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TOPOLOGICAL VITALI MEASURE SPACES

D.N. SARKHEL AND T. CHAKRABORTI

The properties of Lebesgue outer measures embodied in the Vitali
covering theorem, the Vitali-Carathéodory theorem, the Lusin
theorem, the density theorem, outer regularity and inner regularity,
and the relation between measurability and approximate continuity
are studied in a general abstract space, called a topological
Vitali measure space. The main theme is the mutual equivalence

of these properties.

1. Introduction

The properties of Lebesgue outer measures embodied in the vitali
covering theorem (Saks [/71]; p. 109), the Lusin theorem (Saks [I1]; p. 72),
the density theorem (Saks [/7]1; p. 129), outer regularity and inner
regularity, and the relation between measurability and approximate
continuity (Saks (/1]; Theorem 10.6, p. 132) have been studied by many
authors (see the references, except for Kelley [§]) in various abstract
spaces, but in a somewhat isolated manner. The Vitali covering property
is an almost indispensable tool for the study of differentiation. Some
authors actually prove it under suitable conditions, and others assume it

in some form or other.

In this paper, assuming a very weak Vitali property (Definition 2.6)
we introduce the notion of a topological Vitali measure space (Definition
3.2), which seems to be the most general structure suitable for a
systematic study of the above mentioned properties and of differentiation

and integration, simultaneously. Our main results are (Theorem 3.2) the
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mutual equivalence of the above mentioned properties and the property
embodied in the Vitali-Carathéodory theorem (Saks [/1}; p. 75), (Theorem
4.2) the equivalence of measurability and approximate continuity a.e.
(which extends a result of Sion [14]), and (Theorem 4.3) separability of
the range of an approximately continuous function (which extends a result
of Goffman and Waterman [4]). Various aspects of the present theory are
illustrated by appropriate examples. The theory of differentiation will

be considered at length in a subsequent paper.

2. Preliminaries

Let X be a topological space (Kelley [§]) endowed with an outer
measure (Halmos [6]) 1 defined on the power set of X . Given F C X ,
= 0
EF will denote the closure, and £ the interior, of E . The set F is

called measurable (u) if
n{d) = p{ANEY + A\ E) for every A C X .

If for every A C X there is a measurable set E D A with u(E) = u(4),
then u is called regular.

A function f from a subset E of X to an arbitrary topological
space Y 1is called measurable if, for every open set (G in Y , the set

frl(G) is measurable. This is equivalent to Saying that f_l(B) is

measurable for every Borel set B in Y . For, the family of sets CC Y

with frl(C) measurable is a o-ring , and the Borel family in Y is the

smallest o-ring containing all the open sets in Y .
We now give some new definitions and lemmas.

DEFINITION 2.1. A family H , of arbitrary subsets of a topological
space Y , is called a pseudo base for Y if every open set in Y 1is the
union of members of H . The space Y is called pseudo countable if
there is a countable pseudo base H for Y ; if, further, the members of

H are Borel sets of Y , then Y is called Borel countable.

A second countable space is clearly Borel countable, and, hence,

pseudo countable, but not conversely (see the examples below) .

Given a subset I of the set JR of real numbers, we denote by T
the topology where open sets are all subsets G CJR with the following
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property: For every & € G there is an open interval I containing x ,
such that TNICG and [ING| =0 if z €T, and ICG if x&T.
( |E] aenotes the Lebesgue outer measure of a subset E CIR .)

We observe that the space (lR,T*) is always pseudo countable, since
the open intervals with rational end points together with their inter-
sections with T evidently form a countable pseudo base for the space.
Further, every ordinary open set of the real line is open in this space,
and, hence, every ordinary Borel set is also a Borel set in this space.

m

. . * .
Consequently, if 7 is an ordinary Borel set, then the space (R, T") is

necessarily Borel countable.

EXAMPLE 2.1. Fix T C R with |7| > 0 and inner measure equal to 0
(compare Halmos [6]; Theorem D, p. 69). In the space GR,T*) , every open
set, and, hence, every Borel set is clearly measurable. Consider now any

sequence {Bn} of Borel sets of this space covering R . Let An denote
the set of points x € Bn such that an N (z,y)| = 0 for some Yy >x i
then lAnl = 0 . Noting that |[T| > 0 , we fix any point ¢ € T\ U{An}
and set

I = (c+m#1) teen™hy, B, =B NI \T, (k<n) .

n kn k n
We form a countable set F by selecting just one point from each nonvoid
set Bkn , k<n ,n=1,2,3,... . Clearly R\ F is open, and ¢ € R\ F.
Now, consider any Bk D¢ . Since c & Ak , we must have IBk N Inl >0
for some n > k . But, Bk N In is measurable, and T has inner
measure O . Therefore, the set Bkn is nonvoid, and, hence, by the
construction of F , we do not have Bk C R\ F . fThis shows that the

space (K,T*) is not Borel countable, although it is pseudo countable

as noted above.

EXAMPLE 2.2. Fix an ordinary nonvoid Borel set T of the real line
R, such that |I\ T| >0 for every open interval I . In the space
(R,T*) , there does not exist any countable base at any point ¢ € T , as
can be easily seen by constructing a set like F of the preceding
example. So the space is not second countable, nor even first countable,

although it is Borel countable as noted above.
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DEFINITION 2.2. A subset E C X is called p-open if u(E\ E°) =0,
pu-closed if u(E\N E) = 0 , and yu-proper if 0 < u(f) < « .

It is easy to verify that a set is p-open if and only if its
complement is p-closed. Also, finite intersection and countable union
of u-open sets are u-open, and finite union and countable intersection
of u-closed sets are u-closed. We shall employ u-open sets and u-closed
sets in several places, where it is usual to take open sets and closed sets,
respectively. This is a nontrivial generalization, the necessity of which

is shown in Example 3.1.

DEFINITION 2.3. A family V of nonvoid subsets of X is said to
converge to a point x € X , or, to be x-convergent, if every neighborhood

of X contains some member of V .

DEFINITION 2.4. Let D be a function which assigns to each point
x € X a nonvoid collection D(x) of x-convergent families of u-proper
l-closed subsets of X , such that if B belongs to D(x) , so does
every &-convergent subfamily of B . Then D is called a vitali covering

function on X . A sequence of Vitali covering functions Dn on X is
: . . c
called increasing if Dn(x) Dn+l(x) for all n=n,x .
In what follows, D will denote an arbitrary Vitali covering function
on X . For any GC X , we set

DIG) ={v|VE | W, vCa} .
2€X

DEFINITION 2.5. A family V C D[z] 4is called a Vitali D-covering
of a subset EC X if, for every x € E , there is a B € D(x) such that
B CV . The covering V 1is called measurable if every member of V is

measurable.

DEFINITION 2.6. D 1is said to have the weak Vitali property on a
subset E C X , if, for every € > 0 , there are a sequence of subsets

En CE with u(E\ U{En}) < € and a sequence of real numbers p, € (0,1) ,
such that, for every 4 C En and for every measurable Vitali D-covering
V of A , there is a finite family V0 of pairwise disjoint members of

V such that u(4\ W) < p,"u(4) .
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DEFINITION 2.7. D is said to have the finite covering property on a
subset GC X if, for every E C G and every measurable Vitali D-covering

V of F and every € > 0 , there is a finite family V0 of pairwise
disjoint members of V such that u(& \ UVO) <E .
LEMMA 2.1. Let GC X, u(G) <= , and p € (0,1) . Suppose, for

every A C G and for every measurable Vitali D-covering V of A , there

is a finite family V, of pairwise disjoint members of V  such that

ud\ LNO) < p-u(d) . Then D has the finite covering property on G .
Proof. Given a measurable Vitali D-covering V of a subset EC G,

let 2 denote the infimum of the numbers u(EF \ UVo) for all finite

families VO of pairwise disjoint members of V . Then 0 < £ <« , since

P20 and u(E) S pu(G) <= ., So, for any € > 0 , there is a finite

family Vl of pairwise disjoint members of V such that
(1) wE\N F) < L + ¢ where F = UVl

Let V' denote the family of sets V€ V such that VNF =g . Then
V' is evidently a measurable Vitali D-covering of E\ F . So, by

hypothesis, there is a finite family V2 of pairwise disjoint members of
V' such that

(2) W(ENF)\ W) <p-uE\ F) where W= W,

Now, Vo = Vl v V2 is a finite family of pairwise disjoint members
of V , and, since the members of V1 are u-closed, it follows readily
from (1) and (2) that up(E\ UVO) < p+(f +€) . Therefore O < g2 < pe (L +e).

Since € > 0 is arbitrary and p < 1 , it follows that £ = 0 , which in

fact proves the lemma.

LEMMA 2.2. Let GC X, u(G) <o , and let D have the weak Vitali
property on G . Then D has the finite covering property on G.

Proof. Clearly D has the weak Vitali property on every E C G .

Given € > 0 , then let {En} , {pn} be the sequences as furnished by

Definition 2.6. Then
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\ U -
u(f {Eh}) <€ Xen
for a suitable sequence of positive numbers En , and, for each n ,

Lemma 2.1 applies to any Fh C En with p = p, -

Now, let V be a measurable Vitali D-covering of E . We define,

recursively, a sequence of families Un C V as follows. Let Wb =g,

and Wh denote the union of the members of Un , whenever defined. We

set

n-—

= [ N . =
v, = {7 V|V Uw,_, =9},
=1
n_
and note that V_  is a measurable Vitali D-coveringof F =EZ \ |JW. _,
n n nooin -1

and, by Lemma 2.1, D has the finite covering property on Fn . Then we

select a finite family Un of pairwise disjoint members of Vn such that
u(F% \ WE) <e, that is,

n
u(En \ .U Wi) <€, -
1=1

Then, taking U0 = U{Un} and noting that the sets I, are u-closed,
we have
\ U < p (v \ v
u(E Ug) S BUHE }Y W + wE N VE D

n
< uE, \ 7"E.llwi) +e-) €,

<le,+te-Je, =¢.

Since U0 is a countable family of pairwise disjoint measurable sets, and

since p(E) € p(G) < = , it follows that there is a finite subfamily

Vo C U0 satisfying u(& \ UVO) < ¢ . This proves the lemma.
LEMMA 2.3. Let {An} be an increasing sequence of subsets of X ,

n
and let D(x) = | D, (x) for all x € X , where {D )} is an increasing
1=1

sequence of Vitali covering functions on X  such that, for each n , Dn
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has the finite covering property on A, - Then, for every measurable
Vitali D-covering V of E = U{An} , there is a countable family V0 of

pairwise disjoint members of V such that u(&\ LNO) = 0.

Proof. Let En denote the set of points x € An for which there is
a BE€ Dn(x) such that B C V . Then, by the monotonicity of {An} and

{D_} , we have
n

= U ol C -
E {En} and En En+l for all n

Now we define, recursively, a sequence of families Un cV as
follows. Let Wb =@ , and Wn denote the union of the members of Un ,

whenever defined. We set

V. ={vevnDd x| vn 1W7;-1=¢} ,

=S

7

and note that Vn is a measurable Vitali Dn—covering of
n

F =F \ i W. C Cos .

F =E _U W,y CA, ., and that Dn has the finite covering property
1=1

on Fn . Then we select a finite family Un of pairwise disjoint members

of Vn such that u(Fn \ W) <1/n, that is,
\ no_
.) < .
u(E, iglll) 1/n
Then the proof is completed by taking V0 = U{Vn} . and by noting that
w(E \ UVO) < Z u(En \ UVO) = 0, since, the sets Wi being up-closed, for
every n and every Kk >n we have

k k
u(En\ W) < u(E, \ [_J W) = u(E \ gwi) < 1/k .

=1 =1

3. Vitali measure space
Henceforth, we shall be dealing with a fixed space (X,u, {Xh} }

where X is a topological space, ¥ 1is an outer measure defined on the
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power set of X , and {Xh} is an increasing sequence of u-proper
p-open sets with U{Xh} = X (Thus, u is o-finite.). This will simply
be called the measure space X .

DEFINITION 3.1. 1If every open set (and, hence, every Borel set) in
X 1is measurable (p) , then u 1is called topological; and then X is

called a topological measure space.

DEFINITION 3.2. Let {Cn} be an increasing sequence of Vitali
covering functions defined on X , such that, for each n , Cn has the
weak Vitali property on Xh . Then the space (X, u, {Xﬁ} , {Cn}) is

called a Vitali measure space; if, further, p 1is topological, then it is

called a topological Vitali measure space.

DEFINITION 3.3. 1lLet (X, u, {Xn} . {Cn}) be a Vitali measure space.
We define the increasing sequence of Vitali covering functions C; on X,
by letting C;(x) be the collection of the families V of u-closed

subsets of X for which there is a B € Cn(x) such that, for every B € B

there is a V€ V , and conversely, with V CB and u(B) < n-u(V) . Wwe
also define the Vitali covering functions C, C* on X , by setting
Cw = UC@ ,Chx = UCia .
n n
n=1 n=1

Note. C (x) C C;(ac) and C(x) € C*z) for all n,r .

In the sequel, whenever we speak of X as a Vitali measure space, we

shall mean the space in Definition 3.2.

THEOREM 3.1 (Vitali covering theorem). Let X be a Vitali measure
space, and let V be a measurable Vitali C-covering of a subset E C X .

Then there is a countable family V0 of pairwise disjoint members of V

such that u(E \ UWO) = 0.

Proof. By Lemma 2.2, every Cn has the finite covering property on

Xn . Then the theorem follows from Lemma 2.3, by noting that E = U{E N Xh}

N C N
and E Xh E Xﬁ+1 for all n=n .
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DEFINITION 3.4. Let X be a Vitali measure space, and let E C X
and z € X . The supremum [infimum] of the numbers £ , for which there is
a Ve C*(x) such that WE N V) 2 2eu(V) [W(E N V) < 2+u(V)] for every
V€V, is called the upper [lower] density, d(E,x) (d(E,x)] , of E at
x . If a(E,x) = Q(E,x) , then this common equal value is called the
density, d(E,x) , of E at x .

Note. o0 < d(EF,x) < d(E,x) <1, since when every V belongs to

C*(x) , so does every x-convergent subfamily of V .

Our primary interest lies in the following eight properties in a
Vitali measure space X , with special attention to the last four in the
general measure space X .

(ul) (Outer regqularity property). For every EC X and € > 0 ,
there is a p-open set G DO F with u(G) < p(E) + ¢

(u2) (Vitali covering property). If V is a Vitali C*-covering
of a subset E C X , then for every € > 0 there is a countable family
VO of pairwise disjoint members of V such that

Zu(Vo) < u(E) + e and p(E\ Wy =0 .

(By Zu(Vo) we mean the sum of all u(V), VE V0 2
(u3) (Density property). Every £ C X has density 1 a.e. on FE .

(u,) (Basic Vitali covering property). If V is a Vitali Cn—

covering of a subset F C Xn , for some n , then for every € > 0 there

is a finite family V0 of pairwise disjoint members of V such that
Zu(VO) < u(E) +e¢ and p(E\ UVO) < g .

(us) (Inner reqularity property). For every measurable E C X and

€ >0 , there is a p-closed set F CE with p(E\N F) < ¢ .
(u6) (Lusin property). If f : E > Y is measurable, where E C X
and Y is a Borel countable space, then for every € > 0 there is a

u-closed set FCE with p(E\ F) < e , such that f|F is continuous.

(u7) (Basic Vitali-Carathéodory property). If f : X + [0,°] is
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measurable and finite a.e., then for every ¢ > O there is a measurable

lower semicontinuous function h : X > [0,»] , such that A2 f a.e. and

J (h=fHdp < € .
X

(us) (Vitali-Carathéodory property). If f : X + [-=,»] is

measurable and finite a.e., then there exist two sequences of measurable

functions Zn, U, : X » [-»,»] satisfying the following conditions:

(i) for every n, Qn is lower semicontinuous and un is upper
semicontinuous;

(ii) & < 2 and u 2y for all n ;
n+l n n+l n

(iii) for every n , inf En > -o and sup un < o ;

(iv) for every n , Rn =z = U, a.e.;

(v) 1lim Qn(x) = f(x) = lim un(x) a.e. on X ;
n n

(vi) 1if f is integrable (u) on a measurable set E C X , so are
the functions Rn and un , and, further,
lim J zndu = J fdu = lim J undu .
n ‘FE E n ‘E

We prove below a series of propositions, which by successive

implications lead us to the following main results.

THEOREM 3.2. (a) In a topological Vitali measure space X in which

v 18 regular, the properties ) through (us) are mutually equivalent.

(b) In a topological measure space X , the properties (1) through
(ug) are mutually equivalent.
(c) A Vitali measure space X has all the properties (n)) through

(ug) if and only if w is topological and (e)) holds.

(d) If a Vitali measure space X has the property (y) s then 1y is
topological and regular, and all the properties (uy) through (ug) hold.

Part (a) follows from Propositions 3.3 through 3.11, and (b) from
Propositions 3.7 through 3.10; both (c¢) and (d) follow from (a) and

Propositions 3.1, 3.2.

https://doi.org/10.1017/50004972700009928 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700009928

Vitali measure spaces 235

The following examples illustrate the above results.

EXAMPLE 3.1. Iet A denote the Lebesgue outer measure on the real
line R . Fix MC R with inner measure equal to O , such that
AA N M = A(4) for every A-measurable set A (see Halmos [6]; Theorem
E, p. 70). Define

u(E) = M(ENM for every EC R .

Then u 1is an outer measure in JR , and every A-measurable set is
p-measurable with equal value of the measure. In particular, u is
topological. Given any EC R and € > 0 , there is an open set

GO DENM with )\(Go) SAMENM) + ¢ . Since u(E\N M) =0 , the set
G = Go U(E\N M is yu-open, G DO E , and we have u(G) = u(GO) = )\(GO) <

u(G) + € , which verifies the property (ul) . If, for each n , we define

In = (-n,n) and Cn (x) to be the collection of all x-convergent families

of closed intervals containing x , then the classical Vitali covering

theorem trivially implies the weak Vitali property of Cn on In under u .
Thus (E’E'{In}’{cn}) becomes a topological Vitali measure space

satisfying (ul) , and, hence, also every (ui) . We note, however, that

there is an abundance of subsets E CR\ M with A(E) > 0 , and for
every such E we have w(F) =0 , while wp(H) = A(H) 2 A(E) > 0 for every
open set H D FE . This shows that we cannot, in general, replace 'u-open’

by 'open' in (ul) . Also, for any A-measurable set A with A(4) > 0 ,

the set AN M is p-measurable and u(A N M) = A(4A) > 0 , while
W(F) = A(F) = 0 for every closed set FC A NM , since M has innerxr
A-measure O . This shows that we cannot, in general, replace 'u-closed'
by 'closed' in (us) and (u6) .

EXAMPLE 3.2. with R, X, M, {In} and {Cn} as in the preceding
example, we now define

W) = ME) + AM(E DM for every ECR .

Then W 1is an outer measure in R , and a set is u-measurable if and only
if it is A-measurable. 1In particular, p is topological. Given any

measurable set 4 and € > 0 , there is a closed set F C A with
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AMAN F) <e/2 . Then u(A\ F) = X4\ F) + A((A\ F) N M < e , which

verifies (us) . Also, as before, Cn has the weak Vitali property on
I, under u . Thus (R, wu, {In}' (Cn}) becomes a topological Vitali

measure space satisfying (u.) , and, hence also (p.) , (u7) and (ug) .

5 6 8

We note, however, that (ul) does not hold, since, for any E C R\ M and
any u-open set G DO FE , we have u(G) = 2-A(G) 2 2+A(E) = 2°u(E) . So
also, u 1is not regular and (u4) does not hold.

PROPOSITION 3.1. If w s topological and (1) holds, then wu 1is
regular; specifically, for every E C X there is a measurable set A 2 E

with u(A) = u(E) , such that A <is the wunion of a Ga-set and a set of
measure zero.

Proof. By (ul) , there is a sequence of p-open sets Gn D E such
that u(Gn) < u(E) = 1/n . Setting G = ﬂ{dZ} , we have up(G) < p(¥F) , and
WEN G) =0 since E\N G C U{Gn\ GZ} . Since u is topological, the
proof finishes by taking A =G VY E\ @)

PROPOSITION 3.2. If (u,) holds, then u is topological and

regular.
Proof. we first show that, if A, B are any two subsets of some Xn .
such that there are open sets Gl DA with Gl NB =g and G2 DB with

G2 NA=¢g , then u(4d) + p(B) = u(4d Y B)

. _ U . i ) _ ) URBC
Since V Cn[GI] Cn[GZ] is a Vitali Cn covering of A UB Xn .

given € > 0 there is, by (u4) , a subfamily V0 C V such that

zu(vo) < u(AVB)Y +¢ and u{(4UVUB) \ UVO) < g

If vl={VevO|VnA¢¢} and V, {V€V0|VﬂB7‘Q},then

AN W) = u(dN W) S p(dUB) N\ W) <e,

u(B \ Uvz) p(B\ UVO) < u((a v\ uvo) <e .

Also, Vl N V2 = @ by the choices of Gl, G2 and V. So,
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< U .
):u(vl) + ):u(vz) Zu(VO) < u(AUB) +¢

It follows, therefore, that

p(4) + u(B) < u4 nuVl) + u(4\ UVl)
+mBnU%)+uw\lN£
< Eu(Vl) + € + Zu(Vz) + €

< (A VU B) + 3¢

Since € > 0 is arbitrary, and since u 1is subadditive, it follows that

u(4) + p(B) = (A VYV B) .

Next we show that, if (G is any u-open subset of some Xn , then
u(@\ Gy + p(A NG = u(d) for every AC Xn .

Since u(G\ &) =0 , we may and do suppose here that G is open.
Then Cn[G] is a Vitali Cn—covering of ANGC Xn . So, given € > 0 ,
by (u4) there is a finite subfamily V C Cn[G] such that

WANG\ F) <¢ where F=WCG.

Now X\ FO A\ GO \VNF and X\F)N((ANF) =¢g ; also GDANF
and GN ((A\ & \ F) = 9 . so, by the preceding result,

WAN OV F) + uANF) = p( (AN &\ Fy u ANF)) <u4d) .

But, F is u-closed, GO F and uw(ANG Su(dANF) + uy(ANDB\ F) <
V(A NF) + € . Hence it follows that p(A\ G) + p(A NG - ¢ < pu(d)

This implies, as before, the desired result.

Now we show that, for every A C X , u(An) > u(4) where An =AN Xn'

i = = U = =
Since X U{Xn} , we have A {Bn} where Bn A \ Xn—l P Xy =9 .
Also, since Xi—l is a u-open subset of Xi , by the above we have

- = . N . . .
BA) = wld, DX )+ uA N X )

U(Ai_l) + U(Bi) v AO =g .
n

Therefore iglu(Bi) = u(4,)) , whence lilm H(4) = Zu({B) 2 uUB. ] = u).

Since An C A for all 7 , the desired result follows at once.
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Finally, consider any open set G C X . Since G N Xh is p-open,
by the above results we have, for every A C X ,

u(4)

lim p(4 N X;)
n

1;m MA@ NX) NEGNX)) +uldNX) \ GNxmNl

Lm (WA NGNX) + u(a\ 6 nx)l
n

WA NG + uld) 6
Hence ( 1is measurable, showing that u is topological.

Next, consider any F € X and any € > O . We define, recursively,

a sequence of finite families Un of p-closed sets as follows. Let
Wb =@ , and Wh denote the union of the members of Un , whenever

defined. We set

V, = {veC | v

T o
=
I
S
At

and note that V is a vitali C -coveringof F =E \ |W. CX
n n n 4=1 t71 n

where En =EFEN Xﬁ . Then, applying (u4) , we select a finite family
U € V_ such that
n n

-n -n
”(Wn) < “(Fn) +2 Teg, u(Fn\ Wn) <2 eg

Now, since u is topological, the u-closed sets Wh are clearly
measurable; also, they are pairwise disjoint. Therefore, setting W = U{Wh},
we have

-n
ww) = Zul) < Z[u(Fh) + 2 cg]

N \
E[U(Fn Wn) + H(Fh Wh)] + €
SIWEOW) + T 2 e 4 e

< p(E) + 2¢e .

Further, as in the last part of the proof of Lemma 2.3, we have u(E \ W) =0.
Thus, we have a measurable set A=W U (E\ W) such that 4 D E and
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u(4) = p(¥) < p(F) + 2e . This clearly implies that p is regular;
which completes the proof.

PROPOSITION 3.3. For topological v , (1)) implies ()

Proof. we first observe that, since u is topological, every Vitali
covering is measurable. Now, for any # and any A4 C Xh , consider any
Vitali C;-covering V of A . Recalling Definition 3.3, we can find a
vitali Cn—covering W of A such that, for every W € W there is a
VEV with VCW and uW) <Sn-u(V) . By (ul) , there is a u-open set
G 2 A such that

1
< =
(1) (G u(d) + °n u(4d) ,
where we take G = A4 if p(4d) =0 . Let Wl denote the family of sets
W €W such that WC G° . Then Wl is a Vitali Cn~covering of ANC° .

Since, by Lemma 2.2, Cn has the finite covering property on Xn , there
is a finite family {Wi} of pairwise disjoint members of Wl such that

WA N\ U h < u@/@n) |, that is,
(2) MAU{Vﬂ)g(lﬂnPuM)

since ACG and G is wu-open. For each % , we select a Vi €V such

.C W, L) S ne L) . i . .
that Vi Wt and u(Wl) n u(VL) Then, noting that the sets Wz R Vi

are measurable, we have

(4 \ U{Vi}) H(A N U ) \ U{V-;}’ + u((4\ VWb \ U{Vi})

< Zu(Wi \ Vi) + (1/2n) *u(4) by (2)

2uty) - u(Vi)] + (1/2n) -u(4)

< (l—l/n)'Zu(Wi) + (1/2n) *u(4))
< (1-1/n)u(G) + (1/2n)-u(4)

2
< (1-1/2n7) *u(4) by (1)

* .
Hence, by Lemma 2.1, Cn has the finite covering property on Xh
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let now V be a Vitali C*-covering of a subset EC X , and € > 0 .
By (ul), there is a p-open set G D E such that u(G) < p(E) + ¢ . Let
0 .
Vl denote the family of sets V €V such that VC G . Then Vl is a
0 . . .
vitali C*—covering of ENG . Since E N GO is the union of the

increasing sequence of sets E N Xn N GO , and since every C; has the
finite covering property on Xn , so, by Lemma 2.3, there is a countable
subfamily VO - Vl of pairwise disjoint measurable sets such that

uw(E N GO \ UVO) = 0 . Since UVo C GO and G is u-open, we have
Iu(Vy) < w6 < uE) +e and u(E\ Wy) = 0 . This verifies (u,) and

completes the proof.

PROPOSITION 3.4. Forany w , (u,y) implies (1)

Proof. Given EC X , let En denote the set of points x € E N Xn
at which é(E‘,x) <n/(n+tl) . 1If EO is the set of points of E at which
F has density 1 , then we have FE \ Eo = U{En} . It is therefore enough

to show that u(E’n) = 0 for each n.

*
Now, for every x € En there is a V € C (x) such that

W(E N V) < (n/(n+l))*u(V) for every VE V . The family of all such V

. . . * .
constitutes a Vitali (" -covering of En . So, by (u2) , for any € > 0
thexre is a countable family of sets Vi such that

<y -
Ziu(Vi) = U(En) + € and U(En\ U{Vi}) =0 ’
where u(®& N Vi) < (n/(n+1)).u(V7:) for every <. Then
< ) .
u(En) U(En N {Vz}) + U(E’n \ U{Vi})
<7z. NV.)<gs.
Z’I,U(En V’I,) Z'LU(E N V‘l',)

< (n/(n+l)) Luv) < (n/(m+l)) - [w(E)) + €]
Since u(E’n) < u(Xn) <® and € >0 1is arbitrary, it follows that

u(E ) = 0 , which completes the proof.
n b
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PROPOSITION 3.5. For topological u , (u3) implies (u4)

Proof. For any n , let V wve a Vitali Cn-—covering of a subset
EC Xn , and let € > 0 . Let E'l denote the set of points of F at
which E has density 1 . For every x € E'l , there is a B € Cn(x)
such that B CV , and, since d(E,x) = 1 , there must exist an x-
convergent subfamily B1 of B such that, for every V € Bl .
WE N V) 2 (L/(1/p))*ul(V) where p = g/(1+u(E)) .
So, the subfamily Vl C V of all such V constitutesa Vitali Cn—covering

of E'l . Also, the members of V1 are measurable, since yu is

topological. Therefore, by Lemma 2.2, there is a finite subfamily

{Vi} C Vl of pairwise disjoint measurable sets such that ]J(El \ U{Vi}) <g.
Since by (u3) , w(E\ E'l) =0 , it follows that u(E \ U{Vi}) < g ;
further, we have ZU(V‘L) < (I4p) <Zp(E N Vi) < (l+p)-p(E) < u(E) + ¢

This verifies (u4) and completes the proof.

PROPOSITION 3.6. For any wu , (1) implies (ug) -

Proof. 1let E be any measurable subset of X , and € > 0 . First

suppose F is contained in some Xm . Consider any p € (0,e) and any_
q € (0,p) . Since Cm[X] is a Vitali Cm—covering of E , by (u4) there
is a finite family V of p-closed sets such that uw(E\ W) < g and
Zu(V) < pu(E) + g . Then V=W 1is yu-closed, u(E\ V) < g and, since
E is measurable and u(f) < u(Xm) < » , we have
WV N E) = (V) - u(VNE)
SpV)y - uE - uwE\N NI <2q .

Hence, there is a sequence of u-closed sets Vn with

w(E\ v,) < p-z_n and (Vn\ E) < p'2-n , M= 1,20, .

If W= n{Vn} , then ¥ is yu-closed, and obviously p(W \ E) =0 .

Therefore F = WNE is u-closed, FCF and, further,
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WEN F) = pE\ W) <IuEN V) < ipe2™" p<e

In the general case, we set

E,=ENX\X X =8, n=1.2,...

Then En C Xn and, since by Proposition 3.2 u is topological, En is
measurable. Hence, by above, there is a u-closed set Fn C En with
u(E'n \ Fn) < g2 " . Now the set F = U{Fn} is yu-closed. To see this,

it is enough to note that u(X \ U{Xg}) = 0 and that, for each n ,

n
H = |JF. is wup-closed and (F\ F) Nx°Cc B \ B, since F\ H_ is
nooo n n n n

tontained in the closed set X\ Xg . Also, we have F C U{En} = F and
wE\N F) < Zu(E'n \ Fn) <e2" = ¢ . This verifies (us) and completes

the proof.

PROPOSITION 3.7. For topological w , (us) implies (u6)

Proof. The proof will be done by a simple modification of the
ingenious method of Sion ([74], Theorem 3.5, page 470). We first observe
that, if FE is any measurable subset of X and € > 0 , then there is an

open set G such that p(G A E) <e . In fact, by (us) , there is a

u-closed set FC X\ E with u((X\ E)\ F) <e . Then, it suffices to
take G =X\ F .

Now, let f : E + Y be measurable, where EC X and Y is a Borel

countable space. We fix a countable pseudo base {Bn} for Y , where each

Bn is a Borel set in Y . Since f"l(Bn) is measurable, by the above

there is an open set Gn in X such that u(Gn A f_l(Bn)) < g2l .
setting 4 = £\ UG, A fgl(Bn) , we have
WE N A) < Tu(G, b f'l(Bn)) <ze2% 2 ep2
Also, consider any a € A . If H is any neighborhood of f(a) in Y ,

then f(a) GBnCH for some n . Since aGAﬁf-l(Bn) , so aEAﬂGn;

further, f(x) € Bn CH for every £ € 4N Gn . Hence f | A 1is
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-1

continuous. But, since u is topological and E = f “(Y¥) is measurable,

clearly A is measurable. So, by (us) , there is a u-closed set

FCA with p(4\ F) <e/2 . Then uw(E\ F) = p(E\ 4A) + u(A\ F) < g/2

+e/2=¢€ ,ad f| F is obviously continuous. This verifies (u6)
and completes the proof.

PROPOSITION 3.8. For topological v , ) implies )

Proof. 1Let f : X » [0,%] be measurable and finite a.e., and € > 0 .
Here the space ([0,*] is assumed to have the usual order topology, so
that it is second countable, and, hence, Borel countable. Now, first

suppose M = su <w , By (p ) , there is a u-closed set F with
P p 6

u(X\ F) < ¢/M such that f | F is continuous. We define h(x) = f(x)

if TE€EF ,hix) =M if x€ X\ F , and h(z) = lim inf (f | F)(y) if
Yy

£ € F\ F . Then it can be easily seen that & fulfills all the conditions
in (u7) (semicontinuity implies measurability, since 1y 1is topological).
In the general case, we note that f = £ fh a.e. on X , where
fh(x) = f(x) if n - 1< f(x) <n and fh(x) = 0 otherwise. By above,
there is a sequence of nonnegative measurable lower semicontinuous
functions h_ , such that kA = f a.e. on X and (h, - frdu < g2
n n n x " n
Then the function h = & hn evidently fulfills all the conditions in (u7),
and this completes the proof.
PROPOSITION 3.9. For any v , (ug) implies (ug)
The proof is similar to that of the Vitali Carathéodory theorem (Saks
[11}; p. 75), (u7) serving for the Lemma used therein.

PROPOSITION 3.10. For topological w , (ug) implies (ug)

Proof. 1et E be a measurable subset of some Xm ,and € >0 . Let

flx) =1 if x€FE , and f(x) =3 if x€ X\ E. Then f is clearly

measurable. Let {zn} denote the sequence of lower semicontinuous

measurable functions furnished by (u8) , corresponding to this f . Set
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F ={z€X | g @ <2}, n=1,2,... .

Then Eh is measurable and closed. Also, the condition 2n+1 < Qn gives
. . . = . \U -

Fh C F%+l , the condition 1lim Qn f a.e. gives u(F {Eh}) 0 , and

the condition & = f a.e. gives uF, \E)y =0.

Now, {E N Fn} is an increasing sequence of measurable sets, and,
hence, lim u(E N Fh) = u(E N U{F%}) = p(E) , since uw(E\ U{Fn}) =0 .
Since u(E) < u(Xh) < o , it follows that u(& N Fk) > u(E) - ¢ for
sufficiently large k . Since Fk is closed and u(Fk \ E) =0, so
FP=EN Fk is p-closed; also, FCE and we have w(E\ F) = p(E\ Fk) =
U(E) - uw(E N Fk) < € . This verifies (us) for the set E C Xﬁ .

The general case now follows by the last part of the proof of
Proposition 3.6.
PROPOSITION 3.11. For regular u , ) implies ) -

Proof. since u is regular, for any E C X there is a measurable
set A DE with p(4) = u(E) . since X\ A is measurable, by (us)

there is a yu~closed set F C X\ 4 such that u((X\ 4) \ F) < ¢ . Then
G=X\F is u-open, GDADE and we have u(G = pu4) + p(G\ 4) =
w(E) + u((X\ A\ F) < u(E) + ¢ . This verifies (4;) and completes the

proof.

4. Approximate continuity

In this section, we assume that X is a Vitali measure space
satisfying (u4) , so that, by Theorem 3.2, p is topological and regular
and all the properties (ul) through (u8) hold. The symbol Y will

denote an arbitrary topological space. We shall study measurability of
subsets of X and of functions from X to Y in terms of density and

approximate continuity.

We first observe that, since p is o¢-finite and regular, for every
ECX there is (Halmos [6]; Theorem C, p. 50) a mesaurable set 4 ,
called a measurable cover of F , such that A D F , p(4) = u(F) and
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u(F) = 0 for every measurable set FC A\ E .

LEMMA 4.1. If A <s any measurable cover of a subset E C X , then
d(A,x) = d(E,x) and d(A,x) = d(E,x) for all 'z € X .

Proof. Given any measurable set V , clearly we can find a measurable
cover B of ENYV such that BC AN V. Then, since AN V\ B is a
measurable subset of A\ E , we have u(ANV\ B) =0 , and, hence,
WANTV) = puB) =pENY .

Now, since u 1is topological, every u-closed set is measurable.
Hence, by above, u(A NV) = uy(F NV) for every V€ C*[X] , whence the

lemma follows at once.

THEOREM 4.1. A subset E C X <is measurable if and only if E has
density O a.e. on X\ E .

Proof. By density property (u3) , X\ E has density 1 a.e. on

itself. Also, when £ is measurable, then u(V) = p(V N E) + u(V N (X\E))

for every V € C*[(X] . From this the 'only if' part follows quite readily.

Next, suppose E has density 0 a.e. on X\ E . Then, choosing a
measurable cover 4 of E , by Lemma 4.1 A has density O a.e. on 4\ E,
which by density property implies that p(4\ E) = 0 . Since 4 is a
measurable superset of E , it follows that FE 1is measurable, and the

proof ends.

DEFINITION 4.1. A function f : X » Y is said to be approximately
continuous at a point x € X if, for every neighborhood H of f(x) in

Y, X\ £Y&) has density 0 at .

The following theorem extends a result of Sion []4] (Coroilary 3.10,
p.- 473), mainly by relaxing his hypothesis that Y has a countable base.
Sion's proof of the only if part involves, as usual, the Lusin property,
which is not available in our general case. However, a more direct proof

applies.

THEOREM 4.2. Let Y be a pseudo countable space, then a function
f:+ X > Y 1is measurable if and only if it is approximately continuous a.e.
on X . (The restriction on Y <is unnecessary for the 'if' part.)

Proof. suppose f is approximately continuous a.e. on X . Then,

for any open set H in Y, X\ frl(H) has density 0 a.e. on frl(H) .
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Therefore, by Theorem 4.1, X\ f_l(H) is measurable, and, hence, f'_l(H)

is measurable. Thus f is measurable, proving the 'if' part.

To prove the ‘'only if' part, let {Hn} denote a countable pseudo

base for Y . By the density property (u3) , f-l

. -1 -1 . _
each point of f (Hn) \ An for some An cf (Hn) with u(An) =0 .

(Hn) has density 1 at

let E= X\ U{An} , then clearly u(X\ E) = 0 . BAlso, consider any

x€ E . I1If H is any open neighborhood of f{(x) in Y , then
f(x) EHnCH for some 7 . But xQAn since x € E . So

x € f_l(Hn) \ An , and, hence, f-l(Hn) has density 1 at & . Since
f-l (Hn) C f-l (H) , and since measurability of f implies that f-l(H) is

measurable, it readily follows that x \ f_l (H) has density 0 at x .
Thus f is approximately continuous at each point of F , which completes

the proof.

Goffman and Waterman [4] (Theorem 1, p. 117) showed that the range of
an approximately continuous function from an euclidean space to a metric
space is separable. In our final theorem, following the definitions below,

we prove a much wider and stronger result.

DEFINITION 4.2. A family of nonvoid subsets of a subset Yo CY is
said to be dense in Yo if every neighborhood of every point of Yo
contains a member of the family.

DEFINITION 4.3. A function f : X > Y is called u-positive at a
point x € X if u(f T(H)) > 0 for every neighborhood H of f(x) in
Y.

DEFINITION 4.4. A sequence {Hn} of open coverings of the space Y
is called a contraction for Y if, for every yo € Y and every
neighborhood H# = of y_ , there is a k such that Y, € HE Hk implies
HC HO . The space Y is called contractive if there is a contraction for
Y.

Every pseudo metrizable space is contractive. For, if p is a

pseudo metric compatible with the topology of Y , let Hn denote the
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family of open spheres of p-radius 1/n . Then each Hn is an open
covéring of Y . Also, given any neighborhood Ho of any point Y, ey,
there is a k such that HO contains the open sphere of p-radius 2/k
about Yy, - Using triangle inequality, we readily obtain that Y, €EHE Hk
implies H C Ho . Hence {Hn} is a contraction for Y , and Y is
contractive.

On the other hand, consider the set I = [0,1] endowed with the
topology consisting of all subsets E C I such that E N {0,1} # @
implies (0,x) CE for some &« € (0,1) . Since {0} and {1} are
disjoint closed sets having no disjoint neighborhoods, the space is not
normal, and, hence, not pseudo metrizable (Kelley [8]; Theorem 10, p. 120).
In connection with our proposed theorem, it may also be noted that the
space I is not separable ({x} is open for every x € (0,1)). But, let
An denote the family of the sets [0,1/n), {1} VY (0,1/n) and all

singletons {xz} with x € (0,1) . Then it can be readily verified that

{An} is a contraction for the space I , so that I 1is contractive.

THEOREM 4.3. Let Y be contractive, and let f : X > Y be
w-positive everywhere and approximately continuous a.e. on X . Then,
for every € € (0,1/2) , there is a countable family U of up-closed
subsets of X such that for every F € U there is a B € C1[X] with

FCB and u(F) > (1 - e)u(B) , and such that the countable family
{f(F) | FE€ U} is demse in f(X).

Proof. Let {Hn} denote a contraction for Y , and let AO denote

the set of points of X at which f is not approximately continuous. We

note that u(AO) = 0 , and by Theorem 4.2 f is measurable.

Consider any Hn , any HE Hn , and any x € E\ Ao where E = frl(H).

Since H is open, clearly E has density 1 at the point x . So, there
is a B € Cl(x) such that p(EF N B) > (1 - ¢)*u(B) for every BE B .

Since E N B is measurable, by inner regularity property (us) there is a

p-closed set B* CENB with u(E N B\ B*) < w(ENB) - (1 - ¢)u(B)

Then, we have u(B*) > (1 - €)+u(B) > (1/2)*u(B) . Since C,@) € Cy@ ,
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it follows that {B" | B€B}E C;(x)

Now, let Vn denote the family of u-closed sets F € C; (X] for
which there are a set H € Hn and a set B € Cl [X] such that
FC f-l(H) NB and u(F) > (1 - €)*u(B) . Then, since Hn covers Y ,

the above demonstration shows that Vn is a Vitali C*-covering of X\ AO.

2

Therefore, by Vitali covering property (uz) , there is a countable

SUbfaInilY U - V such that
— = \ \
]J(A ) = 0 where A = (X A ) UU .

let U denote the countable family U{Un} of p-closed sets thus
obtained. Then, by construction, for every F € U there is a B € Cl[X]
such that F CB and w(F) > (1 - g)*u(B) . Also, consider any xo e X
and any open neighborhood Ho of f(xo) in Y . Since f 1is u-positive
at x . we have u(f-l(HO)) >0 . But, u(4) = 0 where 4 = U{An—l} .
Therefore, there is at least one point uo € f-l(HO) \ 4. _ Then, since

Ho is a neighborhood of f(uo) , and since {Hn} is a contraction for Y,

there is a k such that HO D H whenever f(uo) € H € Hk . Now,

U i . € € '
u, & AO Ak since u & A So, u, F for some F Uk and, by
construction, there is an H € Hk such that F C f_l (H) . Then

f(uo) € HE€ H, , and, hence, HC HO . Therefore f(F) CHC Ho . This

k
shows that {f(F) | F € U} is dense in f(X) and the proof ends.
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