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Abstract

We prove the following results: (1) A quasi-metrizable space is compact if and only if ev-
ery compatible quasi-metric has a quasi-metric left rf-sequential completion. (2) A quasi-
pseudometrizable space is countably compact if and only if every compatible quasi-pseudometric
is pointwise bounded. (3) A quasi-pseudometrizable space is compact if and only if every com-
patible quasi-pseudometric is precompact.
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Keywords and phrases: left rf-Cauchy sequence, left (/-(weakly, sequentially) complete quasi-
pseudometric space, quasi-metric completion, (countably) compact space.

1. Introduction

It is well-known that for a metrizable space (X, T) the following are equiv-
alent:

(A) (X, T) is (countably) compact;
(B) every metric compatible with T is complete;
(C) every metric compatible with T is (pointwise) bounded;
(D) every metric compatible with T is precompact.
This paper extends these characterizations to quasi-pseudometrizable

spaces. However that extension presents some peculiarities. In fact while
a countably compact quasi-pseudometrizable space can be characterized by
means of conditions of type (B) and (C) (in the "pointwise bounded" case),
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232 Sergio Salbany and Salvador Romaguera [2]

a compact quasi-pseudometrizable space is characterized by using a condi-
tion of type (D). In the light of these facts it seems appropriate to recall
that while every countably quasi-metrizable space is compact (see [3, page
40]), compactness and countable compactness are not equivlaent in quasi-
pseudometrizable spaces [2], [5].

Terms and concepts which are not denned are used as in [3]. The letter N
will denote the set of all positive integer numbers.

A quasi-pseudometric on a set X is a non-negative real-valued function d
on X x X such that, for all x, y, z € X: (i) d(x ,x) = 0; (ii) d(x, y) <
d(x, z) + d(z, y). If d satisfies the additional condition (iii) d(x, y) = 0
implies x = y, then, d is called a quasi-metric on X.

A quasi-(pseudo) metric space is a pair (X, d) such that X is a non-
empty set and d is a quasi-(pseudo) metric on X.

Each quasi-pseudometric d on X induces a topology T(d) which has as
a base the family of rf-balls {Bd{x, r): x € X, r > 0} where Bd(x, r) =
{y € X: d(x, y) < r} . A topological space (X, T) is called quasi-(pseudo)
metrizable if there exists a quasi-(pseudo) metric d on X such that T =
T(d). In this case we say that d is compatible with T.

By using the metrization lemma [4, page 185] the authors have presented
[9] a characterization of countably compact quasi-pseudometrizable spaces
which extends the Niemytzki-Tychonoff theorem for these spaces. In Section
2 of this paper we shall prove (Theorem 1) a more general result, without
using the metrization lemma. In this way we generalize the corresponding
result for quasi-metric spaces proved by Fletcher and Lindgren [3, Theorem
7.35] and at the same time provide a simple proof. Furthermore, under
very general conditions, it follows that notions of completeness for quasi-
pseudometric spaces which are generally distinct, actually coincide when the
topology is countably compact. Our method of proof also permits us to state
(Theorem 2) a characterization of compact quasi-metrizable spaces in terms
of several kinds of completion. Finally, in Section 3 we prove (Theorem 3)
that a quasi-pseudometrizable space is countably compact if and only if every
compatible quasi-pseudometric is pointwise bounded and we deduce that
a quasi-pseudometrizable space is compact if and only if every compatible
quasi-pseudometric is precompact.

2. Complete quasi-pseudometric spaces and countable compactness

Intuitively, the following concepts (see [7]) correspond to strongest and
weakest notions for a sequence to be "Cauchy".
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DEFINITION 1. Let (X, d) be a quasi-pseudometric space. A sequence
{xn}neN in X is said to be left d-Cauchy if for each e > 0 there are a point
x e X and a k e N such that d(x, xn) < e for all n > k. The sequence
{xn}n€fj is called symmetric d-Cauchy (rf-Cauchy in [7]) if for each e > 0
there is a k e N such that d(xn, xm) < e for all n, m> k .

DEFINITION 2. We say that a quasi-pseudometric d on a set X is left
d-sequentially complete if every left rf-Cauchy sequence in X converges to
a point in X (with respect to the topology T{d)) and we say that d is
left d-weakly sequentially complete if every left <i-Cauchy sequence in X
has a r(c?)-cluster point in X. Similarly, we say that d is symmetric d-
sequentially complete if every symmetric rf-Cauchy sequence in X converges
to a point in X (with respect to the topology T(d)).

A quasi-pseudometric space (X, d) is called left d-(weakly) sequentially
complete if the quasi-pseudometric d is left rf-(weakly) sequentially com-
plete. Similarly, (X, d) is called symmetric d-sequentially complete if the
quasi-pseudometric d is symmetric d-sequentially complete.

A filter &~ on a quasi-uniform spce (X, %) is called a %-Cauchy filter
[3, page 47] if for each V € ^ there is an x e I such that F(x) e &.
Similarly, the filter 9" is called a symmetric f^-Cauchy filter if for each
V e ft? there is an F € ^" such that FxF <z V. We say that a quasi-uniform
space (X, %) is (symmetric) ^-complete if each (symmetric) ^-Cauchy
filter on X converges to some point in X (with respect to the topology
7*(2O ) and (X, %) is called ^-weakly complete if each ^-Cauchy filter on
X has a 7\^0-cluster point in X.

DEFINITION 3. Let (X, d) be a quasi-pseudometric space and let ^(d) be
the quasi-uniformity generated by d (see [3, page 3]). Then d and (X, d)
are called left d-(weakly) complete if the quasi-uniform space (X, %(d)) is
^(</)-(weakly) complete.

The following implications are clearly satisfied for a quasi-pseudometric
space (X, d):

(a) left af-(weakly) complete implies left rf-(weakly) sequentially complete
and left ^-(sequentially) complete implies left rf-(weakly) sequentially com-
plete.

(b) left ^-sequentially complete implies symmetric ^-sequentially com-
plete.

In [6, Examples 1 and 2] H. P. Kiinzi gives an example of a left rf-weakly
complete quasi-metric space that is not left ^-sequentially complete and an
example of a left ^-sequentially complete quasi-metric space that is not left
d-weakly complete. He also gives [6, Example 3] an example of a left d-
weakly complete and left of-sequentially complete quasi-metric space that is
not left rf-complete. Consequently, the converse implications of (a) are not
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satisified. On the other hand it is well-known that every sequence which
converges with respect to T{d) is left rf-Cauchy but, unfortunately, T{d)-
convergence does not imply symmetric ^-Cauchyness. However, if (X, d)
is symmetric ^-sequentially complete we have the following equivalences:

LEMMA 1. For a quasi-pseudometrizable space (X, d) the following are
equivalent.

(i) (X, d) is symmetric d-sequentially complete.
(ii) Every symmetric d-Cauchy sequence in X has a T(d)-cluster point.
(iii) The quasi-uniform space (X, ̂ {d)) is symmetric %{d)-complete.
(iv) Every symmetric %f (d)-Cauchy filter in X has a T{d)-cluster point.

PROOF, (i) => (ii). Obvious.
(ii) =» (i). [7, Theorem l(iii)].
(iii) => (iv). Obvious.
(iv) ==> (ii). Obvious.
(i) =>• (iii). Let &~ be a symmetric ^(rf)-Cauchy filter on X. Then

there exists a decreasing sequence {Fn}nefj of subsets of X such that, for all
n e N, we have Fne3r and FnxFnc {(x, y): d(x, y) < 2~"} . For each
n e N choose xn e Fn. Then {xn}n&i is a symmetric rf-Cauchy sequence
and, thus, it is r(rf)-convergent to a point x € X. Given k e N there
exists n0 > k such that d(x, xn) < 2~(fe+1) for all n > n0. Hence, for
every y e Fk+l, we have d(x,y) < d(x, xnj + d(xno, y) < 2"(/c+1) + 2~(*+1)

since xn e Fk+l. This implies that Bd(x, 2~k) e & and, hence, & is
r(rf)-convergent to x.

In the light of the above lemma we shall use, in the following, the term
"symmetric ^-complete" instead of "symmetric ^-sequentially complete" for
a symmetric af-sequentially complete quasi-pseudometric space (X, d).

COROLLARY 1. Every left d-weakly sequentially complete quasi-pseudo-
metric space is symmetric d-complete.

Note that [7, Example 4] shows that, in general, the converse implication
of (b) is not satisfied.

LEMMA 2. Let d be a quasi-pseudometric on a set X such that d < 1 and
supose that there exists a sequence {xm}meN in X that has no T{d)-cluster
point in X. If for each n e N we define An — {xm: m> n} and

d(x,y) ifx,yeX-An,

en{x,y)=\\ ifxeX-An,y<=An,

0 ifx € An ,
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then the real-valued function e, defined on X x x as

e ( x , y ) = s u p { 2 ~ " < ? n ( x , y ) : n e N } ,

is a quasi-pseudometric on X such that T(d) = T(e). Moreover, {*m}m€N

is a symmetric e-Cauchy sequence.

PROOF. Since the sequence {*m}meN has no r(fi?)-cluster point, we de-
duce that X = \J^=i(X-An). It is straightforward to verify that each en sat-
isfies the triangle inequality and, therefore, e is a quasi-pseudometric on X.
Assume {ym}m€N is a r(e)-convergent sequence to a point y eX. Then, for
each n e N, en(y, ym) —> 0 as m —> oo. For the given y, let k be the small-
est index for which y e X - Ak . Then, ek(y, ym) —> 0 gives ek{y, ym) < 1
eventually, so that {ym}m€fi is eventually in X — Ak by definition of ek .
Hence, there is j € N such that, if m > j , d{y, ym) = ek(y, ym). Thus,
{ym}meN i s 7\^)-convergent to y. Conversely, assume {ym}meN is T(d)
convergent to y. For the given y let k be the smallest index for which
y € X-Ak . Then, there is j e N such that, if m > j , en(y, ym) = d(y, ym)

for all n> k. Consequently, e{y,ym) = 2~ d(y,ym) for m> j . This
proves that {ym}meN is 7\e)-convergent to y and, hence, T{e) — T(d).

Finally, {*m}m€N is a symmetric e-Cauchy sequence since given e > 0

let ; e N be such that 2je > 1. Let n , m>j. Then, for k = 1, 2 , ... ,j,
we have ek{xn, xm) = 0 since xn,xrrtGAk. For A: > ; , efc(xn, xm) < 1 so
that, for n , m> j , e{xn, xm) < 2~j < e.

THEOREM 1. For a quasi-pseudometrizable space (X, T) the following are
equivalent.

(i) (X, T) is countably compact.
(ii) Every quasi-pseudometric d on X compatible with T is left d-complete.
(iii) Every quasi-pseudometric d on X compatible with T is left d-weakly

sequentially complete.
(iv) Every quasi-pseudometric d on X compatible with T is symmetric

d-complete.

PROOF, (i) =̂  (ii). [6, Proposition 5].
(ii) => (iii). Obvious.
(iii) => (iv). Corollary 1.
(iv) => (i). Suppose that there exists a sequence {xn}n€N in X that

has no T-cluster point. Let d be a quasi-pseudometric on X compatible
with T satisfying d < 1. By Lemma 2, there exists a quasi-pseudometric
e on X compatible with T such that {xm}m€N is a symmetric e-Cauchy
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sequence. Hence, the quasi-pseudometric e is not symmetric e-complete.
This concludes the proof.

COROLLARY [3, page 178]. A quasi-metrizable space (X, T) is compact if,
and only if, every compatible quasi-metric d is left d-weakly {sequentially)
complete.

Let (X, f/) be a Tx quasi-uniform space. A quasi-uniform space (Y, "V)
is called a (weak) %-completion of (X, &) if (Y, T) is a ^"-(weakly) com-
plete Tx quasi-uniform space that has a dense subspace quasi-unimorphic
(relative to % and <V)\o (X,%?) [3]. The concept of symmetric completion
is denned in the analogous manner where (Y, "V) is symmetric ^-complete.

Let (X, d) be a quasi-metric subspace of a quasi-metric space (X, d).
We say that {X, d) is a quasi-metric left d-(weak) sequential completion of
(X, d) if X is dense in (X, T(d)) and (X, d) is left rf-(weakly) sequen-
tially complete. The concepts of quasi-metric left d-completion, quasi-metric
left d-weak completion and quasi-metric symmetric d-completion are denned
in the obvious manner where (X, d) is left ^-complete, left rf-weakly com-
plete and symmetric ^-complete, respectively.

It is interesting to recall that a Hausdorff quasi-metric space need not have
a quasi-metric symmetric ^-completion [8, Theorem 2.6] (a similar situation
occurs for quasi-uniform spaces [1], [3]).

In [3, Theorem 3.43 and Proposition 3.46] are proved the two following
results.

(1) A Tj quasi-uniform space (X, %) has a weak ^-completion if and
only if whenever &~ is a 2^-Cauchy filter on X and x e X is a T(%f~1)-
cluster point of &, then x is a r(^)-cluster point of SF.

(2) A T{ topological space [X, T) is compact if and only if every quasi-
uniformity % on X compatible with T has a weak ^-completion.

In [6, Proposition 8] H. P. Kiinzi obtains an analogue of (1) for quasi-
metric spaces. The following result provides an analogue of (2) for quasi-
metric spaces.

THEOREM 2. For a quasi-metrizable space {X, T) the following are equiv-
alent.

(i) (X, T) is compact.
(ii) Every quasi-metric d on X compatible with T has a quasi-metric left

d-completion.
(iii) Every quasi-metric d on X compatible with T has a quasi-metric left

d-weak sequential completion.
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(iv) Every quasi-metric d on X compatible with T has a quasi-metric
symmetric d-completion.

PROOF, (i) =>• (ii). Theorem 1.
(ii) => (iii). Obvious.
(iii) => (iv). Obvious.
(iv) => (i). Suppose that (X, T) is not compact. Then there exists a

sequence {*m}m€N in X that has no cluster point. Let d be a quasi-metric
compatible with T such that d < 1. Consider the quasi-pseudometric e
constructed in Lemma 2 and note that, in this case, e is a quasi-metric.
Moreover T(e) = T and {*m}m€N is a symmetric e-Cauchy sequence. We
shall show that, for each x e X, e(xm,x)-»0. Let k be the smallest
index for which x e X - Ak. Therefore, for n > k, en(xm, x) = d{xm , x)
when xm e X - An , and en(xm, x) = 0 when xm e An . Given e > 0 let
j > k be such that 2Je > 1. Hence, for m > j , e(xm, x) < 2~0 + 1 ) < e.
Assume (X, e) is a quasi-metric symmetric e-completion of (X, e). Then
{xm}m€N is a symmetric e-Cauchy sequence and, therefore, there is a point
p e X satisfying e(p, xm) —• 0. Since e(xm, x) —• 0 we deduce p = JC € X
because e is a quasi-metric. This implies e(x, xm) —• 0 and, consequently,
the sequence {*m}m€N is r(e)-convergent to x, a contradiction. The proof
is complete.

We conclude this section with some remarks concerning different notions
of completion of a quasi-metric space.

We first note that in the above theorems the conditions 'left d-\ left d-
weak(ly)' and 'symmetric d' can be replaced by other notions of completenss
in the sense of [7]. For instance, it follows immediately from Theorem 2 that
a quasi-metrizable space (X, T) is compact if and only if every quasi-metric
d on X compatible with T has a quasi-metric left AT-completion (see [7,
pages 132 and 134]). On the other hand, H. P. Kunzi [6] has shown that every
quasi-metric space having a quasi-metric left rf-weak sequential completion
has a base of countable order. His method of proof actually shows a more
general result, namely, every quasi-metric space having a quasi-metric left
^-completion has a base of countable order. It follows from this observation
that the Sorgenfrey line is a quasi-metric space that does not admit compatible
quasi-metrics that have a quasi-metric left A"-completion because this space
does not have a base of countable order.

In [6] Kiinzi has also given an example of a quasi-metric space (X, d)
that has a quasi-metric left rf-weak sequential completion but does not have a
quasi-metric left rf-weak completion. In order to complete this jigsaw puzzle
we give here a simple example of a left rf-weakly complete quasi-metric space
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that does not admit any quasi-metric left ^-sequential completion.
EXAMPLE 1 Let X be the set of all non-negative integer numbers and

define a quasi-metric d on X as follows.

d(0,x) = l if x ^ 0 ,

d(l,x) = l i f x ^ l ,

d(n,0) = d(n, 1) = l/n ifneX-{0,l},

d{n,x)=l if n^x andn,xeX-{0, I},

d(x,x) = 0 f o r a l l x e * .

Then T(d) is the discrete topology on X. The sequence {xm}meN such
that xln = 0 and x2n+l = 1 for all n € N, is a left rf-Cauchy sequence that
is not r(rf)-convergent. Assume (X, d) is a quasi-metric left ^-sequential
completion of (X, d). Then d(p, xn) —> 0 for some p e X and, hence,
p = 0 and p = 1, a contradiction. On the other hand it is clear that every

filter on X has a T(rf)-cluster point.

3. Pointwise bounded quasi-pseudometrics and countable compactness

A quasi-pseudometric d on a set X is called bounded if there is constant
M > 0 such that d{x, y) < M for every x,y eX.

The following example shows that there exists a quasi-metric space (X, d)
such that (X, T{d)) is a compact (and metrizable) space but d is not
bounded.

EXAMPLE 2. Let X be the set of all non-negative integer numbers and
define a quasi-metric d on X as follows:

d(0,
d(x,

d(x,

x) = l/x
y) = x

x) = 0

for
for

for

all
all

all

X €

X ^

x e

X-{0},
0 a n d y ••

X.

It is obvious that d is not bounded. However T(d) is a Hausdorff compact
space and hence it is metrizable. Note that, still, given x € X there exists a
constant Mx > 0 such that, for all y e X, d(x, y) < Mx . This fact suggests
the next definition.

DEFINITION 4. We say that a quasi-pseudometric d on a set X is pointwise
bounded if for some x e X there exists a constant Mx > 0 such that, for
all y € X, d{x, y) < Mx .

It is easy to see that boundedness and pointwise boundedness are equiva-
lent for a pseudometric.
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LEMMA 3. Let d be a quasi-pseudometric on a set X such that d < 1 and
suppose that there exists a sequence {*m}m6N in X that has no T(d)-cluster
point in X. If for each n EN we define An = {xm: m>n} and

{
d{x ,y) ifx,yeX-An,

22n ifx€X-An,yeAn,

0 ifx e An,
then the real-valued function e, defined on X x X as

e(x,y) = sup{2~"e?n (x,y):neH},

is a quasi-pseudometric on X such that T(d) = T(e). Moreover, e is not
pointwise bounded.

PROOF. A slight modification of the proof of Lemma 2 permits us to con-
clude that e is a quasi-pseudometric on X compatible with T(d). Now let
x € X and let k be the smallest index for which x e X - Ak . For each
m > k we have em(x, xm) = 22m and, hence, e(x, xm) > 2m for m > k.
Thus e is not pointwise bounded.

THEOREM 3. A quasi-pseudometrizable space (X, T) is countably compact
if and only if every quasi-pseudometric on X compatible with T is pointwise
bounded.

PROOF. Let (X, T) be a countably compact quasi-pseudometrizable space
and let d be a compatible quasi-pseudometric on X. Suppose that there are
a point x &X and a sequence {xm}m€N in X satisfying d(x, xm) > m for
all m€N. Since {*m}m€N has a subsequence {xm,k)}k€N which is T(d)-
convergent to some pont y e X, we obtain, from d{x, xm,k.) < d(x, y) +
d(y, xm(k)), a contradiction. The converse follows immediately from Lemma
3.

A quasi-pseudometric on a set X is called precompact if for each e > 0
there exists a finite subset F of X such that d(F, x) < e for all x G X.

We omit the easy proof of the following observation

LEMMA 4. Every precompact quasi-pseudometric is pointwise bounded.

THEOREM 4. A quasi-pseudometrizable space (X, T) is compact if and
only if every quasi-pseudometric on X compatible with T is precompact.

PROOF. Suppose that every quasi-pseudometric compatible with T is pre-
compact. By Lemma 4 and Theorem 4, (X, T) is countably compact.
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Choose a compatible quasi-pseudometric d on X. By Theorem 1, d is
left rf-weakly complete and, therefore, the quasi-uniform space (X, ^{d))
is precompact and ^(rf)-weakly complete. It follows from [3, Theorem 3.24]
that (X, T) is compact. The converse is well-known.
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