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Horseshoes for autonomous Hamiltonian
systems using the Melnikov integral
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Abstract. This paper applies the Melnikov method to autonomous perturbations of
completely integrable Hamiltonian systems. The forcing of the perturbed system is
caused by internal oscillations which are not necessarily decoupled. A unified
treatment is presented which relates some results of Holmes and Marsden with a
result of Lerman and Umanskii. It is also shown that two forms of the Melnikov
function by integrals are in fact equal.

1. Statement of results
During the last 20 years, there has been much interest and progress in determining
hyperbolic horseshoes for perturbations of Hamiltonian systems. In particular, the
existence of such horseshoes implies that the system is not integrable and has chaotic
motion. One basic method was introduced by Melnikov [13] using ideas which go
back to Poincare and is often called the Melnikov method or Poincare-Melnikov-
Arnold method. See [12] for a discussion of the various contributions of Arnold
and others. Often in these references, the perturbation is an external time periodic
perturbation or at least is the effect of an oscillation which decouples (as in the
restricted three-body problem considered by Silnikov.) Recently, there have been
several papers applying Melnikov's method to autonomous Hamiltonian systems
where the perturbation forcing is internal (rather than an external time-dependent
forcing) and the oscillation does not decouple. In particular, there are the three
papers by Holmes and Marsden (see [8], [9] and [10]) which study orbits homoclinic
to hyperbolic closed orbits and quasi-periodic motion on tori, and the paper by
Lerman and Umanskii [11] which studies orbits homoclinic to a hyperbolic fixed
point. The paper by Gruendler [6] has some related results on higher-dimensional
systems but with external time periodic forcing.

This paper presents a unified treatment of these results and gives an alternative
formula to that given by Holmes and Marsden for the the general case for systems
with an S1 symmetry. In some of these cases the integrals are only conditionally
convergent. We indicate carefully how the sequence of limits of integration must
be chosen so that the result has the correct dynamic meaning. Salem et al. also
noticed that the limits must be carefully chosen (see [19] or [12]).

In either case we consider a Hamiltonian with two degrees of freedom, four total
dimensions, with Hamiltonian function

z) + e2H2(z) + - • •. (1.1)
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To form the associated vector field or differential equation let

/2 V-i o.
be the two by two matrix and

^ : )
be the standard four by four skew symmetric non-degenerate matrix. For any
real-valued function G(z) let z = JVG = Xa be the associated Hamiltonian vector
field. In particular, for H\ let

= / V H 0 + E J V / / , + •• •=X0(z) + eX,(z) + - • • . (1.2)

We let z = (j>(t, z0, e) be the solutions of z = X£(z) with <£(0, z0, e) = z0. Also,
<£o('> Zo) = <£('> zo, 0)- The basic assumption for this paper is that Xo has a second
real-valued independent integral F:

DF • Xo = 0 so F is constant on solution of Xo; •

V F and V / / 0 are independent. j

(In particular, they are independent on the homoclinic connection F discussed
below.) With this assumption, F is a valid measure of one of the directions in the
energy surface Hgl(h) which is transverse to the solutions of Xo. A Hamiltonian
system in dimension four with such a second integral is called completely integrable. :

1 A. In the first case, we assume Ho has a hyperbolic closed orbit y with a homoclinic i
connection. In other words, at least one branch of the stable manifold Ws( y, Ho) \
coincides with a branch of the unstable manifold Wu(y, Ho) . Let 2 be a transversal j
to the flow and so it is three-dimensional. Assume Ho(y) = 0. The energy surface \
Ho'(0) is also three-dimensional, and their intersection I n H o ' ( 0 ) is two-
dimensional. Since Xo has a second integral, if Wu(y, Ho) and Ws(y, Ho) intersect,
they coincide on components of W*( y, Ho) - y and Wu( y, Ho) - y. Let F be one
such component of [W^(y, H0)-y]n W(y, Ho). (Note that it can be shown that
F and Ho are necessarily dependent on y since F is constant on W*(y, Ho),
W(y, Ho) and y.)

Now, for z in F, let Nz be a plane transverse to F at z (or even normal). Note
that F is two-dimensional so a plane is transverse in the total space. For e > 0, let
zu(e)beapointin W"(ye, He)n Nz where the perturbed unstable manifold intersects
Nz. Such a choice of points can be made smoothly in e, because ye varies smoothly

M(z)=^-{F(zu(e))-F(zs(e))}| f = 0 . (1.3)
de

If M(z) has a non-degenerate zero as z varies on F, then Ws( ye, He) and Wu(yf, Hf)
have a transverse intersection nearby because M measures the lowest-order separ-

as a function of E since y is hyperbolic and W(ye, He) varies smoothly on compact
subsets. Similarly define zs(e) = W*{ye, H

e) n N2. Now F can be used to measure 1
the relative displacement of r ( % , He) and Wa(ye, H

E); define j
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ation of these manifolds. Theorem 6 discusses the case when M merely changes
sign at a point z0.

The following theorem gives a formula to calculate Af in terms of an integral
along the orbits of the unperturbed system. It is the basic fact which makes the
integral applicable.

THEOREM 1. Assume the Hamiltonian vector field for Ho has a closed orbit y with a
homoclinic connection F. Further, assume that Ho is completely integrable with a second
integral F which is independent from Ho on T. Then

= lim I 'M(z) = lim I (DF-X^^.^dt (1.4)

if Tj and Tf are chosen such that lim^_,0 \<t>o(7/> z ) ~ 0o(~ Tf, z)\ = 0. Thus <£0(Tj, z)
and <j>0(—Tf, z) converge to the same point on the closed orbit y. If DF- Xx = 0 for
points on y, then the improper integral converges absolutely. In particular, if y remains
a closed orbit when e > 0 (and so X, is parallel to Xo on y), then the integral converges
absolutely.

The proof of this theorem is similar to those in the literature, but is given in § 2
for completeness and because it is not very long. The limits of integration need to
be chosen as specified in the theorem because the closed orbit can move as e becomes
positive. The proof shows that

= | '
3-Tf

M ( z ) = | ( D F - X J ^ f ^
3-Tf

where

R(-Tf, Tj)=^F°<t>(-T*, z"(e), e)-- f F» 0(7}, zs(e), e).
de de

Lemma 2.1 proves that as 7} and Tf^oo, R(-Tf, 7}) converges to the difference
of the infinitesimal displacement of ye near <f>0(—T*, z) and <t>o(Tj, z) as measured
by F. If these converge to the same point, then the remainder goes to zero. The
following example taken from [10, example 6.5] shows that this is indeed the case
for a particular Hamiltonian.

Example 1.5. Let

He(r,p, 0,1)=p2/2+ U(r) + I2/(2r2) + esm 0. (1.5)

This rises from a slightly asymmetric central force problem. Since J = - e c o s 0 ,
F=I can be taken as the second integral of Ho. Choose U(r) with a simple
maximum and /„ such that the effective potential U(r) + ll/(2r2) has a minimum
at r_ and a maximum at r+. Then Ho has a saddle closed orbit with r = r+, v = 0,
I = Io and 6 varying. It also has a homoclinic orbit (ro(t), po(t), 0o(t)+ 6°, Io) with
po(0) = 0, 0O(O) = O, ro(-t) = ro(t) and 6o(-t) = -0(t) for any choice of the initial
condition 0°. Then DF- XHl = -cos (00(t) + 6°) and

f

J-
cos (0o(t) + 6°) dt.
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Note that any orbit on F can be realized by a suitable choice of 0°, so it is the only
variable used for the function M. Let 0, = 60(Tj) and -0f = 80(-Tf). Since 8 = I0/r

2,

1 fJ
M(0°) = -cos 0° lim — ro( tf cos

f l J

1 fj

+ sin 6° lim — ro( f )
2 sin 0 d&,

where ro(t) is evaluated at the t corresponding to 8. The limits need to be chosen
so that \0j + 0o-(-6f+8°)\ = \8j + 0f\ goes to zero modulo 2ir. Here, this is most
easily done by taking 0, = 2 IT/ and -8* = —2irj. Since ro(t)

2 sin 0 is an odd function,
the limit of the second integral is zero. (This is easier to see if the limits are ±2irj,
but is true in any case using the fact that ro{t) -» r+ as t -» ±oo.) The limit of the first
integral is non-zero for generic choices of U(r). Note that the limit of each integral
can vary by ± r+ by choosing the limits 0, and - 8f incorrectly. Finally, integration
by parts on the first integral yields

M(0°) = cos 8°(y) f ro(t)po(t) sin 80(t) dt,

since ro(T})2sin 0,-ro(-Tf)2 sin (—Of )->0. This integral converges absolutely
because po(t) goes to zero exponentially. This answer is just the negative of the
answer in [10] as theorem 3 below shows it must be.

IB. The second case we discuss was considered by Lerman and Umanskii [11]. It
assumes the system has hyperbolic fixed point P. They prove the comparable result
which we state as theorem 2. We wish to thank P. Holmes for pointing out this
result to us after he had seen a version of theorem 1 used in some joint work with
J. Koiller.

THEOREM 2. Assume Ho is completely integrable with second integral F and has a
hyperbolic fixed point P with non-empty homoclinic connection F = [ WS(P, Ho) - {P}] n
WU(P, Ho). Assume the integral F is independent of Ho along F. Then, for zeV, the

formula for M(z) is as given in theorem 1 and the integral always converges absolutely.

The proof of this theorem is exactly the same as theorem 1, so it follows from
§ 2. The reason that the integral converges absolutely is that there is only one point
on P, so the limit

without taking sequences of times.

1C. Next we want to relate this formula to the one derived by Holmes and Marsden
in the most general case with S1 symmetry [10, p. 299ff]. Such a symmetry naturally
gives a second integral /. In fact, by using the related action angle coordinates, they
consider z = (y, 8,1) and Hamiltonians

where Ho is independent of 0. If the motion is restricted to a single energy surface,
then 0 can be considered a new time and the system as having a time-dependent
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perturbation by X,, i.e. a ^-dependent perturbation. Then the usual Melnikov
integral applies. They show the resulting formulae are as follows. Let O = dHJdl and

If Xo has a closed orbit with homoclinic connection, and if zo = (y0, 0O, Io) is the
initial condition, then they get a Melnikov integral

20)=[
J ~ o

M*(20)=[ (DtfoV.W.)*. (1.6)

This integral is always absolutely convergent because DH0 vanishes at points on
the closed orbit y so DH0 • Y{ = 0 at such points. Our next theorem relates their
function M*(z), which can be calculated with formula (1.6), with our function
M(z), which can be calculated by formula (1.4).

THEOREM 3. Under the conditions above, M(z) = —M*(z).

The proof of this theorem is given in § 3. The principal step in the proof is
integration by parts. Note that because integration by parts involves evaluating a
product at the limits of integration in addition to the two integrals, there is no
contradiction to the fact that M * converges absolutely and M only conditionally.
See example 1.5 above.

Since these two integrals differ by only a sign and both measure the separation
of stable and unstable manifolds, either formula can be applied to a given problem.
Their integral has the advantage that it is absolutely convergent and may be simpler
in some problems. The difficulty is that, to calculate their integral, the system must
be converted explicitly into action angle coordinates, the d and /, in order to calculate
H = dH0/dI. In some problems this difficult to attain. In these cases M(p) may be
the better choice. Correspondence with J. Koiller about such problems is what
motivated much of this work.

1D. Next, Holmes and Marsden considered higher degrees of freedom in the case
with a (S1)" symmetry [9]. In particular, they assumed 0 = (0t,...,Bn) and
/ = ( / , , . . . , / „ ) , and that not only is Ho independent of 0, but also that

He(q,p,e,I) = F(q,p)+i GJ(IJ) +eH^q, p, 6,1). (1.7)

They assume F has a homoclinic orbit in (q,p)-space to a hyperbolic fixed point
y* = (q*,p*). As a result, Ho= F + ̂ Gj has an invariant n-torus {(<?*,p*, 6, /0)} =
To, where I0=(l\o, • ••, ho) is chosen so the motion is quasi-periodic. This torus
has two normal directions in which it is hyperbolic and one component of the stable
and unstable manifolds coincides,

[ W>( To", Ho) - To"] n W"(T"o, Ho) = T.

This system is completely integrable for e = 0 with integrals ( F , / , , . . . , / „ _ , ) or

( / , , . . . , / „ ) or (F, G , , . . . , Gn_,) or some variation on these. Together one of these
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sets of integrals measures the distances transverse to

r=Ws(T"o,Ho)n[Wu(T"0,H0)-T"o] in Hi\h).

They then form a Melnikov vector using the integrals ( / , , . . . , / „_ , , F). We proceed
slightly differently than they did and define this vector-valued function in a manner
consistent with the other cases considered above.

Consider

He{z) = H0(z) + eH,(z) + e2H2(z, e), (1.8)

where z has 2M+ 2 dimensions. We need the following assumptions:
(HI) Ho is completely integrable, with integrals { F , , . . . , Fn} in addition to Ho.
(H2) The Hamiltonian vector field XHo for Ho has an invariant H-torus TQ on

which the motion is quasi-periodic, given by a frequency vector a) = (w1,... ,wn)eW
satisfying the Diophantine conditions \(<o,j)\^c\j~T, with two positive constants
c > 0 and T > n — 1, for all integer vectors jeZ" with | j | = Z"=i L/V|>0-

(H3) There are two dimensions normal to TQ in which the motion is hyperbolic
(with one contracting direction and one expanding direction). Let Ws( To, HO) and
Wu( TQ, Ho) be the (n + l)-dimensional exponentially attracting and repelling mani-
folds for TQ. Assume TQ has a homoclinic orbit and let F = WS(TQ, H0)n
[Wa(To, Ho)— TQ]. Assume the integrals Fj are independent of Ho on F. Thus the
flow of the vector fields XFj must leave F invariant, so F is (n + l)-dimensional, i.e.
the manifolds intersect on components of W ^ r j , Ho)-To and Wu(Tg, Ho)-To.

(H4) Let Wc(To, Ho) be the (local) centre manifold of dimension In. Assume
that the matrix of second partial derivatives D2H0 is non-degenerate in the n-
dimension normal to To in Wc{Tl, Ho). (For system (1.7) this assumption is just
that Gj(Ijo) *0 for all / Also, see conditions in [14, § 6].)

Because Wc( To, Ho) is normally hyperbolic by (H3), for e > 0 small enough there
persists a (locally) invariant submanifold Wc

c. Also, the canonical 2-form is
necessarily non-degenerate on Wc(To, Ho) and so on WC

E. Because of the non-
degeneracy assumption (H4), the torus TQ persists for e > 0 by KAM theory to give
a torus T"c Wc

e on which the motion is quasi-periodic. In fact, T" depends
differentiably on e. In the case where H is analytic, Moser proved this in [14, § 6];
in the differentiable case it can be proved, for example, using the techniques in [20].

Now, for zeF , let N2 be (n + l)-subspace transverse to F at z. Then, for e>0 ,
there are points zs(e) and zu(e) corresponding to z given by ztr(e) = JVzn
WiT", He) for o- = u, s. These points vary smoothly in e, because the stable and
unstable manifolds vary smoothly with e on compact sets (and T" varies smoothly
with e). The Melnikov vector M(z) = (M,(z),..., Mn{z)) is defined by

Mk(z)=^-{Fk(z"(e))-Fk(z
s)(e))}\e=0. (1.9)

The vector M(z) clearly measures the infinitesimal separation of WU{T", / / ' ) and
WS(T", H") in the n-directions transverse to F in (He)~\h). The following theorem
gives an integral to calculate M(z).

THEOREM 4. Let He(z) be as in (1.8) and satisfy assumptions (H1)-(H4) above. Let
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M(z) be defined by (1.9). Then the components ofM can be calculated by the following
integrals:

XH,)^x)dt, (1.10)

where Tj and Tf -» oo are chosen so that the distance

As in theorem 1, the convergence is absolute ifDFj • XHi = 0 for points o/TJJ. Further-
more, if M(z) has non-degenerate zero, then the system has a transverse homoclinic
intersection for e > 0 small enough.

The easiest way to satisfy the assumptions on the 7} and Tf is to take the 7} and
Tf so that <po(Tj, z) and <f>0(-Tf, z) both converge to the same point on T%. For
example, for system (1.7) the only condition that is necessary is that lim \8{—Tf, z0) -

•0(7}, zo)|=O in (51)". Since 6k{t) = Bk()±Q.kt, where nk = G'k(Ij), this means
lim |nk( 7} - 7*f)| = 0 mod 2v for all k. Taking 7} and Tf so that (!„( 7} - T?) = 2irNj
for some integers Nj, this means we need lim \2ir(lkNj/(ln\ =0mod2TT for 1<<:<
n — \. This is clearly possible by the quasi-periodicity on TQ. Also note that in
Arnold's orginal paper [1] the torus did not vary with e, so DFk • XHl = 0 on T%
and the convergence was absolute.

In [9] Holmes and Marsden mention that the integrals are not necessarily
absolutely convergent, but they do not state explicitly how the times Tf and 7} have
to be chosen so the limit is equal to M, i.e. so the conditionally convergent integral
has the desired dynamical meaning. (It is not enough to make any choice such that
the limit exists, as example 1.5 shows.) Salem also noticed this and the situation
was partially clarified in [19]. The proof of this theorem is similar to theorem 1 and
is discussed in § 2.

IE. Gruendler [6] has a different way of constructing a vector-valued Melnikov
integral in higher dimensions and does not assume the unperturbed problem is
completely integrable. We sketch his ideas. He considers a case like theorem 2 with
a fixed point and periodic time.perturbation

x=f(x) + h(x,t,e), (1.11)

where e = ( e , , . . . , eN) and h(x, t, 0) = 0. He considers the most general case, but
we explain only the case when/ i s Hamiltonian (or at least d i v / = 0) and Wu(P,f) =
Ws(P,f) = T. If x0 is in R2" (he uses n), he constructs {<//"(*, xQ),..., *l>{2n\t, x0): x0

is in O , where (i) each if/u) satisfies the variation equation u = Df(<f)0(t, xo))u and
(ii) ip("+l>,..., </>(2n) are tangent to T and the $u\t,x0) grow at different rates as t
goes to ±oo due to the different eigenvalues at the fixed point P. For x0 in F let
n(x0) be the plane transverse to Y spanned by {^'"(O, x0),..., «A(n)(0, x0)}. Let
xu(t, x0, g, e) be the solution of (1.1) with initial condition at f = f given by
x"(Z,x0, £ e ) e l l ( x o ) n W"(P,f+h(-,e)). Then functions A" are defined by

xu(t,x0,t,e)-x0= £ A»(x0,t,e)il,u\£,x0).
.7 = 1
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If O is a volume, he notes that

tf{x0, & e) = W \ ..., * ( ' - ! ) ,x u (£ Xo, fe s)-x0, *<'+1>,..., ^2n)),

where the t/»O) are evaluated at (f, x0). It is then shown that the derivative of A"
with respect to the vector e at e = 0 in the direction e satisfies

M?(x0, f ) e = D.Ay(xo, €, 0)e=a(^\ ..., *"-'>, (DExu) • e, * ( ' + I ) , • • •, </'(2")),

where the <pu) are evaluated at (f, x0), and

M?(x0, f )* = f *
J-o

where the i/r0) are evaluated as

( / / j )U0oC-£*<,)) and

Similarly A- is defined and M-(x0, ^)e = DEA-(x0, f, 0)e. Thus

M,.(x0, €)e = f a ( ^ ( 1 ) , . . . , ^(i-1), (Dth)e, ^(1+1),..., ^(2n)) dt.

Considering M,(x0, ^) as a row vector, then

Af(xo,f)=

is an n by N matrix. If it has rank n, then n of the parameters e, can be solved in
terms of the others and still give a zero of A,(x0, £ e) = A"(x0, £ e ) -Ai(x 0 ,^ , e ) = 0
and so a homoclinic orbit [6, theorem 3.2]. If this point is a non-degenerate zero
as (x0, g) varies in F, then the homoclinic intersection is transverse [6, theorem 4.1].

IF. The final results of this paper turn away from different contexts in which
Melnikov integrals can be defined and consider conditions which imply hyperbolic
horseshoes without transverse intersections. In particular, the assumption that M
has a non-degenerate zero is replaced with the assumption that (a scalar-valued
Melnikov integral) M changes sign. The following theorem considers the case of a
Hamiltonian system in four dimensions, where Xo has a hyperbolic closed orbit
with a homoclinic connection.

THEOREM 5. A. Make the assumptions of theorem 1. If M{y) changes sign at y0 as
y varies on T = [ W*(y, Ho) — y] n Wu(y, Ho), then, for e > 0 small enough, the mani-
folds W^iy,,, He) and VVu(yE, He) have a topologically transverse intersection near
yo(they cross each other).

B. If He(z) is analytic in z, then, for e > 0 small enough, the system has hyperbolic
horseshoes arbitrarily near these topologically transverse intersections and is non-
integrable.

The only reason H e (z) needs to be analytic in part B is to be able to conclude
that the original topologically transverse intersection, corresponding to a zero of
M, has finite order of contact.

https://doi.org/10.1017/S0143385700009500 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700009500


Horseshoes for autonomous Hamiltonian systems 403

Several people have noted that theorem 5B is true, including de Carvalho and
Roussarie [2], Conley as given in [3], and probably others. Most of these papers
prove the result by showing that arbitrarily near the intersection of finite order these
are necessarily (differentiably) transverse intersections. It also follows by a direct
proof following [18, proposition 5.1]. A sketch of this later proof is given in § 4 for
the case of a hyperbolic fixed point considered in theorem 6 below. This proof is
essentially (implicitly) contained in [18] for the case of theorem 5B. That paper, in
turn, is a direct evolution of the theorems and methods of Newhouse [15]. Earlier,
Gavrilov and Silnikov [5] had used some of these ideas in their work. Some related
ideas appear in the work on bifurcations from Morse/Smale systems by Newhouse
and Palis [16]. They consider what bounds on the angles of intersections of stable
and unstable manifolds are sufficient to give a hyperbolic horseshoe. Also, Patterson
considered some questions related to theorem 5 in his thesis [17]. I had several
useful conversations with him about ideas related to these before this paper was
written.

Similar ideas for non-transverse intersections can be applied to the case of
hyperbolic fixed point with non-zero imaginary part of the eigenvalues. When the
manifolds are transverse, Devaney proved there is a hyperbolic horseshoe [4]. In
fact, if the system has a topologically transverse homoclinic intersection with
finite-order contact, then the following theorem states the same result holds.

THEOREM 6. A. Let H be an analytic Hamiltonian function in dimension four with a
hyperbolic fixed P point whose eigenvalues have non-zero imaginary parts. IfWu(P, H)
and WS(P, H) have a topologically transverse intersection at z0 in H~\h0), with
ho= H(P), then there is a horseshoe arbitrarily near z0.

B. Let He = H0+eHx be as in theorem 2. If M{z) changes sign at zo = T =
W*(P, Ho) n WU(P, Ho), then, for 0 < e < e0 small enough, the vector field Xc for He

has a horseshoe arbitrarily near z0.

The proof of theorem 6A combines the methods of [4] and [18] and is sketched
in § 4. Theorem 6B follows because M gives the lowest-order terms in e.

2. Proof of theorem 1
In the definition of M{z), we need to calculate

f (Foz»)U0 for<7 = u,s.
de

Instead of merely calculating this, we calculate

and indeed
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Proceeding for a = u, s, taking all derivatives at e = 0,

~ F^{t,z"{e),e)=~ -%-F
at de de at

OS

= (DF- X^^^ + f- (DF-

The first term on the third line comes from differentiating the e in Xe and putting
e = 0 elsewhere, while the second term is the reverse. The second term is zero because
DF- X0=Q at all points. Integrating this from Tx to T2 gives

= |
JT

For o- = u take T, = - 7? and T2 = 0, while for a = s take T, = 0 and T2 = 7}. Adding
the two terms gives

M(z) = (DF-X1).M,,z)dt+
J-TJ JO

F<l>(Tf,z(e),e)F
de d£

Taking the limit as j -* <x>, it is only necessary to prove the limit of the sum of the
last two terms goes to zero with the choice of time —Tf and 7}. The intuitive reason
is that <f>( — Tf, z0,0) and <f>(Tj, z0,0), for zo= zu(0) = zs(0), go to the same point on
the closed orbit % and this term measures the displacement of y in terms of the
change of values of F. Proceeding more carefully, the following lemma completes
the proof of theorem 1.

LEMMA 2.1

(-^F°<f>(-Tf, zu(e), e)-— F° 0(7}, zs(e), e)) =0 (2.1)
\de de I

lim (^
j-">° \de

with Tj and Tf chosen as in theorem 1.

Before proving lemma 2.1, we prove the special case of theorem 4 assuming HE

is given by (1.7), where the explicit variables make the exposition simpler. The first
part of the proof of theorem 4 is exactly like the proof above, where K is now
either the integral F o r / , /„_,. Given y0 a homoclinic point for F and any
0o = (<?io, • • •, 0no), there is a point on the stable or unstable manifold zs(0o, e) and
z"(60, e) for e>0 . Also, the invariant torus for e > 0 can be written as a function
(or graph) z = ip(6, e) = ip^iO). The lemma which corresponds to 2.1 is the following:

LEMMA 2.2

lim j - K o cj>(-Tj, z"(d0, e), e)-^-K° </>(7}, z*(60, e), e)
de de

= 0 (2.2)
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if limbec 16{ Tf, z(60,0)) - 0( Tjy z(0o,0)| = 0. Here 0{t, z0) is the 0-component of the
flow for Hamiltonian (1.7) with e = 0 and initial conditions z0.

Proof. We want to determine the nature of the limit of the vector
(d/de)4>(Tj, zs(60, e), e). In fact we want to decompose it into the component along
the invariant torus and the normal component. To clarify the convergence, it is
necessary to extend the flow into (z, e)-space with e = 0. Label this flow as
</>*(t, z0, e). Also let 0(t,zo,e) be the ^-coordinate of the flow <f>*(t,zo,e) and
0(t, zo) = 6{t, zo,O). Let y = {\j){6,0)} be the original unperturbed torus and y* =
{(i/>(0, e), e)} be the extended perturbed torus with stable manifold W(y*, H e ) c

The vector (d/de)(zs(60, e), e) is tangent to H^(y*, He) and so it follows that

j - e <£*(7}, z\B0, e), e) = ( D Z < £ ( 7 , , 2 0 , 0 ) ^ z\60, e),

is also. Because y* is normally attracting in W*(y*, He), as T) goes to infinity the
component of the vector normal to y* goes to zero. Proceeding with explicit
calculations,

lim (^ - K o <f>(-Tf, z"(00, e), u ) ~ X ° «(7}, zs(0o, e),

^[<l>(Tf,z(0o,e),e)\DK^
OE OE

+ lim( DK^-WM-Tf, z"(e0, E), e), e)]-DK-^-[il>(e(-Tf, zo,O), e)])

im (-r>K^- W(TJf z
s(0o, e), e)] + M ^ [iA(0(7}, zs(0o, e), e), «

\ de d£

(-DKJ- [He(Tj, zs(60, e), e), E)] +DK^- [*(6{Th z0,0), E)])
\ OE a£ I

+ lim(DK^-[il,(0{-Tf,zo,O),E)]-DK^-[il,(e(Tj,zo,O),e)]). (2.3)
\ oe de /

The fifth limit is zero because of the choice of Tf and 7}.
We consider only the third and fourth limits because the first two are similar.

Considering the third limit, the vector

7- 4>*(Tj, z\0o, e), E) = D^XT^AT
 zS(eo, e), l)

OE \oE I

is tangent to Ws(y*, Hr). As 7} goes to infinity, the component of this vector normal
to y* goes to zero (by the contraction on this manifold), and further the two vectors

^-<t>*(Tj,zs(0o,E),£) and -^-tp(0(Tj,zs(0o,e),E),e)

have the same components along y*, so the third limit is zero.
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Finally, for the fourth limit,

f t(6(Tj, z\d0, e), e), e ) - f <A(0(7}, zo,0), e) = ̂ - f- 0(7}, zs(0o, e), e).
OS OB OV OB

This last vector is tangent to y (not just y*), and so acting on it by DK gives zero.
Thus the fourth limit is zero. This completes the proof of lemma 2.2. •

Proof of lemma 2.1. The main difference in this proof is that there is no explicit
coordinate corresponding to 6 in the proof of lemma 2.2 which can be used to
associate a point on the closed orbit y or y*. However, the stable manifold theorem
says that points on W*(y*, He) approach y* in phase with some point on y*, i.e.
if (ze, e)ison W^(y*, He), then there is a point (z,, e)on y* such that \<f>*(t, ze, e)-
<l>*(t, z,, e)| goes to zero as t goes to infinity. We use this to define a continuous
function

by

and

ir :W(y*,H')->y

by

where {ip(z, e): z in -y)} = ye x{e}. Then in equation (2.3) 0{t, z, e) is replaced by
tt° <f>*{t, z, e) and the initial condition is specified by z0 and not just 0O, e.g.
ip(0(Tj, zs(0o, e), e), e) is replaced by il>(ir° <f>*(Tj, z\zo, e), e), e). The rest of the
proof is the same. •

General case of theorem 4. Again the first part of the proof is exactly as before but
Fk replaces F. The calculation of the limit is like the proof of lemma 2.1 except
that the closed orbit y is replaced by the torus TS and tt is a projection onto T%.
The rest of the proof is the same. •

3. Equivalence of two integrals: theorem 3
We start with the formula for M(z). In this case the coordinates are z = (y, 6,1)
and the second integral is F{z) = I. If X, is the vector field for H,, then DFXX =
-dHJdd. We want to compare this with (d/dt)Hx • <f>0(t, z0):

d otix • o£i\ • , .
H « A. ( * •* \ T\ H V _L - A J - . I fill

1 ° <Po\h ZQ) — Dyri\ ' SLQ-T u-r i, \J*i)
dt ou o £

where Dy is the partial derivative with respect to y variables. But 0 = dH0/dI = ft
and 7 = 0. Also DVH, • Xo — ~DyH0 • X, either by writing out or using the result for
Poisson brackets. Combining and solving for -dHx/dd in (3.1) gives
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Thus

M(z0) = Hm- f ' j - DyH0 • X, dt+ f ' - ~ (H, • <£0(t, z0)) A.
7-« J-77" J-77 " at

Using integration by parts in the second integral with w = - l / f l and dv =
(a7*)(Hi«> *<,(«,*))* gives

< dt
- • ^n - | — f^z —y— - - u — /-»2 — y " v - v ( l «*•

because / = 0, dfl/30 = 0 and D,fl • X0 = -DyH0 • Xn. Thus

f T> IX H \ 1
M(z0) = Jim - DyH0[ — 1 Xf t I dt - lim — Hx° <f>0(t, zo)|!iv.

J-» J-7T \ i l fl / ;-°°fl J

DyH0 • Y, dt.
/ —OO

The boundary terms go to zero by the choice of 7} and Tf.

4. Proof of theorem 6
The proof combines the ideas of the proof of Devaney [4] with the ideas when the
intersection is only topologically transverse at a homoclinic intersection for a
diffeomorphism in two dimensions [18, propositions 5.1 and 7.8].

Following Devaney, there are coordinates (x,y) = (xx,x2,yl,y2) near the fixed
point P = (0,0) where the flow is given by

\

eA'(xt sinftt + xjcosflt)
F,(x, y) =

e
e Al'(->>, sin flt+^2 cos fit),

where A = A(x, y) and fl = fl(jc,_y) are analytic functions of the initial conditions
(x, y). For small enough r, 8, there are transversals to the flow near the local unstable
and stable manifolds:

Assuming H(P) = 0, let 2^ = 2 s nH" ' (0) and 2S = 2unH"1(0) . Also let as = 1s
0n

{x = 0} (resp. o-" = 1on{y = 0}) be the intersection of the local stable (resp. unstable)
manifold with So (resp. 2jj). If f 1S the orbit of the homoclinic intersection given
in the theorem, let q* = yno-s and qu = yn a". Let Ds and Du be two-dimensional
discs in So and Do centred at qs and qu.

There are Poincare maps defined from points near os to itself (at least for some
points). This map is the composition of two maps, &o:(D

s — <r*)-*'2.o and <J>,:Du-»
Ds. Here 4>, is formed by following trajectories from points in Du near ou until
they return to 2 0 near qs and so in Ds (if Du is small enough). Also any point on
Ds-<rs will flow past P until it exists at some point in 2{J; this defines <J>0- If
3l = $0 '(£>"), then <t> = «J>, » * 0 : S c (D s -c r s )^ Ds.
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Let (6, z) = (6s, zs) be a coordinate system on Ds where crs = {zs = 0} and 0s is an
angular coordinate along <xs with qs corresponding to (zs, 0s) = (0,0). If the intersec-
tion is topologically transverse, then W"(P, H)nD* is given by the graph of a
function z = adJ + h(0), where h(0) = O(\0\J+1). The slope of WU(P, H) at a point
(6, z) on the graph is about jad1'1 ~ja(z/a)u~1)/J =jal/izl~l/i = £(z). For TJ > 1 near
enough to 1, we can consider the sectors of vectors whose slopes are about f (z),

Thus for v in S(0, z) the slope of v is between T7~'£(z) and vi(z)- F° r " m S(0. z)
let t>' = (D®0)v and t)"=(D<J))t) = (D* , )^ . We show that for v in S(0, z) the vector
of v" is also in S(4>(0, z)) and ||»"|| > ||v||. Thus there is a hyperbolic structure.

If v is a vector in S(0, z) with vs= 1, then |t;u|
 s=jaz1~l/j. The calculation in [1,

p. 435] shows that this component is stretched by a factor of l/|z| by the time it
reaches EQ, k|~|z|1~1 /- / • |z|~' = \z\~1/J. This component is arbitrarily large as |z|-»0.
Also the stable component is contracted as it goes past P, so \v's\ < \vs\ = 1. Thus v'
is a vector pointing nearly parallel to the unstable direction. Then D " = D $ D ' is
arbitrarily close to the direction of Wu(P,H)nDs and so it lies in the sector
S(*(0,z)). Also ||i;"||>C1||t;'||>C1|t;:|>C2|zr1/j||I)||. As |z|->0, C2\z\~Ui^<x>, so
the vector is stretched by an arbitrarily large factor when it returns to Ds. (On the
other hand the length of time needed to return is proportional to \z\~\ so the
characteristic exponent is proportional to \z\ x~l/j and goes to zero as \z\ -* 0.) Dually
the vectors in the stable direction are contracted by a similar factor (or expanded
by this factor as the solutions are followed backward).

As discussed in [4], Ds n <!>( Ds) is made up of infinitely many vertical strips which
accumulate on W{P, H)nDs. Similarly, Dsn<$>~\Ds) is made up of infinitely
many horizontal strips which accumulate on as. If only finitely many of these are
used of each type, then there is a hyperbolic invariant set, a horseshoe. As the
number of symbols increases, the hyperbolicity of <1> actually increases on these
new orbits, but the hyperbolicity relative to the period of the flow (the characteristic
exponents) goes to zero.

Remark. In connection with the situation in theorem 6A, if H is completely integrable
and WS(P, H) = WU(P, H), then the above proof produces strips near the homoclinic
connection which are mapped across themselves by the first return map. Thus it at
first appears that H has a hyperbolic horseshoe, which is impossible because it is
completely integrable. However, the map of these strips across themselves in this
case is a sheer map, so there is no hyperbolic horseshoe and there is no contradiction.
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