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ON THE LATTICE OF PRIMITIVE CONVERGENCE 
STRUCTURES 

C. R. ATHERTON, JR. 

Introduction. Let S be any set and denote by F(S) the collection of all 
niters on 5. The collection A (S) of all mappings from F(S) to 2 s , 2s being 
ordered by the dual of its usual ordering, may be regarded as a product of 
complete Boolean algebras and is, therefore, a complete atomic Boolean 
algebra [4]. A(S) is called the lattice of primitive convergence structures on S. 
If g G A (S) and Ĵ ~ 6 F(S)f then ^ is said to q-converge to a point x £ S 
if x Ç q{^). The collection of all topologies on S may be identified with a 
subset of A (S) ; this subset of A (S) will be denoted by T(S). A more specialized 
class of primitive convergence structures, and one which properly contains 
T(S), is C(5), the subcomplete lattice of all convergence structures on 5. 
If g G A (S), then q is a convergence structure on 5 if (i) the principal ultra-
filter x, generated by x, q-converges to x for each x £ S, and (ii) whenever 
^ and Jf are filters on 5, then J^ ^ ^ implies that ç ( ^ ) ^ g ( ^ ) . 

^<z(*) = C\{^ € ^ (5) : x G 2 ( ^ 0 } is called the q-neighbourhood filter at x. 
In general,^q{x) does not q-converge to x; however, there is a set P(S) Ç C(5) 
consisting precisely of those convergence structures q such that i^\(x) 
g-converges to x for every x Ç 5. The elements of P (5 ) are called pretopologies. 
The collection of all pretopologies on S, as well as other subclasses of A (S) 
such as the set of limitierungs and the set of pseudo-topologies, have been 
studied by Choquet [5], Fischer [7], Kent [10], and many others. 

The property of being a regular topology may be generalized to apply to 
pretopologies, convergence structures, and so forth. Studies of regular con
vergence structures and related topics have been made by Cook and Fischer 
[6], Biesterfeldt [2; 3], and Hearsey [9]. In fact, given any subset P of A (5) 
whose elements have some property in common, it may be of interest to 
determine the closure of P with respect to various intrinsic lattice topologies 
on A (5), generalize the property so as to enlarge P and include more elements 
of A(S), and characterize elements of ^4(5) which are in the lattice, sub-
complete lattice, or subalgebra generated by P . This paper is devoted to the 
consideration of the closures of P(S), T(S), and certain subsets of T(S) 
under t, Frink's ideal topology [8]. 
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1. T h e t-closures of P(S) and T(S). The ideal topology i has, as an open 
subbase, the collection of all completely irreducible ideals and dual ideals. 
If L is a lattice and X C L, denote by c(X) the closure of X under the ideal 
topology L on L; also let x* = {y 6 L: 3; ^ x} and x+ = {3; £ L: 3; ^ x}. 
Much use will be made of the following theorem, a complete proof of which 
may be found in [1, Lemma 1.1]. 

THEOREM 1.1. Let B be a Boolean algebra and A C B. 
(i) If A is closed under finite joins [meets'], then x is in c{A) if and only if x is 

inc(A r\x*) [c(A H x + ) ] . 
(ii) If A is closed under finite joins [meets], then x is in c(A P\ x*) [c(A P\ x+)] 

only if x is a finite meet [join] of elements from A C\ x* [A C\ x+] . 

PROPOSITION 1.2. a e c(T(S)) only if a £ P(S). 

Proof. Since T(S) is closed under finite joins [10], it follows from Theorem 1.1 
that q — t\ A . . . A tn for some finite collection of tt in T(S). ^q(x) = 
n?=i^ t t (x ) for any x in S. Therefore, g is a pre topology if and only if 
^q(x) — ^H(X) for some i = 1, . . . , n. This is true for every x in S. Assume, 
on the contrary, that there exists a z in S such that lfq (z) is not equal to 
any of the *V ti{z). If t > q, then^ t(z) g-converges to z implies that^ t(z) ^ 
Y ti(z) > V{£) for some i = 1, . . . , n. Let Dx be the dual ideal of A (5) 
generated by the set of all topologies / > q such that7^*(3) ^ y tl (z) ; similar 
dual ideals D2> . . . , Dn may also be defined, q is not in any of the Dt and 
q* r\ T(S) C Di ^ . . . W Dn. Therefore q is not in c(T(S)) if q is not a 
pretopology. 

COROLLARY 1.2.1. A primitive convergence structure q is in c(T(S)) only if there 
does not exist a set {zu . . . , zn) such that for each topology t > q,^ t{zt) > ^V q (zf) 
for some i = 1, . . . , n. 

COROLLARY 1.2.2. P(S) = c(P(S)). 

Consider the following condition: 
(*) For each x Ç 5 and any set V £ ^q(x), there exists a neighbourhood 

^ i n ^ f l ( x ) of V. 
Then we can prove the following two propositions. 

PROPOSITION 1.3. Let qbe a pretopology. If q satisfies (*), then q is a topology. 

PROPOSITION 1.4. Let qbe a pretopology. If q does not satisfy (*), then q is 
not in c(T(S)). 

Proof of Proposition 1.3. Define the operator Tq mapping 2s into 2s by 

Tq(B) — {x 6 S: B is a member of a filter^ which g-converges to x}. 

To prove that a pretopology g is a topology, it suffices to show that Tq is a 
closure operator [10, § II, p. 130, Theorem 4]. Tq(A) C Tq(Tq(A)) is always 
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true; thus let x be an element of Tq(Tq(A)). Then there exists a filter Ĵ ~ con
taining Tq(A) which g-converges to x. There fo re ,^ ^ Y q(x) and Tff(^4) P\ F 
is non-empty for all V in Y q(x). Given F in Yq(x)y let 3/ be an element of 
r f f(4) r\ U, where U is chosen so that F is a neighbourhood of U. The 
element y is in Tq(A) only if there exists a filter ^ containing A such that 3/ is 
in q(@), in which case, ^ ^ ^ q(y)- y is in [/; therefore F is mY q(y). Since 
4̂ P\ V is non-empty, it follows that A r\ V is non-empty for every V in 

Vq{x). L e t J ^ be the filter generated by {A C\ V: V is in Yq{x)}. Now 
J? ~^Y q(x) and .4 is in^f7; hence x is in I \( ,4) . Thus Tq(A) = r f l ( r t f (4) ) 
for all sets i C 5 and this proves Proposition 1.3. 

Proof of Proposition 1.4. If T = {3^ G #: w C ^; w, v (z^q(x) andz>$ Yq (yu)} 
for some x in 5, let Z>i, P 2 , and Dz be the dual ideals of A (S) generated by the 
sets {t> q:Yt(x)>Yq(x)}y {t > q: Y t(x) = Y q(x) and V %{y) > Y q{y) 
for all y in T}, and {* > q'.^V t(x) = YQ(x) and ^z(3>) ='Vtt(y) for some 
3; in r } , respectively, q* Hi T(S) C ^ 1 ^ ^2 ^ £>3 and q is not in D\ VJ D2 . 
Assume that q = t\ A . . . A tnj the tt being topologies in D3, and let 
Ti = {y (z t'.i^tiiy) =i^q{y)}. The set T, ordered in the natural way, 
forms a net (which is frequently in at least one of the Tt). In particular, 
suppose that for each U C V, such that U is \\\i^ q(x)y there exists a W C U 
such that IF is in Y q{x) and 3V is in Tk. Since F is not in Yq(yw)> then U 
not i n 7 ^ ^ G v ) implies that U is not 4-open. Therefore V mYq(x) — Ytjc(x) 
contains no 4-open set, i.e., Y tk(x) does not have a base of open sets, thus 
contradicting the fact that tk is a topology. 

An immediate consequence of the two preceding propositions is the following 
result. 

THEOREM 1.5. The set T(S) is closed under the ideal topology on A (5), that is, 
c(T(S)) = T(S). 

2. The 1 closures of some subsets of T(S). A convergence structure q is 
a Ti convergence structure on S if Ys(x) = {x} for every x in S. 

THEOREM 2.1. If Ti(S) denotes the collection of all 7 \ topologies on 5, then 
ciTriS)) = rx(5). 

Proof. Kent has shown (an unpublished result) that the 7\ convergence 
structures form a closed set under the order topology on A (5). Thus c(Ti(S)) 
is a subset of c(T(S)) = T(S) and also a subset of the collection of all T\ 
convergence structures ; however, these are precisely the T\ topologies. 

THEOREM 2.2. If T2(S) denotes the collection of all Hausdorff topologies on 5, 
then T2(S) = c(T2(S)). 

Proof. The set T2(S) is closed under joins in T(S). Let h and t2 be elements 
of T2(S) such that / = t± A t2 is not in T2(S). In this case, there is an ultra-
filter Ĵ ~ on S which /-converges to two distinct points x and y in S. Since 
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tu h ^ *, it follows that / ( J r ) D h(#~) U t2(#~). If x (or y) is not in 
h(^) W / 2 ( ^ r ) , t h e n ^ è ^ ( x ) . Therefore there exists a set V mV tl(x) 
which is not in J^ , and similarly a set W inY tA

x) such that W is not in J^ . 
However,&* ^Y t(x) ^Ytl(x) CWtl(x) implies that V\J Wis i n J^ . By 
a property of ultrafilters, either F or Wis inJ^~; this contradiction shows that 
/ ( # " ) = hi^) Ut2(#~). Since both /i and /2 are Hausdorff, it may be 
assumed that {x} = hij^) and {3/} = t2(^

r). Let Di be the dual ideal of 
A(S) generated by all Hausdorff topologies h such that h{^) C {x}, and 
define D2 similarly in terms of y; then h* C\ T2(S) C D\ \J D2. If / is in Du 
then there exist Ai, . . . , hn in D\ such that / = h\ A . . . A hn and it may 
be shown, as above, that t(^) = hx{^) \J . . . \J hn{^). This contradicts 
the fact that y is not in 5 ( ^ ) for any topology s in D\, therefore, / is not in Du 
Similarly, it can be shown that t is not in D2. Let I\ = A (S) — D\ and 
I2 — A (S) — Di be maximal ideals containing /, then 7i C\ I2 is an i-open 
set about /, and I\ C\ I2 O (T2(S) P\ /*) is empty. Therefore, by Theorem 1.1, 
/ is not in c(T2(S)), and so c(T2(S)) — T2(S). 

THEOREM 2.3. If K(S) denotes the collection of all compact topologies on 5, 
thenc{K{S)) = TÇS). 

Proof. Let t be any topology on S. If the only /-open covers of 5 include 5, 
then t is compact. Otherwise, there is a /-open cover of 5 which does not 
contain 5, in which case there exist two /-open sets A and B, distinct from S 
and not necessarily in the cover of 5, such that the union of A and B is 5. 
In this case, there are two situations to consider: 

(i) S — A contains at least two points, and so there exist non-empty 
disjoint sets C\ and C2 contained in S — A ; 

(ii) S — A — {b} for some b in S. 
(i) If there exist /-open sets A and B such that A VJ B = S and S — 4̂ 

contains more than one point of 5, define tA to be the topology on S whose 
open sets are 0, S, and all sets of the form G C\ A, where G is /-open; tB is 
defined similarly. If A is empty, then tA is the indiscrete topology i on 5, 
and if A = 5, then tA = t; otherwise i < tA < t. tA\J tB — t and /A, / s are 
compact since 4̂ and B are proper subsets of 5. Let Du . • • , Dn be maximal 
proper dual ideals of A (S) containing /. Since every maximal dual ideal 
of A (S) is dual prime, tA V tB = / shows that either tA or tB is in D* for each 
i = 1, . . . , n. Assume that tA is in Du • • • » Dk. tA A tc = i whenever A C\ C 
is empty. Therefore tc is in Dk+u • • • » Ai for every C C 5 — A. If G and C2 
are disjoint subsets of 5 — A, then /Cl, /C2 in Dk+u • • • , Dn implies that i is 
in Dk+u • • • , A*- This contradicts the choice of the Di as proper dual ideals; 
thus k = n and /A is in all of the Du i = 1, . . . , n. Therefore / is in 
c(/+ n Z ( 5 ) ) ; b y Theorem 1.1 it follows that / is in c(K(S)). 

(ii) If there do not exist /-open sets A and B such that i U 5 = 5, and 
S — A or S — B contains more than one point, then / consists of the open 
sets 0, S, S — {a}, 5 — {b}, and 5 — {a, b], where a and b are distinct points 
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of S. Thus, assume that there is one more open set G in /. If a and b are in G, 
then G \J (S — {a, b}) = S and 5 — (5 — {a, b}) contains two points, and 
case (i) applies. If a is in G and b is not in G, then there exists a point c distinct 
from b which is not in G; then G U (5 — {a}) = S, and again case (i) applies 
since S — G contains two points. If a and b are not in G and there exists c in G 
distinct from a and 6, then any open cover of S must contain S, in which case 
t is compact. 

THEOREM 2.4. If C0(S) denotes the collection of all connected topologies on S, 
then c (Co (S)) = TÇS). 

Proof. Given a topology t with proper open subsets A and B of 5 such 
that A VJ J3 = 5, define /A and /g as in the proof of Theorem 2.3. The topologies 
/A and tB are connected, since if C is a proper non-empty subset of S, either 
CC\ (S — A) is non-empty or (S — C) C\ (S — A) is non-empty. In any 
case, either C or S — C is not open. Thus C cannot be both open and closed. 
Therefore t = tA V tB, and the arguments found in the proof of Theorem 2.3 
will complete the proof of this theorem. 

Since A (S) is an atomic Boolean algebra, the ideal topology i is strictly 
finer than the order topology on A(S). This proves the following corollaries 
to Theorems 2.3 and 2.4. 

COROLLARY 2.3.1. The order closure of K(S) coincides with the order closure 
of TÇS). 

COROLLARY 2.4.1. The order closure of CQ(S) coincides with the order closure 
of T(S). 

Acknowledgement. I wish to express my gratitude to Professor D. C. Kent 
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