Compositio Mathematica 109: 341-355, 1997. 341
© 1997 Kluwer Academic Publishers. Printed in the Netherlands.

Abelian varieties and the general Hodge conjecture

SALMAN ABDULALI*

Department of Mathematics, Northwestern University, 2033 Sheridan Road, Evanston,
IL 60208, U.SA.; eemail: salman@math.ecu.edu

Received: 27 February 1996; accepted in final form 26 August 1996

Abstract. Weinvestigate therel ationship between theusual and general Hodge conjecturesfor abelian
varieties. For certain abelian varieties A, we show that the usual Hodge conjecture for all powers of
A implies the general Hodge conjecture for A.

M athematics Subject Classification (1991): 14C30.

Key words: Hodge conjecture, algebraic cycle, abelian variety, Kugafiber variety

1. Introduction

The arithmetic filtration on the cohomology of a smooth complex projective
variety X is defined by letting F) H™(X,Q) be the linear span of cohomolo-
gy classes supported on algebraic subvarieties of codimension at least ». When
n = 2r, FTH? (X, Q) is the space spanned by the fundamental classes of alge-
braic subvarieties of codimension . The other terms of the arithmetic filtration
provide subtler information about subvarieties of X .

The general Hodge conjecture([Gr], [HO]) asserts the equality of the arithmetic
filtration with Grothendieck’s corrected Hodge filtration, which we denote by
FH™ (X, Q). Thespecial casen = 2r of the general Hodge conjecture assertsthat
FrH? (X, Q), the space of algebraic cycles of codimension r, equals H™" (X) N
H? (X, Q), the space of Hodge cycles. This special case is (usually) called the
usual Hodge conjecture.

The general Hodge conjecture is equivalent to the usual Hodge conjecture
for al X, together with the assertion that for any irreducible Hodge structure
V C FGH™(X,Q), the Tatetwist V (—r) isisomorphic to aHodge substructure of
H™?r(Y, Q) for some smooth projective variety Y (Proposition 2.1). In this paper
we prove this second conjecture for a certain class of abelian varieties (Theorem
5.1).

Theabelian varietieswe consider arethosewhose Hodgerings are characterized
by endomorphisms. To understand what this means we need to consider certain
families of abelian varieties (see Section 4.6 for details). In a series of papers
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([Sm3] isagood survey) Shimurastudied families of abelian varieties called PEL -
families; these are solutionsto moduli problemsfor abelian varietieswith prescribed
polarizations, endomorphisms, and, level structures. Mumford [Mm1] obtained a
larger class of families of abelian varieties by considering arbitrary Hodge classes
on powers of an abelian variety A instead of endomorphisms. Indeed, given an
abelian variety A, Mumford constructed the family of all abelian varieties whose
Hodge groups are ‘contained’ in the Hodge group of A (see [Mm1, p. 348] for
the precise meaning). We shall say that A is of PEL-type if the family of abelian
varieties constructed by Mumford from A is a PEL-family in Shimura’'s sense.
(We note here that Shimura assumed the endomorphism algebras to be division
algebras; thiswas only for convenience, and we do not make this assumption here.)
Thus A isof PEL-typeif and only if the Hodge group of A equalsthe Hodge group
of the generic fiber of a PEL-family; i.e., each power of A has no Hodge cycles
other than those it is required to have by virtue of the endomorphisms of A.

In Theorem 5.1 we show that for an abelian variety A of PEL-typewhoseHodge
group is semisimple, and whose simple factors of type Il satisfy an additional
condition, the usual Hodge conjecture for all powers of A implies the general
Hodge conjecture for A (the definition of the type of a simple abelian variety is
recalledin Sect. 4.1). Thisclass of abelian varietiesincludesall abelian varieties A
such that the Hodge ring of each power of A isgenerated by divisors, and such that
each simple factor of A isof type | or type Il. The general Hodge conjecture for
such abelian varieties has also recently been proved by Tankeev [T] and Hazama
[Ha] independently.

Our results also cover the abelian varieties which Weil [W] considered as
possible counterexamples to the usual Hodge conjecture. For such an abelian
variety A, the usual Hodge conjecture for A implies the usual Hodge conjecture
for al powers of A. Schoen [Scl] has proved the usual Hodge conjecture for
a 4-dimensional abelian variety of Weil type with endomorphisms by Q(v/—1)
or Q(v/—3) (see aso [VG, p. 238]). We may now conclude the general Hodge
conjecture for any power of such an abelian variety.

In the final section of this paper, we look at some examples of abelian varieties
which do not satisfy the hypotheses of our main theorem, and briefly discuss the
possibility of generalizing it.

2. Thegeneral Hodge conjecture

Let k£ beeither Q or R. A k-Hodgesstructure of weight n isafinite dimensional vector
spaceV over k, together with adirect sum decompositionVe = @, ,—,, V7 such
that V77 = V&P, Thetype of V isthenthe set {(p, q) | VP9 # 0}. We define the
height of V' to be the smallest p such that V?:""~P £ Q.

Let Ve = @ppgep VP4 and We = @, ,—,,, WP be Hodge structures. A
mor phism of Hodge structures of degree r isak-linear map ¢: V' — W such that
p(VP1) C WPHHatr for al pairs p, q. We say that the Hodge structures V' and
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W areisomorphic if they are isomorphic in the category whose objects are Hodge
structures and whose morphisms are morphisms of Hodge structures of degree 0.
We say that they are equivalent if they areisomorphicin the category whose objects
are again Hodge structures, but whose morphismsare of arbitrary degree. Thustwo
Hodge structures are isomorphic if and only if they are equivalent and have the
same weight.

Let S bethereal algebraic group suchthat S(R) isthe unit circlein the complex
plane. Then any Q-Hodge structure V' determines a morphism of real algebraic
groups ¢ : S — GL(VR) such that € acts on V¢ as multiplication by e~
The Hodge group of V' is defined to be the smallest Q-subgroup, G, of GL(V)
such that Gr contains the image of . The Hodge substructures of V' are the same
as the G-submodules of V', and the R-Hodge substructures of Vr are the same as
the G(R)-submodules of Vg.

Let X be a smooth projective variety over C. The arithmetic filtration F; on
H"(X,Q) isdefined by taking F; H" (X, Q) to be the set of cohomology classes
supported on algebraic subvarieties of codimension at least r.

The Hodge filtration is given by

F'H"(X,C):= p HM(X).

ptg=n
p2r

The rational Hodge filtration is obtained by defining F§H™ (X, Q) to be the
largest Q-Hodge substructure of F"H™(X,C) N H™(X, Q).

We have Fy H"(X,Q) C F5H"(X, Q). The general Hodge conjecture [Ho],
as amended by Grothendieck [Gr], states that this inclusion is an equality. The
case n = 2r isthe usual Hodge conjecture. The following proposition gives an
equivalent formulation due to Grothendieck (see also [Sc2, Lem. 0.1, p. 139]).

PROPOSITION 2.1. (Grothendieck [Gr, p. 301]). The general Hodge conjecture
is equivalent to the usual Hodge conjecture together with

(2.2) For any smooth complex projective variety X, and any irreducible Hodge
substructure V' of H™(X, Q), there exists a smooth projective variety Y, a nonneg-
ativeinteger s, and a Hodge substructure W C H*(Y, Q) such that W has height
Oand V isequivalent to V.

Proof. Let d bethe dimension of X, and A the height of V.

Assume the general Hodge conjecture. Then V' is supported on an algebraic
subvariety Z of codimension h. Let Y — Z be a desingularization of Z, and
f:Y — X its composition with the inclusion. Then

[« H3(Y,Q) = H"(X,Q)

is a morphism of Hodge structures, where s = n — 2h. Since the image of f,
contains V, H*(Y,Q) has a Hodge substructure W which is equivalent to V.
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(We have used here the fact that our Hodge structures are polarizable, and hence
semisimple. This follows, for example, from the fact that their Hodge groups are
reductive (see [D, Prop. 3.6, p. 44]).) Since the degree of f, is h, the height of W
must be O.

Conversely, assume (2.2). Note that the height of V ish = (n — s)/2. Let k
be the dimension of Y. Then there exists a Hodge cycle ¢ € H%*+2"(Y x X, Q)
inducing an equivalence ¢ of Hodge structures from W to V. The usua Hodge
conjecture for Y x X implies that ¢ is the class of an algebraic cycle Z. Since
(a) = po- (pia A (), we see that any element of V' is supported on p-(Z). The
codimension of py- (Z) ish. Thisshowsthat V iscontainedin FH"(X,Q). O

We shall refer to (2.2) as the unusual Hodge conjecture. Then the general Hodge
conjecture is equivalent to the usual Hodge conjecture together with the unusual
Hodge conjecture.

3. Thegroup theoreticfiltration

Define the group theoretic filtration on H™ (X, Q) by letting £/ H" (X, Q) be the
sum of those Hodge substructures of H™ (X, Q) which are equivalent to Hodge
substructures of H*(Y, Q) for some smooth projective variety Y, and some s <
n — 2r. We say that a class 2 of smooth projective varieties dominates X if
each irreducible Hodge substructure of Fi/ H" (X, Q) is equivalent to a Hodge
substructure of H*(Y, Q) for someY € 2, and some s < n — 2r. Aswe shall see,
thisfiltration isintimately related to representations of the Hodge group, henceits
name.

The unusual Hodge conjecture may now be restated as asserting the equality
of the rational Hodge filtration with the group theoretic filtration. The proof of
Proposition 2.1 shows that to prove the general Hodge conjecture for X it is
sufficient to prove (i) the unusual Hodge conjecture for X, and, (ii) the usual
Hodge conjecture for Y x X for all Y in aclass 21 of algebraic varieties which
dominates X .

Thefollowing two propositions are easy consequencesof the definitions, Propo-
sition 2.1, and its proof.

PROPOSITION 3.1. FyH"(X,Q) C FHH"(X,Q) for any smooth projective
variety X . i

PROPOSITION 3.2. If the usual Hodge conjecture is true for Y x X for all Y
in a class 2 of algebraic varieties which dominates X, then F/H"(X,Q) C
FTH™(X,Q). O

PROPOSITION 3.3. (cf. [Gr, p. 301]). For any smooth, projective variety X, and
any r, we have

FyH*1(X,Q) = FGH* (X, Q)
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and the usual Hodge conjectureimplies that

FPHZ (X, Q) = FJHY (X, Q) = F§HZ (X, Q).

Proof. F{H* (X, Q)isaHodgestructureof type(r,r+1), (r+1,r). Hence
the Tatetwist V := F H* (X, Q)(—r) isaHodge structure of type (0, 1), (1, 0);
sinceit is polarizable there exists an abelian variety A suchthat V' isisomorphic to
H*(A,Q). Therefore F; H¥ (X, Q) = FH* (X, Q), and the usual Hodge
conjecturefor A x X impliesthat either of these equals F7 H (X, Q). O

4, Abelian varieties

4.1. ENDOMORPHISMS

Let A beasimple abelian variety over C. By Albert’s classification, the endomor-
phismalgebra D(A) := End(A) ® Q of A isoneof thefollowing (see[Sm1, Sect.
1.3, p. 154)])

() atotally real number field,

(I atotally indefinite quaternion algebra over atotally real number field,
(11 atotally definite quaternion algebra over atotally real number field, or,
(IV) adivision algebrawhose center isa CM-field.

Thetype of D(A) in the above classification is also called the type of A.

4.2. KNOWN CASES

Recall that any abelian variety A isisogenousto A7* x A% x --- x A" where
the n; are positive integers, and the A; are pairwise nonisogenous simple abelian
varieties called the simple factors of A. The general Hodge conjecture is known
for the following abelian varieties

() Any abelian variety A such that the Hodge ring of A™ is generated by divisors
for al n, and such that each ssimple factor of A isof typel or typell (Hazama
[Ha] and Tankeev [T]). Special cases of this were proved earlier by Mattuck
[Ma] and Gordon [Gol, Go2)].

(b) A power of an elliptic curve with complex multiplication (Shioda[So, p. 63]).

(c) A simple abelian variety A of CM-type such that [K : Ko] = 2¢, where
d := dimA, K is the endomorphism algebra of A, Ky is the maximal real
subfield of K, and bars denote Galois closure (Tankeev [T]).

(d) A genera fiber of a PEL family of abelian 4-folds with endomorphisms by
Q(4), and polarization given by a hermitian form of signature (3, 1) (Schoen
[Sc2)).
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4.3. HERMITIAN GROUPS

We shall now review some facts about algebraic groups of hermitian type. For
further details see Satake [Sa3]. Let G be aconnected, semisimple, linear algebraic
group over R. Assume that G(R) is hermitian, so that X := G(R)°/K is a
bounded symmetric domain, where K is amaximal compact subgroup of G'(R)°.
Let g := LieG(R),¢ := LieK, and let g = ¢ @ p be the corresponding Cartan
decomposition. Let = be the unique fixed point of K in X. Differentiating the
natural map G(R)? — X givesanisomorphism of p with 7}, (X), the tangent space
of X at z, and there exists a unique Hp € Z(¢), called the H-element at , such
that ad Hy | p is the complex structure on 75 (X).

Let 5 be a nondegenerate alternating form on a finite dimensional real vector
space V. The symplectic group Sp(V, 3) is of hermitian type; the corresponding
symmetric domain is the Siegel space

6(V,B) = {JeGL(V)|J?=~-1 and B(z,Jy) issymmetric,
positive definite}

Sp(V, B) actson &(V, 3) by conjugation. The H-element at apoint J € &(V, )
isHg = %J . To obtain matrix representations, consider the real Hodge structure
Ve = V0Vt where V10 (resp. V1) isthe eigenspace of the complexification
of J for the eigenvaluei (resp. —i). Letey, ..., e, beabasisof V10 andej,, =
€;. Then ey, ..., ez, is a symplectic basis for (Vc,i3). Note that Sp(Vc, 3) =
Sp(Ve, i3). With respect to this basis, we have

Z/B = ? J = . ?
I, 0 0 —il,,

Hy — ((i/Z)[m .O )
0 (—i/2) I,

Let G and G’ be hermitian groups with symmetric domains X and X', and,
H-elements Hy and Hy, at the pointsz € X and 2’ € X', respectively. A repre-
sentation p: G — G', defined over R, is said to satisfy the Hi-condition if

(4.3.)

[dp(Ho) — Hp, dp(g)] =0 foradl g€ g,
and to satisfy the H,-condition if
dp(Ho) = Ho,
Let 7: X — X’ be holomorphic. We say that 7 is strongly equivariant with

p: G — G, if p satisfies the H;-condition, and 7(gz) = p(g)7(z) for al g €
G(R)C.
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4.4, HODGE GROUPS

The Hodge group G(A) of acomplex abelian variety A is defined to be the Hodge
group of H(A, Q). The derived group G% of the Hodge group is a connected,
semisimple, linear algebraic group over Q such that G%'(R) is of Hermitian type
and G has no nontrivial, connected normal Q-subgroup H such that H(R)
is compact [Mm1]. Let V := H'(A,Q), and let 3 be a Riemann form for A.
Then G(A) c Sp(V, 3), and the inclusion of GY" into Sp(V, §) satisfies the H;-
condition. It satisfiesthe H,-condition if and only if G(A) issemisimple (see[A2,
Prop. 2.2, p. 1124]). If two abelian varieties have the same simple factors then their
Hodge groups are the same.

PROPOSITION 4.4.1. Let A and B be abelian varieties dominated by 21 and
B respectively. Assume that A and B satisfy the unusual Hodge conjecture and
the Hodge group of A x B is the product of the Hodge groups of A and B.
Then A x B also satisfies the unusual Hodge conjecture; it is dominated by
{X xY|X e, YeB}

Proof. Any irreducible Hodgestructurein H™(A x B, Q) isof theformV @ W,
where V. C HY(A,Q) and W C H’(B,Q) are irreducible Hodge structures
and i + 5 = n. By assumption V' and W are equivalent to Hodge structures
V' C HY(X,Q) and W' C H(Y,Q), where V' and W' have height 0, X € %,
and,Y € B.Then V' @ W' c H**(X x Y, Q) hasheight 0 and is equivalent to
VeWw. O

4.5. THE LEFSCHETZ GROUP

Let A beacomplex abelian variety, D := End (A) ® Q its endomorphism agebra,
V := H(A,Q), 8 aRiemann form on A, and p the induced involution on D.
The Lefschetz group L(A) is defined by Murty [Mt1, p. 198] as the connected
component of the centralizer of D inthesymplecticgroup Sp(V, 3). Itisareductive
algebraic group over Q which contains the Hodge group of A.

Suppose now that A is simple. Let E be the center of D, and & the field of
invariantsof p. Then k isthe maximal real subfield of £. Recall [Sm2, Lemmal.2,
p. 162] that there exists aunique E-bilinear formT': V' x V' — D such that for all
z,y € V,anddl a,b € D,

ﬁ(xvy) = TrD/Q T($ay)7 T(a:r, by) = aT(xay)bPa and
T(yvx) = _T(*T7y)p

Then L(A) is the connected component of the restriction of scalars of a unitary
group

L(A) = Ry g Autp(V,T)°. (45.1)
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4.6. KUGA FIBER VARIETIES

Let G be a semisimple linear algebraic group over Q such that G(R) is of her-
mitian type and has no compact factors defined over Q. Denote by X the bounded
symmetric domain associatedto G. Let V' be afinite dimensional vector space over
Q, 8 anondegenerate aternating formon V, p: G — Sp(V, 3) a representation
defined over Q, which satisfies the H;-condition, and 7: X — &(V, 3) astrongly
equivariant map. Let I" beatorsion-free arithmetic subgroup of G, and L al'-lattice
in V' on which ( takes integer values. From this data Kuga ([K], cf. [Sa3, Sect.
IV.7, pp. 195-202]) constructed a family of polarized abelian varieties, caled a
Kuga fiber variety over the arithmetic variety I'\ X, such that the fiber over I'z is
the torus Vr /L with the complex structure 7(x), and Riemann form £.

Let A be an abelian variety with Hodge group G and Lefschetz group L. The
derived groups G and L% are both hermitian, and their inclusions into the
symplectic group of a Riemann form satisfy the H;-condition. The corresponding
Kugalfiber varietiesarethe Hodgefamilies' of Mumford ((Mm1], [Mm2]), and the
PEL -families of Shimura ([Sm3], see also [Sa3, p. 200, Example 2]), respectively.
We shall say that A is of PEL-type if Mumford's Hodge family is a PEL-family.
Thus A isof PEL-typeif and only if L% = G If the Hodge ring of every power
of A isgenerated by divisorsthen A is of PEL-type [Mt1, Theorem 3.1, p. 202].
From this we see that all the abelian varieties listed in Section 4.2 for which the
general Hodge conjecture is currently known are of PEL-type.

5. Themain theorem

THEOREM 5.1. Let A be an abelian variety of PEL-type with semisimple Hodge
group. Suppose that for every simple factor B of A, if B is of type Ill, then
H'(B, Q) hasodd dimension as a vector space over the endomor phismalgebra of
B. Then the group theoretic and rational Hodge filtrations on the cohomol ogy of
A coincide, A isdominated by any sufficiently large power of itself, and the usual
Hodge conjecturefor all powers of A impliesthe general Hodge conjecturefor A.

Proof. A isisogenousto a product A7* x A5? x --- x A" where the A; are
pairwise nonisogenous abelian varieties. By the multiplicativity of the L-group
[Mt1, Lem. 2.1, p. 198] we have

L(A) = L(A1) x L(A3) x -+ X L(A;).
Since
G(A) C G(A1) x G(A2) x --- x G(A))

and G(A) equals the derived group of L(A), we conclude that each A; is of
PEL -type, and,

G(A) = G(A1) x G(A2) x --- x G(A)).
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Proposition 4.4.1 now implies that it is enough to prove the theorem when A isa
power of asimple abelian variety.

Let A be a power of a simple abelian variety Ag, and let G := G(A). Let U
be an irreducible Hodge structure contained in the cohomology of A. Let W be
an irreducible G-submodule of Ug. Suppose there exists a G-submodule W' of
H®(A%,R) for some a, b, such that W' contains (a, 0)-forms and is G-equivalent
to W. Then the smallest rational Hodge structure U’ containing W' is G-equivalent
to U and has height 0. (We have used here the fact that two representations of G
defined over Q are equivalent over Q if and only if they are equivalent over R.
Thisfollows from the density of G(Q) in G(R) [BS, Theorem A, p. 26]. See [Sa2,
Lemma 1, p. 220] or [Al, Lemma 2.1, p. 228] for more details.) Therefore, to
complete the proof of the theorem, it sufficesto show that sucha W’ alwaysexists.

Let D betheendomorphismalgebraof Ag, E thecenter of D, and i the maximal
real subfield of E. From 4.5.1 we seethat G(R) isaproduct I[1G, indexed by the
set S of embeddingsof £ intoR. Let « € S. Then

R if Disof typel or I,
Dy =D®p,R=4q C if DisoftypelV,
H if Disof typelll.

From 4.1 we now see that, in the notation of Helgason [He, pp. 444-445],

Sp(n,R) if Disof typel orll,
Go =< SU(p,q) if Disof typelV,
SO*(2n) if Disof typelll.

If D isof type IV, our assumption that G is semisimple implies that p = ¢ (see
[Sa3, Chap. IV, (4.14), p. 183]). In al cases, we find that G, is not compact. It
then follows from [Sa3, Sect. IV.5, pp. 185-186] that we have a decomposition
H(Ao,R) = @ e Va, Whereeach V, isareal Hodge substructure of H*( Ao, R)
onwhich G, actstrivialy for v # o, and

Ga = Sp(Va, B Va x Va)

isan H,-morphism for each «.. Thusto complete the proof, it sufficesto show that
for each irreducible G ,-submodule W, in the exterior algebra of V,,, there exists
an equivalent G ,.-submodule W, of height 0 in the exterior algebraof V? for some
b.

To simplify the notation we drop the subscript «, writing D for D, G for G,
and V for V. We divide the proof into three cases, according to whether D = R,
C,or, H.

Case 1. D=R.
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In this case G is a symplectic group Sp(Vo, 5), and V' is equivaent as a G-
module to either V5 or Vo @ Vo, according to whether Ag is of type | or type Il
(see [Sal, Sect. 3.4, p. 451] and [Mt1, pp. 201-202]). We may assume without
loss of generality that Vo = V. With the matrix representation of Section 4.3, the
symplectic Lie algebrais given by

A B _
sp(Ve, B) = {(C —tA> ‘B,O symmetnc},

and a Cartan subalgebrais given by

A 0 _
tz{(o —A) ‘A:dlag(Al,...,An)}.

Each \; is evidently a weight of sp(Vc, 5) and e; is a vector of weight ;. The
fundamental weights of sp(Vc, B) are p; = A1 + --- + A;. The representation
of sp(Vc, ) on A7V has highest weight 1;; it is equivalent to the direct sum
of A7=2V and the irreducible representation 7; of highest weight p1; [Vr, p. 394,
Exercise 24]. A vector of highest weight in A7V ise; A ez A - -+ A e;. Since each
e; € V10, we see that the representation of highest weight equal to ;i in AIV
contains avector in V7:°,

Any irreducible representation 7 of sp(Vc, 3) has highest weight 1 = a1 +
-+ + apfin, Where the a; are nonnegative integers. 1 is the highest weight of

TMRAMQ  RT Q-+ ® My,

where we take the tensor product of a; copiesof ; for each j. Leta := a1 + 2a> +
-+ + + na,. From the Kiinneth decomposition

a

c1 c2 Cm
A= @ (AV@AY@-®Ar) 6y
c1tco+-t+em=a

we seethat A*V¢ contains a submodule W equivalent to « provided that
b>a1+ax+ -+ ap.

Furthermore, this submodule contains an (a, 0)-form.

Case 22 D =C.

In this case G is the real Lie group SU(m,m) for some m > 2, and G(C) is

isomorphic to SL,,,,(C). With respect to a suitable basis the Lie algebra of G(R)
isgiven by
X1 X X; € M, (C)
g= ‘o € sl (C) ‘o ,
X12 X Xi=-X;
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a Cartan subalgebrais given by
t={diag(A1,...,Aom) € 512, (C) | Aj € iR}, (5.2

and an H-element isgiven by (4.3.1) (see[Sal, p. 430]). The fundamental weights
of g¢c relativeto tc are

P '=A1++ X, 1<kE<2m—1.
The action of g on V' is given by the symplectic representation
XQ 0 0 tX]_z
X1 Xp 0 X1 Xp 0
_ — _ ,
X1 X 0 X1 Xp 0
XlZ 0 0 Xl

(5.3)

(see [Sal, Section 1.5, pp. 432433, and, Section 3.2, p. 447] and [Mt1, pp. 201-
202]). Then Vo = W @ W, where W and W are irreducible gc-modules with
highest weights ;.1 and i, 1 respectively. Each of W and W is the sum of an
m-dimensional space of (1, 0)-forms and an m-dimensional space of (0, 1)-forms.
For 1 < k < m, AW is an irreducible gc-submodule of A¥V: which contains
(k, 0)-forms and has highest weight p1;,. For m < k < 2m — 1, A1k isan
irreducible gc-submodule of A?™~1=kV¢ which contains (2m — 1 — k,0)-forms
and has highest weight 1. Thus any fundamental representation of gc occursin
A*V¢ and contains (a, 0)-forms for some a.

Any irreducible representation 7 of gc has highest weight 1 = a1 + -+ +
az2m—1/t2m—1, Wherethe a; are nonnegative integers. 1 is the highest weight of

TRM @M@ - @ Mom_1,
where we take the tensor product of a; copiesof 7; for each ;. Let
a:=a1+2a2+ - +may + (m —Layi1+ -+ azm-1.

From the Kiinneth formula (5.1) we seethat A%V contains asubmodul e equivalent
ton providedthat b > a1+ a2+ - - - + a2y, 1. Furthermore this submodul e contains
an (a, 0)-form.

Case 3. D =H.

Let m be the dimension of H;(Ao, Q) over D(Ap), which we are assuming to be
odd. It follows from [Sm1, Prop. 15, p. 177] that mm # 1, and thusm > 3. Thereal
Liegroup G issimple and of type D,,,. Its Lie algebrais given by

Xl X12 X17X12 € Mm(C)
g= — — S 5[2m(C) t v t )
X X X1=-X;, 'Xp=-Xp
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a Cartan subalgebrais given by (5.2), and an H-element is given by (4.3.1). The
fundamental weights of gc with respect to tc are pa, - . . , i, Where

P =M+ -+ for L<k<m—2
m—1=MA+ -+ An-1—Ap)/2, and
fom = AL+ + A1+ Am) /2.

Theinclusion of g into su(m, m) satisfies the H,-condition. The action of g on
V' isthe composition of this inclusion with the symplectic representation defined
in (5.3) (see[Sal, Sect. 3.3, pp. 449-451] and [Mt1, pp. 201-202)).

Recall from Case 2 of this proof that Vo = W @ W. V is an irreducible g-
module, but 1 is equivalent to 1, so gc acts on V¢ astwo copies of the standard
representation. W is a2m-dimensional vector space containing an m-dimensional
subspace of (1, 0)-forms and an m-dimensional subspace of (0, 1)-forms. For 1 <
k < m—2, A¥W isanirreducible gc-submodule of A¥V¢ containing (k, 0)-forms,
and having highest weight 1. A1 isanirreducible gc-submodule of A1V
containing (m—1, 0)-forms, and having highest weight z4,,, — 1+ 4, - However AW
splitsasthedirect sum of two irreducible gc-submodules, Uy and U», having highest
weights 24,1 and 2u,,,, respectively. U, contains (m, 0)-forms, but U; does not.

The complex conjugate of fi,,—1 1S (—A1 — -+ — Am—1 + Am)/2 which is
conjugate to u,,, under the action of the Weyl group when m is odd. It follows
that for odd m, the complex conjugate of U is equivalent to U,, and hence any
real h-submodule of A™V which contains U; must also contain a gc-submodule
equivalent to Us, and thus must contain (m, 0)-forms.

Any irreduciblerepresentation of gc hashighestweight 4 = a1p1+- - - +amfbm,
where the a; are nonnegative integers. If the representation appearsin the exterior
algebra of V¢, then al of its weights must be integral linear combinations of the
A;’s. Hence a,,—1 = a,, mod 2.

Supposefirst that a,,, > a,, 1. Then we may write

p=aip1+ -+ am_2lm—2+ am—l(ﬂm—l + Mm) + bm(zﬂm)a
with b, = a,, — a;,_1. Let

a:=a1+2a2+ -+ (m—Lap_1+ mby,.
The above considerations show that A%V contains an irreducible gc-submodule
with highest weight x which contains (a, 0)-forms, provided that b > a1 + a2 +
ot a1+ by

Next supposethat a,, < a,, 1, write

B=aip1+ -+ @m_2im-2+ am(ﬂm—l + Mm) + Cm(zﬂm—l)a
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with ¢, = a1 — am, and let
a:=a1+2a2+ -+ (m—2)ay_2+ (m — 1)ay, +mcy,.

Then,forb > a1+ a2+ -+ am_2 + am + Cmys /\“V(’;’ contains an irreducible
gc-submodule U with highest weight i.. The complex conjugate of U has highest
weight

a1y + -+ Gy 22 + am(,umfl + Nm) + Cm(zum)-

Hence the smallest real g-submodule of A*V¢ containing U contains (a, 0)-
forms. |

Remark 5.2. Case 1 of the above proof is similar to the proofs of Tankeev [T]
and Hazama[Ha] of the general Hodge conjecturefor these abelian varieties. Their
proofs, in fact, show more — that in this case the abelian variety is dominated by
itself. In Cases2 and 3, however, thisisno longer true; for example, a4-dimensional
abelian variety of Weil type [W] is not dominated by itself, though it is dominated
by its square.

6. Someother cases

In Section 4.2 welisted the abelian varietiesfor which the general Hodge conjecture
is currently known. Of these, only (a) satisfies the hypotheses of Theorem 5.1;
the Hodge group fails to be semisimple in the other three cases. However, the
conclusions of Theorem 5.1 hold in cases (b) and (c). In Theorem 6.1 below, we
show that any product of elliptic curves is dominated by a power of itself. Asfor
the abelian variety in case (c), Theorem 2 of [T] shows that it is dominated by
itself. In case (d), the abelian variety is not dominated by any power of itself. It
is, however, dominated by the square of an elliptic curve, together with the set of
powers of itself. | would like to thank Chad Schoen for explaining this last point
to me.

THEOREM 6.1. If A is a product of elliptic curves then the group theoretic
filtration, the arithmetic filtration, and the rational Hodge filtration are all equal,
and the general Hodge conjectureis true. A is dominated by any sufficiently large
power of A.

Proof. Theusua Hodge conjecturefor productsof elliptic curvesiswell known;
indeed, the Hodge ring of such an abelian variety is generated by divisors. This
was first proved by Tate (unpublished, see [Gr, p. 302]); detailed proofs may be
found in [1] and [Mt2, Section 2]. It follows that the Hodge and L efschetz groups
of A coincide. The multiplicativity of the Lefschetz group and Proposition 4.4.1
now imply that it suffices to prove the theorem for a power of an elliptic curve. If
the elliptic curveis not of CM-type, thisis aspecial case of Theorem 5.1.
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Let A = E™,where E isan dlliptic curve of CM-type. Then the Hodge group G
of Aisal-dimensional torusactingon H(E, C) asx+x 1, where y isacharacter.
The representation space of y is of Hodge type (1, 0), and the representation space
of x~1isof type (0, 1). Any irreducible representation of G(C) has the form x"
where n is an integer. If m > n > 0, then H™"(E™, C) contains a 1-dimensional
subspace on which G actsas x"; this subspace consists of (n, 0)-forms. Since G is
not split, if V' isany representation of G defined over Q such that V¢ contains x™
then it also contains x ™. It follows that the unusual Hodge conjecture holds for
A. The equality of these filtrations with the arithmetic filtration now follows from
Proposition 3.2. O
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