Canad. Math. Bull. Vol. 62 (2), 2019 pp. 247–257 http://dx.doi.org/10.4153/CMB-2018-039-3 © Canadian Mathematical Society 2019

Cyclicity in Dirichlet Spaces

Y. Elmadani and I. Labghail

Abstract. Let μ be a positive finite Borel measure on the unit circle and $\mathcal{D}(\mu)$ the associated harmonically weighted Dirichlet space. In this paper we show that for each closed subset E of the unit circle with zero c_{μ} -capacity, there exists a function $f \in \mathcal{D}(\mu)$ such that f is cyclic (*i.e.*, $\{pf : p \text{ is a polynomial}\}$ is dense in $\mathcal{D}(\mu)$), f vanishes on E, and f is uniformly continuous. Next, we provide a sufficient condition for a continuous function on the closed unit disk to be cyclic in $\mathcal{D}(\mu)$.

1 Introduction

A bounded operator *T* on a Hilbert space \mathcal{H} is called *two-isometry* if $T^{*2}T^2 - 2T^*T + I = 0$, is called *cyclic* if there exists $x \in \mathcal{H}$ such that span{ $T^n x : n \ge 0$ } is dense in \mathcal{H} , and is said to be *analytic* if $\cap_{n\ge 0}T^n\mathcal{H} = \{0\}$. Richter proved in [18] that every cyclic, analytic, and two-isometry operator can be represented as multiplication by z on the Dirichlet-type space $\mathcal{D}(\mu)$ induced by a positive finite Borel measure μ on the unit circle. These spaces were later studied by several authors; see, for instance, [6,9,16,19,20].

In this paper we are interested in the study of the cyclicity in $\mathcal{D}(\mu)$. For the Hardy space H², by Beurling's theorem [1] the cyclic functions are exactly the outer functions. In the classical Dirichlet space \mathcal{D} , Brown and Shields proved that every cyclic function in \mathcal{D} is an outer function whose zero set has zero logarithmic capacity. They conjectured that the converse is also true [3, Question 12]. Some partial results toward this conjecture were obtained by Hendenmalm and Shields in [16]. They proved that every outer function $f \in \mathcal{D} \cap A(\mathbb{D})$ with countable zero set is cyclic, where $A(\mathbb{D})$ is the disk algebra . In [11, 12], El-Fallah, Kellay, and Ransford gave the first example of an uncountable closed subset E of \mathbb{T} such that every outer function $f \in \mathcal{D} \cap A(\mathbb{D})$ with zero set included in E is cyclic. Furthermore, they provided some sufficient conditions on E to ensure the cyclicity of every outer function $f \in \mathcal{D} \cap A(\mathbb{D})$ vanishing on E.

Carleson [4] proved that for every closed subset *E* of the unit circle that has zero logarithmic capacity, there exists a cyclic function in \mathcal{D} that vanishes on *E*. Later, Brown and Cohn in [2] modified Carleson's construction and gave a cyclic function in $\mathcal{D} \cap A(\mathbb{D})$ vanishing on *E*. Moreover, the problem for cyclicity in \mathcal{D} is still open [9]. For a brief history of the cyclicity problem in $\mathcal{D}(\mu)$, we refer the reader to [8].

Our first aim in this work is to extend the Brown–Cohn Theorem to the Dirichlet spaces $\mathcal{D}(\mu)$. Next, we give a capacitary sufficient condition for cyclicity in this space.

Received by the editors April 24, 2018; revised August 20, 2018.

Published electronically January 3, 2019.

AMS subject classification: 47B38, 30C85, 30H05.

Keywords: Dirichlet-type space, cyclic vector, capacity, strong-type inequality.

Y. Elmadani and I. Labghail

Let \mathbb{T} be the boundary of the open unit disk \mathbb{D} in the complex plane \mathbb{C} . We denote by Hol(\mathbb{D}) the space of all analytic functions on \mathbb{D} . Let μ be a positive finite Borel measure on \mathbb{T} ; the Dirichlet-type space $\mathcal{D}(\mu)$ is given by

$$\mathcal{D}(\mu) = \left\{ f \in \operatorname{Hol}(\mathbb{D}) : \mathcal{D}_{\mu}(f) = \int_{\mathbb{D}} |f'(z)|^2 P[\mu](z) dA(z) < \infty \right\},$$

where dA is the two-dimensional Lebesgue measure and $P[\mu]$ is the Poisson integral of μ

$$P[\mu](z) = \int_{\mathbb{T}} \frac{1-|z|^2}{|\zeta-z|^2} d\mu(\zeta), \quad z \in \mathbb{D}.$$

The space $\mathcal{D}(\mu)$ is endowed with the norm

(1.1)
$$||f||_{\mu}^{2} = |f(0)|^{2} + \mathcal{D}_{\mu}(f), \quad f \in \operatorname{Hol}(\mathbb{D})$$

Note that $\mathcal{D}(\mu)$ is a reproducing kernel Hilbert space. Denote by k^{μ} the reproducing kernel of $\mathcal{D}(\mu)$; we have $f(z) = \langle f, k_z^{\mu} \rangle_{\mu}, f \in \mathcal{D}(\mu), z \in \mathbb{D}$, where $\langle \cdot, \cdot \rangle_{\mu}$ is the inner product in $\mathcal{D}(\mu)$ introduced by norm (1.1). The reproducing kernel k^{μ} satisfies the inequalities

(1.2)
$$2 \operatorname{Re} k^{\mu}(z, w) - 1 \ge 0,$$

$$(1.3) |k^{\mu}(z,w)| \le \frac{2}{|1-z\overline{w}|}$$

for each $z, w \in \mathbb{D}$ (see, for instance, [20, Theorem 2]).

To introduce the capacity associated with $\mathcal{D}(\mu)$, we recall the definition of the harmonic Dirichlet-type space $\mathcal{D}^{h}(\mu)$: the set of functions $f \in L^{2}(\mathbb{T})$ such that

$$\mathcal{D}_{\mu}(f) \coloneqq \int_{\mathbb{D}} \left(\left| \frac{\partial f(z)}{\partial z} \right|^2 + \left| \frac{\partial f(z)}{\partial \overline{z}} \right|^2 \right) P[\mu](z) dA(z)$$

is finite, where f(z) := P[f](z) is the harmonic extension for f to \mathbb{D} . The space $\mathcal{D}^{h}(\mu)$ equipped with the norm

$$||f||_{\mu}^{2} := |f(0)|^{2} + \mathcal{D}_{\mu}(f), \quad f \in L^{2}(\mathbb{T}),$$

is a reproducing kernel Hilbert space containing $\mathcal{D}(\mu)$ as a closed subspace [6].

Note also that $\mathcal{D}^h(\mu)$ is a Dirichlet space in the sense of Beurling and Deny [13]. The c_{μ} -capacity of a subset *E* of \mathbb{T} is defined by

(1.4)
$$c_{\mu}(E) \coloneqq \inf \left\{ \|f\|_{\mu}^2 : f \in \mathcal{D}^h(\mu) \text{ and } |f| \ge 1 \text{ } m \text{-a.e. on a neighborhood of } E \right\},$$

where *m* denotes the Lebesgue measure on \mathbb{T} . From (1.4) we have $m(O) \leq c_{\mu}(O)$, for every open subset *O* of \mathbb{T} . Hence any set of zero c_{μ} -capacity is *m*-negligible. Moreover, since $\mathcal{D}(\mu) \subset L^2(\mu)$ (see [9, Theorem 8.1.2]), we have for every Borel subset *E* of \mathbb{T}

$$\mu(E) \leq \left(1 + \mu(\mathbb{T})\right) c_{\mu}(E).$$

The c_{μ} -capacity satisfies the strong-type inequality, see [5]. Namely,

(1.5)
$$\int_0^{+\infty} c_{\mu} \big(|f| > t \big) dt^2 \lesssim ||f||_{\mu}^2, \quad f \in \mathcal{D}^h(\mu)$$

We say that a property holds c_{μ} -quasi-everywhere (c_{μ} -q.e.) if it holds everywhere outside a set of zero c_{μ} -capacity.

Cyclicity in Dirichlet Spaces

Recall that the polynomials are dense in $\mathcal{D}(\mu)$; see [18] and [9, Corollary 7.3.4]. A function $f \in \mathcal{D}(\mu)$ is called *cyclic* in $\mathcal{D}(\mu)$ if $[f]_{\mathcal{D}(\mu)} = \mathcal{D}(\mu)$, where

$$[f]_{\mathcal{D}(\mu)} \coloneqq \overline{\{pf : p \text{ is a polynomial}\}}.$$

Recall also that the outer functions are given by

$$f(z) = \exp \int_{\mathbb{T}} \frac{\zeta + z}{\zeta - z} \log \psi(\zeta) dm(\zeta), \quad z \in \mathbb{D},$$

where ψ is a positive function such that $\log \psi \in L^1(\mathbb{T})$. If $\mu = m$, then c_m is comparable to the logarithmic capacity c, and the space $\mathcal{D}(m)$ coincides with the classical Dirichlet space \mathcal{D} . Brown and Shields proved in [3] that if f is cyclic in \mathcal{D} , then f is an outer function and c(Z(f)) = 0, where

$$Z(f) \coloneqq \{\zeta \in \mathbb{T} : f(\zeta) = 0\}.$$

They conjectured that the converse is also true. The generalized Brown–Shields conjecture asserts that an outer function $f \in \mathcal{D}(\mu)$ is cyclic if and only if $c_{\mu}(Z(f)) = 0$. Guillot showed in [15] that this conjecture is true for finitely atomic measure. In [7], El-Fallah, Elmadani, and Kellay proved that this conjecture is also true for measures with countable support. The generalized Brown–Shields conjecture remains open.

The disk algebra $A(\mathbb{D})$ is the set of continuous functions on the closed unit disk $\overline{\mathbb{D}}$ that are holomorphic in \mathbb{D} . Our first result is the following theorem.

Theorem 1.1 Let μ be a positive finite Borel measure on \mathbb{T} and let E be a closed subset of \mathbb{T} . If $c_{\mu}(E) = 0$, then there exists a function $f \in \mathcal{D}(\mu) \cap A(\mathbb{D})$ that is cyclic in $\mathcal{D}(\mu)$ and Z(f) = E.

It is clear that if *E* is a closed subset of \mathbb{T} , then $c(E) = \lim_{t\to 0^+} c(E_t)$, where $E_t := \{\zeta \in \mathbb{T} : d(\zeta, E) \le t\}$ and *d* denotes the distance with respect to arc-length. El-Fallah, Kellay, and Ransford proved in [10] that an outer function $f \in \mathcal{D} \cap A(\mathbb{D})$ is cyclic in \mathcal{D} if $c(E_t)$ goes to zero "sufficiently rapidly" as $t \to 0$, where E = Z(f).

In the following theorem we extend this result to Dirichlet spaces $\mathcal{D}(\mu)$.

Theorem 1.2 Let $f \in \mathcal{D}(\mu) \cap A(\mathbb{D})$ be an outer function and let E = Z(f) and $E_t = \{\zeta \in \mathbb{T} : d(\zeta, E) \le t\}$. If

(1.6)
$$\int_0^{\infty} c_{\mu}(E_t) \frac{\log(1/t)}{t} dt < \infty$$

then f is cyclic in $\mathcal{D}(\mu)$.

Let *K* be a closed subset of \mathbb{T} . Consider the measure $d\mu(\zeta) = d(\zeta, K)^{\alpha} dm(\zeta)$ for some $\alpha \in (0, 1)$. The measure μ provides some examples where condition (1.6) is satisfied. Indeed, by the same calculation as [7, Theorem 5.4], we obtain

$$c_{\mu}(E_t) \lesssim \Big(\int_t \frac{ds}{s^{\alpha}m(E_s)}\Big)^{-1}$$

for every subset *E* of *K*. If *E* is a Cantor-type set, we obtain $c_{\mu}(E_t) = O(t^{\alpha - \sigma})$, where σ is the Hausdorff dimension of *E*; hence, (1.6) holds, for all $\alpha > \sigma$.

In the next section, we will give some properties of the c_{μ} -capacity. The proof of Theorem 1.1 is given in Section 3. Section 4 is devoted to the proof of Theorem 1.2.

Throughout the paper, we use the following notation:

- $A \leq B$ means that there is an absolute constant *C* such that $A \leq CB$.
- $A \simeq B$ if both $A \leq B$ and $B \leq A$ hold.
- $C(\mathbb{T})$ is the space of all continuous functions on \mathbb{T} .
- $\mathcal{M}^+(\mathbb{T})$ denotes the set of all positive Borel measures on \mathbb{T} .

2 Capacity

In this section we state some properties that will be needed in the proof of our results. First we recall some definitions. A function $u \in L^2(\mathbb{T})$ is called *quasi-continuous* if for every $\epsilon > 0$, there exists a subset A of \mathbb{T} with $c_{\mu}(A) < \epsilon$ and such that the restriction of u to $\mathbb{T} \setminus A$ is continuous. A function v is said to be a *quasi-continuous modification* of u if v is quasi-continuous and v = u a.e. on \mathbb{T} . We denote by \hat{u} a quasi-continuous modification of u.

Theorem 2.1 Each $u \in D^h(\mu)$ admits a quasi-continuous modification \widehat{u} .

Proof See [14, Theorem 23].

It is well known that for a given closed subset *E* of \mathbb{T} , there exists a unique measure $v_E \in \mathcal{M}^+(\mathbb{T})$ supported on *E* such that $c(E) = v_E(\mathbb{T})$, where the energy of v_E defined by

$$I(v_E) \coloneqq \int_{\mathbb{T}} \int_{\mathbb{T}} \log \frac{1}{|\zeta - \lambda|} dv_E(\zeta) dv_E(\lambda)$$

is finite; see e.g., [17, Theorems 13 and 14].

The following theorem extends this result to Dirichlet spaces $\mathcal{D}(\mu)$.

Theorem 2.2 Let *E* be a closed subset of \mathbb{T} ; then there exists a unique measure $v_E \in \mathcal{M}^+(\mathbb{T})$ supported on *E* such that

$$c_{\mu}(E) = \|p_{\nu_E}\|_{\mu}^2 = \nu_E(E),$$

where p_{v_F} satisfies the following properties:

- (i) $0 \le p_{\nu_E} \le 1$ on \mathbb{T} and $\widehat{p_{\nu_E}} = 1 c_{\mu}$ -q.e on E;
- (ii) $\langle p_{v_E}, v \rangle_{\mu} = \int_{\mathbb{T}} \widehat{v}(\zeta) dv_E(\zeta)$, for each $v \in \mathcal{D}^h(\mu)$;
- (iii) $p_{v_E}(z) = \int_{\mathbb{T}} (2 \operatorname{Re} \widehat{k^{\mu}(z, \lambda)} 1) dv_E(\lambda), \text{ for } z \in \mathbb{D}.$

The function p_{v_E} is called *the potential of the measure* v_E .

Proof The proofs of assertions (i) and (ii), in a more general case, is given in [13, Theorems 2.1.5 and 2.2.2]. For the sake of completeness, we include the proofs here. Fix a subset *E* of \mathbb{T} . Denote by

 $S(E) := \{ f \in \mathcal{D}^h(\mu) : f \ge 0 \text{ and } \widehat{f} \ge 1 c_{\mu} \text{-q.e. on } E \}.$

Note that S(E) is a closed and convex subset of $\mathcal{D}^h(\mu)$. Then there exists a unique positive function $g_E \in \mathcal{D}^h(\mu)$ such that $\widehat{g_E} \ge 1 c_{\mu}$ -q.e. on E and $c_{\mu}(E) = ||g_E||_{\mu}^2$. If $p_E = \min(g_E, 1)$, then $c_{\mu}(E) = ||p_E||_{\mu}^2$, where $0 \le p_E \le 1$ and $\widehat{p_E} = 1 c_{\mu}$ -q.e. on E, that gives the assertion (i).

To prove (ii), let $v \in \mathcal{D}^{h}(\mu)$ be a positive function; then $p_{E} + \epsilon v \in \mathcal{D}^{h}(\mu)$, for each $\epsilon > 0$. By consequence, $2\langle p_{E}, v \rangle_{\mu} + \epsilon ||v||_{\mu}^{2} \ge 0$. Letting $\epsilon \to 0$, we obtain $\langle p_{E}, v \rangle_{\mu} \ge 0$ for any non-negative $v \in \mathcal{D}^{h}(\mu)$. This implies the existence of a unique positive Borel measure $v_{E} \in \mathcal{M}^{+}(\mathbb{T})$ supported on the closure \overline{E} of E such that

(2.1)
$$\langle p_{\nu_E}, \nu \rangle_{\mu} \coloneqq \langle p_E, \nu \rangle_{\mu} = \int_{\mathbb{T}} \nu(\zeta) d\nu_E(\zeta),$$

for each $v \in C(\mathbb{T})$. To extend (2.1) for $\mathcal{D}^h(\mu)$, let $v \in \mathcal{D}^h(\mu)$. There exists a sequence $v_n \in \mathcal{D}^h(\mu) \cap C(\mathbb{T})$ that is convergent to v and a subsequence v_{n_k} that converges c_{μ} -q.e. on \mathbb{T} to \hat{v} . We have from Fatou's lemma that

$$\int_{\mathbb{T}} \left| \widehat{v}(\zeta) - v_n(\zeta) \right| dv_E(\zeta) = \int_{\mathbb{T}} \liminf_{n_k \to +\infty} \left| v_{n_k}(\zeta) - v_n(\zeta) \right| dv_E(\zeta)$$

$$\leq \liminf_{n_k \to +\infty} \int_{\mathbb{T}} \left| v_{n_k}(\zeta) - v_n(\zeta) \right| dv_E(\zeta)$$

$$\leq \liminf_{n_k \to +\infty} \| p_{v_E} \|_{\mu} \| v_{n_k} - v_n \|_{\mu}$$

$$= c_{\mu}(E)^{1/2} \liminf_{n_k \to +\infty} \| v_{n_k} - v_n \|_{\mu}.$$

This implies that $\widehat{\mathcal{D}^{h}(\mu)} \subset L^{1}(v_{E})$, where $\widehat{\mathcal{D}^{h}(\mu)}$ is the set of the quasi-continuous functions belonging to $\mathcal{D}^{h}(\mu)$, and we have

$$\langle p_{v_E}, v \rangle_{\mu} = \int_{\mathbb{T}} \widehat{v}(\zeta) dv_E(\zeta), \quad v \in \mathcal{D}^h(\mu).$$

This gives (ii). To prove (iii), we need the following lemma.

Lemma 2.3 Let $f \in \mathcal{D}^h(\mu)$, then $f(z) = \langle f, 2 \operatorname{Re} k^{\mu}(z, \cdot) - 1 \rangle_{\mu}, z \in \mathbb{D}$.

Proof Let **P** be the Riesz projection of $\mathcal{D}^{h}(\mu)$ into $\mathcal{D}(\mu)$. Obviously, we have

(2.2)
$$\langle \mathbf{P}f, g \rangle_{\mu} = \langle f, \mathbf{P}g \rangle_{\mu}$$

for every f and g in $\mathcal{D}^h(\mu)$. Fix $f \in \mathcal{D}^h(\mu)$; we consider $f^+ := \mathbf{P}f$ and $f^- := f - \mathbf{P}f$. Using (2.2), we have

$$\begin{split} f(z) &= f^+(z) + f^-(z) \\ &= \langle f^+, k^\mu(z, \cdot) \rangle_\mu + \langle f^-, \overline{k^\mu}(z, \cdot) \rangle_\mu \\ &= \langle f, k^\mu(z, \cdot) \rangle_\mu + \langle f, \overline{k^\mu}(z, \cdot) \rangle_\mu - \langle f, \mathbf{P} \overline{k^\mu}(z, \cdot) \rangle_\mu \\ &= \langle f, 2 \operatorname{Re} k^\mu(z, \cdot) - 1 \rangle_\mu. \end{split}$$

The last equality holds, because $\mathbf{P}\overline{k^{\mu}}(z, \cdot) = 1$.

Now we return to the proof of (iii). Since $p_{\nu_E} \in \mathcal{D}^h(\mu)$, by Lemma 2.3 we have

$$p_{\nu_E}(z) = \langle p_{\nu_E}, 2\operatorname{Re} k^{\mu}(z, \cdot) - 1 \rangle_{\mu} = \int_{\mathbb{T}} \left(2\operatorname{Re} \widehat{k^{\mu}(z, \lambda)} - 1 \right) d\nu_E(\lambda).$$

Finally, if *E* is closed, then v_E is supported on *E* and we have

$$\|p_{\nu_E}\|^2_{\mu} = \langle p_{\nu_E}, p_{\nu_E} \rangle_{\mu} = \int_{\mathbb{T}} \widehat{p_{\nu_E}}(\lambda) d\nu_E(\lambda) = \nu_E(E).$$

This completes the proof of Theorem 2.2.

As an immediate consequence, we obtain the following corollary.

Corollary 2.4 Let K be a closed subset of \mathbb{T} ; then

$$c_{\mu}(K) = \sup \{ v(K) : v \in \mathcal{M}^{+}(\mathbb{T}), \operatorname{supp} v \subset K, \widehat{p_{\nu}} \leq 1 c_{\mu} \text{-} q. e. \text{ on } \mathbb{T} \}.$$

Proof Denote by

$$M(K) := \left\{ v \in \mathcal{M}^+(\mathbb{T}) : \operatorname{supp} v \subset K, \, \widehat{p_v} \leq 1 \, c_\mu \text{-q.e. on } \mathbb{T} \right\}.$$

By Theorem 2.2, there exists $v_K \in \mathcal{M}^+(\mathbb{T})$ such that supp $v_K \subset K$ and $\widehat{p_{v_K}} \leq 1 c_{\mu}$ -q.e. on \mathbb{T} . This gives that $v_K \in M(K)$. Let $v \in M(K)$, and by Theorem 2.2, we have

$$v(K) = \int_{K} \widehat{p_{\nu_{K}}}(\zeta) dv(\zeta) = \langle p_{\nu_{K}}, p_{\nu} \rangle_{\mu} = \int \widehat{p_{\nu}}(\zeta) d\nu_{K}(\zeta) \leq v_{K}(K) = c_{\mu}(K). \quad \blacksquare$$

3 Proof of Theorem 1.1

In our proof we will use an analogue argument given in [2, 4].

Let *E* be a closed subset of \mathbb{T} such that $c_{\mu}(E) = 0$; then there exists a decreasing sequence E_n of closed subsets of \mathbb{T} such that

$$\sum_n c_\mu (E_n)^{1/2} < \infty.$$

By Theorem 2.2, for each $n \in \mathbb{N}$, there exists $v_n \in \mathcal{M}^+(\mathbb{T})$ such that $\operatorname{supp}(v_n) \subset E_n$ and $c_{\mu}(E_n) = \|p_{v_n}\|_{\mu}^2 = v_n(E_n)$. Set $\mu_n = v_n/v_n(E_n)$, and put $\phi_{\mu_n} = \mathbf{P}p_{\mu_n}$, where \mathbf{P} is the Riesz projection of $\mathcal{D}^h(\mu)$ into $\mathcal{D}(\mu)$. We have $\|\phi_{\mu_n}\|_{\mu}^2 \leq \|p_{\mu_n}\|_{\mu}^2 = 1/c_{\mu}(E_n)$. Now consider

$$\phi(z) = \sum_n c_\mu(E_n)\phi_{\mu_n}(z), \quad z \in \mathbb{D}.$$

Since $|\phi_{\mu_n}(z)| \leq \frac{1}{\sqrt{c_{\mu}(E_n)}} ||k_z^{\mu}||_{\mu}$, for any $z \in \mathbb{D}$, ϕ is well defined and

$$|\phi(z)| \leq \sum_{n} c_{\mu} (E_{n})^{1/2} ||k_{z}^{\mu}||_{\mu}.$$

Furthermore,

$$\left\|\sum_{n}c_{\mu}(E_{n})\phi_{\mu_{n}}\right\|_{\mu}\leq\sum_{n}c_{\mu}(E_{n})^{1/2}<\infty.$$

Then $\phi \in \mathcal{D}(\mu)$. Now set $f(z) = \exp(-\phi(z))$, for each $z \in \mathbb{D}$. Clearly, $f \in \mathcal{D}(\mu)$. On the other hand, by Theorem 2.2 we have $\widehat{p_{\mu_n}}(\zeta) = \frac{1}{c_{\mu}(E_n)} c_{\mu}$ -q.e. on E_n , for each

 $n \in \mathbb{N}$. Using this fact with (1.2), we obtain

(3.1)
$$\operatorname{Re}(\phi_{\mu_{n}}(z)) = \int_{\mathbb{T}} \frac{1-|z|^{2}}{|\zeta-z|^{2}} \operatorname{Re}\left(\phi_{\mu_{n}}(\zeta)\right) dm(\zeta)$$
$$\geq \frac{1}{2} \int_{E_{n}} \frac{1-|z|^{2}}{|\zeta-z|^{2}} p_{\mu_{n}}(\zeta) dm(\zeta)$$
$$\geq \frac{\mathcal{O}(z, E_{n}, \mathbb{D})}{2c_{\mu}(E_{n})}, \quad z \in \mathbb{D}, \quad n \in \mathbb{N},$$

where $\mathcal{Q}(z, E_n, \mathbb{D})$ denotes the harmonic measure of E_n at z. Therefore,

$$|f(z)| \leq e^{-\sum_{n} \mathfrak{O}(z,E_{n},\mathbb{D})}.$$

It is well known that $\lim_{z \to z} \mathcal{Q}(z, E, \mathbb{D}) = 1$, for each $\xi \in E$; it follows that f vanishes on E.

Now we will modify the construction presented above to obtain the continuity on $\overline{\mathbb{D}} \setminus E$. From (3.1), we can choose a sequence (r_n) increasing to 1 such that

$$\operatorname{Re}(\phi_{\mu_n}(r_n\zeta)) \geq \frac{1}{2c_{\mu}(E_n)}, \quad \zeta \in E$$

Now set $\phi_n(z) = \phi_{\mu_n}(r_n z)$, for $z \in \mathbb{D}$, $\phi = \sum_n c_{\mu}(E_n)\phi_n$, and $f = \exp(-\phi)$. Since $\mathcal{D}_{\mu}(\phi_n) \leq \mathcal{D}_{\mu}(\phi_{\mu_n})$ (see [9, Lemma 7.3.2]), we obtain $f \in \mathcal{D}(\mu)$. Hence, for large N, we get that

$$\liminf_{z\to\zeta}\operatorname{Re}(\phi(z))\geq \sum_{n=1}^N c_{\mu}(E_n)\operatorname{Re}(\phi_n)(\zeta)\geq \sum_{n=1}^N \frac{1}{2}=\frac{N}{2}, \quad \zeta\in E.$$

So $E \subset Z(f)$.

The function *f* is continuous in $\overline{\mathbb{D}} \setminus E$. Indeed, let $z_0 \in \overline{\mathbb{D}} \setminus E$; then $d(z_0, E) > 0$, it follows that for *n* sufficiently large,

$$d(r_n z, E_n) \geq \delta > 0$$

for all points z in some open disk centered at z_0 denoted by $D(z_0)$. By Theorem 2.2(ii) and (1.3), we obtain

$$\begin{split} \left|\phi_{n}(z)\right| &= \left|\langle p_{\mu_{n}}, k^{\mu}(r_{n}z, \cdot)\rangle_{\mu}\right| = \left|\int_{\mathbb{T}} k^{\mu}\widehat{(r_{n}z, \lambda)} d\mu_{n}(\lambda)\right| \\ &\leq \int_{\mathbb{T}} \left|k^{\mu}\widehat{(r_{n}z, \lambda)}\right| d\mu_{n}(\lambda) \leq \frac{2}{d(r_{n}z, E_{n})}. \end{split}$$

Therefore,

$$c_{\mu}(E_n)|\phi_n(z)| \leq \frac{2c_{\mu}(E_n)}{\delta}.$$

From Weierstrass' test the series $\sum_{n} c_{\mu}(E_{n})\phi_{n}$ converges uniformly to ϕ on $D(z_{0})$. Then ϕ is continuous on $D(z_{0})$. And thus we deduce that Z(f) = E.

Finally, we prove that the function f is cyclic. Let

$$f_n = \exp\left(-\sum_{i\geq n} c_{\mu}(E_i)\phi_i\right).$$

Then we have $\mathcal{D}_{\mu}(f_n) \leq (\sum_{i\geq n} c_{\mu}(E_i)^{1/2})^2 \to 0$, as $n \to +\infty$. Also, f_n converges pointwise to 1 as $n \to +\infty$, and $f_n/f = \exp(\sum_{i=1}^n c_{\mu}(E_i)\phi_i)$ is a bounded function. So $f_n \in [f]_{\mathcal{D}(\mu)}$. We deduce that $1 \in [f]_{\mathcal{D}(\mu)}$. The proof is complete.

4 Proof of Theorem 1.2

The proof of Theorem 1.2 is based on an adaptation of a technique due to El-Fallah, Kellay, and Ransford in [10,12]. The first key of the proof is the following converse of the strong-type inequality (1.5).

Theorem 4.1 Let *E* be a closed subset of \mathbb{T} , and let $h: (0, \pi] \to (0, +\infty)$ be a continuous and decreasing function such that $h(0) = +\infty$. Then there exists a real function $f \in \mathbb{D}^h(\mu)$ such that

(4.1)
$$\liminf_{k} f(z) \ge h(d(\zeta, E)), \quad \zeta \in \mathbb{T},$$

if and only if the function h satisfies

(4.2)
$$\int_0^{\infty} c_{\mu}(E_t) \left| dh^2(t) \right| < \infty.$$

To prove Theorem 4.1, we need the following elementary lemma.

Lemma 4.2 Let $(H, \|\cdot\|)$ be a Hilbert space, and let $(\psi_n)_n$ be a sequence of H such that $\psi_n - \psi_m \perp \psi_m$, for all $n \ge m$. Then $\sum_{n\ge 1} \psi_n / \|\psi_n\|^2$ belongs to H if and only if $\sum_{n\ge 1} n/\|\psi_n\|^2$ is finite.

Proof See [9, Lemma 3.4.4] and [10].

Proof of Theorem 4.1 Suppose that there exists a real function $f \in \mathcal{D}^h(\mu)$ satisfying (4.1). By [5, Theorem 1.3], we have $\lim_{z\to\zeta} f(z)$ exists c_{μ} -q.e. then $f(\zeta) \ge h(t) c_{\mu} - q.e$ on E_t . So

$$\int_0^{\pi} c_{\mu}(E_t) |dh^2(t)| \leq \int_0^{\pi} c_{\mu}(|f| \geq h(t)) |dh^2(t)| = \int_{h(\pi)}^{+\infty} c_{\mu}(|f| \geq s) ds^2 < \infty.$$

The last integral is finite, because the c_{μ} -capacity satisfies the strong-type inequality (1.5).

To prove the converse, we first observe that

$$\int_{0}^{\pi} c_{\mu}(E_{t}) |dh^{2}(t)| \geq \sum_{n=n_{0}+1}^{+\infty} \int_{\delta_{n}}^{\delta_{n-1}} c_{\mu}(E_{\delta_{n}}) |dh^{2}(t)|$$
$$= \sum_{n=n_{0}+1}^{+\infty} c_{\mu}(E_{\delta_{n}}) (n^{2} - (n-1)^{2})$$
$$\approx \sum_{n=n_{0}+1}^{+\infty} n c_{\mu}(E_{\delta_{n}}),$$

where $n_0 \in \mathbb{N}$ with $n_0 \ge h(\pi)$ and $\delta_n \coloneqq h^{-1}(n)$ for $n \ge n_0$. By (4.2), we have

$$\sum_{n=n_0+1}^{+\infty} nc_{\mu}(E_{\delta_n}) < \infty.$$

Cyclicity in Dirichlet Spaces

Otherwise, according to Theorem 2.2, for each $n \ge n_0$, there exists a measure $v_n \in \mathcal{M}^+(\mathbb{T})$, such that $\operatorname{supp}(v_n) \subset E_{\delta_n}$ and $c_{\mu}(E_{\delta_n}) = v_n(\mathbb{T})$.

Now, taking $\mu_n \coloneqq \nu_n / \nu_n(\mathbb{T})$, we have $\|p_{\mu_n}\|_{\mu}^2 = \frac{1}{c_{\mu}(E_{\delta_n})}$, for $n \ge n_0$ and

$$\langle p_{\mu_n} - p_{\mu_m}, p_{\mu_m} \rangle_{\mu} = \langle p_{\mu_n}, p_{\mu_m} \rangle_{\mu} - \langle p_{\mu_m}, p_{\mu_m} \rangle_{\mu}$$
$$= \int_{\mathbb{T}} \widehat{p_{\mu_m}}(\zeta) d\mu_n(\zeta) - \frac{1}{c_{\mu}(E_{\delta_m})} = 0$$

The last equality holds, because $\widehat{p_{\mu_m}} = \frac{1}{c_{\mu}(E_{\delta_m})} c_{\mu}$ -q.e. on E_{δ_m} and $E_{\delta_n} \subset E_{\delta_m}$, for $n \ge m$. Therefore, by Lemma 4.2, we get that the function

$$f(z) \coloneqq n_0 + \sum_{n\geq n_0} c_\mu(E_{\delta_n})p_{\mu_n}(z), \quad z\in\mathbb{D},$$

belongs to $\mathcal{D}^h(\mu)$.

Finally, we will prove (4.1). If $d(\zeta, E) \ge \delta_{n_0}$, then

$$\liminf_{z\to\zeta}f(z)\geq n_0=h(\delta_{n_0})\geq h(d(\zeta,E)).$$

Otherwise, let $N \in \mathbb{N}$, with $\delta_{N+1} < d(\zeta, E) \le \delta_N$. We have

$$f \ge n_0 + N + 1 - n_0 = N + 1$$
, c_{μ} -q.e. on E_{δ_N} .

Thus,

$$f(z) \ge h(d(\zeta, E)) \omega(z, E_{\delta_N}, \mathbb{D}), \quad \zeta \in E_{\delta_N}.$$

Letting $z \rightarrow \zeta$, we obtain conclusion (4.1), and this completes the proof.

Theorem 4.3 Let $f \in \mathcal{D}(\mu) \cap A(\mathbb{D})$ be an outer function and $E = \{\zeta \in \mathbb{T} : f(\zeta) = 0\}$. If there exists a function $g \in \mathcal{D}(\mu)$ such that $|g(z)| \leq d(z, E)^4$, $z \in \mathbb{D}$, then $g \in [f]_{\mathcal{D}(\mu)}$.

Theorem 4.3 is a $\mathcal{D}(\mu)$ -analogue of [11, Theorem 3.1] and [12, Theorem 2.1]. We will use the same basic technique here. First, we introduce some notation. Let Γ be a Borel subset of \mathbb{T} . We denote by $\partial\Gamma$ the boundary of Γ in \mathbb{T} . We associate with a given outer function f the function f_{Γ} defined by

$$f_{\Gamma}(z) \coloneqq \exp\Big(\int_{\Gamma} \frac{\zeta+z}{\zeta-z} \log|f(\zeta)| dm(\zeta)\Big).$$

Lemma 4.4 Let f be a bounded outer function. For every Borel set $\Gamma \subset \mathbb{T}$, we have

$$|f_\Gamma'(z)| \lesssim |f'(z)| + d(z,\partial\Gamma)^{-4}, \quad z\in\mathbb{D}.$$

Proof See [12, Lemma 2.2].

Proof of Theorem 4.3 Let $(I_i)_{i\geq 1}$ be the complete set of components of $\mathbb{T} \setminus E$ and set $J_n := \bigcup_{i=1}^n I_i$. We claim that

- (i) $f_{\mathbb{T} \setminus J_n} g$ converges pointwise to g, as $n \to +\infty$,
- (ii) $\liminf_{n\to+\infty} \mathcal{D}_{\mu}(f_{\mathbb{T}\setminus J_n}g) < \infty$,
- (iii) $f_{\mathbb{T}\setminus J_n}g \in [f]_{\mathcal{D}(\mu)}$, for all n,

and thus the theorem is proved.

The assertion (i) is obvious. To prove (ii) by Lemma 4.4, we get that

$$\begin{split} \mathcal{D}_{\mu}(f_{\mathbb{T}\smallsetminus J_{n}}g) &\lesssim \mathcal{D}_{\mu}(f) \|g\|_{\infty}^{2} + \|f\|_{\infty}^{2} \mathcal{D}_{\mu}(g) + \int_{\mathbb{D}} \Big(\frac{|g(z)|}{d(z,\partial\mathbb{T}\smallsetminus J_{n})^{4}}\Big)^{2} P[\mu](z) dA(z) \\ &\lesssim \mathcal{D}_{\mu}(f) \|g\|_{\infty}^{2} + \|f\|_{\infty}^{2} \mathcal{D}_{\mu}(g) + \mathcal{D}_{\mu}(z). \end{split}$$

Then

$$\liminf_{n\to+\infty}\mathcal{D}_{\mu}(f_{\mathbb{T}\smallsetminus J_n}g)<\infty.$$

To check (iii) it is sufficient to show that $f_{\mathbb{T} \setminus I}g \in [f]_{\mathcal{D}(\mu)}$, where *I* is a connected component of $\mathbb{T} \setminus E$, say $I = (e^{ia}, e^{ib})$. Let $\rho > 1$, define

$$\psi_{\rho}(z) = (z-1)^4/(z-\rho)^4$$
 and $\phi_{\rho}(z) = \psi_{\rho}(e^{-ia}z)\psi_{\rho}(e^{-ib}z),$

let $\epsilon > 0$, and set $I_{\epsilon} = (e^{i(a+\epsilon)}, e^{i(b-\epsilon)})$, and

$$\phi_{\rho,\epsilon}(z) = \psi_{\rho}(e^{-i(a+\epsilon)}z)\psi_{\rho}(e^{-i(b-\epsilon)}z).$$

By Lemma 4.4 again, we have

$$\mathcal{D}_{\mu}(\phi_{\rho,\epsilon}f_{\mathbb{T}\smallsetminus I_{\epsilon}}) \lesssim \mathcal{D}_{\mu}(\phi_{\rho,\epsilon}) + \|\phi_{\rho,\epsilon}\|_{\infty}^{2} \mathcal{D}_{\mu}(f) + \mathcal{D}_{\mu}(z).$$

Then

$$\liminf_{\epsilon \to 0} \mathcal{D}_{\mu}(\phi_{\rho,\epsilon} f_{\mathbb{T} \setminus I_{\epsilon}}) \lesssim \mathcal{D}_{\mu}(\phi_{\rho}) + \|\phi_{\rho}\|_{\infty}^{2} \mathcal{D}_{\mu}(f) + \mathcal{D}_{\mu}(z).$$

On the other hand, it follows from boundedness of $|\phi_{\rho,\epsilon} f_{\mathbb{T} \setminus I_{\epsilon}}|/|f|$ on \mathbb{T} that $\phi_{\rho,\epsilon} f_{\mathbb{T} \setminus I_{\epsilon}} \in [f]_{\mathcal{D}(\mu)}$. Since $\phi_{\rho,\epsilon} f_{\mathbb{T} \setminus I_{\epsilon}}$ converges pointwise to $\phi_{\rho} f_{\mathbb{T} \setminus I}$, as $\epsilon \to 0$, we have $\phi_{\rho} f_{\mathbb{T} \setminus I} \in [f]_{\mathcal{D}(\mu)}$. We multiply by g. As $g \in \mathcal{D}(\mu) \cap H^{\infty}$, $\phi_{\rho} f_{\mathbb{T} \setminus I} g \in [f]_{\mathcal{D}(\mu)}$. Again, according to Lemma 4.4, we have

$$\mathcal{D}_{\mu}(f_{\mathbb{T}\smallsetminus I}\phi_{\rho}g) \lesssim \mathcal{D}_{\mu}(f) \|g\|_{\infty}^{2} + \mathcal{D}_{\mu}(z) + \|f\|_{\infty}^{2} \mathcal{D}_{\mu}(\phi_{\rho}g).$$

Using $|g(z)| \leq d(z, E)^4$, it is easy to check that $\mathcal{D}_{\mu}(\phi_{\rho}g)$ is bounded as $\rho \to 1$. These imply that $f_{\mathbb{T} \setminus I}g \in [f]_{\mathcal{D}(\mu)}$. As a similar argument to that above gives $f_{\mathbb{T} \setminus J_n}g \in [f]_{\mathcal{D}(\mu)}$.

The last ingredient of the proof of Theorem 1.2 is the following theorem due to Richter and Sundberg [19, Theorem 4.3].

Theorem 4.5 Let f be an outer function and $\gamma > 0$. If $f, f^{\gamma} \in \mathcal{D}(\mu)$, then $[f^{\gamma}]_{\mathcal{D}(\mu)} = [f]_{\mathcal{D}(\mu)}$.

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2 To see that *f* is cyclic, we prove that $1 \in [f]_{\mathcal{D}(\mu)}$.

Using Theorem 4.1 for $h(t) = \log(1/t)$, the condition $\int_0 c_{\mu}(E_t) \frac{\log(1/t)}{t} dt < \infty$ implies that there exists a real function $v \in \mathcal{D}^h(\mu)$ such that $\liminf_{z \in \zeta} v(z) \ge h(d(\zeta, E)), \zeta \in \mathbb{T}$. Now set $u := v + i\tilde{v}$, where \tilde{v} is the harmonic conjugate for v. By the Cauchy–Riemann equations, we get that $|u'(z)| = |\nabla v(z)|$, for all $z \in \mathbb{D}$. Hence, $\mathcal{D}_{\mu}(u) = 2\mathcal{D}_{\mu}(v)$, then $u \in \mathcal{D}(\mu)$. We put $g_{\lambda}(z) = e^{-\lambda u(z)}$, for $\lambda \ge 0$. We have $|g_{\lambda}(z)| = e^{-\lambda v(z)} \le 1$ and $|g'_{\lambda}(z)| \le \lambda |u'(z)|$. Then $\mathcal{D}_{\mu}(g_{\lambda}) \le \lambda^2 \mathcal{D}_{\mu}(u)$. Hence, $\lim \inf_{\lambda \to 0} \mathcal{D}_{\mu}(g_{\lambda}) = 0$ and $g_{\lambda} \in \mathcal{D}(\mu)$ for all $\lambda \ge 0$. Since g_{λ} converges pointwise to

Cyclicity in Dirichlet Spaces

1, as $\lambda \to 0$, we obtain that g_{λ} converges weakly to 1. Otherwise, for almost all $\zeta \in \mathbb{T}$, we have

$$|g_{\lambda}(\zeta)| = e^{-\lambda \nu(\zeta)} \le e^{-\lambda h(d(\zeta, E))} = d(\zeta, E)^{\lambda}$$

That gives $|g_{\lambda}(z)| \leq (\pi/2)^{\lambda} d(z, E)^{\lambda}$, for all $\lambda \geq 0$. Using Theorem 4.3 we obtain $g_4 \in [f]_{\mathcal{D}(\mu)}$, and by Theorem 4.5 we get that $[g_{\lambda}]_{\mathcal{D}(\mu)} = [g_4]_{\mathcal{D}(\mu)}$, for all $\lambda \geq 0$. Hence $g_{\lambda} \in [f]_{\mathcal{D}(\mu)}$, for all $\lambda \geq 0$. Then $1 \in [f]_{\mathcal{D}(\mu)}$.

Acknowledgment The authors are grateful to Omar El-Fallah for his valuable remarks and suggestions.

References

- A. Beurling, On two problems concerning linear operators in Hilbert space. Acta Math. 81(1948), 239–255. http://dx.doi.org/10.1007/BF02395019
- [2] L. Brown and W. Cohn, Some examples of cyclic vectors in the Dirichlet space. Proc. Amer. Math. Soc. 95(1985), 42–46. http://dx.doi.org/10.2307/2045570
- [3] L. Brown and A. Shields, *Cyclic vectors in the Dirichlet space*. Trans. Amer. Math. Soc. 285(1984), 269–304. http://dx.doi.org/10.2307/1999483
- [4] L. Carleson, Sets of uniqueness for functions regular in the unit circle. Acta Math. 87(1952), 325–345. http://dx.doi.org/10.1007/BF02392289
- [5] G. Chacón, Carleson measures on Dirichlet-type spaces. Proc. Amer. Math. Soc. 139(2011), 1605–1615. http://dx.doi.org/10.1090/S0002-9939-2011-10823-2
- [6] R. Chartrand, Toeplitz operators on Dirichlet-type spaces. J. Operator Theory. 48(2002), 3-13.
- [7] O. El-Fallah, Y. Elmadani, and K. Kellay, *Kernel estimate and capacity in the Dirichlet spaces*. J. Funct. Anal., to appear. http://dx.doi.org/10.1016/j.jfa.2018.03.017
- [8] _____, Cyclicity and invariant subspaces in Dirichlet spaces. J. Funct. Anal. 270(2016), 3262–3279. http://dx.doi.org/10.1016/j.jfa.2016.02.027
- [9] O. El-Fallah, K. Kellay, J. Mashreghi, and T. Ransford, A primer on the Dirichlet space. Cambridge Tracts in Mathematics, 203, Cambridge University Press, Cambridge, 2014.
- O. El-Fallah, K. Kellay, and T. Ransford, Cyclicity in the Dirichlet space. Ark. Mat. 44(2006), 61–86. http://dx.doi.org/10.1007/s11512-005-0008-z
- [11] ______, On the Brown-Shields conjecture for cyclicity in the Dirichlet space. Adv. Math. 222(2009), no. 6, 2196–2214. http://dx.doi.org/10.1016/j.aim.2009.07.011
- [12] _____, Cantor sets and cyclicity in weighted Dirichlet spaces. J. Math. Anal. Appl. 372(2010), 565–573. http://dx.doi.org/10.1016/j.jmaa.2010.07.047
- [13] M. Fukushima, Y. Oshima, and M. Takeda, *Dirichlet forms and symmetric Markov processes*. Second revised and extended ed., de Gruyter Studies in Mathematics, 19, Walter de Gruyter & Co., Berlin, 2011.
- [14] D. Guillot, Comportement au bord dans les espaces de Dirichlet avec poids harmoniques et espaces de de Branges-Rovnyak. PhD thesis, Universite Laval, 2010.
- [15] _____, Fine boundary behavior and invariant subspaces of harmonically weighted Dirichlet spaces. Complex Anal. Oper. Theory. 6(2012), 1211–1230. http://dx.doi.org/10.1007/s11785-010-0124-z
- [16] H. Hedenmalm and A. Shields, Invariant subspaces in Banach spaces of analytic functions. Michigan Math. J. 37(1990), no. 1, 91–104. http://dx.doi.org/10.1307/mmj/1029004068
- [17] N. G. Meyers, A theory of capacities for potentials of functions in lebesgue classes. Math. Scand. 26(1971), 255–292. http://dx.doi.org/10.7146/math.scand.a-10981
- S. Richter, A representation theorem for cyclic analytic two-isometries. Trans. Amer. Math. Soc. 328(1991), 325–349. http://dx.doi.org/10.2307/2001885
- [19] S. Richter and C. Sundberg, Multipliers and invariant subspaces in the Dirichlet space. J. Operator Theory 28(1992), 167–186.
- [20] S. M. Shimorin, Reproducing kernels and extremal functions in Dirichlet-type spaces. J. Math. Sci. (N.Y.). 107(2001), 4108–4124. http://dx.doi.org/10.1023/A:1012453003423

CeReMAR LAMA, Mohammed V University, Faculty of science Rabat, 10 000 Rabat, Morocco Email: elmadanima@gmail.com imaneayaa@gmail.com