TRUNCATIONS OF L-FUNCTIONS IN RESIDUE CLASSES

IGOR E. SHPARLINSKI*

Department of Computing, Macquarie University, Sydney, NSW 2109, Australia e-mail: igor@ics.mq.edu.au
(Received 9 December, 2005; accepted 10 February, 2006)

Abstract

Let $\chi(n)$ be a quadratic character modulo a prime p. For a fixed integer $s \neq 0$, we estimate certain exponential sums with truncated L-functions $$
L_{s, p}(n)=\sum_{j=1}^{n} \frac{\chi(j)}{j^{s}} \quad(n=1,2, \ldots)
$$

Our estimate implies certain uniformly of distribution properties of reductions of $L_{s, p}(n)$ in the residue classes modulo p.

2000 Mathematics Subject Classification. 11L07, 11M38.

1. Introduction. Let p be an odd prime and let $\chi(n)$ be a quadratic character modulo p. For a fixed positive integer $s \neq 0$ we define the truncated L-functions

$$
L_{s, p}(n)=\sum_{j=1}^{n} \frac{\chi(j)}{j^{s}}, \quad n=1,2, \ldots
$$

Various properties of such sums, especially for $s=1$, have been considered in the literature, see $[\mathbf{2}, \mathbf{5}, \mathbf{8}, 9]$ and references therein.

Here we consider the behaviour of these sums in the residue classes modulo p. More precisely, in this paper we obtain nontrivial bounds on exponential sums

$$
T_{s}(a ; p, M, N)=\sum_{n=M+1}^{M+N} \mathbf{e}_{p}\left(a L_{s, p}(n)\right),
$$

where

$$
\mathbf{e}_{p}(z)=\exp (2 \pi i z / p),
$$

and $L_{s, p}(n)$ is computed modulo p for $1 \leq n<p$. Then, in a standard fashion, we obtain a uniformity of distribution result for the sequence of fractional parts $\left\{L_{s, p}(n) / p\right\}$, $n=M+1, \ldots, M+N$.

Here we use an approach which is similar to that of [4] however it also needs some additional arguments.

Hereafter, the implied constants in symbols ' O ' and ' \ll ' may depend on the integer parameter s and the real parameter ε (we recall that $A \ll B$ is equivalent to $A=O(B)$).

[^0]
2. Exponential sums.

Theorem 1. Let $\varepsilon>0$ be a fixed real number. Let M and N be integers with $0 \leq M<M+N<p$ and $N \geq p^{1 / 2+\varepsilon}$. Then, for every fixed integer $s \geq 1$, the following bound holds:

$$
\max _{\operatorname{gcd}(a, p)=1}\left|T_{s}(a ; p, M, N)\right| \ll N(\log p)^{-1 / 2}
$$

Proof. We define $0^{-s} \equiv 0 \quad(\bmod p)$; thus, $i^{-s} \quad(\bmod p)$ is defined for all integer i. Then, for any integer $k \geq 0$, we have

$$
T_{s}(a ; p, M, N)=\sum_{n=M+1}^{M+N} \mathbf{e}_{p}\left(a L_{s, p}(n+k)\right)+O(k)
$$

Therefore, for any integer $K \geq 1$,

$$
\begin{equation*}
T_{s}(a ; p, M, N)=\frac{1}{K} W+O(K) \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
W & =\sum_{k=0}^{K-1} \sum_{n=M+1}^{M+N} \mathbf{e}_{p}\left(a L_{s, p}(n+k)\right) \\
& =\sum_{n=M+1}^{M+N} \sum_{k=0}^{K-1} \mathbf{e}_{p}\left(a L_{s, p}(n)+a \sum_{i=1}^{k} \chi(n+i)(n+i)^{-s}\right) \\
& =\sum_{n=M+1}^{M+N} \mathbf{e}_{p}\left(a L_{s, p}(n)\right) \sum_{k=0}^{K-1} \mathbf{e}_{p}\left(a \sum_{i=1}^{k} \chi(n+i)(n+i)^{-s}\right) .
\end{aligned}
$$

Applying the Cauchy inequality, we derive

$$
\begin{equation*}
|W|^{2} \leq N \sum_{n=M+1}^{M+N}\left|\sum_{k=0}^{K-1} \mathbf{e}_{p}\left(a \sum_{i=1}^{k} \chi(n+i)(n+i)^{-s}\right)\right|^{2} \tag{2}
\end{equation*}
$$

For each K-dimensional ± 1-vector $=\left(\vartheta_{1}, \ldots, \vartheta_{K}\right) \in\{-1,1\}^{K}$ we see that for $1 \leq n<$ $p-K$,

$$
\frac{1}{2^{K}} \prod_{i=1}^{K}\left(1+\vartheta_{i} \chi(n+i)\right)= \begin{cases}1, & \text { if } \chi(n+i)=\vartheta_{i}, \quad i=1, \ldots K, \\ 0, & \text { otherwise },\end{cases}
$$

Therefore we derive from (2) (estimating the contribution of each of the at most K possible terms with $p-K \leq n \leq p$ as K^{2}),

$$
\begin{aligned}
|W|^{2} \leq & \frac{N}{2^{K}} \sum_{\left(\vartheta_{1}, \ldots, \vartheta_{K}\right) \in\{-1,1\}^{K}} \sum_{n=M+1}^{M+N} \prod_{i=1}^{K}\left(1+\vartheta_{i} \chi(n+i)\right) \\
& \times\left|\sum_{k=0}^{K-1} \mathbf{e}_{p}\left(a \sum_{i=1}^{k} \vartheta_{i}(n+i)^{-s}\right)\right|^{2}+N K^{2} .
\end{aligned}
$$

For every vector $\left(\vartheta_{1}, \ldots, \vartheta_{K}\right) \in\{-1,1\}^{K}$, one easily verifies that

$$
\begin{aligned}
\sum_{n=M+1}^{M+N} & \prod_{i=1}^{K}\left(1+\vartheta_{i} \chi(n+i)\right)\left|\sum_{k=0}^{K-1} \mathbf{e}_{p}\left(a \sum_{i=1}^{k} \vartheta_{i}(n+i)^{-s}\right)\right|^{2} \\
= & \sum_{0 \leq m, k \leq K-1} \sum_{n=M+1}^{M+N} \prod_{i=1}^{K}\left(1+\vartheta_{i} \chi(n+i)\right) \\
& \times \mathbf{e}_{p}\left(a \sum_{i=1}^{k} \vartheta_{i}(n+i)^{-s}-a \sum_{i=1}^{m} \vartheta_{i}(n+i)^{-s}\right)
\end{aligned}
$$

We observe that each sum over n splits into at most 2^{K} sums of the form

$$
\sigma_{\rho, g, f}(M, N)=\rho \sum_{n=M+1}^{M+N} \chi(g(n)) \mathbf{e}_{p}(f(n)),
$$

where $\rho= \pm 1, g(X) \in \mathbb{Z}[X], f(X) \in \mathbb{Z}(X)$ and $\operatorname{deg} g, \operatorname{deg} f=O(K)$. We observe that if $|k-m| \geq 2$ then $f(X)$ is a nonlinear rational function modulo p, and also for every k and m, there is only one sums for which the corresponding polynomial $g(X)=1$ (otherwise $g(X)$ has no multiple roots modulo p). Thus, using the standard reduction between complete and incomplete sums (see [1]) we derive from the Weil bound see [7, Theorem 3, Chapter 6], that

$$
\begin{equation*}
\sigma_{\rho, g, f}(M, N) \ll K p^{1 / 2} \log p \tag{3}
\end{equation*}
$$

if either f is a nonlinear rational function modulo p or g is a nonconstant squarefree polynomial modulo p. Thus (3) applies for all $O\left(2^{K} K^{2}\right)$ sums $\sigma_{\rho, g, f}(M, N)$, except at most $O(K)$ such sums (as we have seen, at most one such sum may occur for $O(K)$ pairs of k and m with $|k-m| \leq 1)$. Estimating the exceptional sums $\sigma_{\rho, g, f}(M, N)$ trivially as $\sigma_{\rho, g, f}(M, N) \ll N$, and putting everything together, we obtain

$$
\begin{aligned}
W^{2} & \ll \frac{N}{2^{K}} \sum_{\left(\vartheta_{1}, \ldots, \vartheta_{K}\right) \in\{-1,1\}^{K}}\left(2^{K} K^{3} p^{1 / 2} \log p+K N\right)+N K^{2} \\
& \ll 2^{K} K^{3} N p^{1 / 2} \log p+K N^{2} .
\end{aligned}
$$

Therefore, by (1), we derive

$$
T_{s}(a ; p, M, N) \ll K^{-1 / 2} N+2^{K / 2} K^{1 / 2} N^{1 / 2} p^{1 / 4}(\log p)^{1 / 2}+K .
$$

Taking $K=\lfloor 0.5 \varepsilon \log p\rfloor$, we finish the proof.
3. Discrepancy. We recall that the discrepancy D of a sequence of M points $\left(\gamma_{j}\right)_{j=1}^{M}$ of the unit interval $[0,1]$ is defined as

$$
D=\sup _{\mathcal{I}}\left|\frac{A(\mathcal{I})}{M}-|\mathcal{I}|\right|,
$$

where the supremum is taken over intervals $\mathcal{I}=[\alpha, \beta] \subseteq[0,1]$ of length $|\mathcal{I}|=\beta-\alpha$ and $A(\mathcal{I})$ is the number of points of this set which belong to \mathcal{I} (see $[\mathbf{3}, 6]$).

For an integer a with $\operatorname{gcd}(a, p)=1$, we denote by $D_{s, p}(M, N)$ the discrepancy of the sequence of fractional parts

$$
\left\{\frac{L_{s, p}(n)}{p}\right\}, \quad M+1 \leq n \leq M+N
$$

Using the Erdös-Turán bound (see [3, 6]), which gives a discrepancy bound in terms of exponential sums, we derive:

Theorem 2. Let $\varepsilon>0$ be a fixed real number. Let M and N be integers with $0 \leq M<M+N<p$ and $N \geq p^{1 / 2+\varepsilon}$. Then, for every fixed integer $s \geq 1$, the following bound holds:

$$
D_{s, p}(M, N) \ll N(\log p)^{-1 / 2} \log \log p .
$$

REFERENCES

1. J. H. H. Chalk, Polynomial congruences over incomplete residue systems modulo k, Proc. Kon. Ned. Acad. Wetensch. A92 (1989), 49-62.
2. K. Dilcher, On a Diophantine equation involving quadratic characters, Compositio Math. 57 (1986), 383-403.
3. M. Drmota and R. Tichy, Sequences, discrepancies and applications (Springer-Verlag, 1997).
4. M. Z. Garaev, F. Luca and I. E. Shparlinski, Distribution of harmonic sums and Bernoulli polynomials modulo a prime, Math. Z. (to appear).
5. A. Granville and K. Soundararajan, On truncations to $L(1, \chi)$, Preprint, 2005.
6. L. Kuipers and H. Niederreiter, Uniform distribution of sequences (John Wiley, 1974).
7. W.-C. W. Li, Number theory with applications (World Scientific, Singapore, 1996).
8. J. Urbanowicz, On Diophantine equations involving sums of powers with quadratic characters as coefficients I, Compositio Math. 92 (1994), 249-271.
9. J. Urbanowicz, On Diophantine equations involving sums of powers with quadratic characters as coefficients II, Compositio Math. 102 (1996), 125-140.

[^0]: *During the preparation of this paper, the author was supported in part by ARC grant DP0556431.

