop is 10 points {Pi}1≤i≤10, and both

E−
0 and E+

1 are 10 disjoint curves mapping to {Pi}1≤i≤10.

We show that locally analytically, the diagram Y0 → W0 ← Y1 is 10 Atiyah flops. Let

P ∈W0 be any point in the base of the flop. Then, P has y or z coordinate nonzero. We

consider the case where the y-coordinate is nonzero, the other case is similar. Since the base

of the flop is 10 points, the point P is smooth in P(1,1,3). By the implicit function theorem,

we can locally analytically equivariantly express α and z in terms of the variables u,x,ξ, t

on the patches (Y0)y, (W0)y, and (Y1)y. So, the flop Y0 →W0 ← Y1 is locally analytically a

(1,1,−1,−1)-flop, the so-called Atiyah flop, around P.

The last morphism Y1 → Z in the link for X is a divisorial contraction. Multiplying the

action matrix of T0 by the matrix
(
6 −5
2 −1

)
with determinant 4, we see that

u x y z α ξ t

T1
∼=

(
5 6 1 1 3 0 −4

)
.

1 2 1 1 3 4 0

Let Y1 → Z be the ample model of 1
4V(ξ), that is,

Y1 → Z

[u,x,y,z,α,ξ, t] �→
[
t
5
4u,t

1
4 y, t

1
4 z, t

3
2x,t

3
4α,ξ

]
.

Then Z is the bidegree (5,6) complete intersection

Z : V(h,−xξ+α2−D6(y,z,u))⊆ P(1,1,1,2,3,4)

with variables u,y,z,x,α,ξ, where the h is given by applying the C-algebra homomorphism

t �→ 1 to g. The morphism Y1 → Z contracts the exceptional divisor V(t) ⊆ Y1 to the

point Pξ = [0,0,0,0,0,1]. On the quasiprojective patch (Y1)ξ, we can express u and x

locally analytically equivariantly in terms of y,z,α, t. So, the morphism Y1 → Z is locally

analytically the Kawamata weighted blowdown (see [34]) to the terminal quotient singular

point Pξ of type 1/4(1,1,3).

Remark 5.5. We explain below how we found the variety X used in Proposition 5.4.

We start with the variety X̂, given by Theorem A. Note that it is not possible to assign

weights to the coordinates of P(1,1,1,1,3) such that the corresponding weighted blowup of

X̂ would be a (3,2,1,1)-Kawakita blowup. To amend this, we first replace the variety X̂

by a variety X̄ such that choosing the weights appropriately, the weighted blowup of X̄ is

the (3,2,1,1)-Kawakita blowup. So far the process is algorithmic. Unfortunately, as we see

below, the constructed ideal IȲ does not 2-ray follow the ambient toric variety T̄0. Using
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the technique known as unprojection, we construct another toric variety T0 and a subvariety

Y0 given by an ideal IY . This time we are lucky, since as the proof of Proposition 5.4 shows,

the ideal IY 2-ray follows T0. Note that the variety Y0 has higher codimension in T0 than

Ȳ0 had in T̄0. We give details below.

We perform the coordinate change X̂ → X̄ given in Equation (4.4) of Corollary 4.10,

with (r1, r2,a,1) = (3,2,1,1), p2 = a2 and v0 = 1. We see that X̂ is isomorphic to

X̄ : V(f̄)⊆ P(1,1,1,1,3)

with variables x,y,z, t,α, where

f̄ = α(−α+2x2t+2xa2)+x3t2A1+x2tB3+xC5+D6.

We construct a (3,2,1,1)-Kawakita blowup Ȳ0 → X̄. Define the toric variety T̄0 by

u x y z α t

T̄0 :
(

0 1 1 1 3 1
)
.−1 0 1 1 3 2

In other words, T̄0 is given by the geometric quotient

T̄0 =
C6 \V((u,x)∩ (y,z,α, t))

(C∗)2
.

Let Φ̄ be the ample model of V(x), and let Ȳ0 ⊆ T̄0 be the strict transform of X̄. By

Corollary 4.10, Ȳ0 → X̄ is a (3,2,1,1)-Kawakita blowup. Alternatively, define Ȳ0 by V(ḡ)⊆
T0 where

ḡ = α(−uα+2x2t+2xa2)+x3t2AY +x2tBY +xCY +uDY

and use Proposition 4.6 on the patch (Ȳ0)x → X̄x to show that Ȳ0 → X̄ is a (3,2,1,1)-

Kawakita blowup, similarly to Proposition 5.4.

We show that IȲ does not 2-ray follow T̄0. We describe the next (and the final) map in

the 2-ray game for T̄0. Acting by the matrix
(
1 −1
2 −1

)
, we can write T̄0 by

u x y z α t

T̄0
∼=

(
1 1 0 0 0 −1

)
.

1 2 1 1 3 0

The ample model of the divisor V(y) is the weighted blowup

T̄0 → P(1,1,1,2,3)

[u,x,y,z,α, t] �→ [y,z,ut,xt,α],

where the center is the surface P(1,1,3) given by V(u,x) ⊆ P(1,1,1,2,3) with variables

y,z,u,x,α. Above every point in P(1,1,3), the fiber is P1. Define

Z̄ : V(h̄)⊆ P(1,1,1,2,3),

where

h̄= α(−uα+2x2+2xa2)+x3AZ +x2BZ +xCZ +uDZ ,
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where

AZ =A1(y,z,u), BZ =B3(y,z,u), CZ = C5(y,z,u), DZ =D6(y,z,u).

We show that when restricting the weighted blowup to Ȳ0 → Z̄, the exceptional

locus is one-dimensional. After restricting to Ȳ0, the exceptional divisor V(t) becomes

V(t,x(2αa2 +C5(y,z,0)) + u(−α2 +D6(y,z,0))). By Definition 5.1, there are exactly 10

points P1, . . . ,P10 ∈ P(1,1,3) ⊆ Z̄ such that 2αa2+C5(y,z,0) and −α2+D6(y,z,0) have a

common solution. Above each of those points, the fiber is P1. Above any other point, the

fiber is just one point. Therefore, the morphism Ȳ0 → Z̄ contracts 10 curves onto 10 points,

and is an isomorphism elsewhere. This shows that Ȳ0 does not 2-ray follow T̄0, since Z̄ is

not Q-factorial and a 2-ray link ends with either a fibration or a divisorial contraction.

The problem with the previous embedding was that ḡ belonged to the irrelevant ideal

(u,x). We unproject the divisor V(u,x), to embed Ȳ0 into a toric variety T0 such that Y0

2-ray follows T0. The varieties Y0 ⊆ T0 are defined as in the proof of Proposition 5.4. We

see that Ȳ0 is isomorphic to Y0 through the map

[u,x,y,z,α, t] �→
[
u,x,y,z,α,

α2−DY

x
,t

]
.

The map is a morphism, since we have the equality

α2−DY

x
=

2αa2+2αxt+x2t2AY +xtBY +CY

u

in the field of fractions of C[u,x,y,z,α, t], and x or u is nonzero at every point of T0. For

more details on this kind of unprojection, see [49, §2] or [44, §2.3].
The coordinate change Ȳ0 → Y0 induces a coordinate change X̄ →X, where X is defined

as in the proof of Proposition 5.4.

5.3 cA5 model

Proposition 5.6. A sextic double solid X which is a Mori fiber space with a cA5

singularity satisfying Definition 5.1 has a Sarkisov link to a sextic double solid Z with a cA5

singularity, starting with a (3,3,1,1)-blowup of the cA5 point in X, then four Atiyah flops,

and finally a (3,3,1,1)-blowdown to a cA5 point. If in addition c4 is general after fixing

ai, bi, and d6 in Notation 3.4, then X and Z are not isomorphic. Under further generality

conditions (Proposition 5.3), both X and Z are smooth outside the cA5 point.

Proof. We exhibit the diagram below.

Y0 Y1

cA5 ∈X ⊆ P(14,3) W0 cA5 ∈ Z ⊆ P(14,3)

(3,3,1,1)

4×(1,1,−1,−1)

(3,3,1,1)

We construct X and a (3,3,1,1)-Kawakita blowup Y0 → X. Using Theorem A, and

performing the coordinate change in Equation (4.5) of Corollary 4.10 (with p2 = a2), we

can write a sextic double solid X with a cA5 singularity by

X : V(f,−β+xt+a2)⊆ P(1,1,1,1,2,3),
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with variables x,y,z, t,β,w where

f =−w2+xβ(2b3−4βa1+8xta1+xβ)+4x3t3a0+x2t2B2+xtC4+D6,

where Bi, Ci, Di ∈ C[y,z, t] are homogeneous of degrees i. Define T0 by

u x y z w β t

T0 :
(

0 1 1 1 3 2 1
)
.−1 0 1 1 3 3 2

Let Φ: T0 → P(1,1,1,1,2,3) be the ample model of V(x), Y0 ⊆ T0 the strict transform of X,

and Y0 →X the restriction of Φ. Then, Y0 is given by

Y0 : V(IY )⊆ T0 where IY = (Φ∗f/u6,−uβ+xt+a2),

and Y0 →X is a (3,3,1,1)-Kawakita blowup.

We show that the first map in the 2-ray game for Y0 is a flop, locally analytically 4 Atiyah

flops, under Definition 5.1. Acting by the matrix
(

1 0
−1 1

)
, we find

u x y z w β t

T0
∼=
(

0 1 1 1 3 2 1
)
.−1 −1 0 0 0 1 1

The base of the flop in P(1,1,3) ⊆ W0 is given by V(a2,−w2 +D6(y,z,0)) ⊆ P(1,1,3). If

a2 and D6(y,z,0) are general, that is, Definition 5.1 is satisfied, then this is exactly four

points. In this case, any such point P is a smooth point in P(1,1,3). Consider the case

where the y-coordinate of P is nonzero, the case where z is nonzero is similar. Locally

analytically equivariantly, we can express z and w in terms of u,x,β, t in Y0, W0, and Y1.

So, the diagram Y0 →W0 ← Y1 is locally analytically four Atiyah flops.

The last map in the 2-ray game of Y0 is a weighted blowdown Y1 → Z. After acting by(
3 −2
2 −1

)
on the initial matrix of T0, we find that T1 is given by

u x y z w β t

T1 :
(
2 3 1 1 3 0 −1

)
.

1 2 1 1 3 1 0

We see that Z ⊆ P(1,1,1,1,2,3) with variables β,u,y,z,x,w is given by the ideal

IZ = (h,−uβ+x+a2),

where h is given by sending t to 1 in Φ∗f/u6, namely

h=−w2+xβ(2b3−4uβa1+8xa1+xβ)+4x3a0+x2BZ +xCZ +DZ

and

BZ =B2(y,z,u), CZ = C4(y,z,u), DZ =D6(y,z,u).

Substituting x= uβ−a2 into h, we find that Z is a sextic double solid. Applying the explicit

splitting lemma (Proposition 3.2), we find that the complex analytic space germ (Z,Pβ) is

isomorphic to (V(hana),0)⊆ (C4,0) with variables w,u,y,z, where

hana =−w2+u2+d6− (b3−2a1a2)
2+(h.o.t in y,z),
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where (h.o.t in y,z) stands for higher-order terms in the variables y,z. So, Pβ ∈ Z is a cA5

singularity. On the patch where β is nonzero, we can substitute u= xt+a2, so the morphism

(Y1)β → Zβ is a weighted blowup of a hypersurface given by a weight 6 polynomial. By

Proposition 4.6, Y1 → Z is a (3,3,1,1)-Kawakita blowup.

We show that X and Z are not isomorphic when a2 �= 0 and c4 is general, using a

dimension counting argument similar to [25, Th. 2.55]. Using the explicit splitting lemma,

we find that the complex analytic space germ (X,Px) is isomorphic to (V(fana),0)⊆ (C4,0)

with variables w,t,y,z where

fana =−w2+ t2+d6−2a2c4+2a22b2−4a0a
3
2− (b3−4a1a2)

2+(h.o.t in y,z).

If X and Z are isomorphic, then this implies that the complex analytic space germs (X,Px)

and (Z,Pβ) are isomorphic, implying by Propositions 2.4 and 2.5 that the degree 6 parts of

fana(0,0,y,z) and hana(0,0,y,z) are the same up to an invertible linear coordinate change

on y,z. Fixing a0, a1, a2, b2, b3, and d6, we see that hana(0,0,y,z) is fixed, but fana(0,0,y,z)

has 5 degrees of freedom. Since there are only 4 degrees of freedom in picking an element of

GL(2,C), the polynomials fana(0,0,y,z) and hana(0,0,y,z) are not related by an invertible

linear coordinate change when c4 is general. This shows that if X is general, then the

varieties X and Z are not isomorphic.

5.4 cA6 model

Proposition 5.7. A sextic double solid that is a Mori space with a cA6 singularity

satisfying Definition 5.1 has a Sarkisov link to a hypersurface Z5 ⊆ P(1,1,1,1,2) with a cA3

singularity, starting with a (4,3,1,1)-blowup of the cA6 point, then two (1,1,−1,−1)-flops,

then a (4,1,1,−2,−1;2)-flip, and finally a (2,2,1,1)-blowdown to a cA3 point. Under further

generality conditions, the singular locus of Z consists of three points, namely the cA3 point,

the 1/2(1,1,1) quotient singularity, and an ordinary double point.

Proof. We exhibit the diagram below.

Y0 Y1 Y2

cA6 ∈X ⊆ P(14,3) W0 W1 cA3 ∈ Z5 ⊆ P(14,2)

(4,3,1,1)

2×(1,1,−1,−1) (4,1,1,−2,−1;2)

(3,1,1,1)

We construct X and a (4,3,1,1)-Kawakita blowup Y0 → X. Using Theorem A and

Corollary 4.10 with p2 = a2 and p3 = b3 − 4a1a2, we can write a sextic double solid X

with a cA6 singularity by

X : V(f,−β+xt+a2)⊆ P(1,1,1,1,2,3),

with variables x,y,z, t,β,w where

f = α(−α+2(b3−4βa1+4xta1+xβ))

+2β(c4−βb2+2xtb2+2xβa1+2β2a0−6xtβa0+6x2t2a0)

+x2t3B1+xt2C3+ tD5,
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where Bi, Ci, Di ∈ C[y,z, t] are homogeneous of degree i. Define T0 by

u x y z α β t

T0 :
(

0 1 1 1 3 2 1
)
.−1 0 1 1 4 3 2

Let Φ: T0 → P(1,1,1,1,2,3) be the ample model of V(x), Y0 ⊆ T0 the strict transform of X,

and Y0 →X the restriction of Φ. Then, Y0 is given by

Y0 : V(IY )⊆ T0 where IY = (Φ∗f/u7,−uβ+xt+a2),

and Y0 →X is a (4,3,1,1)-Kawakita blowup.

We show that the first diagram Y0 → W0 ← Y1 in the 2-ray game for Y0 is locally

analytically two Atiyah flops under Definition 5.1, namely that V(a2) ⊆ P1 with variables

y,z consists of exactly two points, and for both of the points P, one of b3(P ), c4(P ) or

d5(P ) is nonzero, where D5 = t5d0+2t4d1+ t3d2+2t2d3+ td4+2d5. Acting by the matrix(
4 −3
−1 1

)
, we find

u x y z α β t

T0 :
(

3 4 1 1 0 −1 −2
)
.−1 −1 0 0 1 1 1

Under the above condition, after a suitable linear change of coordinates on y,z, we find

that a2 = yz. Let P = V(z) ∈ P1 ⊆W0, the case where P = V(y) is similar. On the patch

where y is nonzero, we can substitute z = uβ−xt. The contracted locus is P1 ∼=V(α,β,t)⊆
(Y0)y, and the extracted locus is V(u,x) =V(u,x,αb3(1,0)+βc4(1,0)+td5(1,0))⊆ (Y1)y. By

Definition 5.1, we can express one of α,β,t equivariantly locally analytically in the other

variables. So, the flop diagram Y0 → W0 ← Y1 is locally analytically a (1,1,−1,−1)-flop

above both of the points.

We show that the next diagram in the 2-ray game of Y0 is a (4,1,1,−2,−1;2)-flip (this

is case (1) in [8, Th. 8]). The toric variety T1 is given by

u x y z α β t

T1 :
(

3 4 1 1 0 −1 −2
)
.−1 −1 0 0 1 1 1

The base of the flip is Pα = [0,0,0,0,1,0,0]. On the patch where α is nonzero, we can

express u locally analytically and equivariantly in terms of x,y,z,β, t. After substitution,

the ideal is principal, with generator f ′ =−β · (2x+ · · ·)+xt+a2. Under Definition 5.1, a2
has a nonzero coefficient in f ′, so the flip diagram corresponds to case (1) in [8, Th. 8]. The

flips contracts a curve containing a 1/4(1,1,3) singularity and extracts a curve containing

a 1/2(1,1,1) singularity and an ordinary double point. The ordinary double point on Y2 is

at [u0,0,0,0,2,1,1] for some u0 ∈ C.

We show that the last map in the 2-ray game of Y0 is a weighted blowup Y2 → Z, where

Z is isomorphic to a hypersurface Z5 ⊆ P(1,1,1,1,2) with variables u,y,z,β,α. Acting by

the matrix
(
3 −2
2 −1

)
on the initial action-matrix of T0, we find that T2 is given by
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u x y z α β t

T2 :
(
2 3 1 1 1 0 −1

)
.

1 2 1 1 2 1 0

Define the bidegree (5,2) complete intersection Z : V(h,a2−uβ+x)⊆ P(1,1,1,1,2,2) with

variables u,y,z,β,x,α, where

h= α(−uα+2(b3−4uβa1+4xa1+xβ))

+2β(c4−uβb2+2xb2+2xβa1+2u2β2a0−6uxβa0+6x2a0)

+x2BZ +xCZ +DZ ,

where

BZ =B1(y,z,u), CZ = C3(y,z,u), DZ =D5(y,z,u).

The morphism Y2 → Z given by the ample model of V(β) is a weighted blowdown with

center Pβ and exceptional locus V(t). Substituting

x= uβ−a2 (5.1)

into h, we find that Z is isomorphic to a hypersurface Z5 ⊆ P(1,1,1,1,2) with variables

u,y,z,β,α. The substitution (5.1) does not lift onto Y2. Instead, on the patch Zβ, we can

substitute u= (a2+x)/β. This substitution lifts to (Y2)β. By Definition 5.1, Pβ ∈Z is a cA3

singularity and the hypersurface Zβ is given by a weight 4 polynomial. By Proposition 4.6,

(Y2)β → Zβ is a (3,1,1,1)-Kawakita blowup.

Note that Z has an ordinary double point at [u0,0,0,1,2] for some u0 ∈ C.

5.5 cA7 family 7.1 model

Proposition 5.8. A Mori fiber space sextic double solid with a cA7 singularity in family

7.1 satisfying Definition 5.1 has a Sarkisov link to Z3,4 ⊆ P(1,1,1,1,2,2) with an ordinary

double point, starting with a (4,4,1,1)-blowup of the cA7 point, then two (4,1,1,−2,−1;2)-

flips, and finally a blowdown (with standard weights (1,1,1,1)) to an ordinary double

point. Under further generality conditions, Z has exactly five singular points, namely two

1/2(1,1,1) singularities and three ordinary double points.

Proof. We exhibit the diagram below.

Y0 Y1 Y2

cA7 ∈X ⊆ P(14,3) W0 ODP ∈ Z3,4 ⊆ P(14,22)

(4,4,1,1)

∼ 2×(4,1,1,−2,−1;2)

(1,1,1,1)

We construct X and a (4,4,1,1)-Kawakita blowup Y0 →X. We can write a sextic double

solid X with an isolated cA7 singularity in family 7.1 by

X : V(f,β−xt− r2,γ−xβ−s3)⊆ P(1,1,1,1,2,3,3)

with variables x,y,z, t,β,γ,w, where

f =−w2+γ2−2tγe2+2β2e2+2tβc3+4tγb2−2β2b2−2tβ2b1+4xt2βb1

+2x2t4b0−16tγa21+16β2a21+4βγa1−8β3a0+12xtβ2a0+xt3C2+ t2D4,
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where Ci, Di ∈ C[y,z, t] are homogeneous of degree i. Define T0 by

u x y z w γ β t

T0 :
(

0 1 1 1 3 3 2 1
)
.−1 0 1 1 4 4 3 2

Define Y0 by

Y0 : V(IY )⊆ T0 where IY = (Φ∗f/u8, uβ− r2−xt, uγ−s3−xβ).

The ample model of V(x)⊆ Y0 is a (4,4,1,1)-Kawakita blowup Y0 →X.

We show that the diagram Y0 →W0 ← Y1 induces an isomorphism Y0 → Y1. Acting by

the matrix
(

4 −3
−1 1

)
, we find

u x y z w γ β t

T0
∼=
(

3 4 1 1 0 0 −1 −2
)
.−1 −1 0 0 1 1 1 1

Define T1 (resp. T2) with the same action as T0 but with irrelevant ideal (u,x,y,z)∩
(w,γ,β, t) (resp. (u,x,y,z,w,γ)∩ (β,t)). Define Y1 ⊆ T1 and Y2 ⊆ T2 by the same ideal

IY . The base of the flop T0 → W0 ← T1 restricts to V(r2, s3) ⊆ P1 ⊆ W0, which is empty.

Therefore, Y0 →W0 and W0 ← Y1 are isomorphisms.

We show that the next diagram Y1 → W1 ← Y2 in the 2-ray game of Y0 is locally

analytically two (4,1,1,−2,−1;2)-flips. The only monomials in Φ∗f/u8 that are not in

(u,x,y,z,β, t) are −w2 and γ2. Therefore, the base of the flip is two points, [1,1] and

[−1,1]∈ P1 with variables w and γ inside W1. We make a change of coordinates w′ =w−γ,

respectively w′ = w+ γ, for the flip above [1,1], respectively [−1,1]. On the patch where

γ is nonzero, we can substitute u= s3+xβ in Φ∗f/u8, and express w′ locally analytically

and equivariantly above [1,1], respectively [−1,1], in terms of x,y,z,β, t. After projecting

away the variables u and w′, we are left with the principal ideal (βs3−r2+xβ2−xt). Since

it contains both r2 and xt, by case (1) in [8, Th. 8], it is a terminal (4,1,1,−2,−1;2)-flip

above both [1,1] and [−1,1]. The flip contracts two curves, both containing a 1/4(1,1,3)

singularity, and extracts two curves, both containing a 1/2(1,1,1) singularity and a cA1

singularity. The cA1 points are both ordinary double points if r2 is not a square of a linear

form, and are both 3-fold A2 singularities (given by x2
1+x2

2+x2
3+x3

4) otherwise. On Y2,

the cA1 singularities are at [0,0,0,0,1,1,1,1] and [0,0,0,0,−1,1,1,1].

We show that the last map in the link for X is a divisorial contraction Y2 → Z ′. Acting

by the matrix
(
3 −2
2 −1

)
on the initial action-matrix of T0, we see that

u x y z w γ β t

T2
∼=
(
2 3 1 1 1 1 0 −1

)
.

1 2 1 1 2 2 1 0

Define Z ′ ⊆ P(1,1,1,1,2,2,2) with variables u,y,z,β,w,γ,x by the ideal IZ′ , where IZ′ is

the image of the ideal IY under the homomorphism t �→ 1. Let Y2 → Z ′ be the ample

model of V(β). On the affine patch Z ′
β, we can express u and x locally analytically and

equivariantly in terms of y,z,w,γ,β, t. This coordinate change lifts to Y2. By Definition 5.1,

we can compute that Pβ ∈Z ′ is an ordinary double point, and Y2 →Z ′ is locally analytically

the (usual) blowup with center Pβ.
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The variety Z ′ is isomorphic to a complete intersection Z3,4 ⊆ P(14,22), by projecting

away from x. The variety Z is given by

Z3,4 : V(−s3+βr2+uγ−uβ2, h)⊆ P(1,1,1,1,2,2)

with variables u,y,z,β,w,γ, where

h=−w2+γ2+2b0r
2
2 −4βb1r2−4uβb0r2−12β2a0r2−2γe2+2β2e2+2βc3+4γb2

−2β2b2+2uβ2b1+2u2β2b0−16γa21+16β2a21+4βγa1+4uβ3a0+(uβ− r2)CZ +DZ ,

where CZ = C2(y,z,u) and DZ = D4(y,z,u). The variety Z has two cA1 singularities at

[0,0,0,1,1,1] and [0,0,0,1,−1,1].

Remark 5.9. We explain how we found the variety X. Using p2 = r2 and p3 = s3, we can

write a sextic double solid with an isolated cA7 in family 7.1 by X̄ : V(f̄ ,x2t+xr2+s3− γ̄)

inside P(1,1,1,1,3,3) with variables x,y,z, t,w, γ̄, where f̄ is given as in Theorem A. The

(1,1,4,4,2)-blowup Ȳ0 → X̄ for variables y,z,w, γ̄, t is a (4,4,1,1)-Kawakita blowup, but the

2-ray game of Ȳ0 does not follow the ambient toric variety T̄0. Namely, the toric anti-flip

T̄0 →W̄0 ← T̄1 restricts to Ȳ0 → W̄0 ← Ȳ1, where Ȳ0 → W̄0 is an isomorphism and W̄0 ← Ȳ1

extracts P2, a divisor on Ȳ1. The reason why Ȳ0 was not the correct variety is that one of

the generators of the ideal of Ȳ0 is ḡ1 = x2t+xr2+us3−uγ̄, which is inside the irrelevant

ideal (u,x). We find the correct variety Y0 by unprojecting ḡ1 = 0 with respect to u,x. By

unprojection, we mean the coordinate change Ȳ0 → Y0, an isomorphism. See [49, §2] or [44,
§2.3] for more details on this type of unprojection. This coordinate change induces the

coordinate change X̄ →X, where X is given as in the proof of Proposition 5.8.

5.6 cA7 family 7.2 model

Proposition 5.10. A Mori fiber space sextic double solid with a cA7 singularity in

family 7.2 satisfying Definition 5.1 has a Sarkisov link to a complete intersection Z2,4 ⊆
P(1,1,1,1,1,2) with a cA2 singularity, starting with a (4,4,1,1)-blowup of the cA7 point,

followed by one Atiyah flop, then two (4,1,−1,−3)-flips, and finally a (3,3,2,1)-blowdown

to a cA2 point. Under further generality conditions, the variety Z is smooth outside the cA2

point.

Proof. We exhibit the diagram below.

Y0 Y1 Y2 Y3

cA7 ∈X ⊆ P(14,3) W0 W1 cA2 ∈ Z2,4 ⊆ P(15,2)

(4,4,1,1)

(1,1,−1,−1) 2×(−4,−1,1,3) ∼

(3,3,2,1)

We describe the sextic double solid X. Define X ⊆ P(1,1,1,1,2,3,3,3) with variables x,

y, z, t, β, w, γ, ξ by the ideal

IX = (f −2e3ξ, β− q1r1−xt, γ− q1s2−xβ,−ξ+ ts2−βr1), (5.2)

where

f =−w2+γ2+2tβc3+4tγb2−2β2b2−2tβ2b1+4xt2βb1+2x2t4b0

−16tγa21+16β2a21+4βγa1−8β3a0+12xtβ2a0+xt3C2+ t2D4,

where Ci, Di ∈ C[y,z, t] are homogeneous of degree i.
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We describe the weighted blowup Y0 → X, restriction of Φ: T0 → P(1,1,1,1,2,3,3,3).

Define T0 by

u x y z w γ β ξ t

T0 :
(

0 1 1 1 3 3 2 3 1
)
.−1 0 1 1 4 4 3 5 2

Define Y0 ⊆ T0 by the ideal IY with the six generators

g−2e3ξ, uβ− q1r1−xt, uγ− q1s2−xβ,

−uξ+ ts2−βr1, −xξ+βs2−γr1, −q1ξ+ tγ−β2,

where g =Φ∗f/u8. On the affine patch Xx, we can express β,t, and ξ in terms of w,γ,y,z,

to get a hypersurface in C4 given by fhyp ∈C[w,γ,y,z]. Note that these coordinate changes

lift to (Y0)x. Since fhyp has weight 8, by Proposition 4.6, Y0 →X is a (4,4,1,1)-Kawakita

blowup.

We show that the first diagram Y0 → W0 ← Y1 in the 2-ray game of Y0 is an Atiyah

flop, provided that r1 and q1 are coprime in C[y,z]. Acting by the matrix
(

4 −3
−1 1

)
on the

action-matrix of T0, define T1 by

u x y z w γ β ξ t

T1 :
(

3 4 1 1 0 0 −1 −3 −2
)
.−1 −1 0 0 1 1 1 2 1

Define Y1 ⊆ T1 by the ideal IY . The base of the flop is V(q1)⊆ P1 with variables y,z, which

is one point. Perform a suitable invertible linear coordinate change on y,z such that q1 = z

and r1 = y. Since uβ−q1r1−xt is in IY , we can substitute z = uβ−xt on the patch where

y is nonzero. The coefficients of β in −uξ+ ts2−βy ∈ IY and γ in −xξ+βs2−γy ∈ IY are

nonzero on the patch where y is nonzero. Therefore, we can locally analytically equivariantly

express β and γ in terms of u,x,w,t. After substituting z,β,γ, we find that the diagram

Y0 →W0 ← Y1 is locally analytically the Atiyah flop.

The next diagram in the 2-ray game of Y0 is the flip Y1 →W1 ← Y2. The base of the flip

is V(γ2−w2) ⊆ P1 with variables w,γ, which is two points [1,1] and [−1,1]. We consider

the point P = [1,1], the flip for the other point is similar. Perform a coordinate change

w′ = w− γ. On the patch where γ is nonzero, we find u = q1s2 + xβ and t = q1ξ+ β2.

Writing q1 = z and r1 = y as before, we find y =−xξ+βs2. We are left with the principal

ideal in C[x,z,w′,β,ξ] generated by −w′(2+w′)+terms not involving w′. So, we can locally

analytically equivariantly express w′ in terms of x,z,β,ξ. So, the diagram Y1 →W1 ← Y2 is

locally analytically two (−4,−1,1,3)-flips.

The next diagram in the toric 2-ray game T2 → W2 ← T3 restricts to isomorphisms

Y2 →W2 ← Y3. The reason is that the base of the toric flip Pβ restricts to an empty set in

W2, since IY contains the polynomial tγ−β2− qξ.

We show that the last diagram in the 2-ray game of Y0 is a divisorial contraction Y3 →Z.

Multiplying the action-matrix of T1 by (2 3
1 2), we see that T3 is given by

u x y z w γ β ξ t

T3 :
(
3 5 2 2 3 3 1 0 −1

)
.

1 2 1 1 2 2 1 1 0
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Consider the variety Z ⊆ P(1,1,1,1,1,2,2,2) with variables ξ,u,y,z,β,x,w,γ where Y3 → Z

is the ample model of V(ξ). On the patch Zξ, we can substitute u= s2−βr1, x= βs2−γr1
and z = γ−β2, and compute that Zξ is a hypersurface given by a weight 6 polynomial,

with a cA2 singularity at Pξ ∈Zξ, of type at least 2 (see Definition 4.8). These substitutions

lift to (Y3)ξ, showing that Y3 → Z is a (3,3,2,1)-Kawakita blowup with center Pξ. If the

coefficients are general, namely when

−2eβ +8β4a0rβ −2β2bβ +12β2a2β ∈ C[y,β]

is not a full square, where rβ = r1(y,−β2), eβ = e3(y,−β2), aβ = a1(y,−β2), and bβ =

b2(y,−β2), then the point Pξ is exactly of type 2.

The variety Z is isomorphic to a complete intersection Z2,4 ⊆ P(1,1,1,1,1,2) with

variables u,y,z,β,ξ,w. We see this by substituting x = uβ − q1r1 and γ = q1ξ+ β2. We

find that Z is isomorphic to Z2,4 : V(−uξ+s2−βr1, h), where

h=−w2+ ξ2q21 −2e3ξ+β4+2b0q
2
1r

2
1 −4βb1q1r1−4uβb0q1r1−12β2a0q1r1+4ξb2q1

−16ξa21q1+4βξa1q1+2β2ξq1+2βc3+2β2b2+2uβ2b1+2u2β2b0+4β3a1+4uβ3a0

+(uβ− q1r1)CZ +DZ ,

where CZ = C2(y,z,u) and DZ =D4(y,z,u).

Remark 5.11. We explain below how we found the embedding of X. Using Theorem

A and the coordinate change in cA7 family 7.1, we can write a sextic double solid X̄ with

an isolated cA7 in family 7.2 by

X̄ : V(f −2e3(ts2−βr1), β−xt− q1r1, γ−xβ− q1s2)⊆ P(1,1,1,1,2,3,3)

with variables x,y,z, t,β,γ,w.

We construct a (4,4,1,1)-Kawakita blowup Ȳ0 → X̄. Define T̄0 by

u x y z w γ β t

T̄0 :
(

0 1 1 1 3 3 2 1
)
.−1 0 1 1 4 4 3 2

Let T0 → P(1,1,1,1,2,3,3) be the ample model of V(x) and Y0 ⊆ T0 the strict transform of

X. Then Ȳ0 is given by the ideal IȲ = (ḡ1, . . . , ḡ5), where

ḡ1 = ug+2e3(βr1− ts2), ḡ2 = uβ− q1r1−xt, ḡ3 = uγ− q1s2−xβ,

ḡ4 = xg+2e3(γr1−βs2), ḡ5 = q1g+2e3(β
2− tγ)).

The morphism Ȳ0 → X̄ is a (4,4,1,1)-Kawakita blowup, as can be checked on the patch

(Ȳ0)x → X̄x.

Note that we do not prove that IȲ is saturated with respect to u. In fact, the saturation

will not be IY if we do not use assume some generality conditions, similarly to cA6 and cA7

family 7.1. As a heuristic argument to see why IȲ might be saturated in the general case

(general meaning a Zariski open dense set of the parameter space), we can use computer

algebra software, pretend that ai, bi, ci, di, q1, r1, s2, e3 are algebraically independent

variables of a polynomial ring over Q or Zp for a large prime p, and calculate that the

saturation in that case indeed equals the ideal IȲ .

Similarly to the diagram Y0 → W0 ← Y1 in the proof of Proposition 5.10, the diagram

Ȳ0 → W̄0 ← Ȳ1 is an Atiyah flop, provided r1 and q1 are coprime.
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We show that IȲ does not 2-ray follow T̄0, namely that the diagram Ȳ1 → W̄1 ← Y2

contracts a curve and extracts a divisor. Acting by the matrix
(

4 −3
−1 1

)
on the action matrix

of T̄0, define T̄1 by

u x y z w γ β t

T̄1 :
(

3 4 1 1 0 0 −1 −2
)
,−1 −1 0 0 1 1 1 1

and define Ȳ1 ⊆ T̄1 by the zeros of IȲ . We consider the toric flip T̄1 →W̄1 ← T̄2 and restrict

it to Ȳ1 → W̄1 ← Ȳ2. Since IȲ is the zero ideal when restricting to V(u,x,y,z,β, t), the base

P1 ⊆¯̄W1 of the toric flip restricts to P1 ⊆ W̄1 with variables w,γ. The morphism Ȳ1 → W̄1

contracts a curve P1 to both of the points [1,1] and [1,−1] in the base P1 ⊆ W̄1 and is an

isomorphism elsewhere. The morphism W̄1 ← Ȳ2 extracts a curve P1 for every point in the

base P1 ⊆ W̄1, so extracts a divisor on Ȳ2. The diagram Ȳ1 → W̄1 ← Ȳ2 is not a step in the

2-ray game of Ȳ0, so IȲ does not 2-ray follow T̄0. The reason for this was that the ideal IȲ
is contained in (u,x,y,z), so the surface V(u,x,y,z) ⊆ T̄2 exists on Ȳ2, but does not exist

on T̄1.

We unproject ḡ1 = ḡ4 = ḡ5 = 0 with respect to u,x,y,z in Ȳ1 ⊆ T̄1, to find a variety

Y1 ⊆ T1. We explain below what we mean by this. We can write the system of equations

ḡ1 = ḡ4 = ḡ5 = 0 in the matrix form

⎛
⎝g 0 0 βr1− ts2
0 g 0 γr1−βs2
0 0 g β2− tγ

⎞
⎠
⎛
⎜⎜⎝

u

x

q1
2e3

⎞
⎟⎟⎠= 0.

If the above equations hold, then we have∣∣∣∣∣∣
⎛
⎝0 0 βr1− ts2
g 0 γr1−βs2
0 g β2− tγ

⎞
⎠
∣∣∣∣∣∣

u
=

∣∣∣∣∣∣
⎛
⎝g 0 βr1− ts2
0 0 γr1−βs2
0 g β2− tγ

⎞
⎠
∣∣∣∣∣∣

−x
=

∣∣∣∣∣∣
⎛
⎝g 0 βr1− ts2
0 g γr1−βs2
0 0 β2− tγ

⎞
⎠
∣∣∣∣∣∣

q1
=

∣∣∣∣∣∣
⎛
⎝g 0 0

0 g 0

0 0 g

⎞
⎠
∣∣∣∣∣∣

−2e3
.

Calculating the determinants and dividing by −g2, we find the equalities

ts2−βr1
u

=
βs2−γr1

x
=

tγ−β2

q1
=

g

2e3
, (5.3)

between elements of the field of fractions of C[u,x,y,z,w,γ,β, t]/IȲ . Using Equation (5.3),

we see that the morphism Ȳ1 → Y1 given by

[u,x,y,z,w,γ,β, t] �→ [u,x,y,z,w,γ,β,
ts2−βr1

u
,t]

is an isomorphism, where Y1 is described in the proof of Proposition 5.10.

The coordinate change Ȳ1 → Y1 induces an isomorphism X̄ →X, giving the variety X.

5.7 cA7 family 7.3 model

Proposition 5.12. A Mori fiber space sextic double solid with a cA7 singularity in

family 7.3 satisfying Definition 5.1 has a Sarkisov link to a degree 2 del Pezzo fibration,

starting with a (4,4,1,1)-blowup of the cA7 point and followed by two Atiyah flops.

https://doi.org/10.1017/nmj.2024.17 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2024.17


BIRATIONAL GEOMETRY OF SEXTIC DOUBLE SOLIDS WITH A COMPOUND AN SINGULARITY 47

Proof. We exhibit the diagram below.

Y0 Y1 Y2

cA7 ∈X ⊆ P(14,3) W0 P1

(4,4,1,1)

2×(1,1,−1,−1) ∼

dP2 -fibration

First, we define X and a (4,4,1,1)-Kawakita blowup Y0 → X. Any sextic double solid

with an isolated cA7 family 7.3 can be given by a bidegree (6,2) complete intersection

X : V(f,−ξ+ ts1− q2−xt)⊆ P(1,1,1,1,2,3)

with variables x,y,z, t,ξ,w, where

f =−w2+x2ξ2−2ξe4+ ξ2(s21+4a1s1+2xs1−2b2+16a21+4xa1+8ξa0)

+ t(ts41+4ta1s
3
1−8t2a0s

3
1−2ξs31+2tb2s

2
1−2t2b1s

2
1−8ξa1s

2
1+24tξa0s

2
1

+12xt2a0s
2
1−2xξs21+2tc3s1+4tξb1s1+4xt2b1s1−16ξa21s1−4xξa1s1

−24ξ2a0s1−24xtξa0s1−2ξc3−4xξb2−2ξ2b1−4xtξb1+2x2t3b0+16xξa21

+12xξ2a0+xt2C2+ tD4),

where Ci, Di ∈ C[y,z, t] are homogeneous of degree i. Define

u x y z w ξ t

T0 :
(

0 1 1 1 3 2 1
)
.−1 0 1 1 4 4 2

Define Φ: T0 → P(1,1,1,1,2,3) by the ample model of V(x), and define Y0 as the strict

transform of X. Then, Y0 is given by

Y0 : V(IY )⊆ T0 where IY = (Φ∗f/u8,−u2ξ+uts1− q2−xt),

Using Proposition 4.6, we see that Y0 →X is a (4,4,1,1)-Kawakita blowup.

We describe the flop Y0 →W0 ← Y1. Multiplying the action matrix of T0 by
(
1 −1
0 1

)
, we

find

u x y z w ξ t

T0
∼=
(

1 1 0 0 −1 −2 −1
)
.−1 0 1 1 4 4 2

The base of the flop is given by V(q2) ⊆ P1 ⊆ W0. After a suitable coordinate change on

y,z, we find q2 = yz. Consider the flop over V(y), the flop over the other point is similar.

Since q2 and e4 have no common divisor, on the patch where z is nonzero, we can express

y and ξ locally analytically equivariantly in terms of u,x, t,w. So, Y0 →W0 ← Y1 is locally

analytically two Atiyah flops.

The morphisms Y1 →W1 ← Y2 are isomorphisms, since w2 has a nonzero coefficient in

Φ∗f/u8.
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We show that Y2 is a degree 2 del Pezzo fibration. Multiplying the original action matrix

of T0 by the matrix
(
1 0
2 −1

)
with determinant −1, we find

u x y z w ξ t

T2 :
(
0 1 1 1 3 2 1

)
.

1 2 1 1 2 0 0

The ample model of V(t) is

Y2 → P(2,1)

[u,x,y,z,w,ξ, t] �→ [ξ, t].

Since P(2,1) is isomorphic to P1, we see that Y2 is a fibration onto P1. On the patch (Y2)t,

we can substitute x= us1− q2−u2ξ, to find that the general fiber is a weighted degree 4

hypersurface in P(1,1,1,2), so a degree 2 del Pezzo surface.

5.8 cA8 model

Proposition 5.13. A Mori fiber space sextic double solid with a cA8 singularity

satisfying Definition 5.1 has a Sarkisov link to a complete intersection Z3,3 ⊆P(1,1,1,1,1,2)

with a cD4 singularity, starting with a (5,4,1,1)-blowup of the cA8 point, followed by a

(4,1,1,−1,−2;2)-flip, and finally a (3,2,2,1,5)-blowdown to the cD4 singularity. Under

further generality conditions, the singular locus of Z consists of three points, namely the

cD4 point, the 1/2(1,1,1) singularity, and an ordinary double point.

Proof. We exhibit the diagram below.

Y0 Y1 Y2 Y3

cA8 ∈X6 ⊆ P(14,3) W1 cD4 ∈ Z3,3 ⊆ P(15,2)

(1,1,4,5)

∼ (4,1,1,−1,−2;2) ∼

(3,2,2,1,5)

First, we describe X and the weighted blowup Y0 →X. A sextic double solid with a cA8

singularity can be given by a multidegree (6,2,3) complete intersection

X : V(f, β−xt− r2, γ−xβ−s3)⊆ P(1,1,1,1,2,3,3),

with variables x,y,z, t,β,γ,ξ where

f = 8β3(A0−a0)+ ξ(−ξ+2γ−8tA0r2+2tb2−4ta21+4βa1)

+ t(−16tβA2
0r2+2tβc2+4tγb1−2β2b1−2tβ2b0+4xt2βb0−8tγa0a1+8β2a0a1

+12βγa0−2tγB1+2β2B1+16tβ2A2
0−16xt2βA2

0−8βγA0+xt3C1+ t2D3),

where Ci, Di ∈ C[y,z, t] are homogeneous of degree i. Note that B1 ∈ C[y,z]. Define

u x y z γ β ξ t

T0 :
(

0 1 1 1 3 2 3 1
)
.−1 0 1 1 4 3 5 2
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Let Φ: T0 → P(1,1,1,1,2,3,3) be the ample model of V(x), and let Y0 ⊆ T0 be the strict

transform of X. Then Y0 is given by

Y0 : V(IY )⊆ T0 where IY =
(
Φ∗f/u9, uβ−xt− r2, uγ−xβ−s3

)
,

and Y0 →X is a (5,4,1,1)-Kawakita blowup.

The first diagram in the 2-ray game of T0 restricts to a isomorphisms Y0 → W0 ← Y1,

since r2 and s3 are coprime.

The second diagram in the 2-ray game of T0 restricts to a (4,1,1,−1,−2;2)-flip Y1 →
W1 ← Y2. Define the toric variety T1 by multiplying the action matrix of T0 by the matrix(
4 −3
3 −2

)
,

u x y z γ β ξ t

T1 :
(
3 4 1 1 0 −1 −3 −2

)
.

2 3 1 1 1 0 −1 −1

On the patch where γ is nonzero, we have u= xβ+s3 and we can write ξ locally

analytically equivariantly in terms of x,y,z,β, t. We are left with the hypersurface

given by xβ2+βs3−xt− r2 in C5 with variables x,y,z,β, t with weights (4,1,1,−1,−2).

The polynomial contains xt and r2, so this corresponds to case (1) in [8, Th. 8], a

(4,1,1,−1,−2;2)-flip. Similarly to Proposition 5.8, the flip contracts a curve containing

a 1/4(1,1,3) singularity, and extracts a curve containing a 1/2(1,1,1) singularity and a

cA1 singularity, which is an ordinary double point if r2 is not a square and is a 3-fold A2

singularity otherwise. The cA1 singularity on Y2 is at [0,0,0,0,1,1,−2a0,1].

The third diagram in the 2-ray game of T0 restricts to isomorphisms Y2 → W2 ← Y3,

under Definition 5.1, namely that a0 �= A0. On the patch where β is nonzero, the base of

the toric flip restricts to V(A0−a0,u,x,y,z,γ,ξ, t)⊆W2.

We describe the weighted blowdown Y3 → Z. Multiplying the action matrix of T0 by the

matrix
(
5 −3
2 −1

)
, the toric variety T3 is given by

u x y z γ β ξ t

T3 :
(
3 5 2 2 3 1 0 −1

)
.

1 2 1 1 2 1 1 0

The ample model of V(ξ) is Y3 → Z where Z is the tridegree (3,2,3) complete intersection

Z : V(h, uβ−x− r2, uγ−xβ−s3)⊆ P(1,1,1,1,1,2,2)

with variables u,y,z,β,ξ,x,γ, where

h= 8β3(A0−a0)+ ξ(−uξ+2γ−8A0r2+2b2−4a21+4βa1)

−16βA2
0r2+2βc2+4γb1−2β2b1−2uβ2b0+4xβb0−8γa0a1+8β2a0a1

+12βγa0−2γB1+2β2B1+16uβ2A2
0−16xβA2

0−8βγA0+xCZ +DZ ,

where CZ = C1(y,z,u) and DZ = D3(y,z,u). Substituting x= uβ− r2, we see that Z

is isomorphic to a complete intersection of bidegree (3,3) in P(15,2) with variables

u,y,z,β,ξ,γ. The variety Z has a cA1 singularity at [0,0,0,1,−2a0,1]. We can compute

that the point Pξ ∈ Z is a cD4 point, by showing the complex analytic space germ (Z,Pξ)
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is isomorphic to (V(u2+2βr2−s3+h.o.t),0)⊆ (C4,0) with variables u,β,y,z, where h.o.t

are higher-order terms in y,z,β. We can compute that Y3 → Z is the divisorial contraction

to a cD4 point described in [52, Th. 2.3].

Acknowledgment. The author would like to thank Jihun Park for discussions on

factoriality.
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