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Abstract
Let K be a finite extension of the p-adic field Q𝑝 of degree d, let F be a finite field of characteristic p and let 𝐷 be
an n-dimensional pseudocharacter in the sense of Chenevier of the absolute Galois group of K over the field F. For
the universal mod p pseudodeformation ring 𝑅

univ
𝐷 of 𝐷, we prove the following: The ring 𝑅

ps
𝐷

is equidimensional

of dimension 𝑑𝑛2 +1. Its reduced quotient 𝑅
univ
𝐷,red contains a dense open subset of regular points x whose associated

pseudocharacter 𝐷𝑥 is absolutely irreducible and nonspecial in a certain technical sense that we shall define.
Moreover, we will characterize in most cases when K does not contain a p-th root of unity the singular locus of
Spec 𝑅

univ
𝐷 . Similar results were proved by Chenevier for the generic fiber of the universal pseudodeformation ring

𝑅univ
𝐷

of 𝐷.
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1. Introduction

Let p be a prime number, and let K be a finite extension of Q𝑝 of degree 𝑑 = [𝐾 : Q𝑝] with absolute
Galois group 𝐺𝐾 = Gal(𝐾alg/𝐾). In [Che11], Chenevier establishes the following results on the rigid
variety X𝑛 of continuous pseudocharacters of 𝐺𝐾 of dimension n with coefficients in Qalg

𝑝 .

Theorem (Chenevier).

(a) The open locus of regular points of X𝑛 contains X irr
𝑛 .

(b) The open subvariety X irr
𝑛 ⊂ X𝑛 of irreducible pseudocharacters is Zariski dense in X𝑛.

(c) The variety X𝑛 is equidimensional of dimension 𝑑𝑛2 + 1.

Moreover, [Che11] gives a precise description of the singular locus of the varieties X𝑛 in terms of
representation-theoretic data. Note that from any continuous pseudocharacter x of dimension n of 𝐺𝐾

with coefficients in Qalg
𝑝 , one can reconstruct a semisimple n-dimensional continuous representation

𝜌𝑥 : 𝐺𝐾 → GL𝑛 (Qalg
𝑝 ) that is unique up to conjugation; one calls x irreducible if 𝜌𝑥 is irreducible.

The above results can be reinterpreted as results on the generic fibers of universal rings for pseu-
dodeformations of a fixed residual pseudocharacter of 𝐺𝐾 as introduced by Chenevier in [Che14].
Note that we use the term pseudocharacter for what Chenevier in [Che14] calls determinant law and
what is called pseudorepresentation in [WE13]; the term Taylor-pseudocharacter we use for what in
[Tay91] was called a pseudocharacter. Pseudocharacters of dimension n of a group Γ are certain poly-
nomial laws in the sense of [Rob63] that model the formal properties of the characteristic polynomial
of n-dimensional representations of Γ. The simpler notion of Taylor-pseudocharacter refers to maps
that model the formal properties of the trace of n-dimensional representations of Γ. The two notions
agree for coefficient fields of characteristic zero or of characteristic 𝑝 > 2𝑛; see [Che14, Proposition
1.29]. Taylor-pseudocharacters have some defects in characteristic 𝑝 ≤ 𝑛. Pseudocharacters behave well
independently of the characteristic (and n). Also, a pseudocharacter 𝐷 of 𝐺𝐾 of dimension n with coef-
ficients in an algebraically closed field 𝜅 is the pseudocharcter attached to a semisimple representation
𝜌𝐷 : 𝐺𝐾 → GL𝑛 (𝜅) that is unique up to conjugation.

Let now F be a finite field of characteristic p with ring of Witt vectors 𝑊 (F), and let Â𝑟𝑊 (F) be the
category of Noetherian 𝑊 (F)-algebras with residue field F. Let 𝐷 be a continuous pseudocharacter of
𝐺𝐾 of dimension n with values in F. If F is sufficiently large, 𝐷 can be thought of as the pseudocharacter
attached to a representation 𝜌 : 𝐺𝐾 → GL𝑛 (F), that is, morally as the characteristic polynomial law
attached to �̄�. It is shown in [Che14] that any residual 𝐷 admits a universal pseudodeformation ring
𝑅univ
𝐷

that represents the functor Â𝑟𝑊 (F) → 𝑆𝑒𝑡𝑠, that to any object R of Â𝑟𝑊 (F) assigns the set of
pseudocharacter 𝐷𝑅 of 𝐺𝐾 with values in R and with residual pseudocharacter 𝐷. The above theorem
now asserts that the absolutely irreducible locus of Spec 𝑅univ

𝐷
[1/𝑝] is dense open in Spec 𝑅univ

𝐷
[1/𝑝] and
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contained in the regular locus of Spec 𝑅univ
𝐷
[1/𝑝], and that 𝑅univ

𝐷
[1/𝑝] is equidimensional of dimension

𝑑𝑛2 + 1; here x in 𝑋univ
𝐷

:= Spec 𝑅univ
𝐷

with corresponding residue field 𝜅(𝑥) and pseudocharacter 𝐷𝑥

is called irreducible if the semisimple representation 𝜌𝑥 := 𝜌𝐷𝑥 ⊗𝜅 (𝑥) 𝜅 (𝑥)alg : 𝐺𝐾 → GL𝑛 (𝜅(𝑥)alg) is
irreducible.

The present work concerns the special fiber of Spec 𝑅univ
𝐷

, that is, the mod p reduction 𝑅
univ
𝐷 =

𝑅univ
𝐷
/(𝑝) of the ring 𝑅univ

𝐷
and the corresponding special fiber scheme 𝑋

univ
𝐷 := Spec 𝑅

univ
𝐷 . Our main

results are natural analogs of the assertions in the above theorem of Chenevier. Before giving them, we
point to some differences to the results of Chenevier and introduce some notions to deal with them.

Let 𝜁𝑝 ∈ 𝐾alg denote a primitive p-th root of unity. A first simple observation is that, already for
𝑛 = 1, the space 𝑋

univ
𝐷 has empty regular locus, whenever 𝜁𝑝 lies in K. To address this problem, we study

the natural determinant map det𝐷 : 𝑋
univ
𝐷 → 𝑋

univ
det𝐷 , 𝐷 ↦→det𝐷, where det𝐷 is the constant coefficient

of the pseudocharacter 𝐷; that is, if 𝐷 is attached to an n-dimensional representation 𝜌, then det𝐷 is
attached to the one-dimensional representation det𝜌. Eventually, we show that det𝐷 is formally smooth
when restricted to a dense open subset of 𝑋

univ
𝐷 . This subset is (slightly) smaller than the open of locus

(𝑋
univ
𝐷,red)irr of irreducible points of 𝑋

univ
𝐷 . There is a closed subset of the irreducible locus (of relatively

small dimension) spanned by points that we call special such that when we restrict det𝐷 to the dense
open subscheme of nonspecial irreducible points of 𝑋

univ
𝐷 it is formally smooth. Because 𝑋

univ
det𝐷 and its

induced reduced subscheme 𝑋
univ
det𝐷,red are explicit and well understood, base change to reduced structures

gives us access to 𝑋
univ
𝐷,red for which we deduce Chenevier’s dimension formula.

There are several equivalent ways to describe the locus of special points of (𝑋
univ
𝐷,red)irr; see Subsection

5.1 and some basic results on Clifford theory explained in Section 2; each has its benefits. Let ad𝜌𝑥

denote the adjoint representation of 𝜌𝑥 , and let ad0
𝜌𝑥

be its subrepresentation on trace zero matrices. Let

x be a dimension 1 point of (𝑋
univ
𝐷,red)irr. The deformation theory as introduced by Mazur in [Maz89]

yields that the map det𝐷 is formally smooth at x if 𝐻2(𝐺𝐾 , ad0
𝜌𝑥
) vanishes. We call such an x special,

if 𝐻2(𝐺𝐾 , ad0
𝜌𝑥
)≠0. An important observation is that special points are induced from representations

of smaller dimension of the group 𝐺𝐾 ′ for 𝐾 ′ a suitable extension of K. This link and induction give a
strong dimension bound for the special locus (𝑋

univ
𝐷 )spcl in (𝑋

univ
𝐷,red)irr, that is, the Zariski closure of the

special points of dimension 1 therein. More precisely, one has: If 𝜁𝑝 ∉ 𝐾 , then x is special if and only
if 𝜌𝑥 is induced from a representation of 𝐺𝐾 (𝜁𝑝) ; if 𝜁𝑝 ∈ 𝐾 , then x is special if and only if there exists
a degree p Galois extension 𝐾 ′ of K such that 𝜌𝑥 is induced from a representation of 𝐺𝐾 ′ . To state our
main results, we also abbreviate (𝑋

univ
𝐷 )n-spcl := (𝑋

univ
𝐷 )irr\(𝑋

univ
𝐷 )spcl and (𝑋

univ
𝐷 )red := 𝑋

univ
𝐷 \(𝑋

univ
𝐷 )irr.

Theorem 1 (Theorem 5.5.1, equidimensionality). The following assertions hold:

(a) (𝑋
univ
𝐷 )n-spcl ⊂ 𝑋

univ
𝐷 is open and Zariski dense.

(b) If 𝜁𝑝 ∉ 𝐾 , then (𝑋
univ
𝐷 )n-spcl is regular.

(c) If 𝜁𝑝 ∈ 𝐾 , then (𝑋
univ
𝐷 )

n-spcl
red is regular, and (𝑋

univ
𝐷 )reg is empty.

(d) 𝑋
univ
𝐷 is equidimensional of dimension [𝐾 : Q𝑝]𝑛2 + 1.

Theorem 2 (Theorem 5.5.5, singular locus). If 𝜁𝑝 ∉ 𝐾 , then the following hold:

(a) The closure of (𝑋
univ
𝐷 )spcl in 𝑋

univ
𝐷 lies in (𝑋

univ
𝐷 )sing.

(b) If 𝑛 > 2 or [𝐾 : Q𝑝] > 1, then (𝑋
univ
𝐷 )red ⊂ (𝑋

univ
𝐷 )sing.

(c) If 𝑛 = 2, 𝐾 = Q𝑝 , and 𝑥 ∈ (𝑋
univ
𝐷 )red is a direct sum 𝐷1 ⊕ 𝐷2 of one-dimensional characters 𝐷𝑖 ,

then 𝑥 ∈ (𝑋
univ
𝐷 )sing if and only if 𝐷2 = 𝐷1 (𝑚) for 𝑚 ∈ {±1}.
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Theorem 3 (Theorem 5.5.7, Serre regularity). The ring 𝑅
univ
𝐷,red satisfies Serre’s condition (𝑅2)1, unless

𝑛 = 2, 𝐾 = Q2 and 𝐷 is trivial.

We in fact determine the exact dimension of (𝑋
univ
𝐷 )red and (𝑋

univ
𝐷 )spcl in Lemma 5.5.2 and Corollary

5.5.3. From this, depending on n and [𝐾 : Q𝑝], one can in general establish Serre’s condition (𝑅𝑚) for
some 𝑚 = 𝑚𝐾,𝑛 > 2.

It is a foundational and natural question to study the equidimensionality of 𝑋
univ
𝐷 and to better

understand some geometric properties of 𝑋
univ
𝐷 , extending [Che11] to the special fiber. However, our true

motivation was the expectation, that the equidimensionality proved here should help proving expected
ring theoretic properties of the universal lifting ring 𝑅�

𝜌
attached to any continuous homomorphism

�̄� : 𝐺𝐾 → GL𝑛 (F) by Kisin in [Kis09] as an important technical device to understand deformation rings
as introduced in [Maz89] by Mazur. There should be a bootstrap argument to deduce from the dimension
for 𝑋

univ
𝐷 found here, that 𝑅�

𝜌
is flat over 𝑊 (F) of expected relative dimension (𝑑 + 1)𝑛2. This in turn

would give the local complete intersection property of 𝑅�
𝜌

, the normality of the special fiber ring 𝑅�
𝜌
/(𝑝),

and it should allow one to deduce a bijection between the irreducible components of 𝑅�
𝜌

and of 𝑅�det𝜌,
as expected from computations by us in the case 𝑛 = 2 in [BJ15], and then in further cases in [CDP15],
[Bab19] and [Iye20]. This in turn might prove, in light of recent results of [EG19], the Zariski density
of crystalline points, and thereby to complete work of many others, notably [Nak14, §4] by Nakamura,
extending previous important work of Chenevier, in the case where 𝜌 is absolutely irreducible, and of
[Iye20] when 𝜌 is trivial, under some technical hypotheses on K, p and n. This program has now been
completed in work of the first author with A. Iyengar and V. Paškūnas in [BIP21] and [BIP22].

Let us give some further ideas of the proofs and indicate some of the auxiliary results and techniques
developed in this article. Our overall strategy is similar to [Che11]. But we face new phenomena that
have to be dealt with.

Above, we already mentioned special points x of (𝑋
univ
𝐷,red)irr. They can exist when the cyclotomic

character has finite order, that is, on the special but not the generic fiber. At such x, the representations
𝜌𝑥 is induced from a representation of 𝐺𝐾 ′ for a proper cyclic extension 𝐾 ′ of K of degree dividing n.
So it is important for us to define an induction for pseudocharacters. This we work out in Subsection
4.6; our present approach incorporates significant improvements due to the referee. Using induction of
pseudorepresentation, we show that the locus of special representations can be covered by finitely many
𝑋

univ
𝐷
′ , where the 𝐷 ′ are continuous pseudocharacters of 𝐺𝐾 ′ for the 𝐾 ′ just mentioned, and in particular

they are of dimension 𝑛/[𝐾 ′ : 𝐾] < 𝑛. Now, in an inductive procedure, the space 𝑋
univ
𝐷
′ is known to have

dimension (𝑑 [𝐾 ′ : 𝐾]) (𝑛/[𝐾 ′ : 𝐾])2 + 1 = 𝑑𝑛2/[𝐾 ′ : 𝐾] + 1, and this is much smaller than the lower
dimension bound 𝑑𝑛2 + 1 that we establish for (all components of) 𝑋

univ
𝐷 . In particular, the special locus

is nowhere dense in 𝑋
univ
𝐷,red. Another operation on pseudocharacters that we introduce in Subsection 4.5

is twisting by one-dimensional representations. We use it to prove the closedness of the special locus in
the case 𝜁𝑝 ∉ 𝐾 .

A further important ingredient in our inductive argument to establish Theorem 1 is the proof that
every neighborhood of some x in the reducible locus (𝑋

univ
𝐷 )red contains a point of (𝑋

univ
𝐷 )irr. Here,

we follow the argument used by Chenevier [Che11, Theorem 2.1], using, however, étale topology in
place of rigid geometry. The key point in our setting is that étale locally (𝑋

univ
𝐷 )red↩→𝑋

univ
𝐷 is a closed

immersion. Hence, if a neighborhood 𝑈 of some 𝑥 ∈ (𝑋
univ
𝐷 )red does not intersect (𝑋

univ
𝐷 )irr, the local

behavior at x in 𝑋
univ
𝐷 is similar to that of 𝑋

univ
𝐷1 × 𝑋

univ
𝐷2 for pseudocharacters such that 𝐷 = 𝐷1 ⊕ 𝐷2,

after completion at x. This will ultimately yield a contradiction by comparing dimensions (of tangent
spaces); see Theorem 5.2.1 and its proof. Following a suggestion of the referee, in Subsection 5.3 we
give a second independent proof of Theorem 5.2.1.

1see Definition A.1.3
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On the technical side, we shall often work with dimension 1 points 𝑥 ∈ 𝑋
univ
𝐷 . The set of these is

Zariski dense in 𝑋
univ
𝐷 , so they allow us to see all irreducible components. At the same time, their residue

fields 𝜅(𝑥) are Laurent series fields over a finite field, and so finite-dimensional 𝜅(𝑥)-algebras carry a
unique topology compatible with that of 𝜅(𝑥). We make use of this in considering deformation functors
at such points. This is especially useful if 𝐷𝑥 is irreducible or at least multiplicity free. This technique of
studying deformation rings at dimension 1 points was introduced by Kisin over p-adic fields. We need
to reprove some basic results, for instance in Subsection 3.3 and Subsection 4.8, building on [Che14],
[WE18] for pseudodeformations and on [Nek06] for Tate local duality over general coefficient rings
such as 𝜅(𝑥) or its ring of integers.

Outline

We now give an outline of this work. Section 2 presents parts of Clifford theory to be used in Subsection
5.1 when defining and characterizing special points. Section 3 reviews the theory of deformations of
Galois representation in the sense of Mazur with a strong emphasis on result related to deformation rings
at dimension 1 points where the residue field is a local equicharacteristic field. Section 4 is a detailed
review of pseudocharacters following largely [Che14] with some noteworthy additions that are crucial for
the main results of this work: We consider the locus of reducibility in the context of pseudocharacters,
we introduce twisting and induction of pseudocharacters, and we give a special treatment to some
elementary facts on equicharacteristic dimension 1 points on pseudodeformation rings.

The final Section 5 contains the proof of the main results of this work, Theorems 1 to 3 on the
special fiber of universal pseudodeformation rings. We follow Chenevier’s proof for the generic fiber
[Che11] and explain how to overcome all complications that arise in the special fiber. Much of these
complications are packed into our definition of special points in Subsection 5.1; see Definition 5.1.2.
nonspecial (irreducible) points will take the role of irreducible points in Chenevier’s work; they describe
that part of the irreducible locus of the special fiber of the pseudodeformation space over which the
determinant map is relatively formally smooth.

Subsection 5.1 also contains some technical result on the comparison of universal pseudodeformation
and universal deformation rings over local fields where the residual pseudocharacter is a sum of two
irreducible ones; see Lemma 5.1.6. In Subsection 5.2, we describe the induction procedure that proves
the main result: Given a suitable induction hypothesis, we shows that the reducible locus is nowhere
dense. In Subsection 5.4, we show that the nonspecial points are open and Zariski dense in the irreducible
locus under some inductive hypotheses. By combining the previous subsections, it is then in Subsection
5.5 straightforward to prove Theorems 1 to 3.

Let us also note that in an appendix, we provide some results on commutative rings, on algebras over
a field and on absolutely irreducible mod p representations of the absolute Galois group of a p-adic field.
These results are mostly standard and they serve as a convenient reference. In addition, in Subsection
A.4 we prove a variant of an important result of Vaccarino that we use in the construction of induction
for pseudocharacters in Subsection 4.6.

Some notation and conventions

◦ Throughout, we fix a prime number p and a finite field F of characteristic p.
◦ For any field E, we denote by 𝐸alg an algebraic closure of E and by 𝐺𝐸 = Gal(𝐸/𝐸alg) its absolute

Galois group.
◦ We write Q𝑝 for the p-adic completion of Q and fix an algebraic closure Qalg

𝑝 of Q𝑝 . All algebraic
extension fields of Q𝑝 will be considered as subfields of Qalg

𝑝 .
◦ We fix a finite extension field K of Q𝑝 of degree 𝑑 = [𝐾 : Q𝑝] inside Qalg

𝑝 .
◦ Throughout, 𝜅 will denote a finite field of characteristic p or a local field of residue characteristic p. It

will take the role of a coefficient field for deformations and pseudodeformations. If such a coefficient
field is meant to be finite, we usually write F.
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◦ For a point x on a scheme X, we write O𝑋,𝑥 for the local ring at x and 𝜅(𝑥) for its residue field; the
latter is the second way in which the letter 𝜅 occurs; note that 𝜅(𝑥) can be any field.

◦ For a complete Noetherian local ring R with finite residue field F, we call 𝑥 ∈ Spec 𝑅 with corre-
sponding prime ideal 𝔭𝑥 ⊂ 𝑅 a point of dimension 1 if 𝑅/𝔭𝑥 has Krull dimension 1. The residue field
𝜅(𝑥) will then either be a finite extension of Q𝑝 or of F((𝑥)).

◦ By a ring, we mean a unital commutative ring. Algebras over a ring A do not need to be commutative.
To make clear that an A-algebra is commutative, we will always speak of it as a commutative A-algebra.

◦ The categories A𝑟Λ and Â𝑟Λ of certain (pro-)Artinian local Λ-algebras, that have the same residue
field as Λ, are introduced at the beginning of Subsection 3.1.

◦ The category A𝑑𝑚Λ of admissible Λ-algebras is introduced at the beginning of Subsection 4.4.

2. Clifford theory

Clifford theory provides a crucial input in determining conditions that characterize the special points
that we will introduce in Definition 5.1.2, building on Lemma 5.1.1. In this section, we give the
representation theoretic background. We also include some results for coefficient fields that are not
algebraically closed. The results in Subsection 2.2, and most importantly Corollary 2.2.2, are probably
well known. Those in Subsection 2.3, and in particular Lemma 2.3.1, seem of more exotic nature to us.
We give proofs whenever we could not locate the results in the literature.

Throughout this section, G denotes a (possibly infinite) group and H a subgroup of finite index. If G
is a topological group, we assume H to be open in G. We define 𝑁 :=

⋂
𝑔∈𝐺/𝐻 𝐻𝑔. It is of finite index

and normal in G and the largest subgroup of H with this property. If H is normal, then 𝑁 = 𝐻; if G is a
topological group, then N is open in G. All representations will act on a free module of finite rank over
some ring or field.

2.1. Generalities

Definition 2.1.1. For a representation 𝜌 : 𝑁 → GL𝑚(𝐴) over a ring A and 𝑔 ∈ 𝐺, we define the
conjugate of 𝜌 by g as the representation

𝜌𝑔 : 𝑁 −→GL𝑚 (𝐴), 𝑛 ↦−→ 𝜌(𝑔𝑛𝑔−1).

Remark 2.1.2. Conjugation in the sense of Definition 2.1.1 defines an action of G on the set {[𝜌𝑔] : 𝑔 ∈
𝐺} of isomorphism classes [𝜌𝑔] of representations 𝜌𝑔 of N. Since N acts trivially, the action factors via
𝐺/𝑁 and so, up to isomorphism, there are only finitely many conjugates of 𝜌.

For the remainder of this subsection, let E denote a field of characteristic 𝑝 ≥ 0. Unless said
otherwise, any representation will be of finite dimension over E.

The following lemma will be used repeatedly.
Lemma 2.1.3 (Mackey’s tensor product theorem for induced representations; [CR62, Corollary 44.4]).
Let 𝜌 and 𝜌′ be representations of G and of H, respectively. Then

𝜌 ⊗ Ind𝐺𝐻 𝜌
′ � Ind𝐺𝐻 ((Res𝐺𝐻 𝜌) ⊗ 𝜌

′).

We will also need:
Lemma 2.1.4. Let 𝜌 be a semisimple representation of H, and let 𝜈 = Res𝐻𝑁 𝜌. Assume for parts (f) to
(h) that H is normal in G, and so in turn 𝑁 = 𝐻 and 𝜈 = 𝜌. Then the following hold:
(a) For any separable field extension 𝐹 ⊃ 𝐸 the representation 𝜌 ⊗𝐸 𝐹 is semisimple.
(b) One has Res𝐺𝑁 Ind𝐺𝐻 𝜌 �

⊕
𝑔∈𝐺/𝐻 (Res𝐻𝑁 𝜌)𝑔.

(c) If 𝜏 is an irreducible representation of G, then Res𝐺𝑁 𝜏 is semisimple, and all irreducible summands
of Res𝐺𝑁 𝜏 are conjugate to one another in the sense of Definition 2.1.1.
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(d) If [𝐺 : 𝑁] is not a multiple of p, then Ind𝐺𝐻 𝜌 is semisimple.
(e) If 𝜈 is irreducible and if 𝐺/𝑁 acts freely on {[𝜈𝑔] :𝑔 ∈ 𝐺}, then Ind𝐺𝐻 𝜌 is irreducible.
(f) The representation Ind𝐺𝐻 𝜌 is absolutely irreducible if and only if 𝜌 is absolutely irreducible and

𝐺/𝐻 acts freely on {[𝜌𝑔] : 𝑔 ∈ 𝐺}.
(g) Let 𝜌′ be a second representation of H. Then Ind𝐺𝐻 𝜌 � Ind𝐺𝐻 𝜌

′ if and only if⊕
𝑔∈𝐺/𝐻

𝜌𝑔 �
⊕

𝑔∈𝐺/𝐻
(𝜌′)𝑔 . (1)

(h) If 𝜌 is irreducible in (g), then the isomorphism in (1) is equivalent to 𝜌′ � 𝜌𝑔 for some 𝑔 ∈ 𝐺.

Proof. We denote by V the E-vector space underlying 𝜌. Part (a) is [CR62, Corollary 69.8] with the
ring A from there being the image of 𝐸 [𝐻] in End𝐸 (𝑉). Part (b) holds by [Ser77, Proposition 22]. Part
(c) follows from [CR62, Theorem 49.2]. For (d), note that 𝜌 is a subrepresentation of Ind𝐻𝑁Res𝐻𝑁 𝜌, and
hence Ind𝐺𝐻 𝜌 is a subrepresentation of Ind𝐺𝑁Res𝐻𝑁 𝜌. By (c) applied to the irreducible summands of 𝜌,
we see that Res𝐻𝑁 𝜌 is semisimple. Now, the result can be found in [Web16, Chapter 5, Exercise 8].

To prove Part (e), let 𝑉 ′ ⊂ Ind𝐺𝐻 𝜌 be an irreducible G-subrepresentation. Then by (b) the representa-
tion Res𝐺𝑁𝑉

′ contains 𝜈𝑔 for some 𝑔 ∈ 𝐺. As 𝑉 ′ is a G-representation, we deduce 𝜈𝑔 ⊂ Res𝐺𝑁𝑉
′ for all

𝑔 ∈ 𝐺. By hypothesis, the 𝜈𝑔, 𝑔 ∈ 𝐺/𝑁 , are pairwise nonisomorphic, and hence
⊕

𝑔∈𝐺/𝑁 𝜈𝑔 ⊂ Res𝐺𝐻𝑉
′.

By (b) the left-hand side is isomorphic to Res𝐺𝑁 Ind𝐺𝐻 𝜌 so that for dimension reasons we must have
𝑉 ′ = Ind𝐺𝐻 𝜌.

We next prove Part (f). Because the solution space of a linear system of equations has the same
dimension over its field of definition and over any extension, one has

Hom𝐸 [𝑁 ] (𝜌, 𝜌𝑔) ⊗𝐸 𝐸alg � Hom𝐸alg [𝑁 ] (𝜌 ⊗𝐸 𝐸alg, 𝜌𝑔 ⊗𝐸 𝐸alg).

This allows one by base change 𝐸 → 𝐸alg to reduce one direction of (f) to (e). For the converse, assume
that Ind𝐺𝐻 𝜌 is absolutely irreducible. Because Ind𝐺𝐻 is an exact functor, 𝜌 must be absolutely irreducible
and hence also 𝜌𝑔 for all 𝑔 ∈ 𝐺. Because Ind𝐺𝐻 𝜌 is absolutely irreducible, Frobenius reciprocity yields

𝐸 � End𝐸 [𝐺 ] (Ind𝐺𝐻 𝜌) � Hom𝐸 [𝐺 ] (𝜌,Res𝐺𝐻 Ind𝐺𝐻 𝜌)
(𝑐)
= Hom𝐸 [𝐺 ] (𝜌, ⊕𝑔∈𝐺/𝐻 𝜌𝑔).

Hence, 𝜌 is isomorphic to 𝜌𝑔 if and only if 𝑔 ∈ 𝐻, and this completes the proof of (f).
We now prove Part (g). Note that by (b) the only if direction is clear. For the other direction, note

first that by [CR81, Lemma 10.12] we have Ind𝐺𝐻 𝜌 � Ind𝐺𝐻 𝜌
𝑔 for all 𝑔 ∈ 𝐺. Since induction and direct

sum commute, we also have

Ind𝐺𝐻
( ⊕
𝑔∈𝐺/𝐻

𝜌𝑔
)
=
⊕

𝑔∈𝐺/𝐻

(
Ind𝐺𝐻 𝜌

𝑔) = (Ind𝐺𝐻 𝜌
) ⊕[𝐺:𝐻 ]

.

The same formula applies to 𝜌′, and so our hypothesis gives (Ind𝐺𝐻 𝜌)⊕[𝐺:𝐻 ] � (Ind𝐺𝐻 𝜌
′) ⊕[𝐺:𝐻 ] . The

Krull–Schmidt theorem (see [CR62, Theorem 14.5]) now yields Ind𝐺𝐻 𝜌 � Ind𝐺𝐻 𝜌
′. Part (h) follows

from the uniqueness of composition factors and the irreducibility of the 𝜌𝑔. �

2.2. Some results when p does not divide [𝐺 : 𝐻]

Suppose now that 𝜒 : 𝐺 → 𝐸× is a character of finite order 𝑚 so that E contains a primitive 𝑚-th root of
unity 𝜁 and 𝑚 · 1 ∈ 𝐸×. We also set 𝐻 := ker 𝜒 so that H is normal in G and note that 𝑝 𝑚 = [𝐺 : 𝐻].
The following is a standard result of Clifford theory, for example, [CR62, Theorem 49.2, Corollary 50.6].

Theorem 2.2.1. Let 𝜌 : 𝐺 → GL𝑛 (𝐸) be an absolutely irreducible representation such that 𝜌 � 𝜌 ⊗ 𝜒.
Then the following hold:
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(a) The order 𝑚 of 𝜒 divides the degree n of 𝜌.
(b) There exists a Kummer extension 𝐸 ′ = 𝐸 ( 𝑚

√
𝜆) of E for some 𝜆 ∈ 𝐸× and an absolutely irreducible

representation 𝜌′ : 𝐻 → GL𝑛/𝑚 (𝐸 ′) such that

𝜌 ⊗𝐸 𝐸 ′ � Ind𝐺𝐻 𝜌
′.

(c) The representations (𝜌′)𝑔, 𝑔 ∈ 𝐺/𝐻, are pairwise nonisomorphic and absolutely irreducible, and
one has Res𝐺𝐻 𝜌 ⊗𝐸 𝐸 ′ �

⊕
𝑔∈𝐺/𝐻 (𝜌′)𝑔.

(d) If E is local field, G is a topological group and 𝜌 is continuous, then so is 𝜌′.
(e) If in addition to (d), G is compact, then 𝜌 can be defined over the ring of integers O𝐸 of E and 𝜌′

can be defined over O𝐸′ .

Proof. Lacking a precise reference, we give a proof. Let A be an invertible 𝑛×𝑛-matrix over E such that

𝐴𝜌(𝑔)𝐴−1 = 𝜒(𝑔)𝜌(𝑔) for all 𝑔 ∈ 𝐺. (2)

From equation (2), one deduces 𝐴𝑚𝜌(𝑔)𝐴−𝑚 = 𝜒𝑚(𝑔)𝜌(𝑔) = 𝜌(𝑔) for all 𝑔 ∈ 𝐺. Since 𝜌 is absolutely
irreducible, [CR62, (29.13)] implies that 𝐴𝑚 = 𝜆 · 1𝑛 for some 𝜆 ∈ 𝐸 . Define 𝐸 ′ := 𝐸 ( 𝑚

√
𝜆). Let

𝐴′ = 𝑚
√
𝜆
−1
𝐴 in GL𝑛 (𝐸 ′) so that equation (2) also holds for 𝐴′ and also (𝐴′)𝑚 = 1𝑛. Since 𝑚 · 1 is

invertible in E, it follows, using the Jordan form, that 𝐴′ is semisimple. Moreover, 𝐴′ is diagonalizable
over 𝐸 ′ since E contains a primitive 𝑚-th root of unity.

After a change of basis over 𝐸 ′, we may write A as a block diagonal matrix with diagonal blocks
𝐴1, . . . , 𝐴𝑚 such that for 𝑖 = 1, . . . , 𝑚 each 𝐴𝑖 is a scalar matrix 𝜁 𝑖1𝑛𝑖 with 𝑛𝑖 ≥ 0 and

∑
𝑖=1,...,𝑚 𝑛𝑖 = 𝑛.

For all 𝑔 ∈ 𝐺 and 𝑖, 𝑗 = 1, . . . , 𝑚, we decompose 𝜌(𝑔) correspondingly into blocks 𝜌𝑖, 𝑗 (𝑔) so that
equation (2) turns into

𝜁 𝑖− 𝑗 𝜌𝑖, 𝑗 (𝑔) = 𝜒(𝑔)𝜌𝑖, 𝑗 (𝑔). (3)

Choose 𝑔 ∈ 𝐺 such that 𝜒(𝑔) = 𝜁 . Then 𝜌𝑖, 𝑗 (𝑔) is zero unless 𝑖− 𝑗 ≡ 1(mod 𝑚). Since 𝜌(𝑔) is invertible,
all 𝜌𝑖+1,𝑖 (𝑔) and 𝜌𝑚,1 (𝑔) must be invertible and hence square matrices and of nonzero size. We deduce
that all 𝑛𝑖 are equal, hence nonzero, and hence equal to 𝑛/𝑚. In particular, 𝑚 divides n, proving (a).

Next, for ℎ ∈ 𝐻 and for all 𝑖, 𝑗 = 1, . . . , 𝑚, equation (3) becomes 𝜁 𝑖− 𝑗 𝜌𝑖, 𝑗 (ℎ) = 𝜌𝑖, 𝑗 (ℎ) so that
𝜌(ℎ) =

⊕𝑚
𝑖=1 𝜌𝑖,𝑖 (ℎ) is a block diagonal matrix and each 𝜌𝑖,𝑖 : 𝐻 → GL𝑛/𝑚 (𝑘), ℎ ↦→ 𝜌𝑖,𝑖 (ℎ), is a

representation of dimension 𝑛/𝑚. In particular, the restriction satisfies

Res𝐺𝐻 𝜌 ⊗𝐸 𝐸 ′ =
𝑚⊕
𝑖=1

𝜌𝑖,𝑖 .

We choose 𝜌′ = 𝜌1,1 and consider Ind𝐺𝐻 𝜌
′. By [CR62, (10.8) Frobenius Reciprocity Theorem], we have

Hom𝐺 (Ind𝐺𝐻 𝜌
′, 𝜌 ⊗𝐸 𝐸 ′) = Hom𝐻 (𝜌′,Res𝐺𝐻 𝜌 ⊗𝐸 𝐸 ′) ≠ 0.

Let 𝑓 : Ind𝐺𝐻 𝜌
′ → 𝜌⊗𝐸 𝐸 ′ be a nonzero G-homomorphism. Since 𝜌 is irreducible, it must be surjective,

and because dim 𝜌 = 𝑛 = 𝑚 · 𝑛/𝑚 = dim Ind𝐺𝐻 𝜌
′, its kernel must be zero so that f is an isomorphism.

Next, note that Ind𝐺𝐻 is an exact functor; see [CR81, §10, Exercise 20]. Hence, 𝜌′ is absolutely irreducible
because 𝜌 is so. This completes the proof of (b).

Part (c) follows from Lemma 2.1.4(b) and (f). Part (d) easily follows from the continuity of
Res𝐺𝐻 𝜌 ⊗𝐸 𝐸 ′ �

⊕
𝑔∈𝐺/𝐻 (𝜌′)𝑔, using that all linear topologies on a finite-dimensional vector space

over 𝐸 ′ that are compatible with the topology on 𝐸 ′ are equivalent.
Concerning (e), we only prove the first assertion; the proof of the second then follows from (d). For

this, let V be the E-vector space underlying 𝜌, and let T be an O𝐸 -lattice in V. The stabilizer of T is an
open subgroup of GL𝑛 (𝐸) and hence, by the continuity of 𝜌, the latice T is fixed by an open subgroup𝐺 ′
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of G. Therefore, 𝐺/𝐺 ′ is finite. Thus, 𝑇 ′ :=
⋂

𝑔∈𝐺/𝐺′ 𝑔𝑇 is an O𝐸 -lattice in V, and this lattice is clearly
G-stable. Choosing an O𝐸 -basis of 𝑇 ′, that is then also an E-basis of V, assertion (e) for 𝜌 is clear. �

Corollary 2.2.2. Suppose that 𝜌 : 𝐺 → GL𝑛 (𝐸) is a representation that is absolutely semisimple; this
holds for instance if E is perfect. Then 𝜌 � 𝜌 ⊗ 𝜒 holds if and only if there is a separable extension 𝐸 ′ of
E of degree less than 𝑚𝑛 · (𝑛2)! and a representation 𝜌′ : 𝐻 → GL𝑛/𝑚 (𝐸 ′) such that 𝜌⊗𝐸 𝐸 ′ � Ind𝐺𝐻 𝜌

′.
Furthermore, any such 𝜌′ is absolutely semisimple, and one has Res𝐺𝐻 𝜌 ⊗𝐸 𝐸 ′ =

⊕
𝑔∈𝐺/𝐻 (𝜌′)𝑔.

Proof. If 𝜌 ⊗𝐸 𝐸 ′ � Ind𝐺𝐻 𝜌
′, then Lemma 2.1.3 implies

(𝜌 ⊗𝐸 𝐸 ′) ⊗ 𝜒 � (Ind𝐺𝐻 𝜌
′) ⊗ 𝜒 � Ind𝐺𝐻 (𝜌

′ ⊗ Res𝐺𝐻 𝜒) � Ind𝐺𝐻 𝜌
′ � 𝜌 ⊗𝐸 𝐸 ′,

and this implies 𝜌 ⊗ 𝜒 � 𝜌 by [CR62, 29.7].
Conversely, suppose that 𝜌 � 𝜌 ⊗ 𝜒. After replacing E by a separable extension of degree at most

(𝑛2)! (see Lemma A.2.7 and Remark A.2.8) we may assume that 𝜌 is an absolutely completely reducible
G-representation over 𝐸 ′, that is, 𝜌 = ⊕ 𝑗∈𝐽 𝜌′𝑗 for absolutely irreducible representations 𝜌′𝑗 for 𝑗 ∈ 𝐽.
We regroup this decomposition according to orbits under iterated twisting by 𝜒. This gives rise to a
decomposition

𝜌 �
⊕
𝑖∈𝐼

( 𝑚𝑖−1⊕
𝑗=0

𝜌𝑖 ⊗ 𝜒 𝑗 ) ⊕𝑟𝑖 , (4)

for integers 𝑟𝑖 > 0, absolutely irreducible representations 𝜌𝑖 : 𝐺 → GL𝑛𝑖 (𝐸 ′), and divisors 𝑚𝑖 of 𝑚,
for 𝑖 ∈ 𝐼 so that 𝜌𝑖 ⊗ 𝜒𝑚𝑖 � 𝜌𝑖 , and no 𝜌𝑖 is isomorphic to 𝜌𝑖′ ⊗ 𝜒 𝑗 for some 𝑗 ∈ {0, . . . , 𝑚𝑖′ − 1} and
𝑖′ ∈ 𝐼. We have 𝐺 ⊃ 𝐻𝑖 := ker 𝜒𝑚𝑖 ⊃ 𝐻, [𝐻𝑖 : 𝐻] = 𝑚𝑖 , and Res𝐺𝐻𝑖

𝜒 is a character of order 𝑚𝑖 .
By Theorem 2.2.1, we find Kummer extensions 𝐸 ′𝑖 of 𝐸 ′ of degree dividing 𝑚𝑖 and representations

𝜌′′𝑖 : 𝐻𝑖 → GL𝑛𝑖/𝑚𝑖 (𝐸 ′𝑖 ) such that Ind𝐺𝐻𝑖
𝜌′′𝑖 � 𝜌𝑖 ⊗𝐸′ 𝐸 ′𝑖 . Let 1𝐻 be the trivial representation of H on

𝐸 ′. Then

( 𝑚𝑖−1⊕
𝑗=0

𝜌𝑖 ⊗ 𝜒 𝑗 ) ⊗𝐸′ 𝐸 ′𝑖 � Ind𝐺𝐻𝑖
𝜌′′𝑖 ⊗

( 𝑚𝑖−1⊕
𝑗=0

𝜒 𝑗 ) � Ind𝐺𝐻𝑖

(
𝜌′′𝑖 ⊗

𝑚𝑖−1⊕
𝑗=0

Res𝐺𝐻𝑖
𝜒 𝑗 )

� Ind𝐺𝐻𝑖

(
𝜌′′𝑖 ⊗ Ind𝐻𝑖

𝐻 1𝐻
)
� Ind𝐺𝐻𝑖

Ind𝐻𝑖

𝐻

(
Res𝐻𝑖

𝐻 𝜌′′𝑖 ⊗ 1𝐻
)

� Ind𝐺𝐻
(
Res𝐻𝑖

𝐻 𝜌′′𝑖
)
,

where the second and fourth isomorphism follows from Lemma 2.1.3. Let 𝐸 ′′ be the composite of the
𝐸 ′𝑖 , and set 𝜌′ :=

⊕
𝑖∈𝐼 (Res𝐻𝑖

𝐻 𝜌′′𝑖 ⊗𝐸′𝑖 𝐸
′′) ⊕𝑟𝑖 so that clearly [𝐸 ′′ : 𝐸 ′] < 𝑚𝑛. The first assertion of the

corollary is now evident from the above and from (4). The remaining assertions follow from Lemma
2.1.4(b) and (d). �

2.3. Some results when p divides [𝐺 : 𝐻]

Suppose for the remainder of this subsection that 𝑝 = Char 𝐸 > 0. Let𝑉 = 𝐸𝑛, and let 𝜌 : 𝐺 → Aut𝐸 (𝑉)
be a representation such that the canonical map 𝐸 → End𝐺 (𝑉) is an isomorphism.

Lemma 2.3.1. Suppose that 𝜌 is absolutely irreducible. Let 𝐻 ⊂ 𝐺 be a normal subgroup of index p,
and set 𝑉𝐻 := Res𝐺𝐻 𝜌 ⊗𝐸 𝐸alg. Then the following hold:

(a) If 𝑉𝐻 is reducible, then 𝑉 ⊗𝐸 𝐸alg � Ind𝐺𝐻𝑊 for any irreducible submodule 𝑊 ⊂ 𝑉𝐻 .
(b) If 𝑉𝐻 is irreducible, then we have:
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(1) Any 𝐸 [𝐺]-module W with Res𝐺𝐻𝑊 � Res𝐺𝐻𝑉 is isomorphic to V.
(2) Ind𝐺𝐻𝑉𝐻 is indecomposable, its socle is isomorphic to 𝑉 ⊗𝐸 𝐸alg,
(3) 𝑉 ⊗𝐸 𝐸alg is not induced from any H-module,
(4) All irreducible subquotients of Ind𝐺𝐻𝑉𝐻 are isomorphic to 𝑉 ⊗𝐸 𝐸alg.

Proof. By Lemma 2.1.4(c), we have 𝑉𝐻 = ⊕𝑔∈𝐺/𝐻 ∗𝑊𝑔 for some irreducible H-module W over 𝐸alg

and some subgroup 𝐻∗ ⊂ 𝐺 with 𝐻 ⊂ 𝐻∗. Since 𝐺/𝐻 � Z/𝑝Z, in Part (a) of the present lemma, we
must have 𝐻∗ = 𝐻, and then the assertion follows from Lemma 2.1.4(e).

We now prove (b). Let W be as in (1). By choosing the same underlying E vector space, we
assume that Res𝐺𝐻𝑊 = Res𝐺𝐻𝑉 . Let 𝑔 ∈ 𝐺 be a generator of 𝐺/𝐻, and let 𝐴, 𝐵 ∈ Aut𝐸 (Res𝐺𝐻𝑉) be
the automorphisms given by the action of g on W and V, respectively. Because Res𝐺𝐻𝑉 is absolutely
irreducible, there exists a nonzero scalar 𝜆 ∈ 𝐸 such that 𝐵 = 𝜆𝐴. As 𝑔𝑝 ∈ 𝐻, we find 𝐴𝑝 = 𝐵𝑝 = 𝜆𝑝𝐴𝑝 .
Because Char 𝐸 = 𝑝 > 0, we must have 𝜆 = 1, and so (1) is proved.

For (2), write Ind𝐺𝐻𝑉𝐻 =
⊕

𝑖∈𝐼 𝑊𝑖 with indecomposable G-modules 𝑊𝑖 . Let 𝑊 ′𝑖 be an irreducible
quotient of𝑊𝑖 as a G-submodule. From Lemma 2.1.4(b) and (c) and the irreducibility of𝑉𝐻 , we deduce
Res𝐺𝐻𝑊

′
𝑖 � 𝑉𝐻 for all i, and by (1), we find 𝑊 ′𝑖 � 𝑉 ⊗𝐸 𝐸alg. The following inequality implies #𝐼 = 1

and the uniqueness of 𝑊 ′1 and thus gives (2):

#𝐼 ≤ dim𝐸alg Hom𝐺 (
⊕
𝑖

𝑊𝑖 , 𝑉 ⊗𝐸 𝐸alg) = dim𝐸alg Hom𝐺 (Ind𝐺𝐻𝑉𝐻 , 𝑉 ⊗𝐸 𝐸alg)

= dim𝐸alg Hom𝐻 (𝑉𝐻 , 𝑉𝐻 ) = 1.

To see (3), observe that if 𝑉 ⊗𝐸 𝐸alg was induced, then by Lemma 2.1.4(b) then 𝑉𝐻 had to be reducible.
For (4), note that we have Ind𝐺𝐻𝑉𝐻 � (𝑉 ⊗𝐸 𝐸alg) ⊗𝐸 Ind𝐺𝐻𝐸 . Now, clearly the semisimplification of
Ind𝐺𝐻𝐸 is the trivial module 𝐸 𝑝 , and this shows (4). �

For the remainder of this subsection, we shall also assume that E is a topological field, that 𝜌 is
continuous and that G is topologically finitely generated, and we let Φ(𝐺) = 𝐺 𝑝 [𝐺,𝐺] so that 𝐺/Φ(𝐺)
is the maximal p-elementary abelian Hausdorff quotient of G, and we set 𝑚 := dimF𝑝 𝐺/Φ(𝐺). We
note that the hypothesis on G holds for 𝐺 = 𝐺𝐾 with K a p-adic field by [Jan83, Satz 3.6].

In the sequel, we shall write End(𝑉) for the cokernel of the natural inclusion 𝐸↩→End𝐸 (𝑉). We shall
relate the nonvanishing of the module of G-invariants End𝐺 (𝑉) of this cokernel to V being induced
from a subgroup of G of p-power index. We assume that p divides n, since otherwise the trace splits the
inclusion 𝐸 → End𝐸 (𝑉) 𝐺-equivariantly so that End𝐺 (𝑉) = 0 by our hypothesis 𝐸 = End𝐺 (𝑉).

Let End′𝐺 (𝑉) be the subset of 𝐴 ∈ End𝐸 (𝑉) such that there exists a map 𝜆𝐴 : 𝐺 → 𝐸, 𝑔 ↦→ 𝜆𝐴(𝑔)
with

∀𝑔 ∈ 𝐺 : 𝜌(𝑔)𝐴𝜌(𝑔)−1 = 𝐴 + 𝜆𝐴(𝑔)1𝑛. (5)

Again, because 𝐸 = End𝐺 (𝑉), one has the short exact sequence

0−→ 𝐸 = End𝐺 (𝑉) −→End′𝐺 (𝑉) −→End𝐺 (𝑉) −→ 0. (6)

We write 𝐴 ∈ End𝐺 (𝑉) for the class of 𝐴 ∈ End′𝐺 (𝑉) under this map. Recall that 𝑓 ∈ 𝐸 [𝑇] is p-linear
if 𝑓 =

∑
𝑖 𝑎𝑖𝑇

𝑝𝑖 and that the set 𝐸 [𝑇]p-lin of p-linear polynomials in 𝐸 [𝑇] is a ring under addition and
composition. The following lemma provides some basic properties of End′𝐺 (𝑉).
Lemma 2.3.2. Let A be in End′𝐺 (𝑉). For 𝜆 ∈ 𝐸alg, let 𝑉𝜆 and 𝑉 ′𝜆 denote the eigenspace and generalized
eigenspace of A for 𝜆. Suppose from Part (i) on that 𝜌 is absolutely irreducible.
(a) Each 𝜆𝐴 is a continuous homomorphism 𝐺 → (𝐸, +).
(b) The groups 𝐻𝐴 := Ker𝜆𝐴 and 𝐻𝜌 :=

⋂
{𝐻𝐴 | 𝐴 ∈ End′𝐺 (𝑉)} contain Φ(𝐺).

(c) Λ𝐴 := 𝜆𝐴(𝐺) ⊂ (𝐸, +) is a finite-dimensional F𝑝 vector space.
(d) The multiset of eigenvalues of A with multiplicities is a torsor under Λ𝐴 := 𝜆𝐴(𝐺).
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(e) The map 𝜆• : 𝐴 ↦→ 𝜆𝐴 factors via an injective homomorphism

End𝐺 (𝑉) → Homcont (𝐺, (𝐸, +)), 𝐴 ↦→ 𝜆𝐴.

(f) End′𝐺 (𝑉) is a module for 𝐸 [𝑇]p-lin under ( 𝑓 , 𝐴) ↦→ 𝑓 (𝐴) and one has 𝜆 𝑓 (𝐴) = 𝑓 ◦ 𝜆𝐴.
(g) If End𝐺 (𝑉) ≠ 0, then there exist 𝐴 ∈ End′𝐺 (𝑉) such that Λ𝐴 � (F𝑝 , +) and [𝐺 : 𝐻𝐴] = 𝑝.
(h) The restriction 𝜌 |𝐻𝐴 commutes with A; it preserves 𝑉𝜆 and 𝑉 ′𝜆 for all 𝜆 ∈ 𝐸alg.
(i) A is semisimple over 𝐸alg.
(j) One has 𝜌 ⊗𝐸 𝐸alg � Ind𝐺𝐾

𝐻𝐴
𝑉𝜆 for any eigenvalue 𝜆 ∈ 𝐸alg of A.

(k) Over 𝐸alg the set End′𝐺𝐾
(𝑉) is simultaneously diagonalizable.

(l) Suppose dimF𝑝 𝐸 ≥ 𝑚, then there exists 𝐴 ∈ End′𝐺 (𝑉) with 𝐻𝜌 = 𝐻𝐴.

Proof. (a) The continuity of 𝜆𝐴 follows from that of 𝜌. It is a homomorphism because of

𝐴 + 𝜆𝐴(𝑔ℎ)1𝑛=𝑔ℎ𝐴ℎ−1𝑔−1=𝑔(𝐴 + 𝜆𝐴(ℎ)1𝑛)𝑔−1=𝑔𝐴𝑔−1 + 𝜆𝐴(ℎ)1𝑛= 𝐴 + (𝜆𝐴(𝑔) + 𝜆𝐴(ℎ))1𝑛.

To see (b) note that the image of 𝜆𝐴 is p-elementary abelian because 𝑝 ·1 = 0 in E. By (a) 𝐻𝐴 = Ker𝜆𝐴 ⊇
Φ(𝐺), and hence 𝐻𝜌 ⊇ Φ(𝐺). Part (c) is clear from (a) and (b) since by assumption, G is topologically
finitely generated and hence so is 𝐺/Φ(𝐺). For Part (d), denote by 𝜒𝐴(𝑇) ∈ 𝐸 [𝑇] the characteristic
polynomial of A. Then equation (5) implies 𝜒𝐴(𝑇) = 𝜒𝐴(𝑇 +𝜆𝐴(𝑔)) for all 𝑔 ∈ 𝐺𝐾 , and this proves (d).

For (e), one easily verifies that𝜆• is the boundary map of cohomology𝐻0 (𝐺,End𝐸 (𝑉)) → 𝐻1 (𝐺, 𝐸)
induced from the sequence (6); Part (a) shows that the target module is Homcont(𝐺, (𝐸, +)); the cocyle
condition is easily verified. Moreover, 𝜆𝐴 is trivial if and only if 𝐴 ∈ End𝐺 (𝑉). Hence, 𝐴 → 𝜆𝐴 is
defined and injective. The homomorphism property is straightforward.

(f) Raising equation (5) to the power p and using Char(𝐸) = 𝑝 we find

∀𝑔 ∈ 𝐺𝐾 : 𝜌(𝑔)𝐴𝑝𝜌(𝑔)−1 = 𝐴𝑝 + 𝜆𝐴(𝑔) 𝑝1𝑛.

Since End′𝐺 (𝑉) is clearly an E-vector space and 𝜆• is E-linear, Part (f) follows. To see (g), let A be
in End′𝐺 (𝑉)\𝐸 so that Λ𝐴 ⊂ (𝐸, +) is nontrivial and finite. Let Λ ⊂ Λ𝐴 be a sub F𝑝-vector space of
codimension 1, and let f be the p-linear polynomial

∏
𝜆∈Λ (𝑇 − 𝜆). Then Λ 𝑓 (𝐴) has order p by (f), and

𝐻𝐴 has index p by its definition in (b).
In (h), the asserted commutativity is clear from equation (5); the assertion on the 𝑉𝜆 and 𝑉 ′𝜆 is

then immediate. For (i), choose an eigenvalue 𝜆 ∈ 𝐸alg for which dim𝑉𝜆 is minimal. By (c), we
have dim𝑉𝜆 · #Λ𝐴 ≤ 𝑛 with equality if and only if A is semisimple. Because A and 𝜌 |𝐻𝐴 ⊗𝐸 𝐸alg

commute, the action of 𝐻𝐴 preserves 𝑉𝜆. Let 𝑉𝐸alg := 𝑉 ⊗𝐸 𝐸alg. Frobenius reciprocity gives a nonzero
homomorphism in

Hom𝐺 (Ind𝐺𝐻𝐴
𝑉𝜆, 𝑉𝐸alg ) � Hom𝐻𝐴 (𝑉𝜆, 𝑉𝐸alg |𝐻𝐴).

Since 𝑉𝐸alg is an irreducible 𝐺𝐾 -representation, it follows that

𝑛 ≤ dim Ind𝐺𝐻𝐴
𝑉𝜆 = [𝐺 : 𝐻𝐴] · dim𝑉𝜆 = #Λ𝐴 · dim𝑉𝜆 ≤ 𝑛.

Hence, we must have equality and so A is semisimple. For (j), all but the last assertion follow from the
proof for (i).

(k) Using equation (5), we compute for 𝐴, 𝐵 ∈ End′𝐺𝐾
(𝑉) and all 𝑔 ∈ 𝐺𝐾 that

𝑔(𝐴𝐵 − 𝐵𝐴)𝑔−1 = (𝐴 + 𝜆𝐴(𝑔)1𝑛) (𝐵 + 𝜆𝐵 (𝑔)1𝑛) − (𝐵 + 𝜆𝐵 (𝑔)1𝑛) (𝐴 + 𝜆𝐴(𝑔)1𝑛) = (𝐴𝐵 − 𝐵𝐴).

Since 𝐸 = End𝐺 (𝑉), we conclude that 𝐴𝐵 − 𝐵𝐴 is a scalar matrix. We also know that A (and B)
is semisimple. To conclude, we may work over 𝐸alg so that we may assume that A has diagonal form.
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But then it is elementary to see that 𝐴𝐵 − 𝐵𝐴 has entries 0 along the diagonal and hence this scalar
matrix must be zero. It follows that any 𝐴, 𝐵 ∈ End′𝐺 (𝑉) commute, and we conclude using (j).

(l) We need to show that for all 𝐴, 𝐵 ∈ End′𝐺 (𝑉) there exist 𝜇, 𝜈 ∈ 𝐸\{0} such that 𝐻𝜇𝐴+𝜈𝐵 =
𝐻𝐴 ∩ 𝐻𝐵. Let W be the F𝑝-vector space 𝐺/(𝐻𝐴 ∩ 𝐻𝐵), and regard 𝜆𝐴 and 𝜆𝐵 as F𝑝-linear maps
𝑊 → 𝐸 . Note that 𝑑 := dimF𝑝 𝑊 ≤ 𝑚. Let 𝐵 := (𝑏1, . . . , 𝑏𝑑) be an F𝑝 basis of W. Suppose also
without loss of generality that dimF𝑝 𝐺𝐾 /𝐻𝐴, dimF𝑝 𝐺𝐾 /𝐻𝐵 < 𝑑 since otherwise we are done.

For 𝜈 ∈ 𝐸alg set 𝐶𝜈 := 𝜆𝐴 + 𝜈𝜆𝐵. Since the common kernel of 𝜆𝐴 and 𝜆𝐵 is 0 ⊂ 𝑊 , there exists
𝜈 ∈ 𝐸alg such that𝐶𝜈 is injective, that is, such that the vectors (𝐶𝜈𝑏𝑖)𝑖=1,...,𝑑 are F𝑝-linearly independent
in E. This means that the Moore determinant of these vectors is nonzero. In other words, the determinant
of the 𝑑 × 𝑑-square matrix with (𝑖, 𝑗)-entry given by (𝜆𝐴(𝑏𝑖) + 𝜈𝜆𝐵 (𝑏𝑖)) 𝑝

𝑗−1 is nonzero. As a function
of 𝜈, this is a polynomial of degree at most (𝑝𝑑 − 1)/(𝑝 − 1). It is not identically zero because of its
value at 𝜈, and hence it can have at most 𝑝𝑑 − 1 < 𝑝𝑚 − 1 zeros. It follows that for some 𝜈′ ∈ 𝐸 it is
nonzero because #𝐸 ≥ 𝑝𝑚, and this completes the proof of (l). �

We will later also need the following particular result:

Corollary 2.3.3. Suppose 𝜌 is a nontrivial extension of an absolutely irreducible representation 𝜌2 by
an absolutely irreducible representation 𝜌1. Suppose further that 𝜌1 and 𝜌2 are not isomorphic and that
the 𝜌𝑖 are not induced from any normal index p subgroup of G. Then End𝐺 (𝑉) = 0.

Proof. Assume on the contrary that we can find 𝐴 ∈ End′𝐺 (𝑉)\𝐸 . We may assume that Λ𝐴 has order
p by Lemma 2.3.2(g), and we also may assume 𝐸 = 𝐸alg since this leaves dim𝐸 End𝐺 (𝑉) unchanged.
Then 𝐻𝐴 has index p in G and we have p distinct subspaces 𝑉𝜆 of 𝑉𝐸alg that are stabilized by 𝐻𝐴. By
hypotheses and Lemma 2.3.1, the restrictions 𝜌𝑖 |𝐻𝐴 are absolutely irreducible. This already implies
𝑝 = 2. We also find that the extension of 𝜌2 by 𝜌1 becomes trivial when restricted to 𝐻𝐴, and that
these restrictions must agree with the two distinct 𝑉𝜆. It follows by Frobenius reciprocity that we have
a nonzero map Ind𝐺𝐻𝐴

(𝜌2 |𝐻𝐴) → 𝜌 for 𝑖 = 1, 2. By Lemma 2.3.1(b)(4) all simple subquotients of
Ind𝐺𝐻𝐴

(𝜌2 |𝐻𝐴) are isomorphic to 𝜌2. But this is absurd, since 𝜌 is nonsplit and 𝜌2 is not a submodule of
𝜌. We reach a contradiction even for 𝑝 = 2. �

3. Deformations of Galois representation

This section recalls and augments the classical deformation theory [Maz89] of Mazur. Throughout we
fix a profinite group G which often is 𝐺𝐾 for K a p-adic field.

In Subsection 3.1, we fix the basic categories relevant for all deformations functors that we shall
study. We also recall some results on formal smoothness. Subsection 3.2 recalls Mazur’s deformation
theory and some extensions for residual representations 𝐺 → GL𝑛 (𝜅) where 𝜅 is a finite or a local
field. Subsection 3.3 studies dimension 1 points on universal deformation rings. Except for some results
on equicharacteristic dimension 1 points, all results are well documented in the literature. Subsection
3.4 gives a criterion for the determinant functor to be smooth. For this, we recall Tate local duality for
coefficient modules over local fields.

3.1. Basic categories and functors and formal smoothness

The field 𝜅 and the ring Λ: From now on, 𝜅 is either (a) a finite field of characteristic p that carries the
discrete topology, or (b) a local field with its natural topology and with residue characteristic p. In the
latter case, 𝜅 is a finite extension of Q𝑝 or a finite extension of the formal Laurent series field F𝑝 ((𝑡)).
Depending on case (a) or (b), we define a topological ring Λ. In case (b), we set Λ = 𝜅. In case (a), Λ
is a Noetherian complete local ring with residue field 𝜅 and equipped with the topology defined by its
maximal ideal 𝔪Λ.

The categories A𝑟Λ and Â𝑟Λ: By A𝑟Λ, we denote the category of Artinian local Λ-algebras A with
residue field isomorphic to 𝜅 and with local Λ-algebra homomorphisms as morphisms. For any local
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ring A, we denote by 𝔪𝐴 its maximal ideal. We regard any object A of A𝑟Λ as a topological ring. In
case (a), we give A the discrete topology. In case (b), the ring A is a 𝜅-algebra of finite 𝜅-dimension and
we give A the unique topology that arises from any structure on A as a normed 𝜅-vector space. This
topology on A is relevant whenever we talk about continuous maps to A or to any GL𝑛 (𝐴). We further
define Â𝑟Λ as the category of complete Noetherian local Λ-algebras with residue field 𝜅 and with local
homomorphisms as morphisms. Any object of Â𝑟Λ is a limit of objects of A𝑟Λ. We equip an object A
of Â𝑟Λ with the weakest topology such that all maps 𝐴 → 𝐴/𝔪𝑚

𝐴 , 𝑚 ≥ 1, are continuous. In case (a),
this simply means that A carries the 𝔪𝐴-adic topology.

In A𝑟Λ, the coproduct of two objects 𝐴, 𝐴′ is their tensor product 𝐴 ⊗Λ 𝐴′. For 𝐴, 𝐴′ ∈ Â𝑟Λ, the
coproduct is the completed tensor product 𝐴⊗̂Λ𝐴′ := lim←− 𝑛 𝐴/𝔪

𝑛
𝐴 ⊗Λ 𝐴′/𝔪𝑛

𝐴′ . Note that by [Gro64,
Lemma 0IV.(19.7.1.2)] the ring 𝐴⊗̂Λ𝐴′ lies again in Â𝑟Λ. From the discussion around the Cohen
structure theorem in [Sta18, §0323], one also deduces:

Proposition 3.1.1. Let 𝐴 ∈ Â𝑟Λ and ℎ := dim𝜅 𝔪𝐴/(𝔪Λ,𝔪2
𝐴). Then there exists a surjective continuous

homomorphism in Â𝑟Λ from the power series ring Λ[[𝑥1, . . . , 𝑥ℎ]] onto A. Moreover, h is minimal with
this property.

Further properties of A𝑟Λ and Â𝑟Λ can be found in [Sta18, §06GB] and [Sta18, §06GV].
Functors on A𝑟Λ and Â𝑟Λ: We follow [Sch68]; see also [Sta18, Chapter 06G7]. By 𝜅 [𝜀] :=

𝜅 [𝑋]/(𝑋2) ∈ A𝑟Λ, we denote the ring of dual numbers over 𝜅. Recall from [Sch68] that a small
extension in A𝑟Λ is a surjection 𝑓 : 𝐵→ 𝐴 in A𝑟Λ whose kernel ker 𝑓 is isomorphic to 𝜅 as a B-module,
and in particular ker 𝑓 is annihilated by 𝔪𝐵 and thus (ker 𝑓 )2 = 0.

In the following, we consider covariant functors F from A𝑟Λ or Â𝑟Λ to 𝑆𝑒𝑡𝑠 such that 𝐹 (𝜅) is a
singleton.

Definition 3.1.2. A covariant functor 𝐹 : Â𝑟Λ → 𝑆𝑒𝑡𝑠 is called continuous if the canonical map
𝐹 (𝐴) → lim←− 𝑛 𝐹 (𝐴/𝔪

𝑖
𝐴) is bijective for all 𝐴 ∈ Â𝑟Λ.

It is straightforward to see that there is a bijection between continuous functors Â𝑟Λ → 𝑆𝑒𝑡𝑠 and
functors A𝑟Λ → 𝑆𝑒𝑡𝑠 given by restriction. From now on, all functors on Â𝑟Λ will be continuous and
we use the same symbol to denote them and their restriction to A𝑟Λ. For any 𝐵 ∈ Â𝑟Λ, we denote by
ℎ𝐵 : Â𝑟Λ → 𝑆𝑒𝑡𝑠 the functor which is given by ℎ𝐵 (𝐴) := HomÂ𝑟Λ

(𝐵, 𝐴). A functor 𝐹 : Â𝑟Λ → 𝑆𝑒𝑡𝑠

is representable if it is isomorphic to ℎ𝐵 for some 𝐵 ∈ Â𝑟Λ.

Definition 3.1.3 [Sch68, Definitions 2.2 – 2.7]. Let 𝐹, 𝐹 ′ : Â𝑟Λ → 𝑆𝑒𝑡𝑠 be functors.

(a) The tangent space of F is 𝑡𝐹 := 𝐹 (𝜅 [𝜀]).
(b) A natural transformation 𝐹 ′ → 𝐹 is called smooth if for all small extensions 𝐵 → 𝐴 in A𝑟Λ, the

map 𝐹 ′(𝐵) → 𝐹 ′(𝐴) ×𝐹 (𝐴) 𝐹 (𝐵) is surjective; cf. [Sch68, Definition 2.2].
(c) A pair (𝐴, 𝜉) consisting of an object A in Â𝑟Λ and a smooth natural transformation 𝜉 : ℎ𝐴 → 𝐹 is

called a hull of F if the induced map 𝑡ℎ𝐴 → 𝑡𝐹 on tangent spaces is bijective; note that by Yoneda 𝜉
corresponds to some element of 𝐹 (𝐴).

Hulls are unique up to isomorphism but in general not up to unique isomorphism. If F is representable
by some 𝐴 ∈ Â𝑟Λ, it clearly has a hull. Moreover, one has 𝑡𝐹 � Hom𝜅 (𝔪𝐴/(𝔪2

𝐴,𝔪Λ), 𝜅).

Definition 3.1.4 (Formal smoothness). We recall two notions of formal smoothness

(a) A homomorphism 𝑅1 → 𝑅2 of topological rings with 𝑅1 and 𝑅2 linearly topologized is called
formally smooth if for every commutative solid diagram
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𝑅2 ��

���
�

�
� 𝐴

𝑅1 ��

��

𝐵

��

of homomorphisms of topological rings with B a discrete ring and 𝐵 → 𝐴 surjective with square
zero kernel, a dotted arrow exists which makes the diagram commute, cf. [Sta18, Definition 07EB]

(b) A morphism 𝜑 : 𝑌 → 𝑋 of locally Noetherian schemes is called formally smooth at 𝑦 ∈ 𝑌 , if the
induced morphism Ô𝑋,𝜑 (𝑥) → Ô𝑌 ,𝑦 of topological rings is formally smooth.

Formal smoothness is related to smoothness of natural transformations between representable func-
tors:

Proposition 3.1.5 [Sch68, Proposition 2.5(i)]. Let 𝑅1 → 𝑅2 be a morphism in Â𝑟Λ, and set ℎ =
dim 𝑅2 − dim 𝑅1. Then the following assertions are equivalent:

(i) 𝑅1 → 𝑅2 is formally smooth.
(ii) The induced map of functors ℎ𝑅2 → ℎ𝑅1 is smooth.

(iii) There is an isomorphism 𝑅1 [[𝑥1, . . . , 𝑥ℎ]] → 𝑅2 of 𝑅1-algebras.

If any of (i)–(iii) holds, then h is called the relative dimension of 𝑅2 over 𝑅1.

Note that (ii)⇒(iii) is from [Sch68] and that (iii)⇒(i)⇒(ii) are straightforward. A consequence of
(ii)⇒(i) of Proposition 3.1.5 is that a morphism in Â𝑟Λ is formally smooth if the lifting property in
Definition 3.1.4(a) holds for all small extensions in A𝑟Λ.

3.2. Mazur’s deformation theory and extensions

Our presentation of deformation functors follows Mazur [Maz89] and Kisin [Kis09]. Consider a con-
tinuous representation

𝜌 : 𝐺 → GL𝑛 (𝜅). (7)

We write ad�̄� for Mat𝑛×𝑛 (𝜅) together with the action of G induced by �̄� composed with the conjugation
action of GL𝑛 (𝜅) on Mat𝑛×𝑛 (𝜅). By ad0

�̄�, we denote the subrepresentation on trace zero matrices and by
ad�̄� the quotient modulo the center 𝜅. In the following, for a representation 𝜌 into GL𝑛 (𝐴1) and a ring
homomorphism 𝐴1 → 𝐴2 we write 𝜌 ⊗𝐴1 𝐴2 for the composition of 𝜌 with GL𝑛 (𝐴1) → GL𝑛 (𝐴2), cf.
[Kis03, p. 433].

Definition 3.2.1. [Gou01, Definitions 2.1 and 2.2]. Let A be in A𝑟Λ with residue map 𝐴→ 𝜅.

(a) A lifting of 𝜌 to A is a continuous homomorphism 𝜌 : 𝐺 → GL𝑛 (𝐴) with 𝜌 ⊗𝐴 𝜅 = 𝜌.
(b) The symbol Γ𝑛 (𝐴) denotes the kernel of the canonical homomorphism GL𝑛 (𝐴) → GL𝑛 (𝜅).
(c) A deformation of 𝜌 to A is a Γ𝑛 (𝐴)-conjugacy class of a liftings of �̄� to A.
(d) The deformation functor D�̄�, or DΛ,�̄� if we wish to indicate Λ, of 𝜌 is defined as

D𝜌 : A𝑟Λ −→ 𝑆𝑒𝑡𝑠, 𝐴 ↦−→ {𝜌 : 𝐺 −→GL𝑛 (𝐴) : 𝜌 is a deformation of 𝜌},

In the following, for a profinite group H and a continuous H-module M we denote by 𝐻𝑖 (𝐻, 𝑀) the
i-th continuous group cohomology of H with coefficients in M. If M is discrete, details can be found in
[NSW00, Chapter 1]. For other coefficients we refer to the introduction of Subsection 3.4.

The next definition is important in relation to the finiteness of D�̄� (F[𝜀]).
Definition 3.2.2. The following finiteness conditions go back to [Maz89, §1.1].
(a) A profinite group G has property Φ𝑝 if 𝐻1 (𝐻, F𝑝) is finite for all open subgroups H of G.
(b) The representation 𝜌 satisfies condition Φ𝜌 if dim𝜅 𝐻

1(𝐺, ad𝜌) is finite.
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Proposition 3.2.3. The following assertions hold:
(a) The profinite group 𝐺𝐾 satisfies Mazur’s condition Φ𝑝 .
(b) If a profinite group G satisfies Φ𝑝 , then Φ𝜌 holds for any residual representation 𝜌 of G.
Proof. Part (a) is immediate from class field theory. If 𝜅 is finite, then Part (b) is well-known; to deduce
it one applies the inflation restriction sequence to 𝐺 ⊃ 𝐻 := Ker ad𝜌. If 𝜅 is a local field, the assertion
is proved later in Corollary 3.3.6. We invite the reader to check that there is no circular reasoning
involved. �

The versal hull of D�̄�: Let �̄� be as in (7). The following result for finite 𝜅 is due to Mazur, with an
extension due to Ramakrishna. For 𝜅 a p-adic field, a proof is given in [Kis03, Lemma 9.3] by Kisin.
The proof for local fields of positive characteristic is analogous.
Theorem 3.2.4 [Maz89, 1.1–1.6], [Gou01, Theorem 3.3, p. 53, Theorem 4.2]. Assuming condition Φ𝜌,
the following hold:
(a) One has 𝑡D�̄� � 𝐻1 (𝐺, ad�̄�), and ℎ := dim𝜅 𝐻

1(𝐺, ad�̄�) is finite.
(b) The functor D𝜌 has a hull; we write 𝜌ver

𝜌
: 𝐺−→GL𝑛 (𝑅ver

Λ,𝜌) for a representative of its versal
deformation and 𝑅ver

Λ,𝜌 ∈ Â𝑟Λ for a versal deformation ring of �̄�.
(c) If 𝜅 = End𝜅 𝜌, then D𝜌 is representable; we write 𝜌univ

𝜌
: 𝐺−→GL𝑛 (𝑅univ

Λ,𝜌 ) for a representative of
its universal deformation and 𝑅univ

Λ,𝜌 ∈ Â𝑟Λ for the universal deformation ring of �̄�.
(d) There is a surjection 𝜑 : Λ[[𝑥1, . . . , 𝑥ℎ]] → 𝑅ver

Λ,𝜌 in Â𝑟Λ such that Ker 𝜑 is generated by at most
dim𝜅 𝐻

2(𝐺, ad�̄�) elements.
(e) If 𝐻2 (𝐺, ad�̄�) = 0, then the natural map Λ → 𝑅ver

Λ,𝜌 is formally smooth of relative dimension h, or
equivalently, the natural transformation D�̄� → ℎΛ, [𝜌 : 𝐺 → GL𝑛 (𝐴)] ↦→ 𝐴 is smooth.

Remark 3.2.5. The existence of 𝑅ver
Λ,𝜌 (and of 𝜌ver

𝜌
) as a profinite topological ring does not require

condition Φ𝜌. The latter is needed for the rings to be Noetherian, that is, to lie in Â𝑟Λ.
We shall later need to understand the change of 𝑅ver

Λ,𝜌 under maps Λ→ Λ′:
Lemma 3.2.6 (Cf. [Wil95, p. 457]). Let Λ → Λ′ be a finite injective homomorphism of complete
Noetherian local rings with finite residue fields 𝜅 and 𝜅′, respectively. Let 𝜌′ := 𝜌 ⊗𝜅 𝜅′. Let 𝑅Λ be a
hull for DΛ,𝜌 and 𝑅Λ′ for DΛ′,𝜌′ . Then 𝑅Λ′ � 𝑅Λ ⊗Λ Λ′.

3.3. Deformation rings at dimension 1 points

Suppose 𝜅 is finite. Then for R in Â𝑟Λ and we call 𝑥 ∈ Spec 𝑅 with corresponding prime ideal 𝔭𝑥 ⊂ 𝑅 a
point of dimension 1 if 𝑅/𝔭𝑥 has Krull dimension 1. For such x the field 𝜅(𝑥) is either a finite extension
ofQ𝑝 or of F𝑝 ((𝑡)). It has been first exploited by Kisin, for example, [Kis03], that points x of dimension
1 with 𝜅(𝑥) ⊃ Q𝑝 on universal deformation rings can be much easier to understand than the closed point
SpecF. We recall this method and work it out further for dimension 1 points x with 𝜅(𝑥) ⊃ F𝑝 ((𝑡)). The
latter points will be an essential tool in our work.

Let 𝜅 be a finite field of characteristic p with the discrete topology. Let Λ be the ring of integers of a
finite totally ramified extension L of 𝑊 (𝜅) [1/𝑝]. Let �̄� : 𝐺 → GL𝑛 (𝜅) be a continuous representation
that satisfies Φ𝜌 with versal deformation

𝜌ver
𝜌 : 𝐺 −→GL𝑛 (𝑅ver

Λ,𝜌).

Consider a continuous homomorphism 𝑓 : 𝑅ver
Λ,𝜌 → 𝐸 of Λ-algebras for a local field E. Denote by 𝔭

the prime ideal Ker 𝑓 . Then via f the field E is a finite extension of the fraction field 𝐸 𝑓 of 𝑅ver
Λ,𝜌/𝔭,

and 𝜌ver
𝜌

induces a representation 𝜌𝐸 : 𝐺 → GL𝑛 (𝐸). We may and will assume that 𝐸 = 𝐸 𝑓 and that
𝜌𝐸 (𝐺) ⊂ GL𝑛 (O) for O the ring of integers of E – the latter by using strict equivalence.
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Suppose first that E is of characteristic 0, in which case we follow [Kis03, §9]. Then f factors via a
map 𝑓 [1/𝑝] : 𝑅ver

Λ,𝜌 [1/𝑝] → 𝐸 which is an L-algebra homomorphism, and E is a finite extension field
of L. We denote by 𝑅 the completion of 𝑅ver

Λ,𝜌 [1/𝑝] at the kernel of 𝑓 [1/𝑝]. Then E is the residue field
of 𝑅. From the finiteness of 𝐿 → 𝐸 , one easily deduces that in fact 𝑅 is naturally a E-algebra. Moreover,
we have a continuous homomorphism �̂� : 𝐺 → GL𝑛 (𝑅) induced from 𝜌ver

𝜌
. Clearly, �̂� is a deformation

of 𝜌𝐸 . Using Remark 3.2.5, this provides one with a homomorphism

𝜑 : 𝑅ver
𝐸,𝜌𝐸
−→ 𝑅.

Suppose now that E is of characteristic p. Then E is isomorphic to a Laurent series field 𝜅′((𝑥)) for
a finite extension 𝜅′ of the finite field 𝜅 and with ring of integers O � 𝜅′ [[𝑥]]. Denote by 𝜌O the map
𝜌𝐸 with the range restricted to GL𝑛 (O). It is a deformation of �̄�′ := �̄� ⊗𝜅 𝜅′. Let Λ′ = Λ ⊗𝑊 (𝜅) 𝑊 (𝜅′),
and consider the map

𝑓𝐸 : 𝑅ver
Λ′,𝜌′ ⊗Λ′ 𝐸

Lemma 3.2.6
� 𝑅ver

Λ,𝜌 ⊗Λ 𝐸
𝑓 ⊗Fid𝐸−→ 𝐸, 𝑟 ⊗ 𝑒 ↦→ 𝑓 (𝑟) · 𝑒.

In the present case, we define 𝑅 as the completion of 𝑅ver
Λ′,𝜌′ ⊗Λ′ 𝐸 at ker 𝑓 𝐸 . By definition, 𝑅 is a

E-algebra with residue field E. Moreover, 𝜌ver
𝜌
⊗𝑅ver

Λ,𝜌
𝑅 defines a continuous representation

�̂� : 𝐺 −→GL𝑛 (𝑅)

which is a deformation of 𝜌𝐸 . Again, this yields a homomorphism

𝜑 : 𝑅ver
𝐸,𝜌𝐸
−→ 𝑅.

Theorem 3.3.1. The map 𝜑 is formally smooth. If 𝑅ver
Λ,𝜌 is universal, it is formally étale, and hence an

isomorphism, by Proposition 3.1.5.

Remark 3.3.2. Before we give the proof, let us explain a difference depending on the characteristic of
E, that will be resolved in Lemma 3.3.5. Suppose that 𝑅ver

Λ,𝜌 is a universal ring. Let 𝑋univ
Λ,𝜌 = Spec 𝑅ver

Λ,𝜌,
and let 𝑥 ∈ 𝑋univ

Λ,𝜌 be a point of dimension one so that 𝐸 = 𝜅(𝑥) is a local field.
If E has characteristic zero, that is, if x lies on the generic fiber of 𝑋univ

Λ,𝜌 , then 𝑅 is the completion
of the local ring O𝑋univ

Λ,𝜌 ,𝑥
. Now, by Theorem 3.3.1 this completion is isomorphic to the universal ring

𝑅ver
𝐸,𝜌𝐸

, and so from the latter one can transfer many ring-theoretic properties to O𝑋univ
Λ,𝜌 ,𝑥

.

If on the other hand E has characteristic p, that is, x lies on the special fiber 𝑋
univ
Λ,𝜌 , then 𝑅 is not

isomorphic to the completion Ô
𝑋

univ
Λ,𝜌 ,𝑥

of the local ring O
𝑋

univ
Λ,𝜌 ,𝑥

. It follows, however, from Lemma 3.3.5

below that we have an isomorphism 𝑅 � Ô
𝑋

univ
Λ,𝜌 ,𝑥
[[𝑇]]. Via this route, Theorem 3.3.1 allows one again

to deduce ring-theoretic properties of O𝑋univ
Λ,𝜌 ,𝑥

from 𝑅ver
𝐸,𝜌𝐸

.

Remark 3.3.3. In Corollary 4.8.8, we provide an analog of Theorem 3.3.1 for pseudodeformations.

Proof of Theorem 3.3.1. If Char 𝐸 = 0, then this is [Kis03, Proposition 9.5]. We give the proof if
𝑝 = Char 𝐸 > 0. It closely follows that of [Kis03, Proposition 9.5]. We consider a commutative diagram

𝑅ver
𝐸,𝜌𝐸

��

�� 𝐴

��
𝑅 ��

𝑔

���
�

�
�

�
𝐴/𝐼

(8)

https://doi.org/10.1017/fms.2023.82 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.82


Forum of Mathematics, Sigma 17

with 𝐴 ∈ A𝑟𝐸 and 𝐼 ⊂ 𝐴 is a square zero ideal, with the solid arrows given, and we seek to construct a
dashed arrow g so that the two triangular subdiagrams commute. If 𝑅ver

𝐸,𝜌𝐸
is universal, we also have to

show that the dashed arrow is unique. Note that A and I are finite-dimensional E-vector spaces. Also,
the bottom arrow induces a pair of homomorphism 𝑅ver

Λ′,𝜌′ → 𝐴/𝐼 and 𝐸 → 𝐴/𝐼, where the second one
is simply the E-algebra structure map.

By possibly conjugating �̂� by some matrix in Γ𝑛 (𝑅), we can assume that 𝜌ver
𝜌𝐸
⊗𝑅ver

𝐸,𝜌𝐸
𝑅 = �̂�. Following

the proof in [Kis03, Proposition 9.5], one shows that there exists an O-subalgebra 𝐴◦ of A such that
(a) 𝐴◦ is free over O of rank equal to dim𝐸 𝐴 and 𝐴◦ ⊗O 𝐸 = 𝐴,
(b) the image of 𝐴◦ under 𝐴→ 𝐸 is O, and so 𝐴◦ ∈ Â𝑟 𝜅′
(c) the image of 𝜌ver

𝜌𝐸
⊗𝑅ver

𝐸,𝜌𝐸
𝐴 lies in GL𝑛 (𝐴◦),

(d) the homomorphism 𝑅 ver
Λ′,𝜌′ → 𝐴/𝐼 factors via 𝐴◦/𝐼◦ where 𝐼◦ = 𝐼 ∩ 𝐴◦.

Write 𝜌𝐴◦ for 𝜌ver
𝜌𝐸
⊗𝑅ver

𝐸,𝜌𝐸
𝐴 considered with its image in GL𝑛 (𝐴◦). Then 𝜌𝐴◦ reduces to 𝜌ver

𝜌′
⊗𝑅ver

Λ′,𝜌′
𝐴◦/𝐼◦

modulo 𝐼◦, and thus by the versality of 𝑅 ver
Λ′,𝜌′ there is a homomorphism 𝑔◦ : 𝑅 ver

Λ′,𝜌′ → 𝐴◦ such that
𝜌ver
𝜌′
⊗𝑅ver

Λ′,𝜌′
𝐴◦ is strictly equivalent to 𝜌𝐴◦ . Let 𝑔 : 𝑅 → 𝐴 be the homomorphism obtained from 𝑔◦ ⊗ id

under completion. It is now not difficult to see that both triangles in diagram (8) commute with this
choice of g.

It remains to show the uniqueness of g if 𝑅 ver
Λ′,𝜌′ is universal. The argument in [Kis03, Proposition

9.5] shows that there is in fact a directed system 𝐴◦𝑛, 𝑛 ∈ N≥1, satisfying (a) – (d) such that
⋃

𝑛 𝐴
◦
𝑛 = 𝐴.

Now if one has 𝑔1, 𝑔2 completing the diagram (8) to two commutative diagrams, there have to be
homomorphisms 𝑔◦1, 𝑔

◦
2 : 𝑅 ver

Λ′,𝜌′ → 𝐴◦𝑛 for n sufficiently large that give rise to 𝑔1 and 𝑔2, respectively.
The corresponding deformations 𝐺 → GL𝑛 (𝐴◦𝑛) of �̄�′ do agree over A and hence they will agree for n
sufficiently large, that is, they represent the same strict equivalence class. Because 𝑅 ver

Λ′,𝜌′ is universal,
they define the same ring maps 𝑔◦1 = 𝑔◦2 and hence 𝑔1 = 𝑔2. �

Applying Theorem 3.3.1 in the simplest nontrivial case will deduce the following corollary that will
be used in the proof of Lemma 3.3.5.
Corollary 3.3.4. Let 𝜅 be finite, let 𝜅′ be a finite extension of 𝜅 and let 𝐿 = 𝜅′((𝑠)) be the Laurent
series field over 𝜅′ with uniformizer s. Let 𝔮 be the kernel of the multiplication map 𝐿 ⊗𝜅 𝐿 → 𝐿. Then
𝑋 ↦→ 𝑠 ⊗ 1 − 1 ⊗ 𝑠 induces a continuous L-algebra isomorphism

𝜓 : 𝐿 [[𝑋]] �−→ 𝐿⊗̂𝐿 := lim
←−
𝑛

(𝐿 ⊗𝜅 𝐿)/𝔮𝑛.

Proof. We first show that 𝜓 is an isomorphism in the case 𝜅′ = 𝜅. Let 𝐺 = Ẑ be the free profinite group
on one topological generator 𝛾, and let �̄� : 𝐺 → GL1 (𝜅) be the trivial representation given by 𝛾 ↦→ 1.
Because 𝐻1(𝐺, 𝜅) � 𝜅 and 𝐻2(𝐺, 𝜅) = 0, we have 𝑅univ

Λ,𝜌 = Λ[[𝑇]] for the resulting universal ring with
universal deformation 𝜌𝑢 : 𝐺 → GL1(Λ[[𝑇]]) given by 𝛾 ↦→ 1 + 𝑇 .

Let 𝑓 : 𝑅univ
Λ,𝜌 = Λ[[𝑇]] → 𝐿 be the specialization that is given by reduction mod p composed

with the injection 𝜄 : 𝜅 [[𝑇]]↩→𝐿 = 𝜅((𝑠)), 𝑇 ↦→ 𝑠. The corresponding representation at L is 𝜌𝐿 : Γ →
GL1(𝐿), 𝛾 ↦→ 1 + 𝑠, and for its universal ring we find 𝑅univ

𝐿,𝜌𝐿
= 𝐿 [[𝑋]] with universal representation

𝜌𝑢𝐿 : Γ→ GL1 (𝐿 [[𝑋]]), 𝛾 ↦→ 1 + 𝑠 + 𝑋.

Let 𝑅 be the completion of 𝑅univ
Λ,𝜌 ⊗Λ 𝐿 = 𝜅 [[𝑇]] ⊗𝜅 𝐿 at the kernel 𝔮 of the homomorphism

𝑓𝐿 : 𝜅 [[𝑇]] ⊗𝜅 𝐿 → 𝐿 that maps 𝑔(𝑇) ⊗ ℎ ∈ 𝜅 [[𝑇]] ⊗𝜅 𝐿 to 𝑔(𝑠)ℎ ∈ 𝐿. Under 𝑓𝐿 , the nonzero elements
of 𝜅 [[𝑇]] ⊗ 1 map to 𝐿×, and therefore 𝜅 [[𝑇]] ⊗𝜅 𝐿 → 𝑅 extends to 𝜅((𝑇)) ⊗𝜅 𝐿 → 𝑅, and completion
gives an isomorphism 𝜅((𝑇))⊗̂𝜅𝐿

�−→ 𝑅. We now invoke Theorem 3.3.1. It asserts that the L-algebra
map

𝐿 [[𝑋]] = 𝑅univ
𝐿,𝜌𝐿

�−→ 𝑅 = 𝜅((𝑇))⊗̂𝐿,
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that, by its very definition, sends 𝜌𝑢𝐿 (𝛾) = 1 + 𝑠 + 𝑋 to (𝜌𝑢 ⊗Λ 𝐿) (𝛾) = 1 + 𝑇 ⊗ 1, is an isomorphism.
Because s on the left is mapped to 1 ⊗ 𝑠 on the right, we find that 𝑋 ↦→ 𝑇 ⊗ 1 − 1 ⊗ 𝑠. This proves the
assertion on 𝜓 for 𝜅′ = 𝜅.

To complete the proof, it remains to explain the reduction of a general finite extension 𝜅′ ⊃ 𝜅 to the
case 𝜅′ = 𝜅 just treated. For this observe that 𝐿 � 𝜅′((𝑠)) � 𝜅((𝑠)) ⊗𝜅 𝜅′ so that 𝐿 ⊗𝜅 𝐿 → 𝐿 can be
written as the map

𝜅((𝑠)) ⊗𝜅 𝜅((𝑠)) ⊗𝜅 (𝜅′ ⊗𝜅 𝜅′) → 𝜅′((𝑠)), 𝑓 ⊗ 𝑔 ⊗ 𝛼 ⊗ 𝛽 ↦→ 𝑓 𝑔𝛼𝛽.

Since 𝜅′ ⊃ 𝜅 is a finite Galois extension, the ring 𝐴 := 𝜅′ ⊗𝜅 𝜅′ is isomorphic to the product of fields
(𝜅′) [𝜅′:𝜅 ] , and A contains a primitive idempotent corresponding to each factor. Under the multiplication
map 𝐴 ⊗ 𝐴 → 𝜅′, 𝜆 ⊗ 𝜇 ↦→ 𝜆𝜇, all but one of these map to zero. Hence, all but one of these primitive
idempotents lie in 𝔮, and so they vanish under completion at 𝔮. One deduces 𝐿⊗̂𝜅𝐿 � 𝐿⊗̂𝜅′𝐿, and this
completes the reduction to 𝜅′ = 𝜅. �

The following result is needed in our applications of Theorem 3.3.1. Our focus is on the equicharac-
teristic case.

Lemma 3.3.5. Let R be in Â𝑟 𝜅 so that Char 𝑅 = 𝑝, let 𝔭 ∈ Spec 𝑅 be a point of dimension 1 so that
dim 𝑅/𝔭 = 1. Let 𝜅(𝔭) = Quot(𝑅/𝔭), and consider the homomorphism

𝜑 : 𝑅 ⊗𝜅 𝜅(𝔭) → 𝜅(𝔭), 𝑟 ⊗ 𝛼 ↦→ (𝑟 mod 𝔭) · 𝛼.

Set 𝔮 := ker 𝜑, and denote by 𝑅 the completion of 𝑅 ⊗𝜅 𝜅(𝔭) at the maximal ideal 𝔮 and by 𝑅𝔭 the
completion of 𝑅𝔭 at 𝑅𝔭𝔭. Then the following hold:

(a) One has an isomorphism 𝑅𝔭 [[𝑇]] � 𝑅.
(b) If 𝑅 is formally smooth over 𝜅(𝔭) of dimension d, then 𝑅𝔭 is regular of dimension 𝑑 − 1.

For a variant of Lemma 3.3.5 in the nonequicharacteristic case, see [BIP21, Lemma 3.36].

Proof. Consider 𝑅 → 𝑅𝔭 → 𝑅𝔭. Tensoring with 𝜅(𝔭) over 𝜅, it yields a diagram

𝑅 ⊗𝜅 𝜅(𝔭) ��

𝜄

��

𝑅𝔭 ⊗𝜅 𝜅(𝔭) ��

𝜄′

��� � � � � � �
𝑅𝔭 ⊗𝜅 𝜅(𝔭) =

(
lim
←−

𝑅𝔭/𝑅𝔭𝔭𝑛
)
⊗𝜅 𝜅(𝔭)

𝜄′′

��� � � � � � � � � � � �

𝑅 = lim
←−
(𝑅 ⊗𝜅 𝜅(𝔭))/𝔮𝑛,

where 𝜄 denotes completion and where the dashed arrows 𝜄′ and 𝜄′′ will now be constructed. For the
existence of 𝜄′, we use the universal property of localization. Thus, we need to show that 𝑅\𝔭 ⊗ 1 is
mapped under 𝜄 to the units in 𝑅. The ring 𝑅 is local with residue map induced from 𝜑, and therefore
we need to show that 𝜑 ◦ 𝜄(𝑅\𝔭 ⊗ 1) lies in 𝜅(𝔭)×, but this is clear from the definitions and the inclusion
𝑅/𝔭↩→𝜅(𝔭). Regarding 𝜄′′, we first note that 𝔭 ⊗𝜅 𝜅(𝔭) maps to 𝔮 under 𝜄 and hence 𝔭𝑛 ⊗𝜅 𝜅(𝔭) to 𝔮𝑛.
Hence, the existence of 𝜄′ gives a compatible system of homomorphisms 𝑅𝔭/𝑅𝔭𝔭𝑛 → (𝑅 ⊗𝜅 𝜅(𝔭))/𝔮𝑛,
and this provides the construction of 𝜄′′.

Let 𝜋 denote the reduction map 𝜋 : 𝑅 → 𝜅(𝔭), set 𝜑′ = 𝜋 ◦ 𝜄′ and 𝜑′′ = 𝜋 ◦ 𝜄′′ and define 𝔮′ = ker 𝜑′
and 𝔮′′ = ker 𝜑′′. Then the arguments just given provide a commutative diagram with canonical
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isomorphisms in the bottom row

𝑅 ⊗𝜅 𝜅(𝔭) ��

𝜄

��

𝑅𝔭 ⊗𝜅 𝜅(𝔭) ��

𝜄′

���
�
�

𝑅𝔭 ⊗𝜅 𝜅(𝔭)=
(
lim
←−

𝑅𝔭/𝑅𝔭𝔭𝑛
)
⊗𝜅 𝜅(𝔭)

𝜄′′

���
�
�

𝑅= lim
←−
(𝑅 ⊗𝜅 𝜅(𝔭))/𝔮𝑛

� �� 𝑅′ := lim
←−
(𝑅𝔭 ⊗𝜅 𝜅(𝔭))/𝔮′𝑛

� �� 𝑅′′= lim
←−
(𝑅𝔭 ⊗𝜅 𝜅(𝔭))/𝔮′′𝑛,

where by slight abuse of notation we denote the middle and right vertical maps again 𝜄′ and 𝜄′′. Note that
by the Cohen structure theorem in equal characteristic the ring 𝑅𝔭 contains 𝜅(𝔭) as a subfield. Focusing
on the right-most arrow and using that 𝑅𝔭 is regular if and only if 𝑅𝔭 is so, it will suffice to prove the
following assertion.

Let R be a complete Noetherian local 𝜅(𝔭)-algebra with residue field 𝜅(𝔭) and residue homomorph-
ism 𝜋 : R → 𝜅(𝔭), let 𝜓 : R ⊗𝜅 𝜅(𝔭) → 𝜅(𝔭) be the homomorphism 𝑟 ⊗ 𝑥 ↦→ 𝜋(𝑟) · 𝑥, let 𝔔 = ker𝜓
and let R̂ be the completion of R ⊗𝜅 𝜅(𝔭) at 𝔔. Then we assert that R̂ � R[[𝑡]].

To prove the assertion, note first that if S1 and S2 are 𝜅(𝔭)-algebras with maximal ideals 𝔓1 and 𝔓2
such that 𝜅(𝔭) is in both cases the residue field, then the completion of S := S1 ⊗𝜅 (𝔭) S2 at the maximal
ideal 𝔪 := 𝔓1 ⊗𝜅 (𝔭) S2 + S1 ⊗𝜅 (𝔭) 𝔓2 is isomorphic to

lim
←−

S1/𝔓𝑛
1 ⊗̂𝜅 (𝔭) lim

←−
S2/𝔓𝑛

2 .

If furthermore S1 is complete with respect to 𝔓1 and if lim←− S2/𝔓𝑛
2 � 𝜅(𝔭) [[𝑇]], then the

completion of S at 𝔪 is S1 [[𝑇]]. We apply this to S1 = R, S2 = 𝜅(𝔭) ⊗𝜅 𝜅(𝔭), 𝔓2 =
ker (𝜅(𝔭) ⊗𝜅 𝜅(𝔭) → 𝜅(𝔭), 𝑥 ⊗ 𝑦 ↦→ 𝑥𝑦). Then by Corollary 3.3.4, we have lim←− S2/𝔓𝑛

2 � 𝜅(𝔭) [[𝑇]],
and we deduce R̂ � R[[𝑇]]. �

Let us record the following consequence of Theorem 3.3.1 and Lemma 3.3.5.

Corollary 3.3.6. Suppose E is a local field and 𝜌 : 𝐺 → GL𝑛 (𝐸) is a continuous homomorphism. Let
𝜅 be the (finite) residue field of E, and let �̄� be the semisimple reduction of 𝜌 to 𝜅. Then

dim𝐸 𝐻1(𝐺, ad𝜌) ≤ dim𝜅 𝐻
1 (𝐺, ad�̄�).

Proof. The corollary will follow from the simple fact that the rank of a coherent sheaf cannot decrease
under specialization: Let O be the valuation ring of E. By possibly passing to a finite extension of E,
we may assume that 𝐸𝑛 contains a 𝜌(𝐺)-stable O-lattice whose reduction is �̄�. Let 𝑅 := 𝑅 ver

O,𝜌. We may
assume that R is Noetherian, that is, that dim𝜅 𝐻

1(𝐺, ad�̄�) is finite since else there is nothing to show.
Let also 𝑅 and 𝑅′ := 𝑅 ver

𝐸,𝜌 be as in Theorem 3.3.1, and denote by f a map 𝑓 : 𝑅 → O given by the
versality of R.

Denote by Ω̂𝑅/O = lim𝑛 Ω(𝑅/𝔪𝑛
𝑅)/O the module of continuous Kähler differentials. Since R is a

quotient of a power series ring over O in finitely many variables, as an R-module Ω̂𝑅/O is finitely
generated. By Nakayama’s lemma, we have

dim𝐸 Ω̂𝑅/O ⊗𝑅 𝐸 ≤ dim𝜅 Ω̂𝑅/O ⊗𝑅 𝜅.

Let 𝔭 = (Ker 𝑓 ), let 𝔪𝐸 = Ker(𝑅𝔭 → 𝐸), with the map induced from f, and let �̂�𝐸 be the maximal
ideal of 𝑅. Then by [BKM21, Lemma 7.3], we have Ω̂𝑅/O ⊗𝑅 𝐸 � 𝔭/𝔭2 ⊗𝑅 𝐸 � 𝔪𝐸/𝔪2

𝐸 , and
furthermore from Lemma 3.3.5 and Theorem 3.3.1, again combined with [BKM21, Lemma 7.3], we
obtain 𝔪𝐸/𝔪2

𝐸 ⊕ 𝐸 � �̂�𝐸/�̂�2
𝐸 � Ω̂𝑅/𝐸 ⊗𝑅 𝐸 → Ω̂𝑅′/𝐸 ⊗𝑅′ 𝐸 , where the last map is surjective. Hence,

dim𝐸 Ω̂𝑅′/𝐸 ⊗𝑅′ 𝐸 ≤ 1 + dim𝜅 Ω̂𝑅/O ⊗𝑅 𝜅.
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By [Maz97, §17, §21], the dual of Ω̂𝑅/O ⊗𝑅 𝜅 is the mod 𝔪O-tangent space of R at 𝔪𝑅 and the dual
of Ω̂𝑅′/𝐸 ⊗𝑅′ 𝐸 is the tangent space of 𝑅′ at 𝔪𝑅′ , and the latter can be identified with 𝐻1(𝐺, ad�̄�) and
𝐻1 (𝐺, ad𝜌), respectively. This proves the corollary. �

3.4. Relative formal smoothness of the determinant functor

A generalized Tate local duality: We recall a generalization of Tate local duality from [Nek06]. Let
first G be a profinite group and M a discrete G-module. Then one defines the continuous cohomology
𝐻𝑖 (𝐺, 𝑀) as lim−→𝑈 ∈𝔘 𝐻𝑖 (𝐺/𝑈, 𝑀𝑈 ), where 𝔘 is the set of all normal open subgroups of G; they form
a basis of open neighborhoods near the identity of G. This applies for instance if M is a 𝜅-vector space
with a continuous G-action and if 𝜅 is finite. Suppose, however, that 𝜅 is a local field and that M is
a finite-dimensional 𝜅-vector space that carries the natural topology induced from 𝜅 and a continuous
𝜅-linear G-action. Let O be the valuation ring of 𝜅 with maximal ideal 𝔪O and finite residue field
F. Because G is compact a standard argument shows that M contains a G-stable O-lattice L. Suppose
that G satisfies the finiteness condition (F) that for all open subgroups 𝑈 ⊂ 𝐺 and all 𝑖 ≥ 0 one has
dimF 𝐻𝑖 (𝑈, F) < ∞. In this case, one defines continuous cohomology via

𝐻𝑖 (𝐺, 𝑀) := lim
←−
𝑛

𝐻𝑖 (𝐺, 𝐿/𝔪𝑛
O𝐿) ⊗𝐿 𝜅,

and one shows that this definition is independent of any choices; it follows from [Nek06, 4.2.2] that this
definition agrees with the one used in [Nek06]. Note that one also has𝐻𝑖 (𝐺, 𝑀) = 𝑍 𝑖 (𝐺, 𝑀)/𝐵𝑖 (𝐺, 𝑀),
where 𝑍 𝑖 (𝐺, 𝑀) and 𝐵𝑖 (𝐺, 𝑀) denotes the continuous i-cocycles and i-coboundaries, respectively, and
one has 𝐻0 (𝐺, 𝑀) = 𝑀𝐺 . For 𝑖 = 1, 𝑍1 (𝐺, 𝑀) is the group of continuous maps 𝑐 : 𝐺 → 𝑀 with
𝑐(𝑔ℎ) = 𝑔𝑐(ℎ) + 𝑐(𝑔) for all 𝑔, ℎ ∈ 𝐺. Note, also, that all 1-coboundaries are continuous by the
continuity of the action of G on M; the latter no longer holds for n-coboundaries with 𝑛 ≥ 2.

The next result is a generalization of Tate local duality from finite field to local field coefficients. In the
form needed, it is due to Nekovář. Let V be a finite-dimensional 𝜅-vector space with the topology induced
from 𝜅, and suppose that V carries a continuous 𝜅-linear action by𝐺𝐾 . Write𝑉∨ for the dual Hom𝜅 (𝑉, 𝜅)
of V and 𝑉 (1) for the twist of V by the cyclotomic character. Set ℎ 𝑗 (𝐾,𝑉) := dim𝜅 𝐻

𝑗 (𝐺𝐾 , 𝑉).
Theorem 3.4.1 (Tate and Nekovář). The following assertions hold:
(a) One has ℎ 𝑗 (𝐾,𝑉) < ∞ for 𝑗 ∈ Z and ℎ 𝑗 (𝐾,𝑉) = 0 for 𝑗 ∉ {0, 1, 2};
(b) For 𝑗 ∈ {0, 1, 2} one has natural isomorphisms

𝐻2− 𝑗 (𝐺𝐾 , 𝑉
∨(1)) �−→ 𝐻 𝑗 (𝐺𝐾 , 𝑉)∨;

(c) One has the Euler characteristic formula∑
𝑗≥0
(−1) 𝑗ℎ 𝑗 (𝐾,𝑉) = −[𝐾 : Q𝑝] · dim𝐸 𝑉.

Proof. If 𝜅 is finite, the above statement is just the usual Tate local duality. If 𝜅 is local, let O be its
valuation ring. Because 𝐺𝐾 is compact, one can find an O-lattice T in V that is stable under 𝐺𝐾 .
Let 𝑗 ≥ 0. Then [Nek06, Theorem 5.2.6] asserts that each 𝐻 𝑗 (𝐺𝐾 , 𝑇

′), 𝑇 ′ ∈ {𝑇,𝑇∨(1)}, is a finitely
generated O-module and moreover it gives a spectral sequence

Ext𝑖O (𝐻
2− 𝑗 (𝐺𝐾 , 𝑇

∨(1)),O) =⇒ 𝐻𝑖+ 𝑗 (𝐺𝐾 , 𝑇). (9)

BecauseO is regular and of dimension 1, the groups Ext1O (·,O) are finitely generatedO-torsion modules
and Ext𝑖O (·,O) = 0 for 𝑖 ≥ 2. After tensoring the spectral sequence (9) with 𝜅 over O, Parts (b) and (a)
are clear. Part (c) follows from [Nek06, Theorem 4.6.9 and 5.2.11] applied to T, again after tensoring
with 𝜅 over O. �
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The determinant map: The determinant of representations induces a natural transformation

det : D�̄� → Ddet�̄� (10)

that maps the class of 𝜌 : 𝐺 → GL𝑛 (𝐴) to the class of det◦𝜌. The induced map on adjoint representations
is the trace map in the short exact sequence

0−→ ad0
�̄� −→ ad�̄�

tr−→ addet�̄� � 𝜅 −→ 0. (11)

Using that ad�̄� is self-dual it is easy to see that the sequence dual to the sequence (11) is

0−→ 𝜅
diag
−→ ad�̄� −→ ad�̄� −→ 0. (12)

We have the following explicit result on det for 𝐺 = 𝐺𝐾 and K a p-adic field with 𝑑 = [𝐾 : Q𝑝].

Lemma 3.4.2. Suppose that 𝐻0 (𝐺𝐾 , ad�̄� (1)) = 0. Then det : D�̄� → Ddet�̄� is smooth of relative dimen-
sion 𝑑 (𝑛2 − 1). This holds in particular, if 𝑝 𝑛, 𝜅 � End𝜅 [𝐺𝐾 ] ( �̄�) and 𝜁𝑝 ∈ 𝐾 .

Proof. Let 𝐴 → 𝐵 be a small extension in A𝑟Λ. Let I be its kernel so that 𝐼2 ⊂ 𝔪𝐴𝐼 = 0. For the
relative smoothness, we need to show the surjectivity of

D�̄� (𝐴) −→D�̄� (𝐵) ×Ddet�̄� (𝐵) Ddet�̄� (𝐴).

So suppose we are given deformations 𝜌𝐵 ∈ D�̄� (𝐵) and 𝜏𝐴 ∈ Ddet�̄� (𝐴) with det𝜌𝐵 = 𝜏𝐴 ⊗𝐴 𝐵 ∈
Ddet�̄� (𝐵). We need to find a deformation 𝜌𝐴 ∈ D�̄� (𝐴) such that 𝜌𝐴 ⊗𝐴 𝐵 = 𝜌𝐵 and det𝜌𝐴 = 𝜏𝐴.

Recall from [Maz89, p. 398] that there is a canonical obstruction class O(𝜌𝐵) ∈ 𝐻2(𝐺𝐾 , ad𝜌) ⊗𝜅 𝐼,
which vanishes if and only if there exists a deformation of �̄� to A that lifts 𝜌𝐵. Because of the existence
of the deformation 𝜏𝐴 that maps to det𝜌𝐵, the obstruction class O(det𝜌𝐵) ∈ 𝐻2(𝐺𝐾 , addet�̄�) ⊗𝜅 𝐼
vanishes. By Theorem 3.4.1, the long exact sequence of Galois cohomology arising from the sequence
(11) gives the left exact sequence

𝐻2 (𝐺𝐾 , ad0
�̄�) �� 𝐻2(𝐺𝐾 , ad�̄�)

𝐻 2 (tr) �� 𝐻2(𝐺𝐾 , 𝜅) �� 0

By Theorem 3.4.1 the sequence is dual to the right exact sequence

0 �� 𝐻0(𝐺𝐾 , 𝜅(1))
𝐻 0 (diag(1))�� 𝐻0 (𝐺𝐾 , ad�̄� (1)) �� 𝐻0 (𝐺𝐾 , ad�̄� (1)),

that arises from the sequence (12). By our hypothesis, the map 𝐻0(diag(1)) is an isomorphism, and
so by duality the same holds for 𝐻2 (tr). By a short explicit computation, one sees that O(𝜌𝐵) maps to
O(det𝜌𝐵) = 0 under 𝐻2(tr) ⊗𝜅 id𝐼 , and this implies the vanishing of O(𝜌𝐵).

We have now proved that there exists 𝜌′𝐴 ∈ D�̄� (𝐴) mapping to 𝜌𝐵 ∈ D�̄� (𝐵). However, this lift need
not satisfy det𝜌′𝐴 = 𝜏𝐴. At this point, we note that our hypothesis in fact implies that 𝐻2(𝐺𝐾 , ad0

�̄�) = 0
so that

𝐻1 (𝐺𝐾 , ad�̄�) −→𝐻1 (𝐺𝐾 , addet�̄�) = 𝐻1 (𝐺𝐾 , 𝜅) (13)

is surjective. Now, det𝜌′𝐴 and 𝜏𝐴 are deformations of 𝜏𝐵 and the space of all such deformations is a
principal homogeneous space under 𝐻1(𝐺𝐾 , 𝜅), that is, the tangent space of the deformation problem,
by [Sch68, Remark 2.15], and likewise the deformations of 𝜌𝐵 form a principal homogeneous space
under 𝐻1(𝐺𝐾 , ad�̄�). Since the map (13) is surjective we can thus alter 𝜌′𝐴 by a class in 𝐻1 (𝐺𝐾 , ad�̄�)
into some other deformation 𝜌𝐴 of 𝜌𝐵 that also satisfies det𝜌𝐴 = 𝜏𝐴. This completes the proof of the
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formal smoothness. Note also that if 𝑝 𝑛, then the above two sequences are exact on both sides and
hence 𝐻0(𝐺𝐾 , ad�̄� (1)) = 0.

By Proposition 3.1.5, it follows that the natural map 𝑅univ
det�̄� → 𝑅univ

�̄� is formally smooth of relative
dimension ℎ = ℎ1 (𝐾, ad�̄�) − ℎ1(𝐾, addet�̄�). It remains to identify h with the number in the lemma. Since
the map (13) is surjective, by the long exact sequence for 𝐻∗(𝐺𝐾 , ·) applied to the sequence (11), we
deduce

ℎ = ℎ1 (𝐾, ad0
�̄�) − ℎ0 (𝐾, addet�̄�) + ℎ0 (𝐾, ad�̄�) − ℎ0 (𝐾, ad0

�̄�) = ℎ1 (𝐾, ad0
�̄�) − 1 + 1 − ℎ0 (𝐾, ad0

�̄�).

Since ℎ2 (𝐾, ad0
�̄�) = 0 by hypothesis and the duality statement of Theorem 3.4.1, the Euler characteristic

formula of Theorem 3.4.1 implies ℎ = 𝑑 (𝑛2 − 1).
The last assertion is straightforward. If 𝑝 𝑛, then the sequence (11) splits; the second assumption now

yields 𝐻0 (𝐺𝐾 , ad0
�̄�) = 0. If now 𝜅 has characteristic zero, then 0 = 𝐻0(𝐺𝐾 , 𝜅(1)) � 𝐻0(𝐺𝐾 , ad�̄� (1))

and we are done. If on the other hand 𝜅 has characteristic p and 𝜁𝑝 ∈ 𝐾 , then ad0
�̄� = ad0

�̄� (1) and we are
done, as well. �

Let �̄�1 : 𝐺𝐾 → GL1 (𝜅) be a continuous character, and denote by �̄�0 : 𝐺𝐾 → GL1(𝜅) the trivial
character. If 𝜅 is finite, denote by 𝜌1 : 𝐺𝐾 → GL1(Λ) the Teichmüller lift of �̄�1, if 𝜅 is a local field,
set 𝜌1 := �̄�1. There is a natural isomorphism D�̄�0 → D�̄�1 mapping a deformation 𝜌 : 𝐺𝐾 → GL1 (𝐴)
to 𝜌 ⊗ 𝜌1. As already observed in [Maz89, §1.4], D�̄�0 is representable by the completed group ring
Λ[[𝐺ab, 𝑝

𝐾 ]], where𝐺ab, 𝑝
𝐾 is the completion of the abelianization𝐺ab

𝐾 of𝐺𝐾 along normal open subgroups
of p-power index; the universal homomorphism

𝐺𝐾 → (Λ[[𝐺ab, 𝑝
𝐾 ]])×

factors via 𝐺ab, 𝑝
𝐾 and sends 𝑔 ∈ 𝐺ab, 𝑝

𝐾 to itself as a unit element in Λ[[𝐺ab, 𝑝
𝐾 ]]. The reciprocity

homomorphisms of local class field theory, yields an isomorphism

rec𝑝 : 𝐾×, 𝑝 → 𝐺ab, 𝑝
𝐾 ,

where 𝐾×, 𝑝 is the pro-p completion of the multiplicative group 𝐾×. The torsion subgroup of 𝐾×, 𝑝 is
naturally identified with the group 𝜇𝑝∞ (𝐾) of p-power roots of unity in K. Combining this with det from
diagram (10), we have the following chain of natural ring homomorphisms in Â𝑟Λ

Λ[𝜇𝑝∞ (𝐾)] −→Λ[[𝐾×, 𝑝]] �−→ 𝑅ver
Λ,det𝜌 −→ 𝑅ver

Λ,𝜌 . (14)

Corollary 3.4.3 (Cf. [Nak14, §4]). Let 𝜅 be finite or a local field of characteristic p, and suppose Λ = 𝜅.
Suppose that 𝐻0(𝐺𝐾 , ad�̄� (1)) = 0. Then the following hold:

(a) Both morphisms in diagram (14) are formally smooth.
(b) Both morphism in the following induced diagram are formally smooth:

Λ = Λ[𝜇𝑝∞ (𝐾)]red −→Λ[[𝐾×, 𝑝]]red
�−→ (𝑅ver

Λ,det𝜌)red −→ (𝑅ver
Λ,𝜌)red.

The relative dimensions in both cases are 𝑑 + 1 and 𝑑 (𝑛2 − 1), respectively.

Proof. Let 𝑞 := ord 𝜇𝑝∞ (𝐾). By Lemma 3.4.2, the natural map 𝑅univ
det𝜌−→𝑅univ

𝜌 is formally smooth of

relative dimension ℎ = 𝑑 (𝑛2 − 1). From the theory of local fields, one has 𝐾×, 𝑝 � Z[𝐾 :Q𝑝 ]+1
𝑝 × 𝜇𝑝∞ (𝐾),

where 𝜇𝑝∞ (𝐾) is a finite cyclic group of p-power order q. By our hypothesis on the characteristic of 𝜅,
the right-hand morphism in diagram (14) can be identified with

𝜅 [𝑥]/(𝑥𝑞) → 𝜅 [[𝑥1, . . . , 𝑥𝑑 , 𝑥]]/(𝑥𝑞),
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and parts (a) and (b) for it are now obvious. To see the second part of (b), note that the kernel of
the reduction map 𝜅 [𝑥]/(𝑥𝑞) → 𝜅 is nilpotent. Hence, the kernel of the induced map 𝜑 : 𝑅 ver

Λ,𝜌 →
𝑅 ver

Λ,𝜌 ⊗𝜅 [𝑥 ]/(𝑥𝑞 ) 𝜅 is nilpotent as well, and the map 𝑅 ver
Λ,𝜌 → (𝑅

ver
Λ,𝜌)red factors via 𝜑. At the same time,

formal smoothness is preserved under base change. Hence, 𝜅 → 𝑅 ver
Λ,𝜌 ⊗𝜅 [𝑥 ]/(𝑥𝑞 ) 𝜅 is formally smooth,

and therefore 𝑅 ver
Λ,𝜌⊗𝜅 [𝑥 ]/(𝑥𝑞 ) 𝜅 is regular and in particular a domain. We deduce that 𝑅 ver

Λ,𝜌⊗𝜅 [𝑥 ]/(𝑥𝑞 ) 𝜅 →
(𝑅 ver

Λ,𝜌)red is an isomorphism, and this completes (b). �

We end this subsection with a computation of 𝐻0(𝐺𝐾 , ad𝜌 ⊗ 𝜒) and a variant of Lemma 3.4.2 for
certain reducible deformations.

Lemma 3.4.4. Let E be a finite or local field with its natural topology. Denote by 𝜌𝑖 : 𝐺𝐾 → GL𝑛𝑖 (𝐸)

continuous Galois representations for 𝑖 = 1, 2, and let 𝜌 =

(
𝜌1 𝑐
0 𝜌2

)
be an extension of 𝜌1 by 𝜌2. Let

𝜒 : 𝐺𝐾 → 𝐸× be a continuous character and write 1 for the trivial character. Suppose that

(a) Hom𝐺𝐾 (𝜌1, 𝜌2 ⊗ 𝜒) = 0 and Hom𝐺𝐾 (𝜌2, 𝜌1 ⊗ 𝜒) = 0.
(b) For 𝑖 = 1, 2, we have End𝐺𝐾 (𝜌𝑖) � 𝐸 if 𝜒 = 1 and Hom𝐺𝐾 (𝜌𝑖 , 𝜌𝑖 ⊗ 𝜒) = 0 if 𝜒 ≠ 1.
(c) If 𝜒 = 1, then the class 𝑐 ∈ Ext1𝐺𝐾

(𝜌2, 𝜌1) is nontrivial,

Then End𝐺𝐾 (𝜌) � 𝐸 if 𝜒 = 1 and Hom𝐺𝐾 (𝜌, 𝜌 ⊗ 𝜒) = 0 if 𝜒 ≠ 1.

Proof. To determine Hom𝐺𝐾 (𝜌, 𝜌 ⊗ 𝜒), we consider 𝐴𝑖 𝑗 ∈ Mat𝑛𝑖×𝑛 𝑗 (𝐸) for 1 ≤ 𝑖, 𝑗 ≤ 2 such that

0 !
=

(
𝐴11 𝐴12
𝐴21 𝐴22

) (
𝜌1 𝑐
0 𝜌2

)
−
(
𝜌1 ⊗ 𝜒 𝑐 ⊗ 𝜒

0 𝜌2 ⊗ 𝜒

) (
𝐴11 𝐴12
𝐴21 𝐴22

)
=

(
𝐴11𝜌1 𝐴11𝑐 + 𝐴12𝜌2
𝐴21𝜌1 𝐴21𝑐 + 𝐴22𝜌2

)
−
(
𝜌1 ⊗ 𝜒 · 𝐴11 + 𝑐 ⊗ 𝜒 · 𝐴21 𝜌1 ⊗ 𝜒 · 𝐴12 + 𝑐 ⊗ 𝜒 · 𝐴22

𝜌2 ⊗ 𝜒 · 𝐴21 𝜌2 ⊗ 𝜒 · 𝐴22

)
.

From hypothesis (a) and considering the (2,1)-entry, we deduce 𝐴21 = 0. From hypothesis (b) and
considering the (1,1)- and (2,2)-entries, we deduce, depending on 𝜒 the following: If 𝜒 = 1, then 𝐴𝑖𝑖
are scalar for 𝑖 = 1, 2, say equal to 𝜆𝑖1𝑛𝑖 for some 𝜆𝑖 ∈ 𝐸 , respectively; if 𝜒 ≠ 1, then both 𝐴𝑖𝑖 = 0.
Considering the (1, 2)-entry, we obtain the relation

𝐴11𝑐 − 𝑐 ⊗ 𝜒 · 𝐴22 = 𝜌1 ⊗ 𝜒 · 𝐴12 − 𝐴12𝜌2.

If 𝜒 ≠ 1, the left-hand side is zero, and from (a) we deduce 𝐴12 = 0 so that the proof in this case
is complete. If 𝜒 = 1, then we have (𝜆1 − 𝜆2)𝑐 = 𝜌1𝐴12 − 𝐴12𝜌2. Now, 𝑔 ↦→ 𝜌1(𝑔)𝐴12 − 𝐴12𝜌2 (𝑔)
is a 1-coboundary with values in Hom𝐺𝐾 (𝜌2, 𝜌1), and so if 𝜆1 ≠ 𝜆2 the last condition implies that
c is the trivial class in Ext1𝐺𝐾

(𝜌2, 𝜌1) which is excluded by hypothesis (c). This shows 𝜆1 = 𝜆2, and
𝐴12 ∈ Hom𝐺𝐾 (𝜌2, 𝜌1), and hence 𝐴12 = 0, again by (a). This completes the proof. �

For Proposition 5.3.3, we also need a variant of Corollary 3.4.3 for certain reducible 𝜌. So for the
remainder of this subsection let 𝜌𝑖 : 𝐺𝐾 → GL𝑛𝑖 (𝜅), 𝑖 = 1, 2, be absolutely irreducible, and assume
that 𝜌1 is not isomorphic to 𝜌2 ( 𝑗) for 𝑗 ∈ {0,±1}. Let further �̄� be a nonsplit extension of dimension
𝑛 = 𝑛1 + 𝑛2 that fits into a short exact sequence 0 → �̄�1 → �̄� → �̄�2 → 0. Define the subfunctor
D�̄�1⊂�̄� ⊂ D�̄� by mapping A in A𝑟Λ to the set of Γ𝑛 (𝐴)-conjugacy classes of liftings 𝜌𝐴 of �̄� to A such
that 𝜌𝐴 stabilizes an A-direct summand 𝑃𝐴 of 𝐴𝑛 of rank 𝑛1 so that the induced representation of 𝜌𝐴 on
𝑃𝐴 is a deformation of �̄�1; because of the shape of 𝜌 the deformations described by D�̄�1⊂�̄� are precisely
the ‘reducible’ deformations of �̄�. In fact:

Lemma 3.4.5. D�̄�1⊂�̄� ⊂D�̄� is a relatively representable subfunctor in the sense of [Maz97,§19].
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Proof. In lack of a reference, we give a proof. Given a diagram 𝐴→ 𝐵 ← 𝐶 in A𝑟Λ, one has to show
that the induced diagram

D�̄�1⊂�̄� (𝐴 ×𝐵 𝐶) ��

��

D�̄�1⊂�̄� (𝐴) ×D�̄�1⊂�̄� (𝐵) D�̄�1⊂�̄� (𝐶)

��
D�̄� (𝐴 ×𝐵 𝐶) �� D�̄� (𝐴) ×D�̄� (𝐵) D�̄� (𝐶)

is a pullback in the category of sets. To see this, suppose (𝜌𝐴, 𝜌𝐶 ) is an element in the top right
and 𝜌𝐴×𝐵𝐶 in the bottom left, both mapping to the same element in the bottom right. Then (𝜌𝐴, 𝜌𝐶 )
gives rise to a pair of subrepresentations (𝜌1

𝐴, 𝜌
1
𝐶 ) that are deformations of �̄�1 and a pair of quotient

representations (𝜌2
𝐴, 𝜌

2
𝐶 ) that are deformations of �̄�2 and each pair maps to the same element on B,

say 𝜌1
𝐵 and 𝜌2

𝐵, respectively. By our hypotheses on the �̄�𝑖 the respective deformation functors D�̄�𝑖 are
representable so that each pair patches to a deformations 𝜌1

𝐴×𝐵𝐶
of �̄�1 and 𝜌2

𝐴×𝐵𝐶
of �̄�2 on 𝐴 ×𝐵 𝐶,

respectively. It now follows from [Urb99, Theorem] that 𝜌𝐴×𝐵𝐶 lies in D�̄�1⊂�̄� (𝐴 ×𝐵 𝐶) with 𝜌1
𝐴×𝐵𝐶

as
a sub and 𝜌2

𝐴×𝐵𝐶
as a quotient representation. �

Now, by Lemma 3.4.4 we have End𝐺𝐾 ( �̄�) � 𝜅 so that D�̄� is representable. By Lemma 3.4.5, it
follows that D�̄�1⊂�̄� is a closed subfunctor that is representable by a quotient of 𝑅univ

�̄� in Â𝑟Λ. Let
𝜌univ
�̄�1⊂�̄� : 𝐺𝐾 → GL𝑛 (𝑅univ

�̄�1⊂�̄�) be a universal representation for D�̄�1⊂�̄�. By the shape of 𝜌 and the
reducibility of 𝜌univ

�̄�1⊂�̄�, we can choose a suitable basis for 𝜌univ
�̄�1⊂�̄� so that

𝜌univ
�̄�1⊂�̄� =

(
𝜌univ,1
�̄�1⊂�̄� ∗
0 𝜌univ,2

�̄�1⊂�̄�

)
for representations 𝜌univ,𝑖

�̄�1⊂�̄� : 𝐺𝐾 → GL𝑛𝑖 (𝑅univ
�̄�1⊂�̄�), and ∗ a suitable nontrivial extension class. Here, the

𝜌univ,𝑖
�̄�1⊂�̄� are unique up to conjugation.

We now adapt the setting developed before Lemma 3.4.2 to the present situation. Namely, one has a
natural functor

det2 : D�̄�1⊂�̄� → Ddet�̄�1 ×Ddet�̄�2 ,

which for 𝐴 ∈ Â𝑟Λ attaches to 𝜌𝐴 ∈ D�̄�1⊂�̄� (𝐴) with 𝜌𝐴-stable direct summand 𝑃𝐴(� 𝐴𝑛1) of 𝐴𝑛 the
pair (det(𝜌𝐴 |𝑃𝐴

), det(𝜌𝐴 mod 𝑃𝐴)) of deformations of (det𝜌1, det𝜌2). Let ad�̄�1⊂�̄� ⊂ ad�̄� be the block
upper triangular subspace of matrices that preserve �̄�1. Mapping matrices to the diagonal blocks gives
a surjection 𝜋 : ad�̄�1⊂�̄� ⊂ ad�̄� → ad�̄�1 ⊕ ad�̄�2 , and we denote by ad00

�̄�1⊂�̄� ⊂ ad�̄�1⊂�̄� the inverse image of
ad0

�̄�1
⊕ ad0

�̄�2
under 𝜋, and by rad�̄�1⊂�̄� the kernel of 𝜋.

Now, as in the proof of Lemma 3.4.2, obstructions to the smoothness of det2 lie in the group
𝐻2 (𝐺𝐾 , ad00

�̄�1⊂�̄�). Using the short exact sequence 0→ rad�̄�1⊂�̄� → ad00
�̄�1⊂�̄� → ad0

�̄�1
× ad0

�̄�2
→ 0, and the

vanishing of 𝐻2 (𝐺𝐾 , rad�̄�1⊂�̄�)∗ � 𝐻0(𝐺𝐾 ,Hom( �̄�1, �̄�2) (1)) � Hom𝐺𝐾 ( �̄�1, �̄�2 (1)), that relies on local
Tate-duality from Theorem 3.4.1 and 𝜌1 � �̄�2 (1), one finds

𝐻2(𝐺𝐾 , ad00
�̄�1⊂�̄�) � 𝐻2(𝐺𝐾 , ad0

�̄�1
⊕ ad0

�̄�2
). (15)

Again, from Tate local duality one deduces that det2 is formally smooth if 𝐻0(𝐺𝐾 , ad�̄�𝑖 (1)) = 0 for
𝑖 = 1, 2. Assuming this, the map of rings 𝑅univ

det�̄�1
⊗̂Λ𝑅univ

det�̄�2
→ 𝑅univ

�̄�1⊂�̄� is formally smooth and the relative
dimension is given by

ℎ = dim im
(
𝐻1(𝐺𝐾 , ad�̄�1⊂�̄�) → 𝐻1(𝐺𝐾 , ad�̄�)

)
− 2 dim𝐻1(𝐺𝐾 , 𝜅).
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To compute h, observe first that 𝐻1(𝐺𝐾 , ad�̄�1⊂�̄�) → 𝐻1(𝐺𝐾 , ad�̄�) is injective because ad�̄�/ad�̄�1⊂�̄� �
Hom𝜅 ( �̄�1, �̄�2) and Hom𝐺𝐾 ( �̄�1, �̄�2) = 0. The quantity dim𝐻1 (𝐺𝐾 , 𝜅) was computed in the proof
of Corollary 3.4.3 to be 1 + 𝑑 + 𝛿𝑝 , where 𝛿𝑝 = 0 if 𝜁𝑝 ∉ 𝐾 and 𝛿𝑝 = 1 if 𝜁𝑝 ∈ 𝐾 . Finally,
dim𝐻1 (𝐺𝐾 , ad�̄�1⊂�̄�) is computed by the Euler–Poincaré formula of local Tate duality: Lemma 3.4.4
yields 𝐻0 (𝐺𝐾 , ad�̄�1⊂�̄�) = 𝐻0 (𝐺𝐾 , ad�̄�) � 𝜅, and in the same way in which we deduced the isomorphism
(15), we obtain 𝐻2 (𝐺𝐾 , ad�̄�1⊂�̄�) � 𝐻2(𝐺𝐾 , ad�̄�1 ⊕ ad�̄�2), and by local Tate duality the latter has
dimension 2𝛿𝑝 . In total, we find

ℎ = (𝑑 · dim ad�̄�1⊂�̄� + 1 + 2𝛿𝑝) − 2(𝑑 + 1 + 𝛿𝑝) = 𝑑 dim ad00
�̄�1⊂�̄� − 1.

One also easily adapts the proof of Corollary 3.4.3. The following result summarizes the conclusions
needed later. For the last assertion, one does not consider the map det2 but uses a variant of Theorem
3.2.4(e).
Proposition 3.4.6 Let 𝜅 be finite or a local field of characteristic p, let Λ = 𝜅 and suppose that �̄� is a
nonsplit extension of �̄�2 by �̄�1 and that �̄�1 is not isomorphic to �̄�2( 𝑗) for 𝑗 ∈ {0,±1}.

If 𝐻0(𝐺𝐾 , ad�̄�𝑖 (1)) = 0 for 𝑖 = 1, 2, then:

(a) det2 : D�̄�1⊂�̄� → Ddet�̄�1 ×Ddet�̄�2 is formally smooth of relative dimension 𝑑 (𝑛2 − 𝑛1𝑛2 − 2) − 1.
(b) The ring (𝑅univ

�̄�1⊂�̄�)red is formally smooth over 𝜅 of dimension 𝑑 (𝑛2 − 𝑛1𝑛2) + 1.

If on the other hand 𝐻0(𝐺𝐾 , ad�̄�𝑖 (1)) = 0 for 𝑖 = 1, 2, then 𝑅univ
�̄�1⊂�̄� is formally smooth over 𝜅 of

dimension 𝑑 (𝑛2 − 𝑛1𝑛2) + 1.

4. Pseudocharacters and their deformations

In this section, we recall main definitions and results on polynomial laws and pseudocharacters. We
assume that the reader is familiar with [Che11; Che14; WE18]. Nevertheless, we will give many
reminders. Each subsection gives a short survey over its contents. In Proposition 4.3.9, we prove an
analog of the locus of reducibility of [BC09, Proposition 1.5.1] in the context of pseudocharacters.
In Subsections 4.5 and 4.6, we introduce twisting and induction as operations on pseudocharacters.
In Proposition 4.7.4, we sketch the existence of a universal ring for continuous pseudodeformation
where the residue field is a local field and in Proposition 4.7.6 we consider such rings under change of
coefficients. These are adaptions of well-known results. Subsection 4.8 presents in detail several results
on dimension 1 points in universal pseudodeformation spaces.

Throughout this section, A will be a commutative unital ring with 0 ≠ 1. If A is local, we write 𝔪𝐴

for its maximal ideal and 𝜅(𝐴) for its residue field. We write A𝑙𝑔𝐴 for the category of A-algebras and
CA𝑙𝑔𝐴 for the full subcategory of commutative A-algebras. By 𝑅, 𝑆, we always denote objects of A𝑙𝑔𝐴
and by B an object of CA𝑙𝑔𝐴. For an A-algebra R, we denote by 𝑅𝑜 the A-algebra with the multiplication
of R reversed. By G, we denote a group and by 𝐵[𝐺] the group algebra over B for any 𝐵 ∈ CA𝑙𝑔𝐴. The
letters 𝑚, 𝑛 (also with indices) will denote nonnegative integers. If 𝜌 : 𝐺 → GL𝑛 (𝐵) is a representation,
then by 𝜌lin : 𝐵[𝐺] → Mat𝑛×𝑛 (𝐵) we denote its linearization given by

∑
𝑖 𝑏𝑖𝑔𝑖 ↦→

∑
𝑖 𝑏𝑖𝜌(𝑔𝑖).

4.1. Pseudocharacters

In this subsection, we introduce pseudocharacters, Azumaya algebras and Cayley–Hamilton A-algebras.
Of particular importance is Proposition 4.1.10, which says that a pseudocharacter is determined by its
characteristic polynomial coefficients.

For an A-module M, we define the functor 𝑀 : CA𝑙𝑔𝐴→ 𝑆𝑒𝑡𝑠, 𝐵 ↦→ 𝑀 ⊗𝐴 𝐵.
Definition 4.1.4 [Che14, §1.1]. Let M and N be A-modules.
(a) An A-polynomial law 𝑃 : 𝑀 → 𝑁 is a natural transformation 𝑀 → 𝑁 . that is, P is a family of

maps 𝑃𝐵 : 𝑀 ⊗𝐴 𝐵→ 𝑁 ⊗𝐴 𝐵 for all 𝐵 ∈ Ob(CA𝑙𝑔𝐴) that induce commutative diagrams for every
morphism in CA𝑙𝑔𝐴.
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(b) An A-polynomial law 𝑃 : 𝑀 → 𝑁 is called homogeneous of degree n if

𝑃𝐵 (𝑏𝑥) = 𝑏𝑛𝑃𝐵 (𝑥) for all 𝐵 ∈ Ob(CA𝑙𝑔𝐴), 𝑏 ∈ 𝐵 and 𝑥 ∈ 𝑀 ⊗𝐴 𝐵.

We let P𝑛
𝐴(𝑀, 𝑁) denote the set of all such.

Let 𝑆, 𝑆′ be objects in A𝑙𝑔𝐴 so that in particular they are A-modules.

(c) An A-polynomial law 𝑃 : 𝑆 → 𝑆′ is called multiplicative if

𝑃𝐵 (1) = 1 and 𝑃𝐵 (𝑥𝑦) = 𝑃𝐵 (𝑥)𝑃𝐵 (𝑦) for all 𝐵 ∈ Ob(CA𝑙𝑔𝐴) and 𝑥, 𝑦 ∈ 𝑆 ⊗𝐴 𝐵.

(d) We write M𝑛
𝐴(𝑆, 𝑆

′) for the set of multiplicative A-polynomial laws 𝑃 : 𝑆 → 𝑆′ that are homoge-
neous of degree n.

(d) A pseudocharacter on 𝑆 of dimension n is an A-polynomial law 𝐷 : 𝑆 → 𝐴 that is multiplicative
and homogeneous of degree n. We let P𝑠R𝑛

𝑆 (𝐴) be the set of all such.
(e) If 𝑆 = 𝐴[𝐺] in (d), we call 𝐷 an A-valued pseudocharacter on G of dimension n, and we write

P𝑠R𝑛
𝐺 (𝐴) for P𝑠R𝑛

𝐴[𝐺 ] (𝐴); occasionally we write 𝐷 : 𝐺 → 𝐴 for 𝐷 : 𝐴[𝐺] → 𝐴, and then we
explicitly refer to 𝐷 as a pseudocharacter on G.

Remark 4.1.2 [Che14, after Example 1.2]. A homogeneous polynomial law P of degree n is uniquely
determined by 𝑃𝐴[𝑇1 ,...,𝑇𝑚 ] : 𝑀 [𝑇1, . . . , 𝑇𝑚] → 𝑁 [𝑇1, . . . , 𝑇𝑚] for all 𝑚 ≥ 0.

Facts 4.1.3. The following facts are easy to verify.

(a) The only multiplicative polynomial law of degree zero is the constant map with value 1.
(b) Multiplicative polynomial laws that are homogeneous of degree 1 are A-algebra homomorphisms

and vice versa.
(c) The composition of polynomial laws is a polynomial law; if both are homogeneous, the composition

is homogeneous and its degree is the product of the individual degrees.
(d) The composition of multiplicative polynomial laws is multiplicative.
(e) If 𝐷 : 𝑆 → 𝐴 is an A-valued pseudocharacter, then for any 𝐵 ∈ CA𝑙𝑔𝐴, the base change 𝐷 ⊗𝐴

𝐵 : 𝑆 ⊗𝐴 𝐵→ 𝐵 is a B-valued pseudocharacter.

Definition 4.1.4 (pseudocharacter of a representation). Let 𝜌 : 𝐺 → GL𝑛 (𝐴) be a representation. The
pseudocharacter 𝐷𝜌 attached to 𝜌 is the polynomial law that to any 𝐵 ∈ CA𝑙𝑔𝐴 attaches the composition
of the determinant det : Mat𝑛×𝑛 (𝐵) → 𝐵 with the morphism (𝜌 ⊗𝐴 𝐵)lin.

Let 𝐷 be a pseudocharacter on G over A. Because 𝐷 is multiplicative, we have 𝐷 (𝑔ℎ) = 𝐷 (𝑔)𝐷 (ℎ)
for 𝑔, ℎ ∈ 𝐺 and 𝐷 (1) = 1. Thus, the map 𝜑 : 𝐺 → 𝐴×, 𝑔 ↦→ 𝐷𝐴(𝑔) is a group homomorphism, and
Definition 4.1.4 associates the pseudocharacter 𝐷𝜑 to 𝜑.

Definition 4.1.5 (Determinant of a pseudocharacter). We call det(𝐷) := 𝐷𝜑 the determinant of 𝐷.

Reminder 4.1.6. From [Mil80, §IV.1 – IV.2], we recall the notion of Azumaya algebra and some of its
properties. Let first A be a local ring with residue field 𝜅. An algebra 𝐶 ∈ A𝑙𝑔𝐴 is called an Azumaya
A-algebra if C is free of finite rank as an A-module and if in A𝑙𝑔𝐴 the map

𝐶 ⊗𝐴 𝐶◦ −→End𝐴(𝐶), 𝑐 ⊗ 𝑐′ ↦−→ (𝑥 ↦→ 𝑐𝑥𝑐′),

is an isomorphism; equivalently, there exists a finite étale morphism 𝐴 → 𝐵 such that 𝐶 ⊗𝐴 𝐵 �
Mat𝑚×𝑚(𝐵) for some m. One calls m the degree of C; it satisfies rank𝐴𝐶 = 𝑚2. Moreover, C carries a
reduced norm map det𝐶 : 𝐶 → 𝐴 characterized by the property that det𝐶 ⊗𝐴 𝐵 is the determinant on
Mat𝑚×𝑚(𝐵). Its extension to 𝐶 [𝑡] defines a reduced characteristic polynomial 𝜒𝑐 := det𝐶 [𝑡 ] (𝑡 − 𝑐) ∈
𝐴[𝑡], monic of degree m, for any 𝑐 ∈ 𝐶. Lastly, 𝐶 ⊗ 𝜅 is a central simple algebra over 𝜅.

Let now X be a scheme. An O𝑋 -algebra C is called an Azumaya algebra over X if C is coherent as an
O𝑋 -module and if for all 𝑥 ∈ 𝑋 , the stalk C𝑥 is an Azumaya algebra over O𝑋,𝑥 ; equivalently, there exists
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a Zariski cover {𝑈𝑖} of X and for each i a finite étale surjective cover 𝑈 ′𝑖 → 𝑈𝑖 and an isomorphism
C ⊗O𝑋 O𝑈 ′𝑖

�→ Mat𝑚𝑖×𝑚𝑖 (O𝑈 ′𝑖
) for suitable 𝑚𝑖 ∈ N≥1. In particular, the degree function 𝑚 : 𝑋 → N≥1

such that rankO𝑋C = 𝑚2 is locally constant. Also, the reduced norm exists as a map detC : C → O𝑋 .
For 𝑋 = Spec 𝐴 affine, one calls 𝐶 = C (𝑋) an Azumaya A-algebra.

Example 4.1.7. Let C be an Azumaya A-algebra of degree n with reduced norm det𝐶 :𝐶 → 𝐴.

(a) The family of reduced norms (det𝐶 ⊗𝐴 𝐵 : 𝐶 ⊗𝐴 𝐵 → 𝐵)𝐵∈CA𝑙𝑔𝐴
defines a pseudocharacter, also

called det𝐶 , of dimension n; see [Che14, §1.5].
(b) If 𝐷 : 𝐶 → 𝐴 is any pseudocharacter of dimension 𝑛′, then by [Che14, Lemma 2.15], we have 𝑛|𝑛′

and 𝐷 = det𝑛
′/𝑛

𝐶 .

An important notion for pseudocharacters is that of characteristic polynomial.

Lemma 4.1.8 [Che14, §1.10]. Let 𝐷 ∈ P𝑠R𝑛
𝑆 (𝐴). Define 𝜒𝐷,𝐵 (·, 𝑡) : 𝑆 ⊗𝐴 𝐵−→𝐵[𝑡] by the formula

𝑠 ↦→ 𝐷𝐵 [𝑡 ] (𝑡 − 𝑠) for all 𝐵 ∈ Ob(CA𝑙𝑔𝐴) and 𝑠 ∈ 𝑆 ⊗𝐴 𝐵. Then the following hold:

(a) 𝜒𝐷 (·, 𝑡) : 𝑆 → 𝐴[𝑡] is a multiplicative homogeneous polynomial law of degree n.
(b) There exist unique A-polynomial laws Λ𝐷,𝑖 : 𝑆 → 𝐴 of degree i, 𝑖 = 0, . . . , 𝑛 such that

𝜒𝐷 (·, 𝑡) =
𝑛∑
𝑖=0
(−1)𝑖Λ𝐷,𝑖 (·)𝑡𝑛−𝑖 .

(c) Λ𝐷,0 = 1 and Λ𝐷,𝑛 = 𝐷.
(d) The maps 𝑠 ↦→

∑𝑛
𝑖=0(−1)𝑖Λ𝐷,𝑖 (𝑠)𝑠𝑛−𝑖 for all 𝐵 ∈ Ob(CA𝑙𝑔𝐴) and 𝑠 ∈ 𝑆⊗𝐴𝐵 define a multiplicative

A-polynomial law 𝜒𝐷 : 𝑆 → 𝑆 that is homogeneous of degree n.

Definition 4.1.9. [Che14, §1.10] Let 𝑆, 𝐷, 𝜒𝐷 (·, 𝑡) and Λ𝐷,𝑖 be as in Lemma 4.1.8.

(a) The polynomial law 𝜒𝐷 (·, 𝑡) is called the characteristic polynomial of 𝐷.
(b) The polynomial law Λ𝐷,𝑖 is called the 𝑖th characteristic polynomial coefficient of 𝐷.
(c) The A-linear map 𝜏𝐷 := Λ𝐷,1 is called the trace associated with 𝐷.

An important tool to extract properties of multiplicative homogeneous polynomial laws is Amit-
sur’s formula; see [Che14, Formula (1.5)]. It expresses values of such laws in terms of characteristic
polynomial coefficients. Using this, one deduces the following result:

Proposition 4.1.10 [Che14, Corollary 1.14], [WE13, 1.1.9.15]. Let 𝐷 ∈ P𝑠R𝑛
𝐺 (𝐴).

(a) The characteristic polynomial coefficients (Λ𝐷,𝑖 : 𝐺 → 𝐴)𝑖=1,...,𝑛 characterize 𝐷.
(b) Let 𝐶 ⊂ 𝐴 be the subring generated by {Λ𝐷,𝑖 (𝑔) : 𝑔 ∈ 𝐺, 𝑖 = 1, . . . , 𝑛}. Then 𝐷 factors through a

unique C-valued pseudocharacter 𝐷𝐶 on G of dimension n.

A natural operation on pseudocharacters is the formation of direct sums.2

Definition 4.1.11 [WE13, §1.1.11]. Let 𝑆, 𝑆1, 𝑆2 be A𝑙𝑔𝐴 and B in CA𝑙𝑔𝐴.

(a) The direct sum of multiplicative homogeneous A-polynomial laws 𝑃𝑖 : 𝑆𝑖 → 𝐵 of degree 𝑛𝑖 , 𝑖 = 1, 2,
is the multiplicative homogeneous A-polynomial law of degree 𝑛1 + 𝑛2 given by

𝑃1⊕𝑃2 : 𝑆1 × 𝑆2 → 𝐵, (𝑥1, 𝑥2) ↦→ 𝑃1 (𝑥1)𝑃2(𝑥2).

(b) The direct sum of pseudorepresentations𝐷𝑖 : 𝑆 → 𝐴 of dimension 𝑛𝑖 , 𝑖 = 1, 2, is the pseudocharacter
of dimension 𝑛1 + 𝑛2 given by 𝐷1⊕𝐷2 : 𝑆 → 𝐴, 𝑥 ↦→ 𝐷1 (𝑥)𝐷2 (𝑥).

Remark 4.1.12. Note that det𝑛
′/𝑛 from Example 4.1.7 could now also be written as det⊕(𝑛

′/𝑛) .

2We use the term direct sum in analogy with the case of representations; Chenevier uses the term product.
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Lemma 4.1.13 [WE13, Lemma 1.1.11.7]. For 𝑖 = 1, 2, let 𝜌𝑖 : 𝐺 → GL𝑛𝑖 (𝐴) be a representation, and
set 𝜌 := 𝜌1 ⊕ 𝜌2. Then 𝐷𝜌 = 𝐷𝜌1⊕𝐷𝜌2 for the associated pseudocharacters from Definition 4.1.4.

Lemma 4.1.14 [Che14, Lemma 2.2]. Let 𝑆1, 𝑆2 be in A𝑙𝑔𝐴. Let 𝐵 ≠ 0 be in CA𝑙𝑔𝐴 such that Spec 𝐵
is connected. Let 𝑃 : 𝑆1 × 𝑆2 −→ 𝐵 be a multiplicative A-polynomial law that is homogeneous of
degree n. Then there exist for 𝑖 = 1, 2 unique 𝑛𝑖 ≥ 0 with 𝑛1 + 𝑛2 = 𝑛 and multiplicative homogeneous
A-polynomial laws 𝑃𝑖 : 𝑆𝑖 → 𝐵 of degree 𝑛𝑖 such that 𝑃 = 𝑃1⊕𝑃2.

To any 𝐷 ∈ P𝑠R𝑛
𝑆 (𝐴), one can naturally assign its kernel Ker(𝐷).

Definition 4.1.15 [Che14, 1.17]. Let 𝑃 : 𝑀 → 𝑁 be a polynomial law for A-modules M, N.

(a) The kernel ker (𝑃) of P is the A-submodule of M defined as

{𝑥 ∈ 𝑀 : 𝑃(𝑥 ⊗ 𝑏 + 𝑚) = 𝑃(𝑚) for all 𝐵 ∈ Ob(CA𝑙𝑔𝐴), 𝑏 ∈ 𝐵 and 𝑚 ∈ 𝑀 ⊗𝐴 𝐵}

(b) If ker (𝑃) = 0, then P is called faithful.

Proposition 4.1.16 [Che14, 1.19–1.21]. For 𝐷 ∈ P𝑠R𝑛
𝑆 (𝐴), the following hold.

(a) ker 𝐷 is a two-sided ideal of 𝑆; there exists a unique 𝐷 ∈ P𝑠R𝑛
𝑆/ker𝐷 (𝐴) such that 𝐷 = 𝐷 ◦ 𝜋 for

𝜋 the projection 𝑆 → 𝑆/ker 𝐷, and ker 𝐷 is maximal with this property.
(b) If C is an Azumaya A-algebra, then its reduced norm det𝐶 is faithful.

Over fields, the following is a fundamental result on faithful pseudocharacters.

Theorem 4.1.17 [Che14, Theorem 2.16]. Let k be a field such that k is perfect, or k has characteristic
𝑝 > 0 and [𝑘 : 𝑘 𝑝] < ∞. Let 𝐷 : 𝑆 → 𝑘 be a pseudocharacter of dimension n. Then 𝑆/ker 𝐷 is of finite
k-dimension and semisimple as a ring.

Choose a k-algebra isomorphism 𝑆/ker 𝐷 �−→
∏𝑠

𝑖=1 𝑆𝑖 , where each 𝑆𝑖 is a simple k-algebra. Let 𝑛𝑖
be the degree of 𝑆𝑖 over its center 𝑘𝑖 , let 𝑓𝑖 := [𝑘𝑖 ∩ 𝑘sep : 𝑘], and let 𝑞𝑖 be the smallest p-power such
that 𝑘𝑞𝑖

𝑖 ⊂ 𝑘sep; note that all 𝑞𝑖 = 1 if k is perfect. Then under the above isomorphism one has

𝐷 =
𝑠⊕
𝑖=1

det⊕𝑚𝑖

𝑆𝑖

for some uniquely determined integers 𝑚𝑖 ≥ 1, and one has 𝑛 =
∑
𝑖 𝑚𝑖𝑛𝑖𝑞𝑖 𝑓𝑖 .

Over algebraically closed field, the following consequence of Theorem 4.1.17 is important.

Theorem 4.1.18 [Che14, Theorem 2.12]. Suppose that k is an algebraically closed field and 𝑆 is a k-
algebra. If 𝐷 : 𝑆 → 𝑘 is an n-dimensional pseudocharacter, then there is a semisimple representation
𝜌𝐷 : 𝑆 → Mat𝑛×𝑛 (𝑘) unique up to isomorphism with associated pseudocharacter 𝐷, and one has
ker 𝜌lin

𝐷 = ker 𝐷.

Definition 4.1.19. Let k be a field, and let 𝐷 ∈ P𝑠R𝑛
𝐺 (𝑘).

(a) We call 𝜌𝐷⊗𝑘 𝑘alg from Theorem 4.1.18 the semisimple representation associated to 𝐷 ⊗𝑘 𝑘alg.
(b) We call 𝐷

(1) irreducible if 𝜌𝐷⊗𝑘 𝑘alg is irreducible and reducible otherwise;
(2) multiplicity free if 𝜌𝐷⊗𝑘 𝑘alg is a direct sum of pairwise nonisomorphic irreducible 𝑘alg-linear

representations of 𝑆 ⊗𝑘 𝑘alg;
(3) split if 𝐷 = 𝐷𝜌 for some representation 𝜌 : 𝑆 → Mat𝑛×𝑛 (𝑘);

Note that if k is finite, then every irreducible representation is split.
We record the following consequence that will be used in the proof of Lemma 12.

Corollary 4.1.20. Let 𝐷 : F[𝐺] → F be an n-dimensional pseudocharacter. Let F′ be the extension of
F of degree 𝑛!. Then 𝐷 ⊗F F′ is a direct sum of irreducible representations.
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Proof. Over finite fields the Brauer group is zero. Thus, by Theorem 4.1.14 we have an isomorph-
ism F[𝐺]/ker 𝐷 �−→

∏𝑠
𝑖=1 Mat𝑑𝑖×𝑑𝑖 (F𝑖) for integers 𝑑𝑖 ≥ 1 and finite field F𝑖 over F such that

𝑛 =
∑
𝑖 𝑑𝑖 𝑓𝑖𝑚𝑖 for 𝑓𝑖 = [F𝑖 : F]. In particular, all 𝑓𝑖 divide 𝑛! and hence F′ ⊃ F𝑖 for all i. Over

perfect fields semisimple rings are absolutely semisimple (see Definition A.2.1 and Remark A.2.2) and
thus F′[𝐺]/ker (𝐷 ⊗F F′)

�−→
∏𝑠

𝑖=1
∏ 𝑓𝑖

𝑗=1 Mat𝑑𝑖×𝑑𝑖 (F′). We conclude using Lemma 4.1.14, Example
4.1.7(b) and Remark 4.1.12. �

Next, we recall the concept of the Cayley–Hamilton property for pseudocharacters.
Definition 4.1.21 [Che14, 1.17]. Let 𝑆 be an A-algebra, and let 𝐷 be in P𝑠R𝑛

𝑆 (𝐴).
(a) The Cayley–Hamilton ideal CH(𝐷) of 𝐷 is the two-sided ideal of 𝑆 generated by the coefficients

of the polynomials3

𝜒𝐷,𝐴[𝑡1 ,...,𝑡𝑚 ] (𝑠) ∈ 𝑆[𝑡1, . . . , 𝑡𝑚],

where m ranges over all positive integers and s over all elements of 𝑆[𝑡1, . . . , 𝑡𝑚].4
(b) One calls 𝐷 Cayley–Hamilton if CH(𝐷) = 0, or, equivalently, if 𝜒𝐷 is identically zero.
Proposition 4.1.22 [Che14,1.20f.], [WE13,1.1.8.6]. For 𝐷 ∈ P𝑠R𝑛

𝑆 (𝐴), the following hold.

(a) ker (𝐷) ⊃ CH(𝐷), and hence 𝐷 factors via some 𝐷 ∈ P𝑠R𝑛
𝑆/CH(𝐷) (𝐴).

(b) If 𝐷 is Cayley–Hamilton and 𝑆′ ⊂ 𝑆 is any A-subalgebra, then 𝐷 |𝑆′ is Cayley–Hamilton.
(c) For any morphism 𝑆 → 𝑆′ in A𝑙𝑔𝐴, one has 𝑆′/CH(𝐷 ⊗𝑆 𝑆′) � (𝑆/CH(𝐷)) ⊗𝑆 𝑆′.
Definition 4.1.23 [Che14, 1.17]. Let 𝑆 be an A-algebra, and let 𝐷 be in P𝑠R𝑛

𝑆 (𝐴).
(a) One calls 𝑆CH

𝐷 := 𝑆/CH(𝐷) the Cayley–Hamilton quotient of 𝑆 with respect to 𝐷.
(b) One calls the induced A-algebra homomorphism 𝜌CH

𝐷 : 𝑆 → 𝑆/CH(𝐷) 𝐷 the Cayley–Hamilton
representation attached to 𝐷.

Any pseudocharacter 𝐷 ∈ P𝑠R𝑛
𝑆 (𝐴) possesses a factorization

𝑆
𝜌CH
𝐷−→ 𝑆CH

𝐷

�̃�−→ 𝐴 (16)

with 𝐷 from Proposition 4.1.22(a). In the special case 𝑆 = 𝐴[𝐺], the factorization is a composition
of a group homomorphism 𝐺 → (𝑆CH

𝐷 )
× with 𝐷, that is, 𝐷 = 𝐷 ◦ 𝜌CH

𝐷 : 𝐴[𝐺] → 𝐴. Because of the
following result and the good behavior of CH(·) under base change, one might think of 𝜌CH

𝐷 as a natural
substitute of a representation 𝜌 with 𝐷 = 𝐷𝜌 when such a representation does not exist. First, we need
one more piece of notation.
Definition 4.1.24. Let 𝐵 ∈ CA𝑙𝑔𝐴, 𝐷 ∈ P𝑠R𝑛

𝐺 (𝐵) and 𝑋 := Spec 𝐵. Let 𝑥 ∈ 𝑋 with residue
homomorphism 𝜋𝑥 : 𝐵→ 𝜅(𝑥), and let 𝑥 be a geometric point of X above x so that 𝜅(𝑥)↩→𝜅(𝑥).
(a) We call 𝐷𝑥 := 𝜋𝑥 ◦ 𝐷 the pseudocharacter of 𝐷 at x and set 𝐷 �̄� := 𝐷𝑥 ⊗𝜅 (𝑥) 𝜅(𝑥).
(b) We call 𝜌𝑥 := 𝜌𝐷𝑥

: 𝐺 → GL𝑛 (𝜅(𝑥)) the (semisimple) representation at 𝑥.5
(c) We say that x has a property if 𝐷𝑥 (or 𝜌𝑥) satisfies this property.
If B is a universal ring for some space of pseudocharacters and 𝑥 ∈ Spec 𝐵, then by writing 𝐷𝑥 it will
be implicitly understood that 𝐷 refers to the corresponding universal pseudocharacter.

The following is a significant generalization of Theorem 4.1.17 to families.
Proposition 4.1.25 (Cf. [Che14, Corollary 2.23]). Let 𝐷 ∈ P𝑠R𝑛

𝐺 (𝐴) be such that 𝐷𝑥 is irreducible
for all 𝑥 ∈ Spec 𝐴. Then 𝐶 := 𝐴[𝐺]CH

𝐷 is an A-Azumaya algebra of degree n, and 𝐷 = det𝐶 ◦ 𝜌CH
𝐷 for

𝜌CH
𝐷 : 𝐴[𝐺] → 𝐶 the Cayley–Hamilton representation restricted to G.

3Observe that 𝜒𝐷,𝐴[𝑡1 ,...,𝑡𝑚 ] is from Lemma 4.1.8(d).
4It suffices to let the s range over all elements of the form

∑𝑚
𝑗=1 𝑠 𝑗 𝑡 𝑗 with 𝑠 𝑗 ∈ 𝑆.

5We sometimes ignore the subtlety of geometric points and simply write 𝜌𝑥 .
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Remark 4.1.26. We shall use the notation 𝜌𝐷 for 𝐷 ∈ P𝑠R𝑛
𝐺 (𝐴) in two situations: Either A is an

algebraically closed field and then it is the semisimple representation 𝜌𝐷 from Theorem 4.1.18. Or A
is arbitrary and 𝐷𝑥 is irreducible for all 𝑥 ∈ Spec 𝐴, and then it is an abbreviation for 𝜌CH

𝐷 . Because of
Proposition 4.1.25, this assignment is well-defined.

4.2. Universal rings of pseudocharacters

Here, we recall the existence of a universal pseudodeformation ring and that irreducible points form an
open subscheme. Moreover, we introduce morphisms related to the addition of pseudocharacters.

Proposition 4.2.1 [Che14, Proposition 1.6, Example 1.7]. The functor P𝑠R𝑛
𝑆 ( · ) : CA𝑙𝑔𝐴 → 𝑆𝑒𝑡𝑠 is

representable for any 𝑆 in A𝑙𝑔𝐴 by some ring 𝑅univ
𝑆,𝑛 ∈ CA𝑙𝑔𝐴. Moreover, for any 𝐵 ∈ CA𝑙𝑔𝐴, the

natural map 𝐵 ⊗𝐴 𝑅univ
𝑆,𝑛 → 𝑅univ

𝐵⊗𝐴𝑆,𝑛
is an isomorphism.

The above means that there is a natural isomorphism HomCA𝑙𝑔 (𝑅univ
𝑆,𝑛 , · ) → P𝑠R𝑛

𝑆 ( · ). Let the
pseudocharacter corresponding to id𝑅univ

𝑆,𝑛
be

𝐷univ
𝑆,𝑛 : 𝑆 ⊗𝐴 𝑅univ

𝑆,𝑛 −→𝑅univ
𝑆,𝑛 .

Definition 4.2.2. The commutative A-algebra 𝑅univ
𝑆,𝑛 and the A-scheme 𝑋univ

𝑆,𝑛 := Spec 𝑅univ
𝑆,𝑛 are called

the n-dimensional universal pseudocharacter ring and space, respectively, and 𝐷univ
𝑆,𝑛 is called the n-

dimensional universal pseudocharacter.
For 𝑆 = Z[𝐺], we abbreviate 𝑅univ

𝐺,𝑛 := 𝑅univ
𝑆,𝑛 , 𝐷univ

𝐺,𝑛 := 𝐷univ
𝑆,𝑛 and 𝑋univ

𝐺,𝑛 := 𝑋univ
𝑆,𝑛 .

Remark 4.2.3.

(a) In [Che14], the ring 𝑅univ
𝑆,𝑛 is denoted by Γ𝑛𝐴(𝑆)

ab; in our notation A is implicit in the structural map
of 𝑆 as an A-algebra.

(b) For A-schemes X there is an obvious notion of O(𝑋)-valued pseudocharacter 𝑆 → O(𝑋) of
dimension n. The space 𝑋univ

𝑆,𝑛 represents the resulting functor of pseudocharacters on the category
of A-schemes.

Example 4.2.4. Recall the determinant det(𝐷) ∈ P𝑠R1
𝐺 (𝐴) of any 𝐷 ∈ P𝑠R𝑛

𝐺 (𝐴) from Definition
4.1.5. If we apply this to 𝐷univ

𝐴[𝐺 ],𝑛, we obtain

det(𝐷univ
𝐴[𝐺 ],𝑛) ∈ P𝑠R

1
𝑆⊗𝐴𝑅

univ
𝐴[𝐺 ],𝑛

(𝑅univ
𝐴[𝐺 ],𝑛).

The last assertion in Proposition 4.2.1 and the universality of 𝑅univ
𝐴[𝐺 ],1 now yields a homomorphism in

CA𝑙𝑔𝐴

det : 𝑅univ
𝐴[𝐺 ],1 → 𝑅univ

𝐴[𝐺 ],𝑛

and an induced morphism of schemes det : 𝑋univ
𝐴[𝐺 ],𝑛 → 𝑋univ

𝐴[𝐺 ],1, both of which we denote by det.

Lemma 4.2.5 [Rob63, Théorème III.4]. The following assertions hold:

(a) The canonical map 𝑅univ
𝑆1×𝑆2 ,𝑛

→
⊕𝑛

𝑖=0 𝑅
univ
𝑆1 ,𝑖
⊗ 𝑅univ

𝑆2 ,𝑛−𝑖 , induced from the universal property of these
rings, is an isomorphism in CA𝑙𝑔𝐴.

(b) Let 𝐵 ≠ 0 be in CA𝑙𝑔𝐴 such that Spec 𝐵 is connected. Then any A-algebra homomorphism
𝑅univ
𝑆1×𝑆2 ,𝑛

→ 𝐵 corresponding to P factors via some summand 𝑅univ
𝑆1 ,𝑖
⊗ 𝑅univ

𝑆2 ,𝑛−𝑖 in Part (a).

Corollary 4.2.6 [WE13, Lemma 1.1.11.7]. Suppose 𝑛1 + 𝑛2 = 𝑛 for 𝑛𝑖 ≥ 0. Then the map

𝜄𝑛1 ,𝑛2 : 𝑋univ
𝑆,𝑛1
×𝐴 𝑋univ

𝑆,𝑛2
−→ 𝑋univ

𝑆,𝑛 , (𝐷1, 𝐷2) ↦→ 𝐷1⊕𝐷2
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is a morphism of affine A-schemes that corresponds to the ring homomorphism

𝑅univ
𝑆,𝑛

Δ−→ 𝑅univ
𝑆×𝑆,𝑛

4.2.5(𝑎)
−→ 𝑅univ

𝑆,𝑛1
⊗ 𝑅univ

𝑆,𝑛2
,

where Δ is induced from the diagonal map 𝑆 → 𝑆 × 𝑆 and the universality of the rings.

4.3. Generalized matrix algebras

Generalized matrix algebras are important in the study of Cayley–Hamilton pseudocharacters over
Henselian local rings and were introduced for that purpose in [BC09, §1.3] in the context of Taylor-
pseudocharacters. This subsection recalls some basic result. In Proposition 4.3.9, we shall generalize
[BC09, Proposition 1.5.1], in Proposition 4.3.9 on the ideal of total reducibility to pseudocharacters.
Definition 4.3.1 (Cf. [BC09, Definition 1.3.1]). A generalized matrix algebra (or simply GMA) over A
(of type (𝑛1, . . . , 𝑛𝑟 )) is an A-algebra 𝑆 together with
(i) a set of orthogonal idempotents 𝑒1, . . . , 𝑒𝑟 ∈ 𝑆 with

∑𝑟
𝑖=1 𝑒𝑖 = 1𝑆 , and

(ii) a set of A-algebra isomorphisms 𝜓𝑖 : 𝑒𝑖𝑆𝑒𝑖
∼→ Mat𝑛𝑖×𝑛𝑖 (𝐴) for 𝑖 = 1, . . . , 𝑟

such that the associated trace map 𝜏 : 𝑆 → 𝐴, 𝑥 ↦→
∑
𝑖=1 tr(𝜓𝑖 (𝑒𝑖𝑥𝑒𝑖)) is central, that is, it satisfies

𝜏(𝑥𝑦) = 𝜏(𝑦𝑥) for all 𝑥, 𝑦 ∈ 𝑆. The tuple E := {𝑒𝑖 , 𝜓𝑖}𝑖=1,...,𝑟 is called the data of idempotents of 𝑆. If
we wish to emphasize the entire structure of a GMA, we write (𝑆, E) instead of S. The dimension of 𝑆
will be

∑
𝑖 𝑛𝑖 .

Notation 4.3.2. Let 𝑆 be an GMA over A of type (𝑛1, . . . , 𝑛𝑟 ). For 1 ≤ 𝑖 ≤ 𝑟 and 1 ≤ 𝑘, 𝑙 ≤ 𝑛𝑖 , we
denote by 𝐸 𝑘,𝑙

𝑖 the unique element in 𝑒𝑖𝑆𝑒𝑖 that maps under 𝜓𝑖 to the matrix in Mat𝑛𝑖×𝑛𝑖 (𝐴) that has
1 in the (𝑘, 𝑙)-entry and 0 everywhere else. For later use, we also introduce elements 𝐸 𝑗 := 𝐸 𝑖′,𝑖′

𝑖+1 for
𝑗 = 1, . . . , 𝑛, where 𝑖, 𝑖′ ≥ 1 are unique such that 𝑗 = 𝑛1 + . . . + 𝑛𝑖 + 𝑖′ with 1 ≤ 𝑖′ ≤ 𝑛𝑖+1. We write A 𝑗

for 𝐸 𝑗𝑆𝐸 𝑗 and 𝜑 𝑗 for the isomorphism A 𝑗 → 𝐴 induced from 𝜏.
The following result explains why GMA are generalizations of matrix algebras.

Lemma 4.3.3 (Structure of a GMA [BC09, p. 21ff.]). The following assertions hold:
(a) Let (𝑆, E) be a GMA over A of type (𝑛1, . . . , 𝑛𝑟 ), and define the following data:

(1) A-modules A𝑖, 𝑗 := 𝐸1,1
𝑖 𝑆𝐸1,1

𝑗 for 1 ≤ 𝑖, 𝑗 ≤ 𝑟 ,
(2) isomorphisms A𝑖,𝑖 � 𝐴 under 𝜏 for 𝑖 = 1, . . . , 𝑟 ,
(3) A-linear maps 𝜑𝑖, 𝑗 ,𝑘 : A𝑖, 𝑗 ⊗𝐴 A 𝑗 ,𝑘 → A𝑖,𝑘 induced from the product in 𝑆.

Then they satisfy the following conditions:
(UNIT) For 1 ≤ 𝑖, 𝑗 ≤ 𝑟 , we have A𝑖,𝑖 = 𝐴 and both 𝜑𝑖,𝑖, 𝑗 and 𝜑𝑖, 𝑗 , 𝑗 agree with the A-module
structure on 𝐴𝑖, 𝑗 .
(ASSO) For 1 ≤ 𝑖, 𝑗 , 𝑘, 𝑙 ≤ 𝑟 and 𝑥 ⊗ 𝑦 ⊗ 𝑧 ∈ A𝑖, 𝑗 ⊗𝐴 A 𝑗 ,𝑘 ⊗𝐴 A𝑘,𝑙 , we have

𝜑𝑖,𝑘,𝑙
(
𝜑𝑖, 𝑗 ,𝑘 (𝑥 ⊗ 𝑦) ⊗ 𝑧

)
= 𝜑𝑖, 𝑗 ,𝑙

(
𝑥 ⊗ 𝜑 𝑗 ,𝑘,𝑙 (𝑦 ⊗ 𝑧)

)
in A𝑖,𝑙 .

(COMM) For 1 ≤ 𝑖, 𝑗 ≤ 𝑟 , 𝑥 ∈ A𝑖, 𝑗 and 𝑦 ∈ A 𝑗 ,𝑖 , we have 𝜑𝑖, 𝑗 ,𝑖 (𝑥 ⊗ 𝑦) = 𝜑 𝑗 ,𝑖, 𝑗 (𝑦 ⊗ 𝑥).
Then the structures in (1)–(3) induce an A-algebra structure on

����
Mat𝑛1×𝑛1 (A1,1) · · · Mat𝑛1×𝑛𝑟 (A1,𝑟 )

...
. . .

...
Mat𝑛𝑟×𝑛1 (A𝑟 ,1) · · · Mat𝑛𝑟×𝑛𝑟 (A𝑟 ,𝑟 )

���� (17)

and the latter is isomorphic to 𝑆.
(b) Conversely, suppose we are given a family (A𝑖, 𝑗 )1≤𝑖, 𝑗≤𝑟 of A-modules together with A-linear maps

𝜑𝑖, 𝑗 ,𝑘 : A𝑖, 𝑗 ⊗𝐴 A 𝑗 ,𝑘 → A𝑖,𝑘 for 1 ≤ 𝑖, 𝑗 , 𝑘 ≤ 𝑟 satisfying the above conditions (UNIT), (ASSO)
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and (COMM). Then there is a unique structure of a GMA of type (𝑛1, . . . , 𝑛𝑟 ) on the A-module
𝑆 := ⊕𝑟𝑖, 𝑗=1Mat𝑛𝑖×𝑛 𝑗 (A𝑖, 𝑗 ).

Next, we provide some technical lemmas:

Lemma 4.3.4. Let 𝑆 be a GMA over A of type (𝑛1, . . . , 𝑛𝑟 ) over A, and 𝐵 ∈ Ob(CA𝑙𝑔𝐴). Then 𝑆 ⊗𝐴 𝐵
is a GMA over B of type (𝑛1, . . . , 𝑛𝑟 ).

The proof of Lemma 4.3.4 is straightforward and left as an exercise.

Proposition 4.3.5 [WE18, Proposition 2.23]. Given a GMA (𝑆, E) over A of dimension n, there exists a
natural n-dimensional Cayley–Hamilton pseudocharacter det(𝑆,E) : 𝑆 → 𝐴, called the determinant of
the GMA (𝑆, E), and given, for any B in CA𝑙𝑔𝐴, by the formula

det(𝑆.E) (𝑥) =
∑
𝜎∈𝔖𝑛

sgn(𝜎)
∏

cycles 𝛾 of 𝜎
𝜑𝑙0
(∏
𝑙∈𝛾

𝐸 𝑙𝑥𝐸𝜎 (𝑙)
)

(18)

for any 𝑥 ∈ 𝑅 ⊗𝐴 𝐵. Here, the product is first over the cycles 𝛾 in the cycle decomposition of 𝜎 and then
over the elements l of the cycle 𝛾 taken in the order that they appear in the cycle, where 𝑙0 is a choice
of initial element of 𝛾, and 𝜑𝑙0 is from Notation 4.3.2. We also have 𝜏 = Λ1

𝐷E
.

The next results are auxiliary for Proposition 4.3.9 on the locus of reducibility of a GMA.

Lemma 4.3.6 [Che14, Lemma 1.12(i)]. One has 𝐷 (1 + 𝑠𝑠′) = 𝐷 (1 + 𝑠′𝑠) for all 𝑠, 𝑠′ ∈ 𝑆.

Lemma 4.3.7. Let (𝑆, E) be a GMA, and let 𝐷 : 𝑆 → 𝐴 a pseudocharacter. Then for any 𝑥 ∈
Mat𝑛𝑖×𝑛 𝑗 (A𝑖, 𝑗 ) for some 1 ≤ 𝑖, 𝑗 ≤ 𝑟 with 𝑖 ≠ 𝑗 , we have 𝐷 (1 + 𝑒𝑖𝑥𝑒 𝑗 ) = 1.

Proof. By Lemma 4.3.6 we have 𝐷 (1 + 𝑒𝑖𝑥𝑒 𝑗 ) = 𝐷 (1 + 𝑒 𝑗𝑒𝑖𝑥) = 𝐷 (1) = 1. �

Lemma 4.3.8 [Che14, Lemma 2.4]. Let 𝑆 be an A-algebra, 𝑒 ∈ 𝑆 be an idempotent, and 𝐷 : 𝑆 → 𝐴 be
a pseudocharacter of dimension n. Suppose that Spec(𝐴) is connected.

(a) The polynomial law 𝐷𝑒 : 𝑒𝑆𝑒 → 𝐴, 𝑠 ↦→ 𝐷 (𝑠 + 1 − 𝑒), is a pseudocharacter; its dimension 𝑟 (𝑒)
satisfies 𝑟 (𝑒) ≤ 𝑛 and one has 𝑟 (1 − 𝑒) + 𝑟 (𝑒) = 𝑛.

(b) The restriction of 𝐷 to the A-subalgebra 𝑒𝑆𝑒 ⊕ (1 − 𝑒)𝑆(1 − 𝑒) is the sum 𝐷𝑒⊕𝐷1−𝑒. It is a
pseudocharacter of dimension n.

(c) If 𝐷 is faithful or Cayley–Hamilton, then 𝐷𝑒 is faithful or Cayley–Hamilton, respectively.
(d) Suppose that 𝐷 is Cayley–Hamilton. Then 𝑒 = 1 if and only if 𝐷 (𝑒) = 1, and 𝑒 = 0 if and only

if 𝑟 (𝑒) = 0. If 𝑒1, . . . , 𝑒𝑠 is a family of nonzero orthogonal idempotents of 𝑆, then 𝑠 ≤ 𝑛 and∑𝑠
𝑖=1 𝑟 (𝑒𝑖) ≤ 𝑛. Further,

∑𝑠
𝑖=1 𝑟 (𝑒𝑖) = 𝑛 if and only if

∑𝑠
𝑖=1 𝑒𝑖 = 1.

The next result is the adaption of [BC09, Proposition 1.5.1] to pseudocharacters.

Proposition 4.3.9. Let (𝑆, E) be a GMA over A, and let A𝑖, 𝑗 and 𝜑𝑖, 𝑗 ,𝑘 be as in Lemma 4.3.3. Define
𝐼 =
∑
𝑖≠ 𝑗 A𝑖, 𝑗A 𝑗 ,𝑖 as the ideal of total reducibility in A.

(a) (1) If 𝐼 = 0, then the map 𝜋 : 𝑆 →
∑
𝑖 𝑒𝑖𝑆𝑒𝑖 ⊂ 𝑆, 𝑥 ↦→

∑
𝑖 𝑒𝑖𝑥𝑒𝑖 is a ring homomorphism.

(2) Denoting by 𝐷𝑖 the map 𝑒𝑖𝑆𝑒𝑖
𝜓𝑖→ Mat𝑛𝑖×𝑛𝑖 (𝐴)

det→ 𝐴 for 𝑖 = 1, . . . , 𝑟 , one has

det(𝑆,E) = ⊕𝑟𝑖=1𝐷𝑖 ◦ 𝜋 mod 𝐼 .

(b) Suppose that there exist 𝑚𝑖-dimensional pseudocharacters 𝐷 ′𝑖 : 𝑆 → 𝐴 with 𝑚𝑖 > 0 for 𝑖 ∈
{1, . . . , 𝑟} such that one has det(𝑆,E) = ⊕𝑟𝑖=1𝐷

′
𝑖 . Then 𝐼 = 0 and for a unique permutation 𝜎 ∈ 𝔖𝑟

we have 𝐷 ′
𝜎 (𝑖) = 𝐷𝑖 ◦ 𝜋 with 𝐷𝑖 and 𝜋 from (i).
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Proof. Part (1) of (a) is a straightforward matrix calculation using A𝑖, 𝑗A 𝑗 ,𝑖 = 0 for all 𝑖 ≠ 𝑗 from
{1, . . . , 𝑟}. To see Part (2) of (a), observe that equation (18) for 𝑟 = 1 is simply the Leibniz formula for
matrix determinants. Hence, by our definitions we have the explicit formula

𝐷𝑖 mod 𝐼 : 𝑒𝑖𝑆𝑒𝑖 −→ 𝐴/𝐼, 𝑥 ↦−→
∑

𝜎𝑖 ∈𝔖𝑛𝑖

sgn(𝜎𝑖)
∏

cycles 𝛾𝑖 of 𝜎𝑖

𝜑𝑙
(∏
𝑙∈𝛾𝑖

𝐸 𝑙𝑥𝐸𝜎 (𝑙)
)

mod 𝐼,

and using distributivity for 𝑥 ∈ 𝑆

𝑟∏
𝑖=1
(𝐷𝑖 ◦ 𝜋) (𝑥) mod 𝐼 =

𝑟∏
𝑖=1

∑
𝜎𝑖 ∈𝔖𝑛𝑖

sgn(𝜎𝑖)
∏

cycles 𝛾𝑖 of 𝜎𝑖

𝜑𝑙
(∏
𝑙∈𝛾𝑖

𝐸 𝑙𝑥𝐸𝜎 (𝑙)
)

mod 𝐼

=
∑

𝜎1∈𝔖𝑛1

. . .
∑

𝜎𝑟 ∈𝔖𝑛𝑟

𝑟∏
𝑖=1

sgn(𝜎𝑖)
∏

cycles 𝛾𝑖 of 𝜎𝑖

𝜑𝑙
(∏
𝑙∈𝛾𝑖

𝐸 𝑙𝑥𝐸𝜎 (𝑙)
)

mod 𝐼 .

We have to compare the latter expression to

det(𝑆.E) (𝑥) mod 𝐼 =
∑
𝜎∈𝔖𝑛

sgn(𝜎)
∏

cycles 𝛾 of 𝜎
𝜑𝑙0
(∏
𝑙∈𝛾

𝐸 𝑙𝑥𝐸𝜎 (𝑙)
)

mod 𝐼 .

Now, in the last expression, the term 𝜑𝑙0
(∏

𝑙∈𝛾 𝐸
𝑙𝑥𝐸𝜎 (𝑙)

)
mod 𝐼 vanishes unless 𝛾 is contained in a

single factor under the inclusion 𝔖𝑛1 × . . . ×𝔖𝑛𝑟 ↩→𝔖𝑛, by the definition of I and using Lemma 4.3.3.
This shows that

det(𝑆.E) (𝑥) mod 𝐼 =
∑

𝜎=(𝜎1 ,...,𝜎𝑟 ) ∈𝔖𝑛1×...×𝔖𝑛𝑟

𝑟∏
𝑖=1

sgn(𝜎𝑖)
∏

cycles 𝛾 of 𝜎𝑖

𝜑𝑙0
(∏
𝑙∈𝛾

𝐸 𝑙𝑥𝐸𝜎 (𝑙)
)

mod 𝐼,

and it completes the proof of (a).
We now prove (b). We begin by proving the following Claim: There is a unique permutation 𝜎 ∈ 𝔖𝑟

such that 𝐷𝑖 = (𝐷 ′𝜎 (𝑖) )𝑒𝑖 and (𝐷 ′𝑖′ )𝑒𝑖 = 1 for 𝑖′ ≠ 𝜎(𝑖). For this, we restrict ⊕𝑟𝑖′=1𝐷
′
𝑖′ to 𝑒𝑖𝑆𝑒𝑖 so that

𝐷𝑖 = (det(𝑆,E) )𝑒𝑖 = ⊕𝑖′ (𝐷 ′𝑖′ )𝑒𝑖 .

By Lemma 4.3.8 the (𝐷 ′𝑖′ )𝑒𝑖 are pseudocharacters of dimension 𝑚𝑖′,𝑖 := dim(𝐷 ′𝑖′ )𝑒𝑖 ≤ 𝑚𝑖′ . Now, under
addition in the sense of Corollary 4.2.6 dimensions are added, and it follows that

𝑛𝑖 =
∑𝑟

𝑖′=1
𝑚𝑖′,𝑖 .

But because 𝑒𝑖𝑆𝑒𝑖 = Mat𝑛𝑖×𝑛𝑖 (𝐴), it follows from Example 4.1.7(b) that each 𝑚𝑖′,𝑖 is divisible by 𝑛𝑖 .
Hence, there is a unique map 𝜎 : {1, . . . , 𝑟} → {1, . . . , 𝑟} such that 𝑚𝜎 (𝑖) ,𝑖 = 𝑛𝑖 and 𝑚𝑖′,𝑖 = 0 for
𝑖′ ≠ 𝜎(𝑖), and moreover 𝐷𝑖 = (𝐷 ′𝜎 (𝑖) )𝑒𝑖 . It remains to show that 𝜎 is bijective. It will suffice to show
that 𝜎 is surjective.

For this, let 𝑆′𝑖′ := ⊕𝑖∈𝜎−1 (𝑖′)𝑒𝑖𝑆𝑒𝑖 so that 𝑆 = ⊕𝑖′𝑆′𝑖′ . The restriction of 𝐷 ′𝑖′′ to 𝑆′𝑖′ is zero if 𝑖′′ ≠ 𝑖′,
and the restriction of 𝐷 ′𝑖′ to 𝑆′𝑖′ is a pseudocharacter with

𝑚𝑖′
4.3.8
≥ dim 𝐷 ′𝑖′ |𝑆′𝑖′ = dim ⊕𝑟𝑖′′=1𝐷

′
𝑖′′ |𝑆′𝑖′ = dim det(𝑆,E) |𝑆′

𝑖′
=

∑
𝑖∈𝜎−1 (𝑖′)

𝑛𝑖 .

Summing over all 𝑖′ in the image of 𝜎 implies
∑
𝑖′ ∈𝜎 ( {1,...,𝑟 }) 𝑚𝑖′ ≥ 𝑛. However, all 𝑚𝑖′ are strictly

positive and
∑𝑟
𝑖′=1 𝑚𝑖′ = 𝑛, and this implies that 𝜎 is surjective, and hence the claim is proved.
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For simplicity of notation, we assume from here on, without loss of generality, that 𝜎 = id. We
now show that 𝐼 = 0. For this, it suffices to show that A𝑖, 𝑗A 𝑗 ,𝑖 = 0 for all 𝑖 ≠ 𝑗 . By restricting to the
subalgebra 𝑆′ = 𝑒𝑖𝑆𝑒𝑖 + 𝑒 𝑗𝑆𝑒 𝑗 + 𝑒𝑖𝑆𝑒 𝑗 + 𝑒 𝑗𝑆𝑒𝑖 with E ′ = (𝑒𝑖 , 𝜓𝑖 , 𝑒 𝑗 , 𝜓 𝑗 , ), that is, by considering 𝐷𝑒𝑖+𝑒 𝑗 ,
and using det(𝑆,E) |𝑆′ = det(𝑆′,E′) , we may assume 𝑟 = 2 for the proof of 𝐼 = 0.

Let b be in A1,2 and c in A2,1, and write x for 𝑒1𝐸
1,1
1 𝑏𝐸1,1

2 𝑒2 and y for 𝑒2𝐸
1,1
2 𝑐𝑒 : 11,1𝑒1 with 𝐸 𝑘,𝑙

𝑖
from Notation 4.3.2. Using the description of GMAs from Lemma 4.3.3, one easily verifies that

1 + 𝑥𝑦 = 1 + 𝐸1,1
1 𝑏𝑐 ∈ 𝑒1𝑆𝑒1 + (1 − 𝑒1), 1 + 𝑦𝑥 = 1 + 𝐸1,1

2 𝑏𝑐 ∈ (1 − 𝑒2) + 𝑒2𝑆𝑒2.

Note moreover that by Lemma 4.3.6 we have 𝐷 (1 + 𝑥𝑦) = 𝐷 (1 + 𝑦𝑥) for every pseudocharacter
𝐷 : 𝑆 → 𝐴. If we apply this to 𝐷 ′𝑖 and our earlier observations on (𝐷 ′𝑖)𝑒𝑖′ , we find that

𝐷 ′1 (1 + 𝑥𝑦) = 𝐷 ′1 (1 + 𝑦𝑥) = (𝐷
′
1)𝑒1 (1 − 𝑒2) · (𝐷 ′1)𝑒2 (𝑒2 + 𝐸1,1

2 𝑏𝑐) = 1 · 1 = 1,

and similarly 𝐷 ′2 (1 + 𝑥𝑦) = 1, and hence from hypothesis (2) that det(𝑆,E) (1 + 𝐸1,1
1 𝑏𝑐) = 1. From the

formula for det(𝑆,E) on 𝑒1𝑆𝑒1 + 𝑒2𝑆𝑒2 � Mat𝑛1×𝑛1 (𝐴) ×Mat𝑛2×𝑛2 (𝐴), we deduce that

det(𝑆,E) (1 + 𝐸1,1
1 𝑏𝑐) = 1 + 𝑏𝑐,

and hence that 𝑏𝑐 = 0, as was to be shown.
For the second assertion, observe that by Lemma 4.3.7 we have 𝐷 ′𝑖 (1 + 𝑒𝑖𝑥𝑒 𝑗 ) = 1 for any 𝑖 ≠ 𝑗 and

𝑥 ∈ Mat𝑛𝑖×𝑛 𝑗 (A𝑖, 𝑗 ). It follows that 𝐷 ′𝑖 (1 + 𝑢) = 1 for any u in the kernel of 𝜋. And now the second
assertion follows from knowing the restriction of 𝐷 ′𝑖 to

∑
𝑖 𝑒𝑖𝑆𝑒𝑖 given in the first claim of the proof of

(b). �

The following result of Chenevier gives an application of GMAs to pseudocharacters.

Theorem 4.3.10 [Che14, Theorem 2.22], [WE13, Theorem 2.27]. Assume that A is a Henselian
local ring with maximal ideal 𝑚𝐴 and residue field 𝜅(𝐴). Let 𝑆 be an A-algebra and suppose that
𝐷 ∈ P𝑠R𝑛

𝑆 (𝐴) is Cayley–Hamilton. Denote by 𝐷 = 𝐷 ⊗𝐴 𝜅(𝐴) : 𝑆/𝑚𝐴𝑆 −→ 𝜅(𝐴) the residual pseu-
docharacter of 𝐷. Suppose that 𝐷 is split (see Definition 4.1.19). Then the following hold:

(a) If 𝐷 is irreducible, then 𝐷 = det ◦ 𝜌 for some A-algebra isomorphism 𝜌 : 𝑆 ∼→ Mat𝑛×𝑛 (𝐴).
(b) If 𝐷 is multiplicity free, then 𝑆 is a generalized matrix algebra (𝑆, E) and 𝐷 = det(𝑆,E) . If 𝐷 =⊕𝑙

𝑖=1 𝐷𝑖 for irreducible 𝐷𝑖 , then the type of S is (𝑛1, . . . , 𝑛𝑙) for 𝑛𝑖 the degree of 𝐷𝑖 .

4.4. Continuous pseudocharacters

In our application, mainly continuous pseudocharacters (of a profinite group G) will play a role. In this
subsection, we will recall this concept and some of its properties. We denote throughout this subsection
by G a profinite group. Let us refer to [Gro60, Chapter 0 §7, Chapter 1 §10] for a more thorough
introduction to topological rings and formal schemes.

We introduce in Definition 4.4.2 a category of admissible 𝜅-algebras that is perhaps not standard. In
Lemma 4.4.7, we prove a finiteness statement for continuous pseudocharacters on 𝐺𝐾 with 𝐾 𝑝-adic
and values in a finite field of characteristic p.

Definition 4.4.1 (Cf. [Che14, §2.30]). Let A be a commutative topological ring. Then 𝐷 ∈ P𝑠R𝑛
𝐺 (𝐴) is

called continuous if and only if the characteristic polynomial functions (restricted to G) Λ𝐷,𝑖 : 𝐺 → 𝐴
are continuous for 𝑖 = 1, . . . , 𝑛.

We shall study continuity only for two types of commutative rings A that we now describe. Consider
a directed set J with minimal element 0 and an inverse system 𝐴𝜆, 𝜆 ∈ 𝐽, of topological commutative
rings with continuous transition maps and such that 𝐴𝜆 → 𝐴0 is surjective with nilpotent kernel for any
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𝜆 ∈ 𝐽. Then the inverse limit

lim
𝜆∈𝐽

𝐴𝜆 (19)

is a topological ring with respect to the weakest topology for which the projections to all 𝐴𝜆 are
continuous.
Definition 4.4.2. Let 𝜅 be a local or a finite field with its natural topology.
(a) We say that a commutative topological ring A is 𝜅-admissible if there is an inverse system (𝐴𝜆)𝜆∈𝐽

as above expression (19) and an isomorphism of topological rings 𝐴 � lim𝜆∈𝐽 𝐴𝜆 such that each
𝐴𝜆 is a finite-dimensional topological 𝜅-algebra with the natural topology of a finite-dimensional
𝜅-vector space.

(b) We denote by A𝑑𝑚𝜅 the category whose objects are 𝜅-admissible commutative topological rings
and whose morphisms are continuous 𝜅-algebra homomorphisms.

Note that Â𝑟 𝜅 is a full subcategory of A𝑑𝑚𝜅 , but objects in A𝑑𝑚𝜅 are in general only semilocal and
with residue field of finite 𝜅-dimension.
Definition 4.4.3 [Che14, §3.9]. Let 𝑊 (F) be the topological ring of Witt vectors over F.
(a) A commutative topological ring A is admissible if there is an inverse system (𝐴𝜆)𝜆∈𝐽 as above

expression (19) and an isomorphism of topological rings 𝐴 � lim𝜆∈𝐽 𝐴𝜆 such that each 𝐴𝜆 carries
the discrete topology.

(b) We denote by A𝑑𝑚𝑊 (F) the category whose objects are admissible commutative topological rings
A together with a continuous homomorphism 𝑊 (F) → 𝐴 and whose morphisms are continuous
𝑊 (F)-algebra homomorphisms.

Remark 4.4.4. Suppose A is admissible or 𝜅-admissible, and suppose that 𝐴 = lim𝜆∈𝐽 𝐴𝜆 for an inverse
system (𝐴𝜆)𝜆∈𝐽 as in the above definitions. Then one can form the completed group ring as the inverse
limit

𝐴[[𝐺]] := lim
𝜆,𝐻

𝐴𝜆 [𝐺/𝐻],

where H ranges over all open normal subgroups of G; it contains 𝐴[𝐺] and is in fact the completion of
𝐴[𝐺] with respect to the topology of 𝐴[𝐺] inherited from 𝐴[[𝐺]].

Using Amitsur’s formula, one can verify that the above definition of continuity is equivalent to the
condition that for every commutative topological A-algebra B, with 𝐵 ∈ A𝑑𝑚 or A𝑑𝑚𝜅 , respectively,
the map 𝐷𝐵 : 𝐵[𝐺] → 𝐵 is continuous; see [WE13, Definition 3.1.0.10]. This allows one also to extend
𝐷𝐵 to a (continuous) pseudocharacter 𝐵[[𝐺]] → 𝐵.

The following is the basic result on continuity if A is discrete.
Lemma 4.4.5 [Che14, Lemma 2.33]. Let A be a discrete, and let 𝐷 : 𝐴[𝐺] → 𝐴 be a pseudocharacter.
Then 𝐷 is continuous if and only if ker (𝐷) is contained in the kernel of the canonical map 𝐴[𝐺] →
𝐴[𝐺/𝐻] for some normal open subgroup 𝐻 ⊂ 𝐺. In this case, the natural representation 𝐺 −→
(𝐵[𝐺]/ker (𝐷))× factors through 𝐺/𝐻.

We record the following consequence:
Corollary 4.4.6 [Che14, Example 2.34]. Let k be a discrete field, and let 𝐷 ∈ P𝑠R𝑛

𝐺 (𝑘alg) be contin-
uous. Then the representation 𝜌𝐷 : 𝐺𝐾 → GL𝑛 (𝑘alg) associated by Theorem 4.1.18 is continuous, its
image is finite and it is defined over a finite extension of k.
Proof. We provide a proof, expanding on [Che14, Example 2.34]: Because 𝐷 is continuous, we know
by Lemma 4.4.5 that ker 𝐷 contains the kernel of 𝑘 [𝐺] → 𝑘 [𝐺/𝐻] for some open subgroup H of G.
By Theorem 4.1.18, the kernels of 𝜌lin

𝐷 and of 𝐷 are the same, and hence 𝜌𝐷 is continuous since it is
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trivial on the open subgroup H. Since 𝐺/𝐻 is finite, this also shows that 𝜌𝐷 (𝐺) ⊂ GL𝑛 (𝑘alg) is finite.
It follows that the entries of the matrices in the image of 𝜌𝐷 lie in a finite extension of k, and this proves
the last assertion. �

When combined with earlier results, we deduce the following finiteness statement:
Proposition 4.4.7. Let F be a finite field of characteristic p, and let 𝑛 ≥ 1 be an integer. Then there exist
only finitely many continuous pseudocharacters 𝐷 : 𝐺𝐾 → F on 𝐺𝐾 of dimension n.

Denote by F′ ⊃ F the unique field extension of degree 𝑛!. Then for any 𝐷 as above 𝐷 ⊗F F′ is a direct
sum of split irreducible pseudocharacters 𝐷𝑖 : 𝐺𝐾 → F′ on 𝐺𝐾 .
Proof. The second part is immediate from Corollary 4.1.20. Hence, it suffices to prove the first part for
split irreducible 𝐷. It moreover suffices to assume that F contains the unique extension of the residue
field of K of degree 𝑛!. The result follows from Lemma A.3.1. �

The next result shows the existence of a minimal ring of definition for any continuous pseudocharacter,
and it gives an important result on their structure.
Lemma 4.4.8 [Che14, Lemma 3.10]. Let A be in A𝑑𝑚𝑊 (F) , let 𝐷 : 𝐴[𝐺] → 𝐴 be a continuous
pseudocharacter and let 𝐶 ⊂ 𝐴 be the closure of the 𝑊 (F)-algebra generated by the characteristic
polynomial coefficients Λ𝐷,𝑖 (𝑔) for 𝑔 ∈ 𝐺 and 𝑖 ≥ 1.
(a) The ring C is an admissible profinite subring of A. In particular, 𝐶 = lim←−−𝑖 𝐶𝑖 is a finite product of

local 𝑊 (F)-algebras with finite residue fields.
(b) If further 𝜄 : 𝐴 −→ 𝐴′ is a continuous 𝑊 (F)-algebra homomorphism, 𝐷 ′ : 𝐴′[𝐺] → 𝐴′ is the

induced pseudocharacter and 𝐶 ′ ⊂ 𝐴′ is the closure 𝐶 ′ ⊂ 𝐴′ of the 𝑊 (F)-algebra generated by
the characteristic polynomial coefficients Λ𝐷′,𝑖 (𝑔) for 𝑔 ∈ 𝐺 and 𝑖 ≥ 1, then 𝜄 induces a surjection
𝐶 → 𝐶 ′ in A𝑑𝑚𝑊 (F) .

We use the Lemma 4.4.8 to make the following useful definitions.
Definition 4.4.9 [Che14, Definition 3.11]. For a finite field F, one defines

|𝐺 (𝑛) | := {𝑧 ∈ Spec(𝑅univ
𝑊 (F) [𝐺 ],𝑛) : 𝑧 is closed and 𝜅(𝑧) is finite}.

Definition 4.4.10 [Che14, Definition 3.12]. Let A be in A𝑑𝑚𝑊 (F) , let 𝐷 ∈ P𝑠R𝑛
𝐺 (𝐴) be continuous, let

𝐶 ⊂ 𝐴 be the ring from Lemma 4.4.8 and let 𝐷𝐶 : 𝐶 [𝐺] → 𝐶 be the pseudocharacter from Proposition
4.1.10.
(a) We call C the ring of definition of 𝐷 over 𝑊 (F).
(b) If C is local so that 𝜅(𝐶) is finite, one calls 𝐷 residually constant.
(c) One calls 𝐷 residually equal to 𝐷𝑧 for some 𝑧 ∈ |𝐺 (𝑛) |, if C is local and 𝐷𝑧 � 𝐷𝐶 ⊗𝐶 𝜅(𝐶).

4.5. Twisting of pseudocharacters

In this subsection, we introduce a twisting operation for pseudocharacters that is the analog of the twist
of a representation by a character, and we state some of its basic properties. Our approach require us to
recall a number of results on the universal pseudocharacter that go back to Roby. Our main construction
is only carried out for pseudocharacter of a topological group G. Our exposition of background material
follows [WE13, Section 1.1].
Definition 4.4.11. Let M be an A-module. The divided power algebra of M relative to A is the commu-
tative A-algebra Γ𝐴(𝑀) that is the quotient algebra of the polynomial algebra generated by the symbols
𝑚 [𝑖 ] , 𝑚 ∈ 𝑀 , 𝑖 ∈ N, subject to the relations
(i) 𝑚 [0] = 1 for all 𝑚 ∈ 𝑀 ,

(ii) (𝑎𝑚) [𝑖 ] = 𝑎𝑖𝑚 [𝑖 ] for 𝑎 ∈ 𝐴, 𝑚 ∈ 𝑀 , 𝑖 ∈ N,
(iii) 𝑚 [𝑖 ]𝑚 [ 𝑗 ] =

(𝑖+ 𝑗
𝑖

)
𝑚 [𝑖+ 𝑗 ] for 𝑚 ∈ 𝑀 , 𝑖, 𝑗 ∈ N and

(iv) (𝑚 + 𝑛) [𝑖 ] =
∑𝑖

𝑗=0 𝑚
[ 𝑗 ]𝑛 [𝑖− 𝑗 ] for 𝑚, 𝑛 ∈ 𝑀 and 𝑖 ∈ N,
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The ring Γ𝐴(𝑀) is a graded A-algebra Γ𝐴(𝑀) =
⊕

𝑖≥0 Γ
𝑖
𝐴(𝑀) with its i-th graded piece Γ𝑖𝐴(𝑀)

being the A-module generated by the element 𝑚 [𝑖 ] , 𝑚 ∈ 𝑀 . The construction 𝑀 ↦→ Γ𝐴(𝑀) defines
a functor from A-modules to graded A-algebras. If 𝜑 : 𝑀 → 𝑁 is an A-module homomorphism, the
induced map Γ𝐴(𝜑) : Γ𝐴(𝑀) → Γ𝐴(𝑁) is characterized by 𝑚 [𝑖 ] ↦→ (𝜑(𝑚)) [𝑖 ] , 𝑚 ∈ 𝑀 , 𝑖 ∈ N. One has
compatibility with base change, that is, natural isomorphisms Γ𝑑𝐴(𝑀) ⊗𝐴 𝐵 � Γ𝑑𝐵 (𝑀 ⊗𝐴 𝐵).

Definition 4.5.2. The universal degree d homogenous polynomial law 𝐿𝑑𝑀 ∈ P𝑑
𝐴(𝑀, Γ𝑑𝐴(𝑀)) is defined

by the maps

𝐿𝑑𝑀,𝐵 : 𝑀 ⊗𝐴 𝐵−→ Γ𝑑𝐴(𝑀) ⊗𝐴 𝐵 � Γ𝐵 (𝑀 ⊗𝐴 𝐵), 𝑚 ⊗ 𝑏 ↦→ (𝑏𝑚) [𝑖 ] , 𝑚 ∈ 𝑀, 𝑏 ∈ 𝐵.

The universality of 𝐿𝑑 is expressed by the following result:

Theorem 4.5.3 [Rob63, Théorème IV.1]. Let M, N be two A-modules, and let d be in N. There is a
canonical isomorphism

Hom𝐴(Γ𝑑𝐴(𝑀), 𝑁)
�−→ P𝑑

𝐴(𝑀, 𝑁), 𝑓 ↦−→ 𝑓 ◦ 𝐿𝑑𝑀 .

To describe the map in the converse direction, let 𝑃 ∈ P𝑑
𝐴(𝑀, 𝑁). Define the index set 𝐼𝑑 := {𝛼 =

(𝛼1, . . . , 𝛼𝑑) ∈ N𝑑 |
∑
𝛼𝑖 = 𝑑}. Given 𝛼 = (𝛼1, . . . , 𝛼𝑑) ∈ 𝐼𝑑 set 𝑇 𝛼 =

∏𝑑
𝑗=1 𝑇

𝛼𝑗

𝑗 for indeterminates
(𝑇1, . . . , 𝑇𝑑), and set 𝑚 [𝛼] =

∏𝑑
𝑗=1 𝑚

[𝛼𝑖 ]
𝑖 ∈ Γ𝑑𝐴(𝑀) for 𝑚 = (𝑚1, . . . , 𝑚𝑑) ∈ 𝑀𝑑 . Define now for all

𝛼 ∈ 𝐼𝑑 simultaneously maps 𝑃 [𝛼] : 𝑀𝑑 → 𝑁 by

𝑃𝐴[𝑇1 ,...,𝑇𝑑 ] (𝑇1𝑚1 + . . . + 𝑇𝑑𝑚𝑑) =
∑
𝛼∈𝐼𝑑

𝑃 [𝛼] (𝑚)𝑇 𝛼

for 𝑚 = (𝑚1, . . . , 𝑚𝑑) ∈ 𝑀𝑑 . In the proof of Theorem 4.5.3 by Roby, it is shown that given any
𝑃 ∈ P𝑑

𝐴(𝑀, 𝑁), there exists an A-module homomorphism 𝑓 : Γ𝑑𝐴(𝑀) → 𝑁 such that

𝑓
(
𝑚 [𝛼]

)
= 𝑃 [𝛼] (𝑚), ∀𝛼 ∈ 𝐼𝑑 and 𝑚 ∈ 𝑀𝑑 , (20)

and that 𝑓 ◦ 𝐿𝑑𝑀 = 𝑃.
If M is a free A-module, the A-module Γ𝑑𝐴(𝑀) has the following explicit description.

Theorem 4.5.4 [Rob63, Théorème IV.2]. Suppose that M is a free A-module with basis (𝑒𝑖)𝑖∈𝐼 . Then
for 𝑑 ∈ N, the A-module Γ𝑑𝐴(𝑀) is free with basis{

𝑒 [𝑘1 ]
𝑖1
· . . . · 𝑒 [𝑘ℎ ]𝑖 𝑗

| ℎ ∈ N, (𝑖1, . . . , 𝑖ℎ) ∈ 𝐼ℎ , (𝑘1, . . . , 𝑘ℎ) ∈ N≥1,
ℎ∑
𝑗=1

𝑘ℎ = 𝑑
}
.

If M is an A-algebra R, then [Rob80] defines an A-algebra structure on each Γ𝑑𝐴(𝑅), different from
that on Γ𝐴(𝑅), by defining a multiplication Γ𝑑𝐴(𝑅) ⊗𝐴 Γ𝑑𝐴(𝑅) → Γ𝑑𝐴(𝑅), that we now recall. The
multiplication map is defined as the composition of two maps. The first map exists for any A-module
M, the second is built from the ring structure of R. Let first M be an arbitrary A-module. Then the map
𝛽𝑀 : 𝑀 ⊕ 𝑀 → 𝑀 ⊗𝐴 𝑀, (𝑚, 𝑚′) ↦→ 𝑚 ⊗ 𝑚′ is a homogeneous polynomial law of degree 2, and thus
𝐿𝑑𝑀 ⊗𝑀 ◦ 𝛽𝑀 lies in P2𝑑

𝐴 (𝑀 ⊕ 𝑀, 𝑀 ⊗ 𝑀). By Theorem 4.5.3, we have 𝐿𝑑𝑀 ⊗𝑀 ◦ 𝛽𝑀 = 𝜂𝑀 ◦ 𝐿2𝑑
𝑀 ⊕𝑀

for a unique A-linear map

𝜂𝑀 : Γ2𝑑
𝐴 (𝑀 ⊕ 𝑀) → Γ𝑑𝐴(𝑀 ⊗𝐴 𝑀).

[Rob63, Théorème III.4] gives an isomorphism
⊕𝑒

𝑖=0 Γ
𝑖
𝐴(𝑀) ⊗ Γ𝑒−𝑖𝐴 (𝑀) → Γ𝑒𝐴(𝑀) for any 𝑒 ∈ N. It

is further shown in [Rob80, p. 869] that the maps Γ𝑖𝐴(𝑀) ⊗ Γ2𝑑−𝑖
𝐴 (𝑀) → Γ𝑑𝐴(𝑀 ⊗ 𝑀) induced from
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𝜂𝑀 are zero for 𝑖 ≠ 𝑑, and that the induced map 𝜂𝑀 : Γ𝑑𝐴(𝑀) ⊗ Γ𝑑𝐴(𝑀) → Γ𝑑𝐴(𝑀 ⊗ 𝑀) is given by the
explicit formula

𝜂𝑀
(
𝑚 [𝛼] ⊗ 𝑛 [𝛽 ]

)
=

∑
𝛾∈Mat𝛼,𝛽

𝑑×𝑑 (N)

∏
(𝑖, 𝑗) ∈{1,...,𝑑 }2

(𝑚𝑖 ⊗ 𝑛 𝑗 ) [𝛾𝑖 𝑗 ] , (21)

for 𝑚, 𝑛 ∈ 𝑀𝑑 , 𝛼, 𝛽 ∈ 𝐼𝑑 , and where Mat𝛼,𝛽𝑑×𝑑 (N) denotes the set of all matrices 𝛾 = (𝛾𝑖 𝑗 ) in Mat𝑑×𝑑 (N)
whose rows sum to 𝛽 and whose columns sum to 𝛼. Let now 𝑀 = 𝑅 be an A-algebra. Then the
multiplication map 𝜇𝑅 : 𝑅 ⊗𝐴 𝑅 → 𝑅 is A-linear, and thus it induces a graded map Γ𝐴(𝜇𝑅) whose d-th
graded piece is a homomorphism Γ𝑑𝐴(𝜇𝑅) : Γ

𝑑
𝐴(𝑅 ⊗ 𝑅) → Γ𝑑𝐴(𝑅). Roby defines

𝜇𝑑𝑅 := Γ𝑑𝐴(𝜇𝑅) ◦ 𝜂𝑅 : Γ𝑑𝐴(𝑅) ⊗𝐴 Γ𝑑𝐴(𝑅) → Γ𝑑𝐴(𝑅)

It is shown in [Rob80, p. 870] that if R is unital, associative or commutative, respectively, then the same
property holds for Γ𝑑𝐴(𝑅) with the multiplication 𝜇𝑑𝑅, for any 𝑑 ∈ N. It turns out that 𝐿𝑑𝑅 is multiplicative
with respect to this multiplication on Γ𝑑𝐴(𝑅). The key result is the following description of multiplicative
polynomial laws:

Theorem 4.5.5 [Rob80, Théorème]. For A-algebras S, 𝑆′, the following map is a bijection

Hom𝐴-A𝑙𝑔 (Γ𝑑𝐴(𝑆), 𝑆
′) →M𝑑

𝐴(𝑆, 𝑆
′), 𝑓 ↦→ 𝑓 ◦ 𝐿𝑑𝑅 .

Suppose now that 𝑅 = 𝐴[𝐺] for a group G. Note that the elements of G form an A-basis of 𝐴[𝐺], and
hence an A-basis of Γ𝑛𝐴(𝐴[𝐺]) is described in Theorem 4.5.4. Let 𝐷 : 𝐴[𝐺] → 𝐴 be a pseudocharacter
of dimension d. From Theorems 4.5.3 and 4.5.5 and using equation (20), we deduce:

Proposition 4.5.6. There exists a unique homomorphism 𝑓𝐷 : Γ𝑑𝐴(𝐴[𝐺]) → 𝐴 such that

𝑓𝐷
(
𝑔 [𝛼]

)
= 𝐷 [𝛼] (𝑔), ∀𝛼 ∈ 𝐼𝑑 and 𝑔 ∈ 𝐺𝑑 .

It is multiplicative for the product on Γ𝑑𝐴(𝐴[𝐺]) given by 𝜇𝑑
𝐴[𝐺 ] .

Let now 𝜒 : 𝐺 → 𝐴× be a group homomorphism. Define for𝛼 = (𝛼1, . . . , 𝛼𝑑) and 𝑔 = (𝑔1, . . . , 𝑔𝑑) ∈
𝐺𝑑 the notation 𝜒(𝑔 [𝛼] ) to by 𝜒(𝑔 [𝛼] ) :=

∏𝑑
𝑖=1 𝜒(𝑔𝑖)𝛼𝑖 . Because {𝑔 [𝛼] | 𝛼 ∈ 𝐼𝑑 , 𝑔 ∈ 𝐺𝑑} is a basis of

Γ𝑑𝐴(𝐴[𝐺]) we have a unique A-linear map 𝑓𝐷,𝜒 : Γ𝑑𝐴(𝐴[𝐺]) → 𝐴 such that

𝑓𝐷,𝜒
(
𝑔 [𝛼]

)
= 𝐷 [𝛼] (𝑔) · 𝜒(𝑔 [𝛼] ), ∀𝛼 ∈ 𝐼𝑑 and 𝑔 ∈ 𝐺𝑑 .

Proposition 4.5.7. Suppose that 𝐷 ∈ P𝑠R𝑛
𝐺 (𝐴) and that 𝜒 : 𝐺 → 𝐴× is a group homomorphism. Then

the following hold:

(a) The map 𝑓𝐷,𝜒 defined above is multiplicative.

Define the d-dimensional pseudocharacter 𝐷 ⊗ 𝜒 to be 𝑓𝐷,𝜒 ◦ 𝐿𝑑𝐴[𝐺 ] .

(b) The characteristic polynomial coefficients of 𝐷 ⊗ 𝜒 satisfy the identities

Λ𝐷⊗𝜒,𝑖 (𝑔) = Λ𝐷,𝑖 (𝑔) · 𝜒(𝑔)𝑖 for all 𝑖 and all 𝑔 ∈ 𝐺.

(c) If 𝐷 and 𝜒 are continuous, then so is 𝐷 ⊗ 𝜒.
(d) If 𝐷 = 𝐷𝜌 for a representation 𝜌 of G, then 𝐷 ⊗ 𝜒 = 𝐷𝜌⊗𝜒.
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Proof. To see Part (a), we need to show that 𝑓𝐷,𝜒 (𝑔 · ℎ) = 𝑓𝐷,𝜒 (𝑔) 𝑓𝐷,𝜒 (ℎ) for 𝑔 = (𝑔1, . . . , 𝑔𝑑), ℎ =
(ℎ1, . . . , ℎ𝑑) ∈ 𝐺𝑑 and for · the multiplication given by 𝜇𝑑

𝐴[𝐺 ] . Using equation (21), we compute

𝑔 [𝛼] · ℎ [𝛽 ] = 𝜇𝑑𝐴[𝐺 ]

(
𝜂𝑀
(
𝑔 [𝛼] ⊗ ℎ [𝛽 ]

) )
= 𝜇𝑑𝐴[𝐺 ]

( ∑
𝛾∈Mat𝛼,𝛽

𝑑×𝑑 (N)

∏
(𝑖, 𝑗) ∈{1,...,𝑑 }2

(𝑔𝑖 ⊗ ℎ 𝑗 ) [𝛾𝑖 𝑗 ]
)

=
∑

𝛾∈Mat𝛼,𝛽
𝑑×𝑑 (N)

∏
(𝑖, 𝑗) ∈{1,...,𝑑 }2

(𝑔𝑖ℎ 𝑗 ) [𝛾𝑖 𝑗 ] .

Observe that
∑
𝑖, 𝑗 𝛾𝑖 𝑗 = 𝑑 for 𝛾 ∈ Mat𝛼,𝛽𝑑×𝑑 (N) and that index pairs (𝑖, 𝑗) with 𝛾𝑖 𝑗 = 0 can be ignored. We

write 𝛾 for the flattening of 𝛾 truncated to length d, that is, we first regard 𝛾 as a 𝑑2-tuple in one index and
then omit the highest 𝑑2 − 𝑑 indices, where 𝛾𝑖 𝑗 = 0. Using in (∗) the definition of Mat𝛼,𝛽𝑑×𝑑 (N), we find

𝑓𝐷,𝜒 (𝑔 [𝛼] · ℎ [𝛽 ] ) =
∑

𝛾∈Mat𝛼,𝛽
𝑑×𝑑 (N)

𝑓𝐷,𝜒

( ∏
(𝑖, 𝑗) ∈{1,...,𝑑 }2

(𝑔𝑖ℎ 𝑗 ) [𝛾𝑖 𝑗 ]
)

=
∑

𝛾∈Mat𝛼,𝛽
𝑑×𝑑 (N)

𝐷 [𝛾 ] ((𝑔𝑖ℎ 𝑗 )(𝑖, 𝑗) ∈𝛾)
( ∏
(𝑖, 𝑗) ∈{1,...,𝑑 }2

𝜒(𝑔𝑖ℎ 𝑗 )𝛾𝑖 𝑗

)
(∗)
=

∑
𝛾∈Mat𝛼,𝛽

𝑑×𝑑 (N)

𝐷 [𝛾 ] ((𝑔𝑖ℎ 𝑗 )(𝑖, 𝑗) ∈𝛾)𝜒(𝑔 [𝛼] )𝜒(ℎ [𝛽 ] )

= 𝜒(𝑔 [𝛼] )𝜒(ℎ [𝛽 ] ) 𝑓𝐷 (𝑔 [𝛼] · ℎ [𝛽 ] )
𝑓𝐷 multipl.

= 𝜒(𝑔 [𝛼] )𝜒(ℎ [𝛽 ] ) 𝑓𝐷 (𝑔 [𝛼] ) 𝑓𝐷 (ℎ [𝛽 ] ) = 𝑓𝐷,𝜒 (𝑔 [𝛼] ) 𝑓𝐷,𝜒 (ℎ [𝛽 ] ).

Concerning (b), note that

𝐷𝐴[𝑇 ′ ] (1 − 𝑇𝑔′) = 𝐷𝐴[𝑇1 ,...,𝑇𝑑 ]

( 𝑑∑
𝑖=1

𝑇𝑖𝑔𝑖

)
|𝑔=(𝑒,...,𝑒,𝑔′) ,𝑇 =(1,0,...,0,𝑇 ′)

so that

Λ𝐷⊗𝜒,𝑖 (𝑔′) = (−1)𝑖 (𝐷 ⊗ 𝜒) [𝑑−𝑖,0,...,0,𝑖 ] (𝑒, . . . , 𝑒, 𝑔′)
= (−1)𝑖𝐷 [𝑑−𝑖,0,...,0,𝑖 ] (𝑒, . . . , 𝑒, 𝑔′)𝜒((𝑒, . . . , 𝑒, 𝑔′) [𝑑−𝑖,0,...,0,𝑖 ] )
= (−1)𝑖𝐷 [𝑑−𝑖,0,...,0,𝑖 ] (𝑒, . . . , 𝑒, 𝑔′)𝜒(𝑔)𝑖 = Λ𝐷,𝑖 (𝑔′)𝜒(𝑔)𝑖 .

Part (c) follows from (b) and Definition 4.4.1, Part (d) follows from (b) and the theorem of Brauer–
Nesbitt. �

Definition 4.5.8 (Twist of pseudocharacters). We call the multiplicative polynomial law 𝐷 ⊗ 𝜒 ∈
P𝑠R𝑛

𝐺 (𝐴) from Proposition 4.5.7 the twist of 𝐷 by 𝜒.

Remark 4.5.9. It should be interesting to define the tensor product of two pseudocharacters of any
dimensions 𝑛, 𝑛′.

Lemma 4.5.10. Let 𝐷, 𝐷 ′ be in P𝑠R𝑛
𝐺 (𝐴), and let 𝜒 : 𝐺 → 𝐴× be a group homomorphism. Then

𝐷 ′ = 𝐷 ⊗ 𝜒 if and only if Λ𝐷′,𝑖 (𝑔) = Λ𝐷,𝑖 (𝑔) · 𝜒(𝑔)𝑖 for all i and all 𝑔 ∈ 𝐺.

Proof. Proposition 4.5.7(b) shows that the condition given is necessary. That it is also sufficient fol-
lows from Proposition 4.1.10(a), which says that a pseudocharacter is determined by its characteristic
polynomial coefficients. �
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Corollary 4.5.11. Let 𝐷 be in P𝑠R𝑛
𝐺 (𝐴), and let 𝜒 : 𝐺 → 𝐴× be a character of finite order. Suppose

that 𝜒(𝑔) − 1 lies in 𝐴× whenever 𝑔 ∈ 𝐺\ker 𝜒. Then the following hold:

(a) 𝐷 = 𝐷 ⊗ 𝜒 if and only if

∀𝑔 ∈ 𝐺,∀𝑖 = 0, . . . , 𝑛 : Λ𝐷,𝑖 (𝑔) = 0 or ord 𝜒(𝑔) divides 𝑖.

(b) Let I be the ideal of A generated by the set

{Λ𝐷,𝑖 (𝑔) : (𝑔, 𝑖) ∈ 𝐺 × {1, . . . , 𝑛} such that ord 𝜒(𝑔) 𝑖}.

Then the locus of Spec 𝐴 on which 𝐷 = 𝐷 ⊗ 𝜒 is the closed subscheme Spec 𝐴/𝐼.

Proof. To see Part (a), note that by Lemma 4.5.10 we have 𝐷 = 𝐷 ⊗ 𝜒 if and only if

Λ𝐷,𝑖 (𝑔) = Λ𝐷,𝑖 (𝑔) · 𝜒𝑖 (𝑔) for all 𝑖 and all 𝑔 ∈ 𝐺.

Since 1−𝜒𝑖 (𝑔) is a unit in 𝐴× whenever ord 𝜒(𝑔) � 𝑖 and is zero otherwise, the latter is clearly equivalent
to the condition given in the corollary.

By Part (a), we have for any ideal J of A

(𝐷 ⊗𝐴 𝐴/𝐽) ⊗ 𝜒 = 𝐷 ⊗𝐴 𝐴/𝐽 ⇐⇒ 𝐼 ⊂ 𝐽,

and this implies Part (b). �

4.6. Induction for pseudocharacters

In this subsection, we introduce the operation of inducing a pseudocharacter from a finite index subgroup.
The main result is Theorem 4.6.7. Following a suggestion of the referee, we describe a construction
that works in all cases.6 The idea is a pullback to a universal situation. For this, we use Theorem A.4.4
which is a variant of an important result of Vaccarino. The uniqueness of the construction, that is,
its characterizing property, is guaranteed by explicit formulas for the characteristic polynomial of the
induction. The present subsection begins by recalling the construction of induction of a representation
and then analyzes it to give in Lemma 4.6.6 a formula for the resulting characteristic polynomial. This
is then used in the main result, Theorem 4.6.7.

We fix a group G and a subgroup 𝐻 ⊂ 𝐺 of finite index 𝑚. As in Section 2, we set 𝑁 :=
⋂

𝑔∈𝐺/𝐻 𝐻𝑔.
It is of finite index and normal in G, and the largest such subgroup contained in H. If G is a profinite
group, we require H to be open, and then 𝑁 ⊂ 𝐺 is open, as well.

Lemma 4.6.1. Let C be an Azumaya A-algebra. Consider a representation 𝜌 : 𝐻 → 𝐶×. There exists a
representation 𝜌∗ : 𝐺 → GL𝑚(𝐶)× such that for any étale extension 𝐴 → 𝐴′ that splits C, there is an
isomorphism 𝜌∗ ⊗𝐴 𝐴′ � Ind𝐺𝐻 (𝜌 ⊗𝐴 𝐴′) of G-representations over A.

The linearization (𝜌∗)lin : 𝐴[𝐺] → Mat𝑚×𝑚(𝐶) of 𝜌∗ takes values in the Azumaya algebra
Mat𝑚×𝑚(𝐶), and by Example 4.1.7 the associated pseudocharacter 𝐷𝜌∗ takes values in A.

Proof. To prove the lemma, we adapt the description of the induced matrix representation from [CR81,
pp. 227-230] to the setting of Azumaya algebras. Let 𝑔1, . . . , 𝑔𝑚 be a set of representatives of left cosets
of 𝐺/𝐻 so that 𝐺 =

⊔𝑚
𝑖=1 𝑔𝑖𝐻. We extend 𝜌 from H to G by defining

�̃� : 𝐺 −→𝐶, 𝑔 ↦−→
{
𝜌(𝑔) if 𝑔 ∈ 𝐻,

0 if 𝑔 ∈ 𝐺\𝐻.

6In an earlier version, using a different argument, our construction had some technical limitations but was nevertheless sufficient
for the main result of this work.
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Consider the map

𝜌∗ : 𝐺 −→Mat𝑚×𝑚(𝐶), 𝑔 ↦−→
����
�̃�(𝑔−1

1 𝑔𝑔1) · · · �̃�(𝑔−1
1 𝑔𝑔𝑚)

...
. . .

...
�̃�(𝑔−1

𝑚 𝑔𝑔1) · · · �̃�(𝑔−1
𝑚 𝑔𝑔𝑚)

����.
Define for 𝑔 ∈ 𝐺 and 𝑗 ∈ {1, . . . , 𝑚} the element 𝑖 𝑗 ∈ {1, . . . , 𝑚} by the condition 𝑔𝑔 𝑗𝐻 = 𝑔𝑖 𝑗𝐻 so
that the map 𝑗 ↦→ 𝑖 𝑗 is a permutation of {1, . . . , 𝑚}. This shows that 𝜌∗(𝑔) is a monomial matrix over
the skew field C which in each column j has a unique nonzero entry 𝜌(𝑔−1

𝑖 𝑗
𝑔𝑔 𝑗 ) ∈ 𝐶× in row 𝑖 𝑗 . In

particular, this also shows that 𝜌∗(𝑔) lies in GL𝑚(𝐶).
We claim that 𝜌∗ has the properties asserted in the lemma. Let 𝐴 → 𝐴′ be finite étale so that

𝐶 ⊗𝐴 𝐴′ = Mat𝑟×𝑟 (𝐴′) for a suitable 𝑟 ∈ N≥1. Then by our construction, that follows [CR81], 𝜌∗ ⊗𝐴 𝐴′
is the matrix representation of the induced representation of

𝜌 ⊗𝐴 𝐴′ : 𝐻 −→GL𝑟 (𝐴′).

This implies the multiplicativity of the map 𝜌∗, that is, that it is a homomorphism. Moreover, it shows
that 𝜌∗ ⊗𝐴 𝐴′ is the usual induced representation of 𝜌 ⊗𝐴 𝐴′. �

Remark 4.6.2. It can be shown that 𝜌 ↦→ 𝜌∗ in Lemma 4.6.1 is uniquely characterized as the right adjoint
of the restriction homomorphism from G-representations to H-representations on Azumaya algebras.
In particular, up to isomorphism 𝜌∗ is independent of the chosen representatives 𝑔1, . . . , 𝑔𝑚 of 𝐺/𝐻.

Definition 4.6.3. We call 𝜌∗ from Lemma 4.6.1 the representation induced from 𝜌 under 𝐻 ⊂ 𝐺 and
denote it by Ind𝐺𝐻 𝜌.

The reason for introducing induction with Azumaya algebra coefficients is to be able to formulate
Theorem 4.6.7(e); see Remark 4.6.9.

Example 4.6.4. Since we have just seen an explicit form of 𝜌∗, for later use we consider the following
example: Let 𝐻 ⊂ 𝐺 be a normal subgroup of index p. Fix 𝑔0 ∈ 𝐺\𝐻, and set 𝑔𝑖 := 𝑔𝑖0 for 𝑖 = 1, . . . , 𝑝
so that 𝐺 =

⊔𝑝
𝑖=1 𝑔𝑖𝐻 and the map

𝜆 : 𝐺/𝐻 → Z/(𝑝), 𝑔𝑖0𝐻 ↦→ 𝑖(mod 𝑝)

is a group isomorphism. Let C be an Azumaya E-algebra for a field E of characteristic p, and let
𝜌 : 𝐻 → 𝐶× be a representation. Define the induced representation 𝜌∗ : 𝐺 → Mat𝑝×𝑝 (𝐶)× as in the
above proof. Let 𝐴 ∈ Mat𝑝×𝑝 (𝐶) be the diagonal matrix with diagonal (𝑖 · 1𝐶 )𝑖=0,..., 𝑝−1. Then we claim
that one has for all 𝑔 ∈ 𝐺 the relation

𝜌∗(𝑔)𝐴𝜌∗(𝑔−1) − 𝐴 = −𝜆(𝑔)1Mat𝑝×𝑝 (𝐶) .

The reader is advised to compare this with Lemma 2.3.2. The claim asserts that 𝜆 defines a nontrivial
class in 𝐻0(𝐺,𝐶/𝐸) with G acting on 𝐶/𝐸 via the adjoint representation of 𝜌.

To prove the claim, let 𝑔 ∈ 𝐺. We shall verify 𝜌∗(𝑔)𝐴 − 𝐴𝜌∗(𝑔) = 𝜆(𝑔)𝜌∗(𝑔). Observe that
�̃�(𝑔−1

𝑖 𝑔𝑔 𝑗 ) = �̃�(𝑔−𝑖0 𝑔𝑔
𝑗
0) = 0 unless 𝑔𝐻 = 𝑔

𝑖− 𝑗
0 𝐻, that is, unless 𝜆(𝑔) = 𝑖 − 𝑗 . In the following, we write

a lower subscript 𝑖, 𝑗 to indicate the (𝑖, 𝑗)-entry of a matrix in Mat𝑝×𝑝 (𝐶). Then

(𝜌∗(𝑔)𝐴 − 𝐴𝜌∗(𝑔))𝑖, 𝑗 = 𝜌∗(𝑔)𝑖, 𝑗 · 𝑗 − 𝑖 · 𝜌∗(𝑔)𝑖, 𝑗 = ( 𝑗 − 𝑖) · �̃�(𝑔−𝑖0 𝑔𝑔
𝑗
0)

observ.
= −𝜆(𝑔) · 𝜌∗(𝑔)𝑖, 𝑗 ,

and this completes the proof of our assertion, and ends our example.
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Presumably formulas for the characteristic polynomial of Ind𝐺𝐻 𝜌 are well known. But we could not
locate suitable references. So we develop this from scratch. We need to fix some notation: Let C be
an Azumaya A-algebra of degree n. Recall from Reminder 4.1.6 that elements 𝑐 ∈ 𝐶 have a reduced
characteristic polynomial 𝜒𝑐; we define its coefficients Λ𝑐,𝑖 by 𝜒𝑐 (𝑡) =

∑𝑛
𝑖=0(−1)𝑖Λ𝑐,𝑖 (𝑐)𝑡𝑛−𝑖 . We write

𝜒𝑚𝑐 for the reduced characteristic polynomial (of degree 𝑛𝑚) of an element 𝑐 ∈ Mat𝑚×𝑚(𝐶).

Lemma 4.6.5. Let 𝑐 = (𝑐𝑖, 𝑗 ) be in Mat𝑚×𝑚(𝐶). Suppose that there is a permutation 𝜎 ∈ 𝔖𝑚 such that
𝑐𝑖, 𝑗 = 0 for 𝑖 ≠ 𝜎( 𝑗) and such that 𝑐𝜎 ( 𝑗) , 𝑗 lies in 𝐶× for all j. Then 𝜒𝑚𝑐 has the following description:

Write 𝜎 in its cycle decomposition 𝜎 = 𝜎1 · . . . · 𝜎𝑣 , where the 𝜎𝑙 are disjoint cycles of length 𝑚𝑙

such that
∑𝑣
𝑙=1 𝑚𝑙 = 𝑚, and let 𝑗𝑙 be in the support of 𝜎𝑙 such that 𝜎𝑙 = ( 𝑗𝑙 , 𝜎( 𝑗𝑙), . . . , 𝜎𝑚𝑙−1( 𝑗𝑙)). Then

𝜒𝑚𝑐 (𝑡) =
𝑣∏
𝑙=1

𝜒𝑐 (𝑙) (𝑡𝑚𝑙 ) with 𝑐(𝑙) := 𝑐 𝑗𝑙 ,𝜎𝑚𝑙−1 ( 𝑗𝑙)𝑐𝜎𝑚𝑙−1 ( 𝑗𝑙) ,𝜎𝑚𝑙−2 ( 𝑗𝑙) · . . . · 𝑐𝜎 ( 𝑗𝑙) , 𝑗𝑙 .

Proof. Let 𝑠𝑙 = 𝑚1 + . . . + 𝑚𝑙−1 for 𝑙 = 1, . . . , 𝑣, with 𝑠1 = 𝑚0 = 0, and let 𝜏 ∈ 𝔖𝑚 be the permutation
whose inverse is given by(

𝑠1 + 1 𝑠1 + 2 · · · 𝑠1 + 𝑚1
𝑗1 𝜎( 𝑗1) . . . 𝜎𝑚1−1( 𝑗𝑖)

)
· . . . ·

(
𝑠𝑣 + 1 𝑠𝑣 + 2 · · · 𝑠𝑣 + 𝑚𝑣

𝑗𝑣 𝜎( 𝑗𝑣 ) . . . 𝜎𝑚𝑣−1 ( 𝑗𝑣 )

)
,

and let 𝑝 = 𝑝𝜏 in Mat𝑚×𝑚(𝐶) be the permutation matrix attached to 𝜏, that is, with 𝑝𝑖, 𝑗 = 0 for 𝑖 ≠ 𝜏( 𝑗)
and 𝑝𝜏 ( 𝑗) , 𝑗 = 1𝐶 for all j. Then one verifies that 𝑝𝜏𝑐𝑝−1

𝜏 is a block diagonal matrix in Mat𝑚×𝑚(𝐶) with
v blocks on the diagonal, the 𝑙th block lies in Mat𝑚𝑙×𝑚𝑙 (𝐶) and is of the form

𝐵𝑙 =

����������

0 0 . . . 𝑐 𝑗𝑙 ,𝜎𝑚𝑙−1 ( 𝑗𝑙)

𝑐𝜎 ( 𝑗𝑙) , 𝑗𝑙 0
. . . 0

0 𝑐𝜎2 ( 𝑗𝑙) ,𝜎 ( 𝑗𝑙)
. . .

. . .
...

. . .

0 . . . 0 𝑐𝜎𝑚𝑙−1 ( 𝑗𝑙) ,𝜎𝑚𝑙−2 ( 𝑗𝑙) 0

����������
.

By conjugating 𝐵𝑙 with the block diagonal matrix with entry at spot (𝑖, 𝑖) the block given by
𝑐𝜎𝑖−1 ( 𝑗𝑙) ,𝜎𝑖−2 ( 𝑗𝑙) ·𝑐𝜎𝑖−2 ( 𝑗𝑙) ,𝜎𝑖−1 ( 𝑗𝑙) · . . . ·𝑐𝜎 ( 𝑗𝑙) , 𝑗𝑙 so that at (1, 1) the entry is 1, the matrix 𝐵𝑙 is transferred
to the block companion matrix

𝐵′𝑙 =

����������

0 0 . . . 𝑐(𝑙)

1 0
. . . 0

0 1
. . .

. . .
...
. . .

0 . . . 0 1 0

����������
.

It suffices by a genericity argument to assume that A is an algebraically closed field so that C is split
over A. Then the claim that 𝐵𝑙 has characteristic polynomial 𝜒𝑐 (𝑙) (𝑡𝑚𝑙 ) is a simple linear algebra
calculation. In the case when 𝑐(𝑙) is a diagonal matrix, after an obvious change of basis 𝐵′𝑙 becomes the
direct sum of standard companion matrices each with the same type of last row as 𝐵′𝑙 and hence with
characteristic polynomial 𝑡𝑚𝑙 − 𝑐(𝑙)𝑖,𝑖 so that one finds 𝜒𝐵𝑙 (𝑡) = 𝜒𝑐 (𝑙) (𝑡𝑚𝑙 ). In the general case, one
uses that semisimple matrices are dense open in the set of all matrices, or a devissage argument once
𝑐(𝑙) is in Jordan form.

A more heuristic argument for 𝜒𝐵𝑙 (𝑡) = 𝜒𝑐 (𝑙) (𝑡𝑚𝑙 ) runs as follows. The matrix 𝐵𝑚𝑙

𝑙 is block scalar
with diagonal scalar factor 𝑐(𝑙) ∈ 𝐶×. So by the Cayley–Hamilton theorem 𝐵𝑚𝑙

𝑙 is annihilated by
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𝜒𝑐 (𝑙) (𝑡), and hence 𝐵𝑙 is annihilated by 𝜒𝑐 (𝑙) (𝑡𝑚𝑙 ), and for a generic 𝑐(𝑙) one would expect 𝜒𝑐 (𝑙) (𝑡𝑚𝑙 )
to be the minimal polynomial of 𝐵𝑙 . �

Lemma 4.6.6. Let the hypotheses be as in Lemma 4.6.1 with 𝑁 ⊂ 𝐻 ⊂ 𝐺, and let 𝑔 ∈ 𝐺. Let
𝛾𝑔,𝑙 ∈ 𝐺, 𝑙 = 1, . . . , 𝑣𝑔, form a set of representatives for the double coset space 〈𝑔〉\𝐺/𝐻 so that 𝐺 =⊔

𝑖=1,...,𝑣𝑔 〈𝑔〉𝛾𝑔,𝑙𝐻, and let𝑚𝑙 = [〈𝑔〉𝛾𝑔,𝑙𝐻 : 𝐻] so that𝑚𝑙 > 0 is minimal such that 𝑔𝑚𝑙𝛾𝑔,𝑙𝐻 = 𝛾𝑔,𝑙𝐻.
Then one has

𝜒Ind𝐺
𝐻𝜌(𝑔) (𝑡) =

∏
𝑙=1,...,𝑣𝑔

𝜒𝜌(𝛾−1
𝑔,𝑙
·𝑔𝑚𝑙 ·𝛾𝑔,𝑙) (𝑡

𝑚𝑙 ).

Moreover, on any left coset 𝑔′𝑁 , 𝑔′ ∈ 𝐺, the map 𝑔 → 𝑣𝑔 is constant, and the double cosets space
〈𝑔〉\𝐺/𝐻 is independent of g, and hence so are the 𝑚𝑙 , and also one can choose uniform representatives
𝛾𝑔,𝑙 for 〈𝑔〉\𝐺/𝐻, independently of 𝑔 ∈ 𝑔′𝑁 .

If H is normal in G, the double coset space 〈𝑔〉\𝐺/𝐻 is in bijection with the right coset space
〈𝑔〉𝐻\𝐺, and so 𝑣𝑔 = [𝐺 : 〈𝑔〉𝐻] and 𝑚𝑙 = 𝑚′ := ord𝐺/𝐻 (𝑔𝐻) is independent of l.

Proof. We first recall the construction of Ind𝐺𝐻 𝜌 from the proof of Lemma 4.6.1. As a convenient set
of coset representatives for 𝐺/𝐻, we take

⊔
𝑙=1,...,𝑣𝑔 {𝑔

𝑗𝛾𝑔,𝑙 : 𝑗 = 0, . . . , 𝑚𝑙 − 1}. With this choice,
𝜌∗(𝑔) is already in block diagonal form with 𝑣𝑔 blocks and the size of the l-th block is 𝑚𝑙 . Moreover,
by explicit computation, one finds that the l-th block has nonzero entries only at index pairs ( 𝑗 , 𝑗 − 1),
𝑗 = 2, . . . , 𝑚𝑙 , where the entry is 1 ∈ 𝐶, and at (1, 𝑚𝑙), where the entry is 𝜌(𝛾−1

𝑔,𝑙𝑔
𝑚𝑙𝛾𝑔,𝑙). The asserted

formula is now an immediate consequence of the formula in Lemma 4.6.5.
Concerning the constancy statement for all g in a fixed coset 𝑔′𝑁 , observe that all assertions follow

from the following observation: Let �̃� = 𝑔𝑛 for some 𝑛 ∈ 𝑁 , and let 〈𝑔〉𝛾𝐻 be a double coset for some
𝛾 ∈ 𝐺. Then by normality of N in G and using 𝑁 ⊂ 𝐻, we have

�̃�𝑖𝛾𝐻 = �̃�𝑖𝛾𝑁𝐻 = �̃�𝑖𝑁𝛾𝐻 = 𝑔𝑖𝑁𝛾𝐻 = 𝑔𝑖𝛾𝐻,

and thus we have equality of double cosets 〈𝑔′〉𝛾𝐻 = 〈𝑔〉𝛾𝐻. The remaining assertions when H is
normal in G we leave as exercises to the reader. �

Let now

𝐷𝐻 : 𝐵[𝐻] −→ 𝐵

be a pseudocharacter of dimension n with values in a commutative ring B. If G is a profinite group, we
assume that 𝐷𝐻 is continuous. The following result establishes the existence of the induction of 𝐷𝐻 .

Theorem 4.6.7. There exists a unique pseudocharacter 𝐷𝐺 : 𝐵[𝐺] → 𝐵 whose characteristic polyno-
mial for each 𝑔 ∈ 𝐺 is given as follows. Let 𝛾𝑔,𝑙 , 𝑙 = 1, . . . , 𝑣𝑔, be elements of G that form a set of
representatives for the double coset space 〈𝑔〉\𝐺/𝐻, and define 𝑚𝑙 = [〈𝑔〉𝛾𝑔,𝑙𝐻 : 𝐻]. Then

𝜒𝐷𝐺 ,𝐵 (𝑔, 𝑡) =
∏

𝑙=1,...,𝑣𝑔

𝜒𝐷𝐻 ,𝐵 (𝛾−1
𝑔,𝑙 · 𝑔

𝑚𝑙 · 𝛾𝑔,𝑙 , 𝑡𝑚𝑙 ). (22)

The pseudocharacter 𝐷𝐺 has the following properties.

(a) One has

Res𝐺𝑁𝐷𝐺 �
⊕

𝑔∈𝐺/𝐻

(
Res𝐻𝑁𝐷𝐻

)𝑔
.

(b) For any left coset 𝑔′𝑁 , 𝑔′ ∈ 𝐺, in formula (22) the value of 𝑣𝑔 and the elements 𝛾𝑔,𝑙 can be taken
independent of 𝑔 ∈ 𝑔′𝑁 . Hence, if G is profinite and 𝐷𝐻 is continuous, then so is 𝐷𝐺 .
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(c) The formation of 𝐷𝐺 commutes with base change, that is, the following holds. Let 𝐵 → 𝐵′ be any
homomorphism. Set 𝐷 ′𝐻 := 𝐷𝐻 ⊗𝐵 𝐵′ and 𝐷 ′𝐺 := 𝐷𝐺 ⊗𝐵 𝐵′. Then equation (22) holds with 𝐷𝐻

and 𝐷𝐺 replaced by 𝐷 ′𝐻 and 𝐷 ′𝐺 , respectively.
(d) For any geometric point 𝑥 → Spec 𝐵 the representations 𝜌𝐷𝐺,𝑥

is isomorphic to the semisimplifi-
cation of Ind𝐺𝐻 𝜌𝐷𝐻,𝑥

.
(e) Suppose 𝑈 = Spec 𝐵′ ⊂ Spec 𝐵 is affine open such that 𝐷𝐻,𝑥 is irreducible for all 𝑥 ∈ 𝑈 and

set 𝐷 ′𝐻 = 𝐷𝐻 ⊗𝐵 𝐵′ and 𝐶 := 𝐵′ [𝐺]/CH(𝐷 ′𝐻 ) so that by Proposition 4.1.25, C is an Azumaya
B-algebra and 𝜓 = 𝜌CH

𝐷 : 𝐺 → 𝐶× is a representation such that det𝐶 ◦ 𝜓 = 𝐷 ′𝐻 . Then for
Ind𝐺𝐻𝜓 : 𝐺 → GL𝑚(𝐶)× from Definition 4.6.3, we have

𝐷𝐺 ⊗𝐵 𝐵′ = 𝐷Ind𝐺
𝐻 𝜓 .

(f) One has 𝐷𝐺 = 𝐷𝐺 ⊗ 𝜒 for any character 𝜒 : 𝐺 → 𝐵× whose kernel contains H.
(g) Suppose H is normal in G. Then 𝜒𝐷𝐺 ,𝐵 (𝑔, 𝑡) is a polynomial in 𝑡ord𝐺/𝐻 (𝑔𝐻 ) ; and in particular its

coefficients satisfy Λ𝐷𝐺 ,𝑖 (𝑔) = 0 whenever ord𝐺/𝐻 (𝑔𝐻) � 𝑖.

Proof. Let us first consider the situation irrespective of any topology, that is, G is an abstract group
and 𝐷𝐻 : 𝐵[𝐻] → 𝐵 is a pseudocharacter on H of a finite index subgroup. Let 𝜋 : FG(𝑋) → 𝐺 be a
surjective group homomorphism from the free group on a suitable set of symbols 𝑋 . By the Nielsen–
Schreier Theorem, any subgroup of FG(𝑋) is free again, and so let 𝑋𝐻 ⊂ FG(𝑋) be a subset of free
generators of 𝜋−1 (𝐻), and write 𝜋𝐻 : FG(𝑋𝐻 ) → 𝐻 for the restriction of 𝜋 to 𝜋−1(𝐻).

Recall from Theorem A.4.4 the following description of the universal pseudocharacter of the group
ring Z{𝑋±𝐻 } = Z[FG(𝑋𝐻 )]. Let 𝐹𝑋±𝐻 (𝑛) = Z[𝜉𝑥,𝑖, 𝑗 : 𝑥 ∈ 𝑋𝐻 , 1 ≤ 𝑖, 𝑗 ≤ 𝑛] [ 1

det( 𝜉𝑥 ) : 𝑥 ∈ 𝑋𝐻 ] be the
commutativeZ-algebra of the coefficients of the generic invertible 𝑛×𝑛-matrices 𝜉𝑥 = (𝜉𝑥,𝑖, 𝑗 )𝑖, 𝑗=1,...,𝑛 ∈
Mat𝑛×𝑛 (𝐹𝑋±𝐻 (𝑛)) of all 𝑥 ∈ 𝑋𝐻 . Define the representation

𝜌𝑋±𝐻 : Z{𝑋±𝐻 } −→Mat𝑛×𝑛 (𝐹𝑋±𝐻 (𝑛)), 𝑥 ↦−→ 𝜉𝑥 ,

and let 𝐸𝑋±𝐻
(𝑛) be the subring of 𝐹𝑋±𝐻 (𝑛) generated by det ◦ 𝜌𝑋±𝐻

(
Z{𝑋±𝐻 }

)
. Then by Theorem A.4.4

𝐷𝑋±𝐻
:= det ◦ 𝜌𝑋±𝐻 : Z{𝑋±𝐻 } −→ 𝐸𝑋±𝐻

(𝑛)

is the universal n-dimensional pseudocharacter of Z{𝑋±𝐻 } (up to isomorphism).
Let𝛼 : 𝐸𝑋±𝐻

(𝑛) → 𝐵 be the unique ring homomorphism (by universality of 𝐷𝑋±𝐻
) such that𝛼◦𝐷𝑋±𝐻

=
𝐷𝐻 ◦ 𝜋𝐻 : Z{𝑋±𝐻 } → 𝐵. Define

IndFG(𝑋 )
FG(𝑋𝐻 )𝐷𝑋±𝐻

:= det ◦ IndFG(𝑋 )
FG(𝑋𝐻 ) 𝜌𝑋

±
𝐻

: Z{𝑋±} −→ 𝐹𝑋±𝐻 (𝑛)

with IndFG(𝑋 )
FG(𝑋𝐻 ) as in Lemma 4.6.1. Now, Lemma 4.6.6 shows that all characteristic polynomials of

elements in FG(𝑋) lie in 𝐸𝑋±𝐻
(𝑛), and it follows from [Che14, Corollary 1.14] (a consequence of

Amitsur’s formula) that IndFG(𝑋 )
FG(𝑋𝐻 )𝐷𝑋±𝐻

has ring of definition contained in 𝐸𝑋±𝐻
(𝑛), and we regard it as

a pseudocharacter

IndFG(𝑋 )
FG(𝑋𝐻 )𝐷𝑋±𝐻

: Z{𝑋±} −→ 𝐸𝑋±𝐻
(𝑛).

We now claim that the composition

𝛼 ◦ IndFG(𝑋 )
FG(𝑋𝐻 )𝐷𝑋±𝐻

: Z{𝑋±} −→ 𝐵
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has kernel containing 𝐾 = Ker(𝜋 : FG(𝑋) → 𝐺). For this, note first that by Lemma 2.1.4(b) we have

ResFG(𝑋 )
𝜋−1 (𝑁 ) IndFG(𝑋 )

FG(𝑋𝐻 ) 𝜌𝑋
±
𝐻
=
⊕

𝑔∈𝐺/𝐻

(
ResFG(𝑋𝐻 )

𝜋−1 (𝑁 ) 𝜌𝑋
±
𝐻

) �̃�
,

for �̃� ∈ FG(𝑋𝐻 ) a preimage of g under 𝜋. If we compose the equation with det and 𝛼, this gives

ResFG(𝑋 )
𝜋−1 (𝑁 )

(
𝛼 ◦ IndFG(𝑋 )

FG(𝑋𝐻 )𝐷𝑋±𝐻

)
=
⊕

𝑔∈𝐺/𝐻

(
Res𝐻𝑁𝐷𝐻

)𝑔 ◦ 𝜋𝐻 . (23)

The kernel of the right-hand side clearly contains K, and this proves the claim. As a consequence
𝛼 ◦ IndFG(𝑋 )

FG(𝑋𝐻 )𝐷𝑋±𝐻
factors via 𝜋 : FG(𝑋) → 𝐺, and using Proposition 4.1.16 we define

𝐷𝐺 : 𝐺 −→ 𝐵

as the unique pseudocharacter such that 𝐷𝐺 ◦ 𝜋 = 𝛼 ◦ IndFG(𝑋 )
FG(𝑋𝐻 )𝐷𝑋±𝐻

. Note that by its very construction
and by Lemma 4.6.6, IndFG(𝑋 )

FG(𝑋𝐻 )𝐷𝑋±𝐻
satisfies formula (22) and the formula is preserved under compo-

sition with 𝛼, and under passage via 𝜋 from FG(𝑋) to G. This implies formula (22) for 𝐷𝐺 . Since by
Proposition 4.1.10, the characteristic polynomial 𝜒𝐷𝐺 (·, 𝑡) completely characterizes 𝐷𝐺 , the required
uniqueness of 𝐷𝐺 is also shown.

We now prove Parts (a) to (f). Part (a) follows from equation (23) and our definition of 𝐷𝐺 . The first
part of (b) follows from the construction of 𝐷𝐺 and Lemma 4.6.6. To prove the continuity assertion
in (b), we need to show that the characteristic polynomial coefficients of 𝐷𝐺 are continuous. But this
follows from the first part of (b), equation (22) and the continuity hypothesis on 𝐷𝐻 .

Part (c) is immediate from our construction which is based via pullback to the induction
IndFG(𝑋 )

FG(𝑋𝐻 )𝐷𝑋±𝐻
in a free group setting. To see (d), note first that by Part (c) formula (22) is preserved

under base change to 𝜅(𝑥), that is, the formula holds if we replace simultaneously 𝐷𝐺 by 𝐷𝐺,𝑥 and 𝐷𝐻

by 𝐷𝐻,𝑥 . By its definition, 𝜌𝐷𝐻,𝑥
has characteristic polynomial 𝜒𝐷𝐻,𝑥

, and by Lemma 4.6.6, the right-
hand side of equation (22) over 𝜅(𝑥) is equal to 𝜒Ind𝐺

𝐻𝜌𝑥
. This proves (d). For Part (e), note that over 𝐵′

we have equality of characteristic polynomials 𝜒𝜓 = 𝜒𝐷′𝐻 from Proposition 4.1.25. Using Lemma 4.6.6
for Ind𝐺𝐻𝜓 and formula (22) and Part (c) for 𝐷 ′𝐻 , we deduce 𝜒𝐷𝐺 ⊗𝐵𝐵′,𝐵′ = 𝜒Ind𝐺

𝐻 𝜓 and hence Part (e).
The proof of (f) will follow after pullback to FG(𝑋). To carry this out, let d be the order of 𝜒 and Z[𝜒]

the extension of Z obtained by adjoining a primitive d-th root of unity. In an analogous way, we define
𝐹𝑋± (𝑛) [𝜒] and 𝐸𝑋± (𝑛) [𝜒] and we extend 𝛼 : 𝐸𝑋± (𝑛) → 𝐵 to a homomorphism 𝛼 : 𝐸𝑋± (𝑛) [𝜒] → 𝐵.
Let now 𝜒𝐸 : 𝐺 → 𝐸𝑋± (𝑛) be the unique character such that 𝛼 ◦ 𝜒𝐸 = 𝜒. By surjectivity of 𝜋 (and by
applying 𝛼), it will suffice to show that

𝜒𝐸 ⊗ IndFG(𝑋 )
FG(𝑋𝐻 )𝐷𝑋±𝐻

= IndFG(𝑋 )
FG(𝑋𝐻 )𝐷𝑋±𝐻

But by construction of 𝐷𝑋±𝐻
and Proposition 4.5.7(d) this reduces to the same formula with 𝜌𝑋±𝐻 , and

this formula holds by Mackey’s tensor product theorem formulated in Lemma 2.1.3.
Finally, Part (g) follows from the last part of Lemma 4.6.6: The normality of H in G implies that

𝑚𝑙 = ord𝐺/𝐻 (𝑔𝐻) for all 𝑙 = 1, . . . , 𝑣𝑔, and so the formula for 𝜒Ind𝐺
𝐻𝜌(𝑔) (𝑡) in that lemma is a polynomial

in 𝑡ord𝐺/𝐻 (𝑔𝐻 ) . �

Definition 4.6.8. We call the pseudocharacter 𝐷𝐺 from Theorem 4.6.7 the induced pseudocharacter of
𝐷𝐻 under 𝐻 ⊂ 𝐺 and write Ind𝐺𝐻𝐷𝐻 for it.

Remark 4.6.9. Our construction of Ind𝐺𝐻𝐷𝐻 does not need the generality of Azumaya algebra coeffi-
cients in Definition 4.6.3. However, over the absolutely irreducible locus of 𝐷𝐻 , one has an elementary
construction of induction indicated in Theorem 4.6.7(e). In fact, if B is for instance reduced and Noethe-
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rian and if the set U in Theorem 4.6.7(e) is dense in Spec 𝐵, one can uniquely reconstruct Ind𝐺𝐻𝐷𝐻

from this elementary construction. This approach had been pursued in an earlier version of this work.

Remark 4.6.10. In our approach to Theorem 4.6.7, we strongly rely on the explicit but somewhat
technical formulas from Lemma 4.6.6. We use them to uniquely characterize the induction, once
existence is shown. We also use these formulas in the existence part to show that IndFG(𝑋 )

FG(𝑋𝐻 )𝐷𝑋±𝐻
takes

values in 𝐸𝑋±𝐻
(𝑛); initially the corresponding representation is only known to be defined over 𝐹𝑋±𝐻 (𝑛).

V. Paškūnas suggested in personal communication that perhaps one could avoid using Lemma 4.6.6, at
least for the unique characterization of Ind𝐺𝐻𝐷𝐻 . His remarks led to the following discussion, which
sketches an alternative proof of Theorem 4.6.7:

Suppose first that the target B of 𝐷𝐻 : 𝐻 → 𝐵 is a domain, and let 𝜂 be the generic point of Spec 𝐵.
Then Ind𝐺𝐻𝐷𝐻 is uniquely characterized by Theorem 4.6.7(d) for the geometric point 𝑥 : Spec 𝜅(𝜂)alg →
Spec 𝐵 because it states that (Ind𝐺𝐻𝐷𝐻 )𝑥 arises from Ind𝐺𝐻 𝜌𝐷𝐻,𝑥

.
To handle the case of general B in a similar way, one can regard induction as a functorial type

construction in the sense that for any group epimorphism 𝜑 : 𝐺 ′ → 𝐺, any surjection of rings𝛼 : 𝐵′ → 𝐵
and any pseudocharacter 𝐷 ′𝐻 ′ : 𝐻

′ → 𝐵′ with 𝐻 ′ := 𝜑−1 (𝐻) such that 𝛼 ◦ 𝐷 ′𝐻 = 𝐷𝐻 ◦ 𝜑, one requires
that 𝛼 ◦ (Ind𝐺

′

𝐻 ′𝐷
′
𝐻 ) = (Ind𝐺𝐻𝐷𝐻 ) ◦ 𝜑; this compatibility can be shown for our construction. Assuming

this compatibility, the uniqueness of Ind𝐺𝐻𝐷𝐻 follows from that of Ind𝐺
′

𝐻 ′𝐷
′
𝐻 ′ for a suitable 𝐷 ′𝐻 ′ . And

now one can apply the observation of the previous paragraph to the universal situation from the proof
of Theorem 4.6.7, where 𝐷 ′𝐻 ′ = 𝐷𝑋±𝐻

and where 𝐵′ = 𝐸𝑋±𝐻
(𝑛) is a domain. This shows that uniqueness

follows from the stated functoriality and Theorem 4.6.7(d).
Lastly, we indicate how to deduce that 𝐸𝑋±𝐻

(𝑛) is the ring of definition of IndFG(𝑋 )
FG(𝑋𝐻 )𝐷𝑋±𝐻

without the
use of Lemma 4.6.6. For this, it suffices to assume that 𝑋 is finite: To see this, let 𝑌 ⊂ 𝑋 be finite such
that 𝑌 ∪ 𝑋𝐻 generates FG(𝑋). Then one verifies that it suffices to consider the restriction of 𝐷𝑋±𝐻

to
FG(𝑌 ′) for all finite subsets 𝑌 ′ ⊂ 𝑌 ∪ 𝑋𝐻 that contain Y. Assume now that 𝑋 is finite and, by possibly
adding generators, that 𝑋𝐻 contains at least 𝑛+ 4 elements. We also assume that 𝐷𝐻 is of degree 𝑛 > 1,
and we set 𝑚 = #𝑋𝐻 so that 𝑚 ≥ 𝑛 + 4.

Consider the morphism 𝜋 : Spec 𝐹𝑋±𝐻 (𝑛) → Spec 𝐸𝑋±𝐻
(𝑛). The ring 𝐸𝑋±𝐻

(𝑛) is a normal domain
because it is the ring of invariants under the connected reductive group GL𝑛 of the normal domain
𝐹𝑋±𝐻 (𝑛). Let 𝑈 ⊂ Spec 𝐹𝑋±𝐻 (𝑛) be the open subscheme over which the generic matrix representation
𝜌𝑋±𝐻 : Z{𝑋±𝐻 } → Mat𝑛×𝑛 (𝐹𝑋±𝐻 (𝑛)), 𝑥 ↦→ 𝜉𝑥 is irreducible, cf. [Che14, Example 2.20]. It is known that
U is dense in Spec 𝐹𝑋±𝐻 (𝑛), and we will give a much stronger result in the next paragraph. It is also
known that the induced map 𝑈 → 𝑉 := 𝜋(𝑈) is a PGL𝑛-torsor, and V is open nonempty and hence
also dense in the integral scheme Spec 𝐸𝑋±𝐻

(𝑛), see [Nak00, §3 and Corollary 6.5]. It follows that
dim 𝐸𝑋±𝐻

(𝑛) = dim𝑉 = 1 + 𝑚𝑛2 − (𝑛2 − 1) = (𝑚 − 1)𝑛2 + 2 because clearly dim 𝐹𝑋±𝐻 (𝑛) = 1 + 𝑚𝑛2.
We claim that V contains all points of codimension at most 1 of Spec 𝐸𝑋±𝐻

(𝑛). For this, we shall
show that the reducible locus 𝑍 := Spec 𝐹𝑋±𝐻 (𝑛)\𝑈 has dimension at most (𝑚 − 1)𝑛2 from which it
follows that 𝜋(𝑍) = Spec 𝐸𝑋±𝐻

(𝑛)\𝑉 has codimension at least 2. Because Z is of finite type over Z,
it suffices to analyze the dimensions after base change from Z to an algebraically closed field k. Then
𝜌𝑋±𝐻 is reducible at a closed point if and only if there is a proper parabolic subgroup P of GL𝑛 that
contains the set of matrices 𝜌𝑋±𝐻 (𝑋𝐻 ), that is the set can by simultaneously conjugated by GL𝑛 to a
standard parabolic P of GL𝑛. The stabilizer of this conjugation action is P itself and the dimension of
P is at most 𝑛2 − 𝑛 + 1, and there are only finitely many such standard P once a maximal torus and a
Borel are chosen for GL𝑛. It follows that the dimension over k of the set of reducible points is at most
𝑚 dim 𝑃 + (𝑛2 − dim 𝑃) = (𝑚 − 1) dim 𝑃 + 𝑛2 = (𝑚 − 1)𝑛2 − ((𝑚 − 1) (𝑛 − 1) − 𝑛2) and the claim on
dim 𝑍 follows from our hypothesis 𝑚 ≥ 𝑛 + 4.

We now give an argument independent of Lemma 4.6.6 that show that IndFG(𝑋 )
FG(𝑋𝐻 )𝐷𝑋±𝐻

takes values
in 𝐸𝑋±𝐻

(𝑛): Let Spec 𝐵 ⊂ 𝑉 be any affine open subset. Then by Proposition 4.1.25 the pseudocharacter
𝐷𝑋±𝐻

: FG(𝑋𝐻 ) → 𝐸𝑋±𝐻
(𝑛) → 𝐵 factors as a representation 𝜌𝐵 : FG(𝑋𝐻 ) → 𝐶× for C an Azumaya

B-algebra of degree n followed by the pseudocharacter associated to C in Example 4.1.7. By change
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of coefficients to an algebraic closure K of the generic point of 𝐹𝑋±𝐻 , it follows that IndFG(𝑋 )
FG(𝑋𝐻 ) 𝜌𝑋

±
𝐻

and IndFG(𝑋 )
FG(𝑋𝐻 ) 𝜌𝐵, from Definition 4.6.3, are isomorphic over K. Hence, det ◦ IndFG(𝑋 )

FG(𝑋𝐻 ) 𝜌𝑋
±
𝐻

takes
values in B. But because V contains all points of codimension at most 1 of the integral normal scheme
Spec 𝐸𝑋±𝐻

(𝑛) it follows that the intersection of all such rings B (inside Frac(𝐸𝑋±𝐻
(𝑛))) is equal to

𝐸𝑋±𝐻
(𝑛), and we are done.

For later use, we formulate the following simple finiteness result related to induction.

Lemma 4.6.11. Let k be a field, let 𝜒 : 𝐺 → 𝑘× be a character of finite order 𝑚 with kernel 𝐻 := ker 𝜒
and let 𝐷 be in P𝑠R𝑛

𝐺 (𝑘alg). Define

S𝐷 := {𝐷 ′ ∈ P𝑠R𝑛/𝑚
𝐻 (𝑘alg) : Ind𝐺𝐻𝐷

′ = 𝐷}.

Then the following hold:

(a) S𝐷 is finite.
(b) S𝐷 is nonempty if and only if 𝐷 = 𝐷 ⊗ 𝜒.

If moreover G is profinite, 𝑘alg carries the discrete topology and 𝐷 is continuous, then there is a finite
extension of k in 𝑘alg over which all 𝐷 ′ ∈ S𝐷 are defined and split.

Proof. By Theorem 4.1.18 and Corollary 4.4.6, the map 𝜌 → 𝐷𝜌 from semisimple representations
of G over 𝑘alg to pseudocharacters of G over 𝑘alg is a bijection, and the same holds over H. We also
have 𝐷𝜌 ⊗ 𝜒 = 𝐷𝜌⊗𝜒 by Proposition 4.5.7(d). Thus, (a) and (b) are really assertions on semisimple
representations. Now, if 𝜌 is a representation and if 𝜌 = Ind𝐺𝐻 𝜌

′ for some representation 𝜌′, then 𝜌′ is a
direct summand of the semisimple representation 𝜌 |𝐻 by Lemma 2.1.4. Since up to isomorphism there
are only finitely many such summands and since these are unique up to permutation, Part (a) follows.
Part (b) is now immediate from Corollary 2.2.2. The last assertion is a consequence of Corollary 4.4.6
since S𝐷 is finite. �

4.7. Pseudodeformations and their universal rings

This subsection recalls in Proposition 4.7.4 the main object of our interest, the universal pseudodefor-
mation ring of a residual pseudocharacter 𝐷. Here, continuity plays a major role. We state basic results
relevant to the present work. In addition to the usual treatment, we also give some special attention to
functors Â𝑟 𝜅 → 𝑆𝑒𝑡𝑠 where 𝜅 is a local field. The subsection also contains some results on deformations
over formal schemes and on the locus of irreducibility.

We let F be either a finite or a local field; in the former case, Λ is a complete Noetherian local
commutative𝑊 (F)-algebra with residue field F. In the latter case, Λ = F. Recall the categories A𝑟Λ and
Â𝑟Λ from Subsection 3.1 and the topological conditions we impose on there objects and morphisms.
By A, we denote a ring in Â𝑟F; its maximal ideal is 𝔪𝐴 and it comes with a natural reduction map
𝜋𝐴 : 𝐴 → 𝐴/𝔪𝐴 = F. We let G be a profinite group and we denote by 𝐷 : F[𝐺] → F a continuous
pseudocharacter of dimension n.

Definition 4.7.1 [WE13, §3.1.4.3].

(a) A pseudodeformation of 𝐷 to A is a continuous pseudocharacter 𝐷 : 𝐴[𝐺] → 𝐴 such that 𝐷 ⊗𝐴F =
𝜋𝐴 ◦ 𝐷 : F[𝐺] → F is equal to 𝐷.

(b) The functor

P𝑠𝐷𝐷 : Â𝑟Λ → 𝑆𝑒𝑡𝑠, 𝐴 ↦−→ {𝐷 : 𝐺 −→ 𝐴 is a pseudodeformation of 𝐷},

is called the pseudodeformation functor of the residual pseudocharacter 𝐷.

Note that unlike in parts of [WE13] for us all pseudodeformations will be continuous.
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Definition 4.7.2. Let 𝜋 : 𝐵→ F be a morphism in CA𝑙𝑔Λ, and let 𝐷 : 𝐵[𝐺] → 𝐵 be a pseudocharacter
such that 𝐷 ⊗𝐵 F = 𝐷.

An ideal I of B is called 𝐷-open if the following conditions hold:

(a) The map 𝜋 factors via 𝐵/𝐼 and 𝐵/𝐼 is a local Artin ring.
(b) 𝐷 𝐼 := 𝐷 ⊗𝐵 𝐵/𝐼 is continuous if we equip 𝐵/𝐼 with the topology of an object in A𝑟Λ.

Lemma 4.7.3. With the notation from Definition 4.7.2, the 𝐷-open ideals form a basis of a topology
on B.

Proof. (Cf. [WE13, Theorem 3.1.4.6]) One has to show that if 𝐼, 𝐼 ′ are 𝐷-open ideals, then so is 𝐼 ∩ 𝐼 ′.
Consider the injective homomorphism

𝜄 : 𝐵/(𝐼 ∩ 𝐼 ′) −→ 𝐵/𝐼 × 𝐵/𝐼 ′.

For bothΛ that we consider, it is straightforward to see that 𝜄 is a topological isomorphism onto its image.
Now, a pseudocharacter is continuous if and only if this holds for its characteristic polynomial functions;
cf. Definition 4.4.1. Since both I and 𝐼 ′ are 𝐷-open, it is now immediate that 𝐼 ∩ 𝐼 ′ is 𝐷-open. �

The following result is proved in [Che14, Proposition 3.3] for Λ = 𝑊 (F) and in [WE13, Theorem
3.1.4.6] for Λ ∈ Â𝑟𝑊 (F) .

Proposition 4.7.4. The pseudodeformation functor P𝑠𝐷𝐷 is prorepresentable by a topological Λ-
algebra 𝑅 univ

Λ,𝐷
that is a filtered inverse limit of objects in A𝑟Λ, together with a universal pseudodefor-

mation
𝐷univ

Λ,𝐷
: 𝐺 −→ 𝑅univ

Λ,𝐷
.

Proof. We recall a sketch of the proof from [WE13, Theorem 3.1.4.6] to indicate that it also applies
to the case when Λ = 𝜅 is a local field. Consider the universal ring 𝑅univ

Λ[𝐺 ],𝑛 from Definition 4.2.2 with
its universal pseudocharacter 𝐷univ

Λ[𝐺 ] : 𝐺−→𝑅univ
Λ[𝐺 ],𝑛 on G. By definition, 𝑅univ

Λ[𝐺 ],𝑛 is a Λ-algebra. The
map 𝐷 induces a Λ-algebra homomorphism 𝜋 : 𝑅univ

Λ[𝐺 ],𝑛 → F. By Lemma 4.7.3, the 𝐷-open ideals of
𝑅univ
Λ[𝐺 ],𝑛 form the basis of a topology on 𝑅univ

Λ[𝐺 ],𝑛, and one defines 𝑅univ
Λ,𝐷

as the completion of 𝑅univ
Λ[𝐺 ],𝑛

with respect to this topology. It is then straightforward to establish the asserted properties for 𝑅univ
Λ,𝐷

together with the pseudocharacter 𝐷univ
Λ,𝐷

:= 𝐷univ
Λ[𝐺 ] ⊗𝑅univ

Λ[𝐺, ]𝑛
𝑅univ
Λ,𝐷

by verifying it for the restriction of
P𝑠𝐷𝐷 to A𝑟Λ. �

Definition 4.7.5. The ring 𝑅 univ
Λ,𝐷

from Proposition 4.7.4 is called the universal (Λ-)pseudodeformation
ring of 𝐷, the pseudocharacter 𝐷univ

Λ,𝐷
: 𝑅 univ

Λ,𝐷
[𝐺] → 𝑅 univ

Λ,𝐷
the universal (Λ-)-pseudodeformation of 𝐷

and the space 𝑋 univ
Λ,𝐷

:= Spec𝑅 univ
Λ,𝐷

the universal (Λ-)pseudodeformation space of 𝐷; we write 𝑅 univ
𝐺,Λ,𝐷

if there is a need to indicate G; we often drop the index Λ if it is clear from context.

The ring 𝑅 univ
Λ,𝐷

behaves well under change of the coefficient ring Λ.

Proposition 4.7.6 (Cf. [Wil95, p. 457]). Let 𝑓 : 𝜅 → 𝜅′ be a homomorphism between either two finite
or two local fields, and let 𝑓 : Λ → Λ′ be a local homomorphisms of complete local Noetherian
commutative rings that reduces on residue fields to 𝑓 . Define 𝐷

′ := 𝐷 ⊗𝜅 𝜅′ : 𝜅′ [𝐺] → 𝜅′. Then one
has a natural isomorphism

𝑅univ
Λ′,𝐷

′ −→ 𝑅univ
Λ,𝐷
⊗̂ΛΛ′.

Proof. The proof is as in [Wil95, p. 457] for deformation rings: If 𝑓 is the identity, one can proceed
as follows. Any 𝐴 ∈ Â𝑟Λ′ can be regarded as a ring in Â𝑟Λ via the action induced from f ; the residue
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fields of A, Λ and Λ′ are the same. Then the assertion follows rapidly by using the isomorphism
HomÂ𝑟Λ

(𝐴, 𝐵) � HomΛ′ (𝐴⊗ΛΛ′, 𝐵) for 𝐴 ∈ Â𝑟Λ and 𝐵 ∈ Â𝑟Λ′ together with the universal properties
of 𝑅 univ

Λ′,𝐷
′ and 𝑅 univ

Λ,𝐷
.

In the general case, define for any 𝐵′ ∈ Â𝑟Λ′ the ring 𝐵′′ as the subring of 𝐵′ of elements whose
reduction to 𝜅′ lies in the subfield 𝜅 so that 𝐵′′ ∈ Â𝑟Λ′′ . The argument just given applies to Λ → Λ′′.
For Λ′′ → Λ′ note first that any 𝐷 ′ ∈ P𝑠𝐷Λ′,𝐷

′ (𝐵′) takes values in 𝐵′′ because 𝐷 ′ takes values in 𝜅
so that 𝐷 ′ defines a 𝐷 ′′ ∈ P𝑠𝐷Λ′′,𝐷 (𝐵′′). Conversely, if such a 𝐷 ′′ is given, we may form 𝐷 ′′ ⊗Λ′′ Λ′
and compose it with the natural Λ′-homomorphism 𝐵′′ ⊗Λ′′ Λ′ → 𝐵′ to get back to 𝐷 ′. This yields the
following chain of isomorphisms

HomΛ′ (𝑅univ
Λ′,𝐷

′ , 𝐵′) � P𝑠𝐷Λ′,𝐷
′ (𝐵′) � P𝑠𝐷Λ′′,𝐷 (𝐵

′′)

� HomΛ′′ (𝑅univ
Λ′′,𝐷

, 𝐵′′) � HomΛ′′ (𝑅univ
Λ′′,𝐷

, 𝐵′)

� HomΛ′ (𝑅univ
Λ′′,𝐷

⊗Λ′′ Λ′, 𝐵′)

We deduce 𝑅 univ
Λ′,𝐷

′ � 𝑅 univ
Λ′′,𝐷

⊗Λ′′ Λ′ because any 𝐵′ ∈ Â𝑟Λ′ can occur as test objects. �

The previous proposition justifies the following definition.

Definition 4.7.7. If F is finite, we call 𝑅
univ
𝐷 := 𝑅 univ

F,𝐷
the universal mod p pseudodeformation ring of 𝐷

and we call 𝑋
univ
𝐷 := 𝑋 univ

F,𝐷
the special fiber of the universal pseudodeformation space of 𝐷.

We shall also need to consider Cayley–Hamilton quotients. Recall from Remark 4.4.4 that 𝐷univ
Λ,𝐷

induces a continuous pseudorepresentation (for which we shall use the same name)

𝐷univ
Λ,𝐷

: 𝑅univ
Λ,𝐷
[[𝐺]]−→𝑅univ

Λ,𝐷
.

Let the following be the diagram induced from diagram (16)

𝑅univ
Λ,𝐷
[[𝐺]]

𝜌CH
Λ,𝐷 �� 𝑆CH-univ

Λ,𝐷
:= (𝑅univ

𝐺,𝐷
[[𝐺]])CH

𝐷univ
Λ,𝐷

𝐷CH-univ
Λ,𝐷 �� 𝑅univ

Λ,𝐷
. (24)

Definition 4.7.8. For ‘object’ the algebra 𝑆CH-univ
Λ,𝐷

, the CH-representation 𝜌CH
Λ,𝐷

, or the pseudocharacter

𝐷CH-univ
Λ,𝐷

, respectively, we use the term universal Cayley–Hamilton object attached to 𝐷.

Remark 4.7.9. As explained in [Che14, Proposition 1.23], the factorization in diagram (24) has indeed
a universal property.

Definition 4.7.10 (Cf. [WE13, 3.1.5]). Suppose F is finite. Then we define condition Φ𝐷 to be condition
Φ𝜌

𝐷⊗FFalg from Definition 3.2.2.

We recall a criterion for 𝑅 univ
Λ,𝐷

and 𝑆CH-univ
Λ,𝐷

to be Noetherian.

Proposition 4.7.11 [WE18, Propositions 3.2 and 3.6]. The following hold if F is finite and Φ𝐷 holds:

(a) The topological Λ-algebra 𝑅 univ
Λ,𝐷

lies in Â𝑟Λ.
(b) The CH-representation 𝜌CH

Λ,𝐷
is a continuous homomorphism.

(c) The ring 𝑆CH-univ
Λ,𝐷

is module-finite as an 𝑅univ
Λ,𝐷

-algebra, and therefore Noetherian.
(d) On 𝑆CH-univ

Λ,𝐷
the profinite topology, the 𝔪𝐷-adic topology, and the quotient topology from the

surjection 𝜌CH
Λ,𝐷

are equivalent.
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Remark 4.7.12. Suppose 𝐺 = 𝐺𝐾 for K a p-adic field. Then by Propositions 3.2.3 and 4.7.11, the ring
𝑅 univ

Λ,𝐷
is Noetherian.

Corollary 4.7.13. Suppose F is finite and Φ𝐷 holds. Let A be a quotient of 𝑅 := 𝑅 univ
𝑊 (F) ,𝐷 . Then A is

the ring of definition of 𝐷𝐴 = 𝐷univ
𝐷
⊗𝑅 𝐴 over 𝑊 (F) in the sense of Definition 4.4.10.

Proof. Let 𝐶 ⊂ 𝐴 be the ring of definition of 𝐷𝐴 over 𝑊 (F), and let 𝐷𝐶 be the pseudocharacter over
C such that 𝐷𝐶 ⊗𝐶 𝐴 = 𝐷𝐴. By the universality of R we have a unique 𝑊 (F)-algebra homomorphism
𝑅 → 𝐶 such that 𝐷𝐶 = 𝐷univ

𝐷
⊗𝑅𝐶. We deduce that the composition 𝑅 → 𝐶↩→𝐴 is equal to the initially

given quotient map. Hence, 𝐶↩→𝐴 must be the identity. �

We shall also need the following result which in parts can be traced back to the proof of Proposition
4.7.11 in [WE13].

Proposition 4.7.14. If F is finite and condition Φ𝐷 is satisfied, then the following hold:

(a) For any 𝜑 : 𝑅 univ
Λ,𝐷
→ 𝐴 in Â𝑟Λ giving rise to the pseudocharacter 𝐷𝐴, the induced maps

(Λ[[𝐺]] ⊗Λ 𝐴)CH
𝐷𝐴
→ (𝑅univ

Λ,𝐷
[[𝐺]] ⊗𝑅univ

Λ,𝐷
𝐴)CH

𝐷𝐴
→ (𝐴[[𝐺]])CH

𝐷𝐴
→ 𝑆CH-univ

Λ,𝐷
⊗𝑅univ

Λ,𝐷
𝐴

are isomorphisms.
(b) The F-algebra (F[[𝐺]])CH

𝐷
is finite-dimensional as an F-vector space.

Proof. For (a) consider the maps in

Λ[[𝐺]] ⊗Λ 𝐴→ 𝑅univ
Λ,𝐷
[[𝐺]] ⊗𝑅univ

Λ,𝐷
𝐴→ 𝐴[[𝐺]] . (25)

They are injective with dense image. By the definition of the Cayley–Hamilton ideal, this still holds
after passing to Cayley–Hamilton quotients. By [WE13, Corollary 1.2.2.9 and Proposition 3.2.2.1]
the A-algebra (𝐴[[𝐺]])CH

𝐷𝐴
is a finitely generated A-module and hence Noetherian. It follows that its

subrings (Λ[[𝐺]] ⊗Λ 𝐴)CH
𝐷𝐴
⊂ (𝑅 univ

Λ,𝐷
[[𝐺]] ⊗𝑅univ

Λ,𝐷
𝐴)CH

𝐷𝐴
are also finite A-modules. By completeness

of A and their density in (𝐴[[𝐺]])CH
𝐷𝐴

, the inclusions must be equalities. By Proposition 4.1.22(c), we
also know that the formation of the Cayley–Hamilton quotient commutes with base change. Hence,
(𝑅univ

Λ,𝐷
[[𝐺]] ⊗𝑅univ

Λ,𝐷
𝐴)CH

𝐷𝐴
→ 𝑆CH-univ

Λ,𝐷
⊗𝑅univ

Λ,𝐷
𝐴 is an isomorphism, and this completes the proof of (a).

Part (b) follows from [WE13, Theorem 1.3.3.2]; it is also a consequence of Part (a) and Proposition
4.7.11. �

The next result concerns the reducible locus for multiplicity free 𝐷.

Corollary 4.7.15. Suppose 𝐷 is split and multiplicity free over F and equal to 𝐷1 ⊕ 𝐷2. Then the
morphism 𝜄𝐷1 ,𝐷2

: 𝑋 univ
𝐷1
×̂𝑋 univ

𝐷1
→ 𝑋 univ

𝐷
, (𝐷1, 𝐷2) ↦→ 𝐷1 ⊕ 𝐷2 is a closed immersion.

Proof. We need to show that the ring homomorphism

𝑅univ
𝐷
−→ 𝑅univ

𝐷1
⊗̂F𝑅univ

𝐷2

corresponding to 𝜄𝐷1 ,𝐷2
is surjective. Since both sides are complete Noetherian local rings with isomor-

phic residue field, it suffices to show the surjectivity for the induced map of the duals of their tangent
spaces; that is, the injectivity of

P𝑠𝐷𝐷1
(F[𝜀]) × P𝑠𝐷𝐷2

(F[𝜀]) −→P𝑠𝐷𝐷 (F[𝜀]), (𝐷1, 𝐷2) ↦−→ 𝐷1 ⊕ 𝐷2. (26)

Consider 𝑛𝑖-dimensional pseudodeformations 𝐷𝑖 , 𝐷
′
𝑖 ∈ P𝑠𝐷𝐷𝑖

(F[𝜀]) for 𝑖 = 1, 2 such that 𝐷 :=
𝐷1 ⊕ 𝐷2 = 𝐷 ′1 ⊕ 𝐷

′
2. We need to show 𝐷𝑖 = 𝐷 ′𝑖 for 𝑖 = 1, 2.
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Let 𝐴 = F[𝜀] and let 𝑆 be the Cayley–Hamilton algebra 𝐴[𝐺]/CH(𝐷). Observe that CH(𝐷) is
contained in both, CH(𝐷𝑖) and CH(𝐷 ′𝑖): We explain this for 𝐷𝑖 . Recall 𝑠 ↦→ 𝜒𝐷,𝐵 (·) = 𝜒𝐷,𝐵 (𝑡, 𝑠) |𝑡=𝑠
from Lemma 4.1.8(b). The equality 𝐷 = 𝐷1 ⊕ 𝐷2 implies

𝜒𝐷,𝐴[𝑡1 ,...,𝑡𝑛 ] (
∑
𝑖 𝑠𝑖𝑡𝑖) = 𝜒𝐷1 ,𝐴[𝑡1 ,...,𝑡𝑛 ] (

∑
𝑖 𝑠𝑖𝑡𝑖) · 𝜒𝐷2 ,𝐴[𝑡1 ,...,𝑡𝑛 ] (

∑
𝑖 𝑠𝑖𝑡𝑖),

for 𝑛 ∈ N, 𝑠1, . . . , 𝑠𝑛 ∈ 𝑆. The ideal CH(𝐷𝑖) is generated by the coefficients of all polynomials
𝜒𝐷𝑖 ,𝐴[𝑡1 ,...,𝑡𝑛 ] (

∑
𝑖 𝑠𝑖𝑡𝑖). It follows from the displayed formula, that CH(𝐷) is zero modulo CH(𝐷𝑖), and

this gives CH(𝐷𝑖) ⊃ CH(𝐷). As a consequence, we find that 𝐷𝑖 and 𝐷 ′𝑖 factor via 𝑆.
By Theorem 4.3.10(b), the Cayley–Hamilton algebra is a GMA over A with 𝐷 = det(𝑆,E) for a datum

of idempotents E = {𝑒 𝑗 , 𝜓 𝑗 } 𝑗=1,...,𝑟 . The proof in [Che14, Theorem 2.22] shows that the idempotents
𝑒 𝑗 correspond bijectively to the irreducible summands of 𝐷, and so we write 𝐷 = ⊕ 𝑗𝐷𝑒 𝑗 in the notation
of Lemma 4.3.8. Write 𝐽 = {1, . . . , 𝑟} as a disjoint union 𝐽 = 𝐽1 ∪ 𝐽2 such that 𝐷𝑖 = ⊕ 𝑗∈𝐽𝑖𝐷𝑒 𝑗 , using
that 𝐷 is mulitplicity free.

Because 𝑆 is a GMA, the algebra 𝑒 𝑗𝑆𝑒 𝑗 is isomorphic to Mat𝑛 𝑗×𝑛 𝑗 (𝐴) for some 𝑛 𝑗 ∈ N, and where∑
𝑗 𝑛 𝑗 = 𝑛. It follows from Example 4.1.7 in particular that (𝐷𝑖)𝑒 𝑗 is 𝑛 𝑗 𝑓𝑖, 𝑗 -dimensional for some

𝑓𝑖, 𝑗 ∈ N0. Using (𝐷𝑖)𝑒 𝑗 mod (𝜀) = (𝐷𝑖)𝑒 𝑗 , we find 𝑓𝑖, 𝑗 = 1 for 𝑗 ∈ 𝐽𝑖 and 𝑓𝑖, 𝑗 = 0 for 𝑗 ∈ 𝐽3−𝑖 .
Let 𝐸𝑖 =

∑
𝑗∈𝐽𝑖 𝑒 𝑗 . Then by Lemma 4.3.8, we have dim((𝐷𝑖)𝐸𝑖 ) = dim(𝐷𝑖) and dim((𝐷𝑖)𝐸3−𝑖 ) = 0,

and thus 𝐷𝑖 = (𝐷𝑖)𝐸𝑖 = (𝐷𝑖)𝐸𝑖 ⊕ (𝐷3−𝑖)𝐸𝑖 = 𝐷𝐸𝑖 . But the idempotent 𝐸𝑖 only depends on 𝐷𝑖 , and so
arguing in the same way for the 𝐷 ′𝑖 , we find 𝐷 ′𝑖 = 𝐷𝐸𝑖 = 𝐷 ′𝑖 , which concludes the proof. �

The locus of irreducible points shall be of special importance.

Definition 4.7.16. The irreducible locus of 𝑋 univ
𝐷

is defined as

(𝑋univ
𝐷
)irr := {𝑥 ∈ 𝑋univ

𝐷
: (𝐷univ

𝐷
)𝑥 is irreducible}

and its reducible locus (𝑋 univ
𝐷
)red as the topological space 𝑋 univ

𝐷
\(𝑋 univ

𝐷
)irr. We overline the notation for

the corresponding subsets of 𝑋
univ
𝐷 .

The argument in [Che14, Example 2.20] also proves.

Proposition 4.7.17. The subsets (𝑋 univ
𝐷
)irr ⊂ 𝑋 univ

𝐷
and (𝑋

univ
𝐷 )irr ⊂ 𝑋

univ
𝐷 are Zariski open.

By Proposition 4.7.11(c), we can associate to 𝑆CH-univ
Λ,𝐷

a sheaf of coherent O𝑋univ
Λ,𝐷

-algebras SCH-univ
Λ,𝐷

under the finiteness condition Φ𝐷 . The next result is not stated verbatim in [Che14]; however, its proof
is that of [Che14, Corollary 2.23], with a continuity requirement added.

Proposition 4.7.18. Over (𝑋univ
Λ,𝐷
)irr, the sheafSCH-univ

Λ,𝐷
is an AzumayaO𝑋univ

Λ,𝐷
-algebra of rank 𝑛2 equipped

with its reduced norm.

Over affine open subsets of (𝑋univ
Λ,𝐷
)irr, Proposition 4.7.18 is a variant of Proposition 4.1.25 under

some continuity constraints.

4.8. Pseudodeformations over local fields

In this subsection, we develop some results analogous to Subsection 3.3 for continuous pseudodefor-
mations of a fixed one 𝐷 : 𝜅 [𝐺] → 𝜅, where 𝜅 is a local field. Also, continuity is an important theme;
for instance, to deduce under weak hypotheses from the continuity of a pseudocharacter that of its
associated representation.

Lemma 4.8.1. Let 𝜅 be a local field with valuation ring O𝜅 , and let 𝐷 : 𝜅 [𝐺] → 𝜅 be a continuous
n-dimensional pseudocharacter. Then the following hold:
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(a) There exists 𝐷O ∈ P𝑠R𝑛
𝐺 (O𝜅 ) such that 𝐷O ⊗O𝜅 𝜅 = 𝐷.

Let 𝐶 ⊂ O𝜅 be the admissible profinite subring of O𝜅 from Lemma 4.4.8, and let 𝐷𝐶 ∈ P𝑠R𝑛
𝐺 (𝐶) be

such that 𝐷𝐶 ⊗𝐶 O𝜅 = 𝐷O. Then furthermore:

(b) C is local, its residue field 𝜅(𝐶) is finite, either C is a finite field, or 𝜅 is a finite extension of the
fraction field of C, 𝐷 := 𝐷𝐶 ⊗𝐶 𝜅(𝐶) is equal to 𝐷𝑧 for some 𝑧 ∈ |𝐺 (𝑛) | and 𝐷O is residually
equal to 𝐷𝑧 in the sense of Definition 4.4.10.

Proof. Let 𝜌𝐷⊗𝜅 𝜅alg be the representation from Theorem 4.1.18. For (a) observe first that the character-
istic polynomial coefficients Λ𝐷,𝑖 of 𝜒𝐷 (𝑔, · ) are continuous for 1 ≤ 𝑖 ≤ 𝑛, and hence the sets Λ𝐷,𝑖 (𝐺)
are compact in 𝜅. Assume that for some 𝑔 ∈ 𝐺, Λ𝐷,𝑖 (𝑔) does not lie in O𝜅 . Then at least one eigenvalue
of 𝜌𝐷⊗𝜅 𝜅alg (𝑔) has valuation different from 0, and, since we can pass to 𝑔−1, we may assume that this
valuation is negative. Let 𝜆1, . . . , 𝜆𝑛 ∈ 𝜅alg denote the eigenvalues of 𝜌𝐷⊗𝜅 𝜅alg (𝑔) and index them so
that 𝜆1, . . . , 𝜆 𝑗 are precisely those with negative valuation. Then for 𝑛 > 0, the valuation of Λ𝐷, 𝑗 (𝑔𝑛) is
the valuation of (𝜆1 · . . . · 𝜆 𝑗 )𝑛. The latter valuations are unbounded. This contradicts the compactness
of Λ𝐷, 𝑗 (𝐺) and thus proves (a).

We now prove (b). By Lemma 4.4.8, the ring C is a finite product
∏

𝑖 𝐶𝑖 of local admissible profinite
𝑊 (F)-algebras 𝐶𝑖 and the residue field of each 𝐶𝑖 is finite. Let 𝔪 be the maximal ideal of O𝜅 . Then
𝐶 ∩ 𝔪 is topologically nilpotent and 𝐶/(𝐶 ∩ 𝔪) is a finite field that surjects onto the product of the
residue fields of the 𝐶𝑖 . It follows that C is local with finite residue field 𝜅(𝐶).

It remains to show the assertion on the fraction field of C, since the last part of (b) follows from
Lemma 4.4.8. For this, we may assume that C is infinite. Let 𝜅′ be the fraction field of C. Because
C is infinite and 𝜅(𝐶) is finite, we find 𝑓 ∈ 𝐶\𝜅(𝐶) so that f has strictly positive valuation. Then
𝜅′ ⊇ 𝜅(𝐶) (( 𝑓 )) is a nontrivially valued locally compact subfield of the locally compact field 𝜅. It now
follows from [Wei67, I.§2. Corollary 2 of Theorem 3, p. 6] that [𝜅 : 𝜅′] is finite. �

The following result is a generalization of Corollary 4.4.6.

Corollary 4.8.2. Let 𝜅 be a local field, let A be in A𝑟 𝜅 and let 𝐷 ∈ P𝑠R𝑛
𝐺 (𝐴) be continuous. Define 𝐷

as in Lemma 4.8.1, and assume that condition Φ𝐷 holds. Then the following hold:

(a) If 𝐴 = 𝜅, then 𝜌𝐷⊗𝜅 𝜅alg is continuous.
(b) If 𝐷 is split and irreducible, then 𝜌𝐷 = 𝜌CH

𝐷 from Proposition 4.1.25 is a continuous representation
to Mat𝑛×𝑛 (𝐴).

Proof. We first prove (a), and so here we assume 𝐴 = 𝜅. Set Λ := O𝜅 , and consider the diagram

𝑅univ
Λ,𝐷
[[𝐺]]

𝜌CH
Λ,𝐷 �� 𝑆CH-univ

Λ,𝐷

id ⊗𝜑 �� 𝑆CH-univ
Λ,𝐷

⊗𝑅univ
Λ,𝐷

O𝜅
id ⊗ 𝜄 �� 𝑆CH-univ

Λ,𝐷
⊗𝑅univ

Λ,𝐷
𝜅alg,

where 𝜑 : 𝑅 univ
Λ,𝐷
→ O𝜅 is the map induced from the universal property of 𝑅 univ

Λ,𝐷
, and where 𝜄 : O𝜅 → 𝜅alg

is the natural inclusion. The first map is continuous by Proposition 4.7.11(b), the second by Proposition
4.7.11(d), which says that 𝑆CH-univ

Λ,𝐷
carries the 𝔪𝐷-adic topology, By Proposition 4.7.11(d), the ring

𝑆CH-univ
Λ,𝐷

⊗𝑅univ
Λ,𝐷

O𝜅 is finitely generated as an O𝜅 -module, and hence the 𝔪𝐷-topology also coincides

with the topology inherited from 𝑆CH-univ
Λ,𝐷

⊗𝑅univ
Λ,𝐷

𝜅 ∈ A𝑟 𝜅 ; it follows that also the last map is continuous

and that 𝑆CH-univ
Λ,𝐷

⊗𝑅univ
Λ,𝐷

𝜅alg has finite 𝜅alg-dimension. But then also the map

𝑆CH-univ
Λ,𝐷

⊗𝑅univ
Λ,𝐷

𝜅alg �
4.7.14

�� (𝜅alg [[𝐺]])CH
𝐷

�� 𝜅alg [[𝐺]]/ker (𝐷)

is continuous. Hence, in the factorization of 𝐷 : 𝜅 [𝐺] → 𝜅alg via 𝜅alg [[𝐺]]/ker (𝐷) given in Proposition
4.1.16, the first map is continuous. From Theorem 4.1.17, we know that 𝜅alg [[𝐺]]/ker (𝐷) is semisimple
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and finite-dimensional over 𝜅alg and that its determinants are given by determinants of the simple matrix
algebra factors of 𝜅alg [[𝐺]]/ker (𝐷). Hence, the second map in the factorization given in Proposition
4.1.16 is continuous and thus so is the composition 𝜌.

The proof of (b) is analogous. One has to replace 𝜅 by A in most places and substitute Theorem
4.1.17 by Theorem 4.3.10. �

Remark 4.8.3. In an abstract setting, Φ𝐷 in Corollary 4.8.2 seems hard to check. In our concrete
applications, we know 𝐷 because of Proposition 3.2.3, so then the formulation is useful. A more natural
condition to require would be Φ𝐷; we do suspect that this condition also suffices. Also, we wonder if
the conclusion of Corollary 4.8.2 might hold without assuming Φ𝐷 , and without invoking Lemma 4.8.1
just because 𝐴 ∈ A𝑟 𝜅 .

Corollary 4.8.4. Let 𝜅 be a local field, and let 𝐷 ∈ P𝑠R𝑛
𝐺 (𝜅) be continuous. Define 𝐷 as in Lemma

4.8.1, and assume that condition Φ𝐷 holds. Then there exists a finite extension 𝜅′ of 𝜅 and split
irreducible continuous 𝐷𝑖 ∈ P𝑠R𝑛𝑖

𝐺 (𝜅
′), 𝑖 = 1, . . . , 𝑟 such that

𝐷 ⊗𝜅 𝜅′ = 𝐷1⊕ . . . ⊕𝐷𝑟 (27)

Moreover, 𝐷 ∈ P𝑠R𝑛
𝐺 (O𝜅 ) and 𝐷𝑖 ∈ P𝑠R𝑛

𝐺 (O𝜅′ ) for 𝑖 = 1, . . . , 𝑟 .

Proof. By Theorem 4.1.17, the 𝜅-algebra 𝑆 := 𝜅 [[𝐺]]/ker (𝐷 ⊗O𝜅 𝜅) has finite 𝜅-dimension. Hence,
Lemma A.2.3 allows us to find a finite extension 𝜅′ of 𝜅 such that 𝑆 ⊗𝜅 𝜅′/Rad(𝑆 ⊗𝜅 𝜅′) is a product
of matrix rings over 𝜅′. It follows that 𝜅′ [[𝐺]]/ker (𝐷 ⊗O𝜅 𝜅

′) is a product of matrix algebras over 𝜅′.
Hence, we have𝐷⊗𝜅 𝜅′ = ⊕𝑟𝑖=1𝐷𝑖 for split irreducible𝐷𝑖 ∈ P𝑠R𝑛𝑖

𝐺 (𝜅
′). We find that (⊕𝑟𝑖=1𝜌𝐷𝑖 )⊗𝜅′ 𝜅alg �

𝜌𝐷⊗O𝜅 𝜅
alg . Since the latter is continuous by Corollary 4.8.2, so are the 𝜌𝐷𝑖 . Finally, Lemma 4.8.1 shows

that the 𝐷𝑖 can be defined over O𝜅′ and 𝐷 over O𝜅 . �

To prove a more general result than Corollary 4.8.4, we need some preparations.

Lemma 4.8.5. Let F be a finite field, let 𝐴 ∈ Â𝑟F be a domain and let 𝔭 ∈ Spec 𝐴 be a prime of
dimension 1, and consider the completion 𝐴𝔭 as a topological ring in Â𝑟 𝜅 (𝔭) . Then the canonical map
𝜄 : 𝐴→ 𝐴𝔭 is continuous and injective, and 𝐴→ 𝜄(𝐴) is a homeomorphism if 𝜄(𝐴) is equipped with the
subspace topology.

Proof. The injectivity of 𝜄 is clear, since 𝐴 → 𝐴𝔭 is injective, as A is a domain, and completion is
injective since 𝐴𝔭 is Noetherian.

Recall that A carries the 𝔪𝐴-adic topology and that the topology on 𝐴𝔭 is the weakest topology such
that the canonical maps 𝐴𝔭 → 𝑅𝑛 := 𝐴𝔭/𝔭𝑛𝐴𝔭 � 𝐴𝔭/𝔭𝑛𝐴𝔭 are continuous for all n, with 𝑅𝑛 carrying
the unique topology as a finite-dimensional vector space with a continuous action of the local field 𝜅(𝔭).
Let 𝜄𝑛 : 𝐴→ 𝐴𝔭 → 𝑅𝑛 be the canonical map. Because A and 𝐴𝔭 are topological modules, it remains to
prove continuity near 0, that is, we have to show the following two assertions: (i) For 𝑛 ∈ N and𝑈 ⊂ 𝑅𝑛
an open neighborhood of 0, there exists 𝑚 ∈ N such that 𝜄𝑛 (𝔪𝑚

𝐴 ) ⊂ 𝑈. (ii) For 𝑚 ∈ N, there exists 𝑛 ∈ N
and 𝑈 ⊂ 𝑅𝑛 open such that 𝔪𝑚

𝐴 ⊃ 𝜄−1
𝑛 (𝑈).

Before we tackle (i) and (ii), we show the following assertion (iii): There exists 𝜔 ∈ 𝔪𝐴 with
nonzero image in 𝐴/𝔭 such that for each 𝑛 ≥ 1 there exists a coefficient field 𝐾𝑛 for 𝑅𝑛 such that
𝐾𝑛 ⊃ F[[𝜄𝑛 (𝜔)]] – we also gather further properties of F[[𝜄𝑛 (𝜔)]]; recall that being a coefficient field
means that 𝐾𝑛 ⊂ 𝑅𝑛 is a subfield that under the reduction map 𝑅𝑛 → 𝜅(𝔭) maps onto 𝜅(𝔭).

For the proof of (iii), let O be the ring of integers of the local field 𝐾1 = 𝜅(𝔭). The ring O is also
the integral closure of 𝐴/𝔭= 𝜄1 (𝐴) in 𝜅(𝔭). By [Wei67, I.§4. Proposition 6, p. 22], for any 𝜔 ∈ 𝔪𝐴 with
𝜄1 (𝑎) ≠ 0 the ring O is finite over F𝑝 [[𝜄1 (𝜔)]], and hence a finite free F𝑝 [[𝜄1 (𝜔)]]-module. Because
𝐴/𝔭 and O have the same quotient field, the field 𝐴/𝔭 is also a full F𝑝 [[𝜄1 (𝜔)]]-sublattice of 𝜅(𝔭) and
it follows that there exists 𝑗 > 0 such that 𝐴/𝔭⊃ 𝜄1 (𝜔) 𝑗O. Thus, for a uniformizer 𝑡 ∈ O, all sufficiently
large powers of t lie in 𝐴/𝔭. We now choose (a new!) 𝜔 ∈ 𝐴 such that 𝜄1 (𝜔) = 𝑡𝑒 for some 𝑒 > 0
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coprime to p. One easily verifies that 𝜄1 (𝜔) is a p-basis of 𝜅(𝔭). It follows from [Hoc14, Theorem 12],
that 𝐾𝑛 :=

⋂
𝑅𝑝𝑛

𝑛 [𝜄𝑛 (𝜔)] is a coefficient field for 𝑅𝑛. Because 𝐾𝑛 is complete, it contains F[[𝜄𝑛 (𝜔)]].
Let O𝑛 be the ring of integers of 𝐾𝑛. Then O𝑛 is finite free over F[[𝜄𝑛 (𝜔)]]. Also, 𝐴/𝔭⊂ 𝐾1 is finite
free over F[[𝜄1 (𝜔)]], and 𝐴/𝔭[1/𝜄1 (𝜔)] =𝜅(𝔭).

We now prove (i). Let 𝔭 (𝑛) = 𝜄−1
𝑛 (0) ⊃ 𝔭𝑛. Then 𝐴/𝔭𝑛 → 𝐴/𝔭 (𝑛) 𝐴 is surjective, and the induced

map 𝐴/𝔭 (𝑛) 𝐴 → 𝑅𝑛 is injective. Because the 𝐴/𝔭-modules 𝔭𝑖/𝔭𝑖+1 are finitely generated over 𝐴/𝔭
and thus over F[[𝜄1 (𝜔)]], as a module over F[[𝜄𝑛 (𝜔)]] the ring 𝐴/𝔭 (𝑛)𝐴 is finite free. Moreover, it
is an F[[𝜄𝑛 (𝜔)]]-lattice in the F((𝜄𝑛 (𝜔)))-vector space (𝐴/𝔭 (𝑛)𝐴) [1/𝜄𝑛 (𝜔)] ⊂ 𝑅𝑛. By induction on n
one also sees that (𝐴/𝔭 (𝑛)𝐴) [1/𝜄𝑛 (𝜔)] = 𝑅𝑛: This is clearly true for 𝑛 = 1 by the previous paragraph.
In the induction step, we know that under reduction (𝐴/𝔭 (𝑛)𝐴) [1/𝜄𝑛 (𝜔)] maps onto 𝑅𝑛−1. Moreover,
𝔭𝑛−1/𝔭𝑛 [1/𝜄𝑛 (𝜔)] is a 𝜅(𝔭) = 𝐴/𝔭[1/𝜄1 (𝜔)]-vector space, and it follows that (𝐴/𝔭 (𝑛) 𝐴) [1/𝜄𝑛 (𝜔)] is
a 𝜅(𝔭)-vector space and thus equal to 𝑅𝑛. Now, the topology of 𝑅𝑛 as a 𝐾𝑛 or as a F((𝜄1 (𝜔)))-vector
space is the same, and it follows that 𝜄𝑛 (𝐴) is a compact open neighborhood of 0 in 𝑅𝑛, and hence there
exists 𝑗 > 0 such that 𝜄𝑛 ((𝜔) 𝑗𝐴) ⊂ 𝑈, and also 𝜄𝑛 (𝐴)/𝜄𝑛 (𝜔 𝑗𝐴) is finite. It follows that 𝐴/(𝔭 (𝑛) +𝜔 𝑗𝐴)
is a local Artin ring, and so there exists 𝑚 > 0 such that 𝔪𝑚

𝐴 ⊂ 𝔭 (𝑛) + 𝜔 𝑗𝐴, and also 𝜄(𝔪𝑛
𝐴) ⊂ 𝑈. This

proves (i).
For (ii), we show first that there exists 𝑛 ∈ N such that 𝔪𝑚

𝐴 ⊃ 𝔭 (𝑛) : To see this, note that the ring maps
𝐴 → 𝐴𝔭 → 𝐴𝔭 are injective and the 𝔭-adic topology on 𝐴𝔭 is separated, that is, we have

⋂
𝑛 𝔭
(𝑛) = 0.

The existence of n now follows from Chevalley’s lemma, [Che43, Lemma 7], which asserts that the
topology on A generated by the ideals (𝔭 (𝑛) )𝑛≥0 is finer then the 𝔪𝐴-adic topology.

Now, by the choice of 𝜔 we have 𝜔𝐴 ⊂ 𝔪𝐴. Therefore, 𝜔𝑚𝐴 + 𝔭 (𝑛) ⊂ 𝔪𝑚
𝐴 . It follows that

𝑈 = 𝜄𝑛 (𝜔𝑚𝐴) is an open neighborhood of 0 such that 𝜄−1
𝑛 (𝜄𝑛 (𝐴) ∩𝑈) ⊂ 𝔪𝑚

𝐴 . �

Proposition 4.8.6. Suppose Φ𝐷 holds. Let 𝑅
univ
𝐷 → 𝐴 be a morphism in Â𝑟F, and let 𝐷𝐴 be the

corresponding pseudodeformation. Suppose A is a domain with fraction fieldK and that 𝐷K := 𝐷𝐴⊗𝐴K
is multiplicity free. Then there exist

(i) a finite extension K′ of K with integral closure 𝐴′ of A in K′, and
(ii) continuous irreducible pseudocharacters 𝐷 ′𝑖 : 𝐴′[𝐺] → 𝐴′,

such that 𝐷𝐴 ⊗𝐴 𝐴′ = ⊕𝑖𝐷 ′𝑖 . The ring 𝐴′ lies in Â𝑟F′ for some finite field F′ ⊃ F. If 𝐷 is split, the ring
of definition 𝐴𝑖 ⊂ 𝐴′ of each 𝐷 ′𝑖 lies in A𝑑𝑚F and one has 𝐷 = ⊕𝑖 (𝐷 ′𝑖 ⊗𝐴𝑖 𝜅(𝐴𝑖)) over F.

Proof. Define the rings

𝑆𝐴 := 𝑆CH-univ
Λ,𝐷

⊗𝑅univ
Λ,𝐷

𝐴 and 𝑆K := 𝑆𝐴 ⊗𝐴 K.

Then by Proposition 4.7.11, the A-algebra 𝑆𝐴 is finitely generated as an A-module, and the induced
homomorphism 𝐺 → 𝑆×𝐴 is continuous if 𝑆𝐴 is equipped with the 𝔪𝐴-adic topology as an A-module.
In particular, the K-algebra 𝑆K is of finite K-dimension.

Now, Lemma A.2.3 gives a finite extensionK′ ofK so that 𝑆′ := 𝑆K⊗KK′/Rad(𝑆K⊗KK′) is a product
of matrix algebras 𝑆′ =

∏
𝑖 Mat𝑛𝑖×𝑛𝑖 (K′). Since 𝐷K′ := 𝐷K ⊗K K′ factors via 𝑆′ and is multiplicity free,

it is the composition of𝐺 → 𝑆×𝐴→ (𝑆
′)× with

∏
𝑖 det𝑛𝑖 where det𝑛𝑖 is the determinant of Mat𝑛𝑖×𝑛𝑖 (K′).

Write 𝐷K′ =
⊕

𝑖 𝐷𝑖 with 𝐷𝑖 corresponding to det𝑛𝑖 on the i-th factor of 𝑆′.
Let 𝐴′ be the integral closure of A inK′. Because A is Nagata by Lemma A.1.1(a), the ring 𝐴′ is finite

over A and hence lies in A𝑑𝑚F. Because A is complete Noetherian, so is 𝐴′, and because 𝐴′ must be
semilocal, it is a product of local rings. But 𝐴′ is also a subring of the field K′, and thus 𝐴′ lies in Â𝑟F′
for some finite field extension F′ ⊃ F. Let 𝑆𝐴′ := 𝑆𝐴 ⊗𝐴 𝐴′, and write (𝑆𝐴)′ for the image of 𝑆𝐴′ in 𝑆′.

Because 𝐷K′ =
⊕

𝑖 𝐷𝑖 , the attached characteristic polynomials satisfy∏
𝑖

𝜒𝐷′𝑖 (·, 𝑡) = 𝜒𝐷K′ (·, 𝑡) ∈ K
′ [𝑡] .
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By hypothesis, the coefficients of 𝐷K′ lie in 𝐴 ⊂ 𝐴′ ⊂ K′. Now, because 𝐴′ is integrally closed, by
[Mat89, Theorem 9.2] the coefficients of the 𝜒𝐷′𝑖 (·, 𝑡) lie in 𝐴′. Hence, by Amitsur’s formula in the form
Proposition 4.1.10, the 𝐷 ′𝑖 take values in 𝐴′.

Now, note that the proposition is trivial if A has Krull dimension 0, and so we assume it to be strictly
positive from now on so that Spec 𝐴′\{𝔪𝐴′ } is a nonempty Jacobson scheme and thus the points of
dimension 1 of Spec 𝐴′ are very dense in it; see Definition A.1.10 and Proposition A.1.11. Moreover,
the locus of irreducibility of each 𝐷𝑖 is open in Spec 𝐴′ by Proposition 4.7.17 and contains the generic
point of Spec 𝐴′ by construction. Also, by Lemma A.1.1 the complete Noetherian local ring 𝐴′ is a
Nagata ring and so the regular locus is open in Spec 𝐴′; it is nonempty because 𝐴′ is a domain. Hence,
there exists a point 𝔭 ∈ Spec 𝐴′ of dimension 1 at which all 𝐷𝑖 are simultaneously irreducible and
such that 𝐴′𝔭 is regular local. The former condition on 𝔭 implies by Proposition 4.7.18 that each 𝐷𝑖

when considered as a pseudocharacter 𝐴′𝔭 [𝐺] → 𝐴′𝔭 is equal to the reduced norm composed with a
representation 𝐺 → (𝐶𝑖)× for 𝐶𝑖 an 𝐴′𝔭-Azumaya algebra. The latter condition implies that one has an
inclusion of Brauer groups Br(𝐴′𝔭)↩→Br(K′) by [AG60, Theorem 7.2], and hence that all 𝐶𝑖 have trivial
Brauer class by the choice of K′, that is 𝐶𝑖 � Mat𝑛𝑖×𝑛𝑖 (𝐴𝔭) for suitable 𝑛𝑖 > 0. It follows that over 𝐴′𝔭
we have that 𝐷 ′ is the determinant of a direct sum of representations

𝐺 →
∏
𝑖

Mat𝑛𝑖×𝑛𝑖 ( �̂�′𝔭)×.

By our hypothesis, 𝐺 → 𝑆×𝐴 is continuous as is the induced pseudocharacter 𝐷 : 𝑆𝐴 → 𝐴. Let 𝑆𝔭 be
𝑆𝐴⊗𝐴 �̂�′𝔭/CH(𝐷 ′). Then by Lemma 4.8.5 also𝐺 → 𝑆×𝔭 is continuous, as is the induced pseudocharacter
𝑆𝔭 → 𝐴′. From the above and Proposition 4.3.9, it follows that 𝑆𝔭 is a GMA with trivial ideal of total
reducibility. Now, the continuity of 𝐺 → 𝑆×𝔭 implies that of 𝐷𝑖 : 𝐺 → Mat𝑛𝑖×𝑛𝑖 ( �̂�′𝔭)×

det→ �̂�′𝔭 obtained
by applying the i-the projection and the determinant, and again from Lemma 4.8.5 we deduce that
𝐷𝑖 : 𝐴′ [𝐺] → 𝐴′ is continuous.

It remains to prove the last assertion, assuming that 𝐷 is split: Let 𝐴𝑖 ⊂ 𝐴′ be the ring of definition of
𝐷 ′𝑖 , denote by 𝐷𝑖 : 𝐴𝑖 [𝐺] → 𝐴𝑖 the corresponding pseudocharacter and let 𝐷𝑖 := 𝐷𝑖 ⊗𝐴𝑖 𝜅(𝐴𝑖). Note
that the 𝜅(𝐴𝑖) are the rings of definition of 𝐷𝑖 . Let F′′ be the smallest extension of F′ that contains all
𝜅(𝐴𝑖). Then 𝐷 ⊗F F′′ �

⊕
𝑖 𝐷𝑖 ⊗𝜅 (𝐴𝑖) F

′′. However, 𝐷 is split over F and so all 𝐷𝑖 are defined over F,
and this shows 𝜅(𝐴𝑖) = F for all i by Lemma 4.4.8. We deduce 𝐴𝑖 ∈ A𝑑𝑚F. �

Corollary 4.8.7. Let 𝜅 be a finite or a local field, and let 𝜌 : 𝐺 → GL𝑛 (𝜅) be a continuous absolutely
irreducible homomorphism with associated pseudocharacter 𝐷. Suppose that Φ𝐷 holds for 𝐷 attached
to 𝐷 as in Lemma 4.8.1. Then the natural map 𝑅univ

Λ,𝜌 → 𝑅univ
Λ,𝐷 induced from 𝜌𝐴 ↦→ 𝐷𝜌𝐴 for 𝐴 ∈ A𝑟 𝜅 is

an isomorphism.

Proof. If 𝜅 is finite, the assertion is [Che14, Example 3.4]. For local 𝜅, we need to show that the natural
transformation of functors A𝑟 𝜅 → 𝑆𝑒𝑡𝑠 defined by

{continuous deformations 𝜌𝐴 of 𝜌 to 𝐴}

𝜌𝐴 ↦→𝐷𝜌𝐴

��
𝐴
�

		�����������������������	






























{continuous pseudodeformations 𝐷𝐴 of 𝐷 to 𝐴}

is an isomorphism. Well definedness is clear. Injectivity follows from Theorem 4.3.10(a) since 𝜌𝐷 is
absolutely irreducible. To prove surjectivity, consider a pseudodeformation 𝐷𝐴 : 𝐴[𝐺] → 𝐴 of 𝐷 and
note that by Theorem 4.3.10(a) there exists a deformation 𝜌𝐴 of 𝜌𝐷 to A with 𝐷𝐴 = 𝐷𝜌𝐴 . The continuity
of 𝜌𝐴 follows from Corollary 4.8.2(b). �

We now give an analog of Theorem 3.3.1 for pseudocharacters.
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Corollary 4.8.8. Let F be a finite field and let 𝐷 ∈ P𝑠R𝑛
𝐺 (F) be continuous. For 𝑥 ∈ 𝑋 univ

Λ,𝐷
such

that 𝜅(𝑥) is a local field and with residue map 𝜋𝑥 : 𝑅 univ
Λ,𝐷
→ 𝜅(𝑥) and associated pseudocharacter

𝐷𝑥 : 𝜅(𝑥) [𝐺] → 𝜅(𝑥), define the morphism 𝑓𝑥 = 𝜋𝑥 ⊗ id : 𝑅 univ
Λ,𝐷
⊗Λ 𝜅(𝑥) → 𝜅(𝑥), and the completion

𝑅 of 𝑅 univ
Λ,𝐷
⊗Λ 𝜅(𝑥) at 𝔭 = Ker( 𝑓𝑥). Denote by

(i) 𝐷 : 𝐺 → 𝑅 univ
Λ,𝐷
→ 𝑅 the completion at 𝔭 of the pseudocharacter 𝐷univ

𝐷
⊗Λ 𝜅(𝑥), and by

(ii) 𝐷univ
𝐷𝑥

: 𝐺 → 𝑅 univ
𝜅 (𝑥) ,𝐷𝑥

the universal pseudodeformation from Proposition 4.7.4 attached to 𝐷𝑥 .

Then the map 𝜑 : 𝑅 univ
𝐷𝑥
→ 𝑅 induced from the universal property of 𝑅 univ

𝐷𝑥
is an isomorphism.

Proof. We adapt the proof of Theorem 3.3.1. Thus, we need to show that 𝜑 is formally étale. We
abbreviate 𝜅 = 𝜅(𝑥) and let O be the ring of integers of 𝜅. Consider the commutative diagram

𝐺

𝐷univ
𝐷
⊗Λ𝜅

��

𝐷univ
𝐷𝑥 ��

𝐷

��
𝑅univ
𝐷𝑥 ,𝜅

𝜑

��

𝛼𝐴 �� 𝐴

��
𝑅univ
𝐷
⊗Λ 𝜅

(̂ ·) �� 𝑅
�̂�𝐴/𝐼 ��

�̂�𝐴

����������
𝐴/𝐼 �� 𝜅,

where 𝐴 ∈ Â𝑟 𝜅 , the ideal 𝐼 ⊂ 𝐴 satisfies 𝐼2 = 0, and 𝐷 : 𝐴[𝐺] → 𝐴 is continuous pseudodeformation
of 𝐷𝑥 . The maps �̂�𝐴/𝐼 and 𝛼𝐴 are homomorphisms in Â𝑟 𝜅 . We will construct the dashed arrow 𝛼𝐴

so that the extended diagram commutes and show its uniqueness. Our first claim is that there is an
O-algebra 𝐴0 ⊂ 𝐴 that as an O-module is an O-lattice in A and such that 𝐷 is valued in 𝐴0.

The proof is an induction over j for the composition 𝐷 𝑗 = 𝐷 (mod 𝔪 𝑗
𝐴) of 𝐷 with the quotient map

𝐴 → 𝐴 𝑗 = 𝐴/𝔪 𝑗
𝐴. For 𝑗 = 1, the claim holds because 𝐷𝑥 = 𝐷1 is valued in O ⊂ 𝜅. Suppose in the

induction step that we have defined 𝐴 𝑗 ,0 ⊂ 𝐴 𝑗 as in the claim and we wish to construct 𝐴 𝑗+1,0 ⊂ 𝐴 𝑗+1.
Because the characteristic polynomial coefficientsΛ𝑖,𝐷 𝑗+1 , 𝑖 = 1, . . . , 𝑛, are continuous and G is profinite
and hence compact, the joint image of the Λ𝑖,𝐷 𝑗+1 (𝐺) is bounded in 𝐴 𝑗+1 and hence there exists an
O-sublattice 𝐿 ⊂ 𝐴 𝑗+1 that contains this joint image as well as O · 1, and such that 𝐿(mod 𝔪 𝑗

𝐴) = 𝐴 𝑗 ,0.
Now, using that 𝐴 𝑗 ,0 is a ring and that 𝔪 𝑗

𝐴 is annihilated by 𝔪𝐴, it follows, for instance by considering a
suitable O-basis of L and the quotient 𝐿 +𝔪 𝑗

𝐴/𝐿 inside 𝔪 𝑗
𝐴/(𝔪

𝑗+1
𝐴 + 𝐿 ∩𝔪

𝑗
𝐴), that 𝐿 · 𝐿 is an O-algebra

that can be taken as 𝐴 𝑗+1,0.
Let𝐶𝑥 be the ring of definition of 𝐷𝑥 . It is a quotient of 𝑅univ

Λ,𝐷
and a subring of O ⊂ 𝜅. We let B be the

subalgebra of 𝐴0 that is the inverse image of 𝐶𝑥 under the reduction map 𝐴0 → O modulo 𝔪𝐴. Then
𝐵 ∈ Â𝑟Λ and B is a coefficient ring for 𝐷. Denote by 𝐷𝐵 : 𝐵[𝐺] → 𝐵 the pseudocharacter such that
𝐷𝐵 ⊗𝐵 𝐴 = 𝐷. If 𝜅 has positive characteristic, it follows from Lemma 4.8.5 that 𝐷𝐵 is continuous with
B carrying the 𝔪𝐵-adic topology. The same holds if 𝜅 is a p-dic field: Then B is a finite free Z𝑝-module,
and so the p-adic topology on B agrees with the 𝔪𝐵-adic topology on B. Therefore, the continuity of
𝐷 with respect to the topology on A as a continuous 𝜅-module implies the continuity of 𝐷𝐵 for the
𝔪𝐵-adic topology on B.

Now, the universal property of 𝑅univ
Λ,𝐷

yields a unique homomorphism 𝛽𝐵 : 𝑅univ
Λ,𝐷
→ 𝐵 such that

𝐷 = 𝛽𝐵 ◦ 𝐷𝐵. Then 𝛽𝐵 ⊗Λ id𝜅 is a homomorphism 𝑅univ
Λ,𝐷
⊗Λ 𝜅 → 𝐴. Its composition with 𝐴 → 𝜅

has kernel 𝔭, and thus it induces a map (𝑅univ
Λ,𝐷
⊗Λ 𝜅)𝔭 → 𝐴. If m denotes the length of A, then 𝔭𝑚

maps to zero under that map so that it factors via 𝑅 → 𝐴. This is the wanted map �̂�𝐴: The top
triangle in the diagram commutes by construction, the bottom triangle because 𝛽𝐴(mod 𝐼) and the map
𝑅univ
Λ,𝐷
→ 𝐵/(𝐼 ∩ 𝐵) ⊂ 𝐴/𝐼 must agree since they both give rise to 𝐷 (mod 𝐼).
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Let us show the uniqueness of �̂�𝐴, and so let 𝛼′𝐴 be a second map 𝑅 → 𝐴 that makes as a dashed
arrow the diagram commute. Observe that by construction we have the equality of pseudocharacters
𝜑 ◦ 𝐷univ

𝐷𝑥
= (̂·) ◦ (𝐷univ

𝐷
⊗Λ 𝜅). Now composing the equality with either �̂�𝐴 or 𝛼′𝐴 gives the same

pseudocharacter. We claim that �̂�𝐴 ◦ (̂·) = 𝛼′𝐴 ◦ (̂·) as maps 𝑅univ
Λ,𝐷
⊗Λ 𝜅 → 𝐴. If the claim is shown, then

uniqueness follows, because the induced diagonal map is reconstructed by localization and completion
– the ideal 𝔭𝑚 is mapped to zero in A.

To prove the latter claim, by the universal property of the tensor product of rings, it suffices to
understand the ring maps on both factors of 𝑅univ

Λ,𝐷
⊗Λ 𝜅 → 𝐴 separately. On the second factor, both maps

are the scalar multiplication isomorphism 𝜅 → 𝜅 · 1, 𝛼 ↦→ 𝛼 · 1, by the definition of (̂·) and the condition
that the diagonal map be in Â𝑟 𝜅 . The restriction of either map �̂�𝐴 ◦ (̂·) or 𝛼′𝐴 ◦ (̂·) to the first factor 𝑅univ

Λ,𝐷

gives when composed with 𝐷univ
𝐷
⊗Λ 𝜅 the pseudocharacter 𝐷. Both restrictions to 𝑅univ

Λ,𝐷
are subject to

the universal property of this ring, and hence these restrictions agree, and the claim is shown. �

Remark 4.8.9. We think that [Che14, Corollary 2.23(ii)] has to be formulated in a way similar to
Corollary 4.8.8; only if 𝜅(𝑥) is a p-adic field, one can simply complete (𝑅 univ

Λ,𝐷
)𝔭𝑥 to obtain a universal

pseudodeformation ring for 𝐷𝑥 . In Corollary 4.8.8 we have only verified this for dimension 1 points.

Corollary 4.8.10. Let 𝜅 be a local field and let 𝐷 ∈ P𝑠R𝑛
𝐺 (𝜅) be continuous. Suppose that condition

Φ𝐷 , for 𝐷 from Lemma 4.8.1, is satisfied. Then the following hold:

(a) The ring 𝑅 univ
𝜅,𝐷 is Noetherian.

(b) Suppose that 𝐷 is irreducible and that 𝐻2 (𝐺, ad𝜌) = 0 for 𝜌 := 𝜌𝐷⊗𝜅 𝜅alg . Then 𝑅 univ
𝜅,𝐷 is formally

smooth over 𝜅 of relative dimension dim𝜅alg 𝐻1(𝐺, ad𝜌).

Proof. Let C be the ring of definition of 𝐷, let 𝐷𝐶 : 𝐶 [𝐺] → 𝐶 the continuous pseudocharacter from
Lemma 4.8.1 such that 𝐷𝐶 ⊗𝐶 𝜅 = 𝐷 and let 𝐷 ′ := 𝐷𝐶 ⊗𝐶 𝜅(𝐶); note that 𝜅(𝐶) is finite; note
also that continuity is clear because C carries the subspace topology of 𝜅 and we only require the
continuity of the characteristic polynomial coefficients as functions 𝐺 → 𝐶. By Proposition 4.7.4 and
our hypotheses, the ring 𝑅 univ

𝑊 (𝜅 (𝐶)) ,𝐷′
is Noetherian. Part (a) follows by choosing 𝑥 ∈ 𝑋 univ

𝑊 (𝜅 (𝐶)) ,𝐷′
as

the point corresponding to 𝐷, and by applying Corollary 4.8.8 with this x; note that 𝑅 (in Corollary
4.8.8) is Noetherian as the completion of a Noetherian local ring.

To see Part (b), let 𝜅′ ⊃ 𝜅 be a finite extension over which 𝐷 is split. Let 𝜌 := 𝜌𝐷⊗𝜅 𝜅′ : 𝐺 → GL𝑛 (𝜅′)
be the continuous and absolutely irreducible representation with 𝐷𝜌′ . = 𝐷 ⊗𝜅 𝜅′. Our hypotheses
gives 𝐻2 (𝐺, ad𝜌′ ) = 0 and it will suffice to show that 𝑅 univ

𝜅′,𝐷 is formally smooth over 𝜅′ of dimension
dim𝜅′ 𝐻

1(𝐺, ad𝜌′ ). This follows from Corollary 4.8.7 and Theorem 3.2.4(e). �

For later use, we also need variants of Corollary 4.8.7 and Corollary 4.8.8 for deformations of pairs
of representations and pseudocharacters. Let 𝐷1, 𝐷2 : F[𝐺] → F be continuous pseudocharacters of
dimensions 𝑛1 and 𝑛2 such that Φ𝐷𝑖

holds for 𝑖 = 1, 2. Consider the functor

P𝑠𝐷 (𝐷1 ,𝐷2) : Â𝑟Λ → 𝑆𝑒𝑡𝑠, 𝐴 ↦−→ {(𝐷1, 𝐷2) | 𝐷𝑖 : 𝐺 −→ 𝐴 is a pseudodeformation of 𝐷𝑖}.

It is straightforward to see that P𝑠𝐷 (𝐷1 ,𝐷2) is represented by 𝑅 univ
(Λ,𝐷1 ,𝐷2)

:= 𝑅 univ
Λ,𝐷1
⊗̂𝑅 univ

Λ,𝐷2
and that the

ring 𝑅 univ
(Λ,𝐷1 ,𝐷2)

is Noetherian, using Propositions 4.7.4 and 4.7.11.
Let 𝑥 ∈ 𝑋 univ

(𝐷1 ,𝐷2)
:= Spec 𝑅 univ

(𝐷1 ,𝐷2)
be a point of dimension 1 such that 𝐷𝑖,𝑥 is irreducible for 𝑖 = 1, 2

for the corresponding pair (𝐷1,𝑥 , 𝐷2,𝑥). As above, one can define a deformation functor for this pair an
A𝑟 𝜅 (𝑥) . It is representable by 𝑅 univ

𝜅 (𝑥) , (𝐷1,𝑥 ,𝐷2,𝑥 ) := 𝑅 univ
𝜅 (𝑥) ,𝐷1,𝑥

⊗̂𝜅 (𝑥)𝑅 univ
𝜅 (𝑥) ,𝐷2,𝑥

, which is again complete
local Noetherian. Let 𝜋 : 𝑅𝑥 := 𝑅 univ

Λ, (𝐷1 ,𝐷2)
⊗Λ 𝜅(𝑥) → 𝜅(𝑥) be the homomorphism induced from x, and
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let

𝜑 : 𝑅univ
𝜅 (𝑥) , (𝐷1,𝑥 ,𝐷2,𝑥 ) → 𝑅𝑥

be the natural homomorphism constructed as in Corollary 4.8.8, where 𝑅𝑥 denotes the completion of
𝑅𝑥 at 𝔭𝑥 := Ker 𝜋.

Let finally L be a finite extension of 𝜅(𝑥) over which there exist absolutely irreducible representations
𝜌𝑖 : 𝐺 → GL𝑛𝑖 (𝐿) such that 𝐷𝜌𝑖 = 𝐷𝑖,𝑥 ⊗𝜅 (𝑥) 𝐿 for 𝑖 = 1, 2. Define the functor

D(𝜌1 ,𝜌2) : A𝑟Λ −→ 𝑆𝑒𝑡𝑠, 𝐴 ↦−→ {(𝜌1,𝐴, 𝜌2,𝐴) | 𝜌𝑖,𝐴 : 𝐺 −→GL𝑛 (𝐴) : 𝜌 is a deformation of 𝜌𝑖},

Since the 𝜌𝑖 are absolutely irreducible, it is represented by 𝑅 univ
𝐿, (𝜌1 ,𝜌2) := 𝑅 univ

𝐿,𝜌1
⊗̂𝐿𝑅 univ

𝐿,𝜌2
, and the latter

ring is Noetherian local by Proposition 3.2.3 and Theorem 3.2.4 since we assume Φ𝐷𝑖
, 𝑖 = 1, 2. As in

Corollary 4.8.7 one has a natural homomorphism

𝜓 : 𝑅univ
𝐿, (𝜌1 ,𝜌2) → 𝑅univ

𝜅 (𝑥) , (𝐷1,𝑥 ,𝐷2,𝑥 ) ⊗𝜅 (𝑥) 𝐿.

Proposition 4.8.11. The following hold:

(a) The maps 𝜓 and 𝜑 are isomorphisms.
(b) Suppose 𝐺 = 𝐺𝐾 and 𝐻0(𝐺, ad𝜌𝑖 ) = 0 for 𝑖 = 1, 2. Then 𝑅 univ

𝐿, (𝜌1 ,𝜌2) ,red is formally smooth over
L of dimension 𝑑 (𝑛2

1 + 𝑛
2
2) + 2 and hence x is a smooth point on 𝑋 univ

(𝐷1 ,𝐷2) ,red with tangent space
dimension 𝑑 (𝑛2

1 + 𝑛
2
2) + 1.

Proof. The two assertions in (a) are proved exactly as Corollary 4.8.7 and Corollary 4.8.8, and we omit
the details. The first assertion in (b) follows from our description of 𝑅 univ

𝐿, (𝜌1 ,𝜌2) ,red as a completed tensor
product and from Corollary 3.4.3. The second assertion now is a consequence of (a), of Proposition
4.7.6 and of Lemma 3.3.5. �

5. Equidimensionality and density of the regular locus

This section proves the main result of this work, the equidimensionality of the special fiber of universal
pseudodeformation rings of expected dimension. The proof follows the steps of Chenevier’s proof of
the equidimensionality of the generic fiber of the universal pseudocharacter space from [Che11]. The
main contribution is to overcome the complications that arise in the special fiber.

There are certain points in the special fiber that have no counterpart in the generic fiber. We call them
special points and describe them in Subsection 5.1; see Definition 5.1.2. nonspecial (irreducible) points
will take the role of irreducible points in Chenevier’s work. Subsection 5.1 also contains some technical
result, Lemma 5.1.6, on the comparison of universal pseudodeformation and universal deformation
rings over local fields where the residual pseudocharacter is a sum of two irreducible ones.

In Subsection 5.2, we prove the inductive Theorem 5.2.1 to obtain our main result. If the nonspecial
irreducible points are Zariski open dense in universal pseudodeformation spaces for 𝐷 of dimension
less than n, then irreducible points are Zariski dense for 𝐷 of dimension n. Subsection 5.3 gives an
alternative proof of Theorem 5.2.1 following a suggestion of the referee. The main point of Subsection
5.4 is to show in Theorem 5.4.1 that the nonspecial irreducible points are dense open in the irreducible
points. This uses induction of pseudocharacters from Subsection 4.6 as a main tool, and the proof in
dimension n relies on results for dimension 𝑛′ < 𝑛.

Then in Subsection 5.5, we complete the proof of our main theorem Theorem 5.5.1 in a straightforward
manner. In Theorem 5.5.5, we determine the singular locus of 𝑅

univ
𝐷 when 𝜁𝑝 ∉ 𝐾 . This allows us in

Theorem 5.5.7 to establish Serre’s condition (𝑅2) for 𝑅
univ
𝐷 except for one single 𝐷.
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In this section, we use the notation 𝐾 ⊃ Q𝑝 , d, 𝐺𝐾 , 𝜁𝑝 , 𝐷 : 𝐺𝐾 → F (continuous) with F finite, as
before. Often, we write n for dim 𝐷. To emphasize K in universal objects, we sometimes write 𝑅

univ
𝐾,𝐷

for 𝑅 univ
𝐺𝐾 ,F,𝐷

and 𝑋
univ
𝐾,𝐷 for Spec 𝑅

univ
𝐾,𝐷 . All results of this section only concern the special fiber of

pseudodeformation spaces.

5.1. Special points

Let 𝜒c𝑦𝑐 : 𝐺𝐾 → Z×𝑝 denote the p-adic cyclotomic character. Let A be in Â𝑟𝑊 (F) (or a localization of
such a ring), let 𝜌 : 𝐺𝐾 → GL𝑛 (𝐴) be a continuous representation and 𝐷 : 𝐺𝐾 → 𝐴 be a continuous
pseudocharacter. For 𝑖 ∈ Z, we shall denote by 𝜌(𝑖) and 𝐷 (𝑖) the twist by 𝜒𝑖c𝑦𝑐 of 𝜌 and 𝐷, respectively.
An elementary but crucial observation in [Che11] was that 𝐻2(𝐺𝐾 , ad𝜌) = 0 whenever a 𝜌 : 𝐺𝐾 →
GL𝑛 (𝐸) is a continuous absolutely irreducible representation into a p-adic field E; this follows from
local Tate duality in the form given in Theorem 3.4.1, which gives

𝐻2(𝐺𝐾 , ad𝜌)∨ = Hom𝐺𝐾 (𝜌, 𝜌(1)), (28)

together with the fact that 𝜒c𝑦𝑐 has infinite order. For representations into local (or finite) fields of
characteristic p the order of 𝜒c𝑦𝑐 (mod 𝑝) is finite, and so the situation has to be further analyzed.
Lemma 5.1.1. Let E be a finite or local field of characteristic p, and let 𝜌 : 𝐺𝐾 → GL𝑛 (𝐸) be a
continuous absolutely irreducible representation. Then the following hold:

Suppose that 𝜁𝑝 ∉ 𝐾 (Case I). Then the following assertions are equivalent:
(i) 𝐻2 (𝐺𝐾 , ad𝜌) is nonzero.

(ii) The 𝐺𝐾 -representations 𝜌 and 𝜌(1) are isomorphic.
(iii) There exists a finite separable extension 𝐸 ′ of E such that 𝜌 ⊗𝐸 𝐸 ′ is induced from a continuous

representation 𝜏 of 𝐺𝐾 ′ over 𝐸 ′ for 𝐾 ′ = 𝐾 (𝜁𝑝).
Suppose that 𝜁𝑝 ∈ 𝐾 (Case II). Then the map 𝐻2(Tr) : 𝐻2 (𝐺𝐾 , ad𝜌) → 𝐻2 (𝐺𝐾 , 𝐸) � 𝐸 is

surjective, and the following assertions are equivalent:
(i’) 𝐻2(𝐺𝐾 , ad0

𝜌) is nonzero.
(ii’) 𝐻0(𝐺𝐾 , ad𝜌) is nonzero.

(iii’) There exists a finite extension 𝐸 ′ of E and a Galois extension 𝐾 ′ of K of degree p such that 𝜌 ⊗𝐸 𝐸 ′
is induced from a continuous representation 𝜏 over 𝐸 ′ of 𝐺𝐾 ′ .

(iv’) The restriction 𝜌 ⊗𝐸 𝐸alg |𝐺𝐾′ is reducible for some Galois extension 𝐾 ′ of K of degree p.
In both cases, if 𝜏 exists, then it is absolutely irreducible, and in particular End𝐺𝐾′ (𝜏) = 𝐸 .
Proof. The equivalence of (i) and (ii) follows from the isomorphism (28) and the absolute irreducibility
of 𝜌. The duality in Theorem 3.4.1 also yields the equivalence of (i’) and (ii’), in a similar way. In all
cases, the continuity and absolute irreducibility of 𝜏, if it exists, is implied by Lemma 2.1.4(b) and (f).

The equivalence of (ii) and (iii) now follows from Theorem 2.2.1. The equivalence of (iii’) and (iv’)
is a consequence of Lemma 2.3.1. The implication (ii’)⇒(iii’) follows from Lemma 2.3.2(g) and (j),
and the implication (iii’)⇒(ii’) is shown in Example 4.6.4. �

Definition 5.1.2. We call 𝑥 ∈ (𝑋
univ
𝐾,𝐷)irr special if one of the following two conditions holds

(i) 𝜁𝑝 ∉ 𝐾 and 𝐷𝑥 = 𝐷𝑥 (1),
(ii) 𝜁𝑝 ∈ 𝐾 and 𝐷𝑥 |𝐺𝐾′ is reducible for some degree p Galois extension 𝐾 ′ of K;

otherwise x is called nonspecial. We write (𝑋
univ
𝐾,𝐷)spcl for {𝑥 ∈ (𝑋

univ
𝐾,𝐷)irr | is special} and (𝑋

univ
𝐾,𝐷)n-spcl

for (𝑋
univ
𝐾,𝐷)irr\(𝑋

univ
𝐾,𝐷)spcl.

Lemma 5.1.3. The set (𝑋
univ
𝐾,𝐷)spcl is closed in (𝑋

univ
𝐾,𝐷)irr.
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Proof. If 𝜁𝑝 ∉ 𝐾 , then the condition 𝐷 = 𝐷 (1) is a closed condition in 𝑋
univ
𝐾,𝐷 by Corollary 4.5.11, and

this concludes the argument.
If 𝜁𝑝 ∈ 𝐾 , then note first that the set of Galois extensions 𝐾 ′ of K of degree p is finite. Since by

class field theory (𝐺𝐾 ab )/(𝐺ab
𝐾 )
×𝑝 is finite if K is a p-adic field. By [Che14, 2.20], the reducibility of

a pseudocharacter over a field can be detected by the vanishing of certain determinants whose entries
are traces of the pseudocharacter, evaluated at certain elements of the group in question. If 𝑛 = dim 𝐷,
then 𝑥 ∈ (𝑋

univ
𝐾,𝐷)spcl if and only if for some degree p Galois extensions 𝐾 ′ over K and all 𝑛2 tuples

(𝑔𝑖) ∈ 𝐺𝑛2

𝐾 ′ one has

det
(
Λ𝐷,1 (𝑔𝑖𝑔 𝑗 )𝑖, 𝑗=1,...,𝑛2

)
= 0.

Hence, (𝑋
univ
𝐾,𝐷)spcl is Zariski closed in (𝑋

univ
𝐾,𝐷)irr as a finite union (over 𝐾 ′) of closed subsets. �

For 𝑋 ⊂ 𝑋
univ
𝐷 locally closed, we set �𝑋 := 𝑋\{𝔪

𝑅
univ
𝐷

}. The following holds:

Facts 5.1.4.
(a) 𝔪

𝑅
univ
𝐷

is the unique closed point of 𝑋
univ
𝐷 .

(b) For 𝑖 ≥ 1, the dimension i points of 𝑋
univ
𝐷 are the dimension 𝑖 − 1 points of �𝑋

univ
𝐷 .

(c) If �𝑋 is nonempty, then the dimension 0 points of �𝑋 are very dense in �𝑋; see Lemma A.1.8.

We call 𝑥 ∈ 𝑋
univ
𝐷 regular, if 𝑅

univ
𝐷 is regular at x, and singular otherwise.

Notation 5.1.5. Let X be a locally closed subset of 𝑋
univ
𝐷 .

(a) We use the superscripts irr, red, reg, sing on X to denote the subset of irreducible, reducible, regular
and singular points, respectively; cf. Definition 4.7.16.

(b) We write 𝑋red (subscript!) for X with its induced reduced subscheme structure.
(c) For attributes 𝑎, 𝑏, 𝑐 of X, if they apply, we write 𝑋𝑎,𝑏 for 𝑋𝑎 ∩ 𝑋𝑏 , 𝑋𝑎

𝑏 for 𝑋𝑎 ∩ 𝑋𝑏 , 𝑋𝑎,𝑏 for
𝑋𝑎 ∩ 𝑋𝑏 , and so on.

The remaining results in this section concern dimension 1 points on 𝑋
univ
𝐷 .

Lemma 5.1.6. Let x be a closed point of 𝑈 := ( �𝑋
univ
𝐷 )irr, let 𝐷 ′𝑥 be the pseudocharacter 𝜅(𝑥) [𝐺] →

𝜅(𝑥), 𝑔 ↦→ 1 ⊗𝑊 (F) 𝐷𝑥 (𝑔) and let 𝑅 be the universal pseudodeformation ring for 𝐷 ′𝑥 from Corollary
4.8.8. Then the following hold:
(a) Suppose that 𝜁𝑝 ∉ 𝐾 and that x is nonspecial. Then 𝑅 is regular of dimension 𝑑𝑛2 + 1. If in addition

𝑈n-spcl is nonempty, it is regular and equidimensional of dimension 𝑑𝑛2.
(b) Suppose that 𝜁𝑝 ∉ 𝐾 and that x is special. Then 𝑅 is a complete intersection ring with dim 𝑅 ∈
{𝑑𝑛2 + 1, 𝑑𝑛2 + 2}. Moreover, U is of dimension at most 𝑑𝑛2 + 1.

(c) Suppose that 𝜁𝑝 ∈ 𝐾 and that x is nonspecial. Then 𝑅red is regular of dimension 𝑑𝑛2 + 1. If in
addition 𝑈n-spcl

red is nonempty, it is regular and equidimensional of dimension 𝑑𝑛2.
Proof. Consider the Galois representation 𝜌𝑥 : 𝐺𝐾 → GL𝑛 (𝐿) with 𝐷𝜌𝑥 = 𝐷 ′𝑥 from Theorem 4.3.10
that is defined over a finite extension L of 𝜅(𝑥). For (a) note that we have 𝐻2(𝐺𝐾 , ad𝜌𝑥 ) = 0 by Lemma
5.1.1, Case I and the definition of special. The Euler characteristic formula of Theorem 3.4.1 now yields

dim 𝑅 = dim𝐿 𝐻
1 (𝐺𝐾 , ad𝜌𝑥 ) = 𝑑𝑛2 + dim𝐿 𝐻

0 (𝐺𝐾 , ad𝜌𝑥 ) = 𝑑𝑛2 + 1.

It follows from Lemma 3.3.5 and Remark 3.3.2 that x is a regular point of 𝑋
univ
𝐷 of dimension 𝑑𝑛2+1−1 =

𝑑𝑛2. Since x lies on U, it is also a regular point of U. To see that U is regular, let 𝑌 ⊂ 𝑈 be the
closed subscheme of singular points. We know that points of dimension at most 1 will be dense in the
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constructible set Y. Since the unique closed point of 𝑋
univ
𝐷 is not in U, points of dimension 1 are dense in

𝑌 ⊂ 𝑈. However, as we just saw, such points are regular and cannot lie in Y. Therefore, Y must be empty.
And again by the density of dimension 1 points in U, it follows that U is regular and equidimensional
of dimension 𝑑𝑛2, proving (a).

For (b), we observe 𝐻2(𝐺𝐾 , ad𝜌𝑥 )∨ = 𝐻0(𝐺𝐾 , ad𝜌𝑥 (1)) = Hom𝐺𝐾 (𝜌𝑥 , 𝜌𝑥 (1)) � 𝐿 using Theorem
3.4.1, and in the last step that 𝜌𝑥 � 𝜌𝑥 (1) and that 𝜌𝑥 is absolutely irreducible. This time, the Euler
characteristic formula provides a presentation

0→ 𝐼 → 𝜅(𝑥) [[𝑋1, . . . , 𝑋𝑑𝑛2+2]] → 𝑅𝔭 → 0,

where the ideal I is generated by at most one element over 𝜅(𝑥) [[𝑋1, . . . , 𝑋𝑑𝑛2+2]]. This proves the claims
on 𝑅𝔭. The remaining assertion follows from the density of dimension 1 points in U and Lemma 3.3.5.

For (c), it follows from the nonspecialness of 𝐷𝑥 and from Corollary 3.4.3 that (𝑅
univ
𝜌𝑥
)red is regular

local of dimension 𝑑𝑛2+1. From Proposition 4.7.6 and Corollary 4.8.7 we deduce 𝑅
univ
𝐷𝑥
⊗𝜅 (𝑥) 𝐿 � 𝑅

univ
𝜌𝑥

,
and the assertion on 𝑅𝔭

red follows. The remaining assertion follows from the density of dimension 1 points
in U and Lemma 3.3.5. �

We also need a similar result in certain reducible cases. It is adapted from [Che11, Lemma 2.2].

Lemma 5.1.7. For 𝑖 = 1, 2, let 𝐷𝑖 : 𝐺𝐾 → F be pseudocharacters over a finite field F, let 𝑥𝑖 ∈ 𝑋
univ
𝐷𝑖

be irreducible nonspecial dimension 1 points and let L be a finite extension of both 𝜅(𝑥𝑖) over which
there exist absolutely irreducible representations 𝜌𝑖 : 𝐺𝐾 → GL𝑛𝑖 (𝐿) with 𝐷𝜌𝑖 = 𝐷𝑥𝑖 ⊗𝜅 (𝑥) 𝐿. Let
𝜌 : 𝐺𝐾 → GL𝑛 (𝐿) be a nontrivial extension of 𝜌2 by 𝜌1. Assume that 𝐷𝑥1 ≠ 𝐷𝑥2 (𝑚) for any
𝑚 ∈ {1, . . . , 𝑝 − 1}. Then the following hold:

(a) The representation 𝜌 exists; it satisfies 𝐿 = End𝐺𝐾 (𝜌); one has𝐷𝜌 = 𝐷𝜌1⊕𝐷𝜌2 as pseudocharacters
into L; the functor D𝜌 : A𝑟𝐿 → 𝑆𝑒𝑡𝑠 is pro-representable.

We write 𝑅univ
𝜌 for the representing universal ring of D𝜌 and 𝜌univ

𝜌 : 𝐺𝐾 → GL𝑛 (𝑅univ
𝜌 ) for a universal

deformation and 𝑋univ
𝜌 for Spec 𝑅univ

𝜌 . Denote by 𝑅 the universal pseudodeformation ring for 𝐷𝜌 to
A𝑟𝐿 , by 𝜑 : 𝑋univ

𝜌 → 𝑋 := Spec𝑅 the map of L-schemes induced by sending 𝜌univ
𝜌 to its associated

pseudocharacter 𝐷𝜌univ
𝜌

, and by d 𝜑 : t𝑋univ
𝜌 ,𝜌 → t𝑋,𝑥 the induced L-linear map on tangent spaces.

(b) Suppose that 𝜌′ ∈ ker d 𝜑 ⊂ t𝑋univ
𝜌 ,𝜌 � D𝜌 (𝐿 [𝜀]), that is, that 𝐷𝜌′ = 𝐷𝜌. Then with respect to a

suitable basis 𝜌′ is upper triangular and is the trivial deformations on the diagonal blocks.
(c) If 𝜁𝑝 ∉ 𝐾 , then 𝑅univ

𝜌 is formally smooth over L of dimension dim𝐿 t𝑋univ
𝜌 ,𝜌 = 𝑑𝑛2 + 1,

dim𝐿ker d𝜑 = 𝑑𝑛1𝑛2 − 1 and dim𝐿 im d𝜑 = 𝑑𝑛2 − 𝑑𝑛1𝑛2 + 2.

(d) If 𝜁𝑝 ∈ 𝐾 , then 𝑅univ
𝜌,red is formally smooth over L of relative dimension ℎ − 1 for ℎ := dim𝐿 t𝑋univ

𝜌 ,𝜌 =

𝑑𝑛2 + 2. Denoting by 𝜑red : (𝑋univ
𝜌 )red → (𝑋)red the morphism on reduced L-schemes associated to

𝜑 and by d 𝜑red : t(𝑋univ
𝜌 )red ,𝜌

→ t(𝑋 )red ,𝑥
the induced map on tangent spaces, there furthermore exists

𝛿 ∈ {0, 1} such that

dim𝐿ker d𝜑red = 𝑑𝑛1𝑛2 − 1 − 𝛿 and dim𝐿 im d𝜑red = 𝑑𝑛2 − 𝑑𝑛1𝑛2 + 2 + 𝛿.

Proof. We begin with (a). The Euler characteristic formula in Theorem 3.4.1 now gives

dim𝐿 Ext1𝐺𝐾
(𝜌𝑥2 , 𝜌𝑥1 ) = dim𝐿 𝐻

1(𝐺𝐾 , 𝜌𝑥1 ⊗ 𝜌∨𝑥2)
= 𝑑𝑛1𝑛2 + dim𝐿 𝐻

0 (𝐺𝐾 , 𝜌𝑥1 ⊗ 𝜌∨𝑥2) + dim𝐿 𝐻
2(𝐺𝐾 , 𝜌𝑥1 ⊗ 𝜌∨𝑥2 ),
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which is strictly positive. Thus, there exists an nonzero element 𝑐 ∈ Ext1𝐺𝐾
(𝜌𝑥2 , 𝜌𝑥1). Setting 𝜌 =(

𝜌𝑥1 𝑐
0 𝜌𝑥2

)
and applying Lemma 3.4.4 and Theorem 3.2.4 completes the proof of (a). We observe for

later, that in fact our assumptions imply that

dim𝐿 𝐻
2(𝐺𝐾 , 𝜌𝑥1 ⊗ 𝜌∨𝑥2 ) = dim𝐿 𝐻

0(𝐺𝐾 , 𝜌
∨
𝑥1 ⊗ 𝜌𝑥2 (1)) = dim𝐿 Hom𝐺𝐾 (𝜌𝑥1 , 𝜌𝑥2 (1)) = 0,

and 𝐻0(𝐺𝐾 , 𝜌𝑥1 ⊗ 𝜌∨𝑥2) = Hom𝐺𝐾 (𝜌𝑥2 , 𝜌𝑥1) = 0, so that dim𝐿 Ext1𝐺𝐾
(𝜌𝑥2 , 𝜌𝑥1) = 𝑑𝑛1𝑛2.

For the proof of (b), we use the canonical identifications (see [Maz97, Proposition, p. 271])

D𝜌 (𝐿 [𝜀]) � t𝑋univ
𝜌 ,𝜌 and P𝑠𝐷𝐷𝜌 (𝐿 [𝜀]) � t𝑋,𝐷𝜌

(29)

to identify ker d𝜑 with the L-subspace of D𝜌 (𝐿 [𝜀]), which consists of the deformations of 𝜌 to 𝐿 [𝜀] that
map under d𝜑 to the trivial pseudodeformation to 𝐿 [𝜀] of the residual pseudocharacter 𝐷𝜌 associated
with 𝜌. Let 𝜌′ be a deformation of 𝜌 whose associated pseudocharacter satisfies 𝐷𝜌′ = 𝐷𝜌. The
linearization of 𝜌′ gives a continuous homomorphism

𝐿 [𝜀] [𝐺𝐾 ] −→
(

Mat𝑛1×𝑛1 (𝐿 [𝜀]) Mat𝑛1×𝑛2 (A12)
Mat𝑛2×𝑛1 (A21) Mat𝑛2×𝑛2 (𝐿 [𝜀])

)
,

which when composed with the determinant gives 𝐷𝜌′ so that by Theorem 4.3.10(b) 𝜌′ factors via
a GMA. By hypothesis, we must have A12 = 𝐿 [𝜀] and A21 ⊂ 𝜀𝐿. Also by hypothesis, the residual
pseudocharacter 𝐷𝜌 is multiplicity free and split so that by Proposition 4.3.9(b) the ideal of total
reducibility A12A21 vanishes, and hence A21 = 0, and 𝜌′ is upper triangular. Let 𝐷1 and 𝐷2 be the
pseudocharacters described by the upper left and lower right diagonal blocks of 𝜌′. then again by
Proposition 4.3.9(b) (and by the nonsplitness of 𝜌) we have 𝐷𝑖 = 𝐷𝜌𝑖 , 𝑖 = 1, 2, and hence by Theorem
4.3.10(a), 𝜌′ is the trivial deformations on the diagonal blocks.

For (c) and (d), we first compute t𝑋univ
𝜌 ,𝜌 = dim𝐿 𝐻

1(𝐺𝐾 , ad𝜌). It follows from Lemma 3.4.4 that
𝐻0 (𝐺𝐾 , ad𝜌) � 𝐿, and now formula Theorem 3.4.1(c) yields

dim𝐿 𝐻
1(𝐺𝐾 , ad𝜌) = 𝑑𝑛2 + 1 + dim𝐿 𝐻

2(𝐺𝐾 , ad𝜌).

By Theorem 3.4.1(b), we have dim𝐿 𝐻
2 (𝐺𝐾 , ad𝜌) = dim𝐿 Hom𝐺𝐾 (𝜌, 𝜌(1)). The claimed expressions

for dim𝐿 t𝑋univ
𝜌 ,𝜌 now follow from Lemma 3.4.4 with 𝜒 = F(1) and our hypotheses. The claim on 𝑅univ

𝜌

in (c) now follows from Theorem 3.2.4. The claim on 𝑅univ
𝜌 in (d) follows from Corollary 3.4.3 provided

that we show that 𝐻0(𝐺𝐾 , ad𝜌) = 0. But under our hypotheses this follows from Corollary 2.3.3.
For the assertions on d𝜑 and d𝜑red in (c) and (d), we first give a formula for dim𝐿 ker d𝜑 in either

case. We consider lifts 𝜌1, 𝜌2 of 𝜌 to 𝐿 [𝜀] whose associated deformation classes satisfy [𝜌1] =

[𝜌2] ∈ ker d 𝜑 ⊂ t𝑋univ
𝜌
� D𝜌 (𝐿 [𝜀]). By assertion, (b) we have 𝜌𝑖 = 𝜌 + 𝜀

(
0 𝑐𝑖
0 0

)
for some cocycle

𝑐𝑖 ∈ 𝑍1 (𝐺𝐾 , 𝜌𝑥1 ⊗ 𝜌∨𝑥2 ). In order to obtain dim𝐿 ker d𝜑, we determine when 𝜌1 is equivalent to 𝜌2. In
this case, there exists a matrix 𝑈 ∈ Mat𝑛×𝑛 (𝐿) such that

𝜌 + 𝜀
(

0 𝑐2
0 0

)
= 𝜌2

= (1 + 𝜀𝑈)𝜌1(1 − 𝜀𝑈)

= (1 + 𝜀𝑈) (𝜌 + 𝜀
(

0 𝑐1
0 0

)
) (1 − 𝜀𝑈)

= 𝜌 + 𝜀(𝑈𝜌 − 𝜌𝑈 +
(

0 𝑐1
0 0

)
).
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If we write 𝑈 =

(
𝑈11 𝑈12
𝑈21 𝑈22

)
with matrices 𝑈𝑖 𝑗 ∈ Mat𝑛𝑖×𝑛 𝑗 (𝐿) for 1 ≤ 𝑖, 𝑗 ≤ 2, then the above equality

is equivalent to(
0 𝑐2 − 𝑐1
0 0

)
=

(
𝑈11𝜌𝑥1 𝑈11𝑐 +𝑈12𝜌𝑥2

𝑈21𝜌𝑥1 𝑈21𝑐 +𝑈22𝜌𝑥2

)
−
(
𝜌𝑥1𝑈11 + 𝑐𝑈21 𝜌𝑥1𝑈12 + 𝑐𝑈22

𝜌𝑥2𝑈21 𝜌𝑥2𝑈22

)
.

Because dim𝐿 𝐻
0(𝐺𝐾 , 𝜌𝑥𝑖 ⊗ 𝜌∨𝑥 𝑗

) = 0 and dim𝐿 𝐻
0 (𝐺𝐾 , 𝜌𝑥𝑖 ⊗ 𝜌∨𝑥𝑖 ) = 1 for 1 ≤ 𝑖, 𝑗 ≤ 2 and 𝑖 ≠ 𝑗 , we

deduce that 𝑈21 = 0 and that 𝑈11 and 𝑈22 are scalar matrices. Finally, the map

−𝜌𝑥1𝑈12 +𝑈12𝜌𝑥2 ∈ 𝐵1(𝐺𝐾 , 𝜌𝑥1 ⊗ 𝜌∨𝑥2)

is a coboundary. Therefore, 𝑐2 = (𝑈11 +𝑈22)𝑐 + 𝑐1 ∈ 𝐻1(𝐺𝐾 , 𝜌𝑥1 ⊗ 𝜌∨𝑥2) and

dim𝐿 ker d𝜑 = dim𝐿 Ext1𝐺𝐾
(𝜌𝑥2 , 𝜌𝑥1 ) − 1= dim𝐿 𝐻

1(𝐺𝐾 , 𝜌𝑥1 ⊗ 𝜌∨𝑥2) − 1 = 𝑑𝑛1𝑛2 − 1, (30)

by the computation for (a). Using dim𝑉 = dim ker𝜓 + dim im𝜓 for a vector space V and a linear map
𝜓 with domain V, and the already computed dimension of t𝑋univ

𝜌 ,𝜌, the proof of (c) is complete.
For (d), consider the following diagram with left exact rows and where the middle and right vertical

arrows are injective (by definition of t):

0 �� ker 𝜑 �� t𝑋univ
𝜌 ,𝜌

d 𝜑 �� t𝑋,𝐷𝜌

0 �� ker 𝜑red
��

��

t(𝑋univ
𝜌 )red ,𝜌

d 𝜑red ��
��

��

t(𝑋 )red ,𝐷𝜌
.

��

��

By a simple diagram, chase one deduces ker 𝜑red = ker 𝜑 ∩ t(𝑋univ
𝜌 )red ,𝜌

⊂ t𝑋univ
𝜌 ,𝜌. Next, consider the

diagram

0 �� ker d 𝜑 �� t𝑋univ
𝜌 ,𝜌

�� im d 𝜑 �� 0

0 �� ker d 𝜑red
��

��

𝛼

��

t(𝑋univ
𝜌 )red ,𝜌

��
��

𝛽

��

im d 𝜑red ��

𝛾

��

0

with exact rows and where the left and middle vertical arrows are injective. Because of ker 𝜑red = ker 𝜑∩
t(𝑋univ

𝜌 )red ,𝜌
the map 𝛾 is injective, and we deduce from the 9-Lemma that dim coker𝛼 + dim coker 𝛾 =

dim coker 𝛽. From the tangent space computations for (d) made so far, we deduce dim coker 𝛽 = 1.
Letting 𝛿 := dim coker𝛼, we must have 0 ≤ 𝛿 ≤ 1 and dim coker 𝛾 = 1− 𝛿. Arguing as for (c) and using
dim𝐿 t𝑋univ

𝜌 ,red,𝜌 = 𝑑𝑛2 + 1, the proof of (d) is complete, as well. �

5.2. Zariski density of the irreducible locus

The aim of this subsection is to formulate an inductive procedure to prove Zariski density of the
irreducible locus the special fibers of universal pseudodeformation spaces, and to establish some key
steps. Our procedure is an adaption of an analogous result of Chenevier for the generic fiber; see [Che11,
Théorème 2.1]. We shall prove the following main result.

Theorem 5.2.1. Let 𝑛 ≥ 2 be an integer. Suppose that for all pseudocharacters 𝐷 ′ : 𝐺𝐾 → F on 𝐺𝐾 of
dimension 𝑛′ < 𝑛 the following hold:

(a) 𝑋
univ
𝐷
′ is equidimensional of dimension [𝐾 : Q𝑝] (𝑛′)2 + 1,

(b) (𝑋
univ
𝐷
′ )n-spcl is Zariski dense in 𝑋

univ
𝐷
′ .
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Then for all n-dimensional pseudocharacters 𝐷 : 𝐺𝐾 → F on 𝐺𝐾 the subspace (𝑋
univ
𝐷 )irr ⊂ 𝑋

univ
𝐷 is

Zariski dense.
Let us begin with some preparations. Let 𝑛1, 𝑛2 ≥ 1 be integers such that 𝑛 = 𝑛1+𝑛2. Let𝐷𝑖 : 𝐺𝐾 → F

be residual pseudocharacters on𝐺𝐾 of dimension 𝑛𝑖 . Addition (𝐷1, 𝐷2) ↦→ 𝐷1⊕𝐷2 of pseudocharacters
yields a morphism

𝑋
univ
𝐷1 ×̂F𝑋

univ
𝐷2 −→ 𝑋

univ
𝐷 (31)

for 𝐷 := 𝐷1 ⊕ 𝐷2. If 𝐷1 ≠ 𝐷2, we define 𝑋
univ
𝐷1 ,𝐷2 := 𝑋

univ
𝐷1 ×̂F𝑋

univ
𝐷2 and write 𝜄𝐷1 ,𝐷2

for the above

morphism. In the other case we let Z/2 act on 𝑋
univ
𝐷1 ×̂F𝑋

univ
𝐷1 by exchanging the factors; it preserves the

diagonal, which we denote by Δuniv
𝐷1

, and one has an induced morphism

𝜄𝐷1 ,𝐷1
: 𝑋

univ
𝐷1 ,𝐷1 := (𝑋

univ
𝐷1 ×̂F𝑋

univ
𝐷1 )/(Z/2) −→ 𝑋

univ
𝐷 (32)

Note that away from the Δuniv
𝐷1

, the morphism 𝑋
univ
𝐷1 ×̂F𝑋

univ
𝐷1 → 𝑋

univ
𝐷1 ,𝐷1 is an étale Galois cover with

monodromy group Z/2.

Lemma 5.2.2 [Che11, Lemme 1.1.]. For 𝑖 = 1, 2, let 𝑥𝑖 ∈ 𝑋
univ
𝐷𝑖

be irreducible points of dimension 1,
and let L be a finite common extension of the residue fields 𝜅(𝑥𝑖). If 𝐷1 = 𝐷2, assume also that 𝑥1 ≠ 𝑥2.
Let 𝑥 ∈ 𝑋

univ
𝐷 be the point of dimension 1 with 𝐷𝑥2 ⊗𝜅 (𝑥1) 𝐿. Let 𝑥 : Spec𝜅(𝑥) → 𝑋

univ
𝐷 be a geometric

point over x.
Then there is an étale neighborhood (𝑈, 𝑢, 𝜑𝑈 : 𝑈 → 𝑋

univ
𝐷 ) of 𝑥 such that the base change

𝑈 ′ := 𝑈 ×
𝜑𝑈 ,𝑋

univ
𝐷 , 𝜄𝐷1 ,𝐷2

𝑋
univ
𝐷1 ,𝐷2

𝜄𝑈−→ 𝑈

of 𝜄𝐷1 ,𝐷2
along 𝜑𝑈 is a closed immersion with image 𝑈red = {𝑢 ∈ 𝑈 | 𝑢 is reducible}. Moreover, if

𝐷1 = 𝐷2, then we may choose U such that 𝜑𝑈 (𝑈) is disjoint from 𝜄𝐷1 ,𝐷1
(Δuniv

𝐷1
).

Proof. As recalled above Definition 4.7.8, the universal pseudodeformation 𝐷univ
𝐷

factors via the uni-
versal Cayley–Hamilton pseudodeformation and CH-representation

𝑅
univ
𝐷 [[𝐺𝐾 ]]

𝜌CH
𝐷 �� 𝑆

CH-univ
𝐷

𝐷CH-univ
𝐷 �� 𝑅

univ
𝐷 .

Consider the strictly local ring Osh
𝑥

:= colim(𝑉 ,𝑣)O(𝑉) for O(𝑉) := O
𝑋

univ
𝐷

(𝑉), where (𝑉, 𝑣) runs over

all connected étale neighborhoods of 𝑥 in 𝑋
univ
𝐷 [Sta18, Lemma 04HX]. Since by Proposition 4.1.22 the

formation of the Cayley–Hamilton quotient 𝑆
CH-univ
𝐷 commutes with arbitrary base change, for any étale

neighborhood (𝑉, 𝑣) of 𝑥 there is an isomorphism

O(𝑉) [[𝐺𝐾 ]]/CH(𝐷univ
𝐷
⊗
𝑅

univ
𝐷

O(𝑉)) ∼−→ 𝑆
CH-univ
𝐷 ⊗

𝑅
univ
𝐷

O(𝑉) =: 𝑆𝑉 .

From Theorem 4.3.10, it follows that 𝑆𝑥 := colim(𝑉 ,𝑣)𝑆𝑉 is a GMA of type (𝑛1, 𝑛2). In particular,
there exists idempotents 𝑒1, 𝑒2 ∈ 𝑆𝑥 with 𝑒1 + 𝑒2 = 1 and for 𝑖 = 1, 2 an isomorphism 𝜓𝑥,𝑖 : 𝑒𝑖𝑆𝑥𝑒𝑖 →
Mat𝑛𝑖×𝑛𝑖 (Osh

𝑥
). Denote by E𝑥 := (𝑒𝑖 , 𝜓𝑥,𝑖)𝑖=1,2, then also the induced pseudocharacter to Osh

𝑥
factors via

the natural Cayley–Hamilton pseudocharacter 𝐷𝑆𝑥 ,E𝑥
from Proposition 4.3.5.

By Proposition 4.7.11, the ring 𝑆
CH-univ
𝐷 is module-finite as an 𝑅univ

𝐷 -algebra and Noetherian. Note also
that we constructed 𝑆𝑠 and Osh

𝑥
as direct limits over étale neighborhoods. Using spreading out principles
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from [Gro66, §8.5], we can thus find a connected affine étale neighborhood (𝑢,𝑈, 𝜑 : 𝑈 → 𝑋
univ
𝐷 ) of 𝑥

such that the 𝑒𝑖 can be defined 𝑒1 + 𝑒2 = 1, and such that one has isomorphism

𝜓𝑈,𝑖 : 𝑒𝑖𝑆𝑈 𝑒𝑖 → Mat𝑛𝑖×𝑛𝑖 (O(𝑈)),

whose base change underO(𝑈) → Osh
𝑥

is𝜓𝑥,𝑖 . Hence, 𝑆𝑈 together with E𝑈 := (𝑒𝑖 , 𝜓𝑈,𝑖)𝑖=1,2 is a GMA.
By choosing U sufficiently ‘small’, we may also assume that the pseudocharacter 𝐷𝑈 : O(𝑈) [𝐺] →
O(𝑈) induced from 𝐷univ

𝐷
factors via the induced CH-representation 𝐺 → (𝑆𝑈 )× composed with the

natural Cayley–Hamilton pseudocharacter 𝐷𝑆𝑈 ,E𝑈
.

Let us write

𝑆𝑈 �
(

Mat𝑛1×𝑛1 (O(𝑈)) Mat𝑛1×𝑛2 (A12)
Mat𝑛2×𝑛1 (A21) Mat𝑛2×𝑛2 (O(𝑈))

)
.

with finitely generated O(𝑈)-modules A12 and A21 together with the structure of a GMA described in
Lemma 4.3.3. Let 𝐼 = A12A21 +A21A12 = A12A21 be the ideal of total reducibility. From Proposition
4.3.9(b), we deduce that there exist unique pseudocharacters 𝐷𝑖 : 𝑒𝑖𝑆𝑈 𝑒𝑖 → O(𝑈)/𝐼 for 𝑖 = 1, 2 such
that

(𝐷𝑈 mod 𝐼) = 𝐷1⊕𝐷2.

Denote by 𝑍 := Spec(O(𝑈)/𝐼) the locus of total reducibility, by 𝑓 : 𝑍 → 𝑈 the induced closed
immersion and by 𝑔 : 𝑍 → 𝑋

univ
𝐷1 ,𝐷2 the morphism corresponding to the O(𝑍)-valued pseudocharacters

(𝐷1, 𝐷2). Then the morphism 𝜑𝑈 ◦ 𝑓 corresponds to the O(𝑈)/𝐼-valued pseudocharacter 𝐷𝑈 mod 𝐼
and there is a commutative diagram

𝑍

𝑓

��

𝑔 �� 𝑋
univ
𝐷1 ,𝐷2

𝜄𝐷1 ,𝐷2
��

𝑈
𝜑𝑈 �� 𝑋

univ
𝐷

(33)

since 𝜑𝑈 ◦ 𝑓 and 𝜄𝐷1 ,𝐷2
◦𝑔 both correspond to 𝐷𝑈 mod 𝐼 = 𝐷1⊕𝐷2. We need to show that this diagram

is Cartesian; then 𝜄𝑈 = 𝑓 is a closed immersion, by construction, that is, by [Sta18, Definition 01JP]
given any connected affine scheme W together with morphisms 𝑓 ′ : 𝑊 → 𝑈 and 𝑔′ : 𝑊 → 𝑋

univ
𝐷1 ,𝐷2 such

that in the following diagram the solid square commutes

𝑊

𝑔′

���
����

����
����

����
�

ℎ
��



𝑓 ′

���
��

��
��

��
��

��
��

��
��

𝑍

𝑓

��

𝑔
�� 𝑋

univ
𝐷1 ,𝐷2

𝜄𝐷1 ,𝐷2
��

𝑈
𝜑𝑈 �� 𝑋

univ
𝐷 ,

we need to check that there exists a unique dashed arrow h making the diagram commute.
The morphism 𝜑𝑈 ◦ 𝑓 ′ = 𝜄𝐷1 ,𝐷2

◦𝑔′ defines anO(𝑊)-valued pseudocharacter 𝐷 ′𝑊 , and the morphism
𝑔′ a pair (𝐷 ′1, 𝐷

′
2) of O(𝑊)-valued pseudocharacters of dimension 𝑛 𝑗 for 𝑗 = 1, 2. By Lemma 4.3.4,

the base change 𝑆𝑊 of 𝑆𝑈 along 𝑓 ′ is a generalized matrix algebra over O(𝑊) of type (𝑛1, 𝑛2). The
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definition of 𝜄𝐷1 ,𝐷2
implies that 𝐷 ′𝑊 = 𝐷 ′1⊕𝐷

′
2, and from Proposition 4.3.9(b) we conclude that the ideal

𝐼 ′ := 𝐼 ⊗O (𝑈 ) , ( 𝑓 ′)∗ O(𝑊) = A12A21 ⊗O (𝑈 ) , ( 𝑓 ′)∗ O(𝑊)

of total reducibility of 𝑆𝑊 vanishes. Hence, there exists a unique morphism ℎ : 𝑊 → 𝑍 such that ( 𝑓 ′)∗

factors as O(𝑈) 𝑓 ∗

→ O(𝑍) ℎ∗→ O(𝑊). Note the 𝑔∗ ◦ ℎ∗ determines a pair (𝐷 ′′1 , 𝐷
′′
2 ) of pseudocharacters

𝐺 → O(𝑊) on G. From Proposition 4.3.9(b), we deduce {𝐷 ′1, 𝐷
′
2} = {𝐷

′′
1 , 𝐷

′′
2 }. The universal property

of 𝑋
univ
𝐷1 ×̂𝑋

univ
𝐷2 , and our definition of (𝜄𝐷1 ,𝐷2

, 𝑋
univ
𝐷1 ,𝐷2) implies that (ℎ′)∗ = 𝑔∗ ◦ ℎ∗.

Next, we prove 𝑍 = 𝑈red under the closed immersion f. By the definition of 𝜄𝐷1 ,𝐷2
the inclusion ⊆

is obvious. Let therefore y be any point of 𝑈red. To see that y lies on 𝑓 (𝑍), let 𝐷𝑦 be the reducible
pseudocharacter corresponding 𝑅

univ
𝐷 → O(𝑈) → 𝜅(𝑦). By Lemma 4.3.4, the base change 𝑆𝑦 :=

𝑆𝑈 ⊗O (𝑈 ) 𝜅(𝑦)alg of 𝑆𝑈 is also a generalized matrix algebra of type (𝑛1, 𝑛2). Since 𝐷𝑦 is reducible,
there exists pseudocharacters 𝐷1, 𝐷2 : 𝐺𝐾 → 𝜅(𝑦)alg on 𝐺𝐾 such that 𝐷𝑦 = 𝐷1⊕𝐷2. By again
applying Proposition 4.3.9, we find that the ideal of total reducibility of the generalized matrix algebra
𝑆𝑦 vanishes. Hence, O(𝑈) → 𝜅(𝑦) factors via O(𝑍) as was to be shown.

For the final assertion, suppose from now on that 𝐷1 = 𝐷2 so that 𝑚 := 𝑛1 = 𝑛2. Consider the maps

Λ 𝑗
𝑖 : 𝐺 −→ 𝑆𝑈

𝜓𝑈,𝑖−→ EndO (𝑈 ) (O(𝑈)𝑚)
∧ 𝑗

−→ EndO (𝑈 ) (O(𝑈) (
𝑚
𝑗 )) tr−→ O(𝑈)

for 𝑖 = 1, 2 and 𝑗 = 1, . . . , 𝑚, where
∧ 𝑗 denotes the exterior power map on endomorphisms. For every

𝑔 ∈ 𝐺, the vanishing locus of Λ 𝑗
1 (𝑔) − Λ 𝑗

2 (𝑔) ∈ O(𝑈) is a closed subscheme 𝑌𝑔 of U, and hence the
intersection 𝑌 :=

⋂
𝑔∈𝐺 𝑌𝑔 is closed in U. Since 𝑥1 ≠ 𝑥2, we have (𝑥1, 𝑥2) ∉ 𝜑(𝑌 ), and thus 𝑈 ′ = 𝑈\𝑌

is an étale neighborhood of 𝑥 as required for the last assertion. �

Proof (First proof of Theorem 5.2.1). We suppose to the contrary that there exists a nonempty open
affine 𝑉 ⊂ 𝑋

univ
𝐷 such that (𝑋

univ
𝐷 )irr ∩ 𝑉 = ∅. Since 𝑉 ≠ SpecF and the points of dimension 1 are

very dense in 𝑋
univ
𝐷 by Lemma A.1.8, there exists a point 𝑥 ∈ 𝑉 of dimension 1 that defines a reducible

pseudodeformation
𝐷𝑥 : 𝐺𝐾 −→ 𝜅(𝑥)

of 𝐷. By Corollary 4.8.4, there exist a finite extension 𝐿 ′/𝜅(𝑥) with finite residue field F′ ⊃ F, residual
pseudocharacter 𝐷𝑖 : 𝐺𝐾 → F′ on 𝐺𝐾 of dimension 𝑛𝑖 for some 𝑛𝑖 ∈ N0 with 𝑛1 + 𝑛2 = 𝑛, and
pseudocharacters 𝐷1, 𝐷2 : 𝐺𝐾 → O𝐿′ of 𝐺𝐾 corresponding to points (𝑥1, 𝑥2) ∈ 𝑋

univ
𝐷1 ×̂𝑋

univ
𝐷2 such that

𝐷𝑥 ⊗𝜅 (𝑥) 𝐿 ′ = (𝐷1 ⊕ 𝐷2) ⊗O𝐿′ 𝐿
′. By Lemma 5.2.6, we may and will assume F = F′.

The inverse image of V under 𝑋
univ
𝐷1 ×̂𝑋

univ
𝐷2 → 𝑋

univ
𝐷 , (𝐷1, 𝐷2) ↦→ 𝐷1 + 𝐷2 is an open neighborhood

of (𝑥1, 𝑥2). By hypothesis (b) of Theorem 5.2.1, we may within this neighborhood replace the initially
chosen pair by (𝑥1, 𝑥2) such that both are irreducible and nonspecial, and by Lemma A.1.7 we may
further assume that 𝐷1 is not isomorphic to any of the finitely many 𝐷2 (𝑚), 𝑚 ∈ {1, . . . , 𝑝 − 1}, since
dim 𝑋

univ
𝐷𝑖
≥ 2. Let 𝑈𝑖 := (𝑋

univ
𝐷𝑖
)n-spcl. Then we observe that by Lemma 5.1.6 the schemes (𝑈𝑖)red are

regular, and if 𝜁𝑝 ∉ 𝐾 , then 𝑈𝑖 = (𝑈𝑖)red.
Let 𝑥 be a geometric point above x. By Lemma 5.2.2, there exists an étale neighborhood

(𝑈, �̄�, 𝜑𝑈 : 𝑈 → 𝑋
univ
𝐷 ) of 𝑥 such that the pullback of 𝜄𝐷1 ,𝐷2

along 𝜑𝑈

𝑊 := 𝑈 ×
𝜑𝑈 ,𝑋

univ
𝐷 , 𝜄𝐷1 ,𝐷2

𝑋
univ
𝐷1 ,𝐷2 −→𝑈

is a closed immersion with image 𝑈red. We may replace U by 𝜑−1
𝑈 (𝑉), which is nonempty since 𝑥 ∈ 𝑉 ,

and is étale over V, and we may shrink W accordingly. By further replacing U by an open subset (and
accordingly W), we can assume that U is connected and affine. Since 𝑊 → 𝑈 is a closed immersion,
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the scheme W is affine. But we also have that 𝑊 → 𝑈 is surjective as a map of topological spaces
since all points of V are reducible. Hence, the nil-reduction of 𝑊 → 𝑈 is an isomorphism of schemes
𝑊red → 𝑈red, and as a map of topological spaces 𝑊 → 𝑈 is a homeomorphism. Since the base change
of étale morphisms is étale, so is the map 𝑊 → 𝑋

univ
𝐷1 ,𝐷2 that is the base change of 𝜑𝑈 under 𝜄𝐷1 ,𝐷2

. Let

𝑈𝑖 be the preimage of 𝑈𝑖 under the i-th projection 𝑋
univ
𝐷1 ,𝐷2 → 𝑋

univ
𝐷𝑖

. We shrink W (and hence U) to a
connected affine open so that the image of W in 𝑋

univ
𝐷1 ,𝐷2 lies in𝑈1 ∩𝑈2.7 We display the situation in the

following diagram:

𝑈1 ∩𝑈2
� � �� 𝑋

univ
𝐷1 ,𝐷2

𝜄𝐷1 ,𝐷2 �� 𝑋
univ
𝐷 𝑉�

���

𝑊

����������������
��

��

𝑈

𝜑𝑈

���������������

Note also that 𝜑𝑈 (𝑈) intersects trivially with 𝜄𝐷1 ,𝐷1
(Δuniv

𝐷1
) if 𝐷1 = 𝐷2. Hence, in all cases, the

morphism 𝑋
univ
𝐷1 ×̂F𝑋

univ
𝐷2 → 𝑋

univ
𝐷1 ,𝐷2 is an étale Galois cover above 𝑈1 ∩𝑈2 with group Z/2 or trivial

group.
Let 𝑤 ∈ 𝑊 be the point corresponding to 𝑢 ∈ 𝑈 under the homeomorphism 𝑊 → 𝑈. We complete

at w and its images and pass to nil reductions. This gives

Ô𝑈1∩𝑈2 , (𝑥1 ,𝑥2) ,red
𝛼 �� Ô𝑊 ,𝑤,red

� �� Ô𝑈,𝑢,red Ô𝑉 ,𝑥,red.
𝛽��

By Lemma A.1.14, the maps 𝛼 and 𝛽 are finite étale. The completion Ô𝑈1∩𝑈2 , (𝑥1 ,𝑥2) ,red can be compared
with the deformation ring 𝑅univ

𝐿, (𝜌1 ,𝜌2) ; using Proposition 4.8.11, it follows that the ring Ô𝑈1∩𝑈2 , (𝑥1 ,𝑥2) ,red
is formally smooth over L of dimension 𝑑 (𝑛2

1 + 𝑛
2
2) + 1, because by Lemma 5.1.6 and by hypothesis

Theorem 5.2.1(a) the rings 𝑅univ
𝜌1 ,red are formally smooth over L of dimension 𝑑𝑛2

𝑖 + 1. Hence, by Lemma
A.1.14 all local rings in the above diagram will be formally smooth over L of dimension 𝑑 (𝑛2

1 + 𝑛
2
2) + 1.

Let now 𝜌 : 𝐺𝐾 → GL𝑛 (𝐿) be a nontrivial extension of 𝜌2 by 𝜌1 for 𝑛 = 𝑛1 + 𝑛2 as constructed
in Lemma 5.1.7 (a). It possesses a universal deformation ring 𝑅univ

𝜌 for deformation to A𝑟𝐿 , because
𝐿 = 𝐻0(𝐺𝐾 , ad𝜌). Let also 𝑅 be the universal pseudodeformation ring for 𝐷𝜌, and write 𝜑 for the
natural morphism between associated space:

𝜑 : 𝑋univ
𝜌 := Spec 𝑅univ

𝜌 −→𝑋 := Spec 𝑅.

The relation to the above is given by the following isomorphism obtained by combining Corollary 4.8.8
and Lemma 3.3.5

𝑅 = Ô𝑉 ,𝑥 [[𝑇]] . (34)

We now consider the map d 𝜑 : t𝑋univ
𝜌 ,𝜌 → t𝑋,𝑥 induced from 𝜑 on tangent spaces at 𝜌 and 𝐷𝜌,

respectively, or rather the induced map on nil-reductions

d 𝜑red : t𝑋univ
𝜌 ,red, 𝜌 → t𝑋red ,𝑥

.

By Lemma 5.1.7 (c) and (d) we have 𝛿 ∈ {0, 1} (and 𝛿 = 0 if 𝜁𝑝 ∉ 𝐾) such that

𝑑𝑛2 − 𝑑𝑛1𝑛2 + 2 + 𝛿 = dim𝐿 I𝑚(d𝜑red )

7The intersection𝑈1 ∩𝑈2 is strictly bigger than𝑈1×̂𝑈2. If for instance 𝑋𝑖 = Spec 𝐿 [ [𝑇𝑖 ] ], 𝑖 = 1, 2 and𝑈𝑖 = Spec 𝐿 ( (𝑇𝑖)) .
Then𝑈1 ∩𝑈2 = Spec 𝐿 [ [𝑇1, 𝑇2 ] ] [ 1

𝑇1𝑇2
] contains all but 3 points of Spec 𝐿 [ [𝑇1, 𝑇2 ] ].
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From (34) and the dimension found for Ô𝑉 ,𝑥 , we have dim t𝑋red ,𝑥
= 1 + 𝑑 (𝑛2

1 + 𝑛
2
2). This gives the

inequality

𝑑𝑛2 − 𝑑𝑛1𝑛2 + 2 + 𝛿 ≤ 𝑑 (𝑛2
1 + 𝑛

2
2) + 2

Using 𝑛 = 𝑛1 + 𝑛2, we deduce 𝑑𝑛1𝑛2 + 𝛿 ≤ 0, which is absurd since both 𝑛𝑖 > 0. �

5.3. Alternative proof of Theorem 5.2.1

Following a suggestion of the referee, we now present a second proof of Theorem 5.2.1. It is technically
easier than the proof given above, and might be of independent interest. The approach makes no
assertion on the geometry of 𝑋

univ
𝐷 near a reducible point x as in Lemma 5.2.2 but focuses directly on

the completed deformation ring at such an x and a dimension estimate.
Let R be a Noetherian F-algebra, and let A be an associative (possible noncommutative) unital R-

algebra, which is finitely generated as an R-module. For 𝑥 ∈ Spec 𝑅, write 𝐴𝑥 := 𝐴 ⊗𝑅 𝜅(𝑥), where
𝜅(𝑥) is the residue field of x; that is, 𝐴𝑥 is the fiber at x and not a localization. Let

𝑈 = {𝑥 ∈ Spec𝑅 : 𝐴𝑥 ⊗𝜅 (𝑥) 𝐴op
𝑥 → End𝜅 (𝑥) (𝐴𝑥) is an isomorphism}

be the Azumaya locus of A in Spec 𝑅.

Lemma 5.3.1. The Azumaya locus U is a constructible subset of Spec 𝑅.

Proof. By [Sta18, Lemma 051Z] and Noetherian induction, we can find a flattening stratification of A
as an R-module, that is, a finite increasing chain of open subsets 𝑈0 ⊂ . . . ⊂ 𝑈𝑛 = Spec 𝑅 such that if
𝑅𝑖 is the reduced quotient of R with Spec 𝑅𝑖 = Spec 𝑅\𝑈𝑖 , then𝑈𝑖+1\𝑈𝑖 = Spec (𝑅𝑖) 𝑓𝑖 for some 𝑓𝑖 ∈ 𝑅𝑖
and 𝐴 ⊗𝑅 (𝑅𝑖) 𝑓1 is finite flat over Spec (𝑅𝑖) 𝑓𝑖 . Hence, to prove the assertion on U, we may assume that
A is finite flat over R.

Now, let C and K be R-modules fitting in the exact sequence

0−→𝐾 −→ 𝐴 ⊗𝑅 𝐴op −→End𝑅 (𝐴) −→𝐶 → 0. (35)

Because C and K are finitely generated modules over the Noetherian ring R, their support is closed, and
we deduce that 𝑈 = Spec 𝑅\(S𝑢𝑝𝑝𝐶 ∪ S𝑢𝑝𝑝𝐾) is open in Spec 𝑅 and hence constructible. �

Lemma 5.3.2. Let x be in Spec 𝑅, let 𝑅 be the completion of 𝜅(𝑥) ⊗F 𝑅 at the kernel of the natural map
𝜅(𝑥) ⊗F 𝑅 → 𝜅(𝑥) and let 𝐴 = 𝐴 ⊗𝑅 𝑅. Let 𝑦 ∈ Spec 𝑅 be such that 𝐴𝑦 is an Azumaya algebra. Then
U is nonempty and x lies in the closure of U in Spec 𝑅.

Proof. Let z be the image of y under Spec 𝑅 → Spec 𝑅, and note that we have induced maps
𝜄 : 𝑅/𝔭𝑧 → 𝑅/𝔭𝑦 and 𝜅(𝑧) → 𝜅(𝑦) for 𝔭𝑧 ⊂ 𝑅 and 𝔭𝑦 ⊂ 𝑅 the primes corresponding to z and y,
respectively. Since 𝐴𝑦 = 𝐴𝑧 ⊗𝜅 (𝑧) 𝜅(𝑦), and 𝜅(𝑧) → 𝜅(𝑦) is faithfully flat, the diagram (35) with 𝐴𝑧
and 𝜅(𝑧) in place of A and R, respectively, implies 𝑧 ∈ 𝑈 so that U is nonempty.

Moreover, by our definitions, the residue map 𝑅 → 𝑅 → 𝜅(𝑥) factors via 𝑅/𝔭𝑧
𝜄→ 𝑅/𝔭𝑦 → 𝜅(𝑥)

with 𝜄 injective. Hence, 𝑥 ∈ Spec 𝑅/𝔭𝑧 = {𝑧} ⊂ Spec 𝑅 so that x lies in the closure of {𝑧} and hence in
the closure of 𝑈 ⊃ {𝑧}. �

Let now 𝑅 := 𝑅
univ
𝐷 be the special fiber of the universal deformation ring for 𝐷 so that R is complete

Noetherian local with finite residue field. Let 𝐴 = 𝑆
CH-univ
𝐷 be the corresponding Cayley–Hamilton

R-algebra so that by Proposition 4.7.11 the ring A is finitely generated as an R-module and hence
Noetherian. In this setting, U is precisely the absolutely irreducible locus of 𝑋

univ
𝐷 as explained in

[Che14, Corollary 2.23]; see also Proposition 4.7.18.
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Proposition 5.3.3. In the setting just described, the closure of U in Spec 𝑅 contains all points 𝑥 ∈ Spec 𝑅
of dimension 1 such that 𝐷𝑥 = 𝐷1 + 𝐷2, where the 𝐷𝑖 are nonspecial pseudocharacters of absolutely
irreducible representations 𝜌𝑖 , 𝑖 = 1, 2 such that 𝜌1 � 𝜌2 ( 𝑗) for 𝑗 ∈ {0,±1}.

Proof. In view of Lemma 5.3.2, we only have to explain how to find y. By Corollary 4.8.8 the ring 𝑅 can
be identified with the universal pseudodeformation ring of 𝐷𝑥 , and we need to show that the reducible
locus in Spec 𝑅 is not the whole of Spec 𝑅.

To show this, we compare 𝑅 with the universal deformation ring 𝑅
univ
𝜌 , where 𝜌 is a nonsplit

extension of 𝜌2 by 𝜌1. The existence of 𝜌 and of 𝑅univ
𝜌 was established in Lemma 5.1.7(a). Moreover,

by Lemma 5.1.7(c) and (d), respectively, the ring 𝑅′ := (𝑅univ
𝜌 )red is formally smooth over 𝜅(𝑥) of

dimension 𝑑𝑛2 + 1. The map that sends a representation to its associated pseudocharacter induces a map
Spec 𝑅univ

𝜌 → Spec𝑅, and it will suffice to show that the generic point of 𝑅′ = (𝑅univ
𝜌 )red gives rise to an

absolutely irreducible representation of 𝐺𝐾 . Let 𝔪′ ⊂ 𝑅′ be its maximal ideal.
Denote by 𝜌′ : 𝐺𝐾 → GL𝑛 (𝑅′) a representation corresponding to 𝑅′. Because 𝐷𝜌 is multiplicity

free, by Theorem 4.3.10(b) the linearization of 𝜌′ factors via a GMA of type (𝑛1, 𝑛2) inside Mat𝑛×𝑛 (𝑅′)
and thus gives a continuous surjective homomorphism

𝑅′[𝐺𝐾 ] −→
(

Mat𝑛1×𝑛1 (𝑅′) Mat𝑛1×𝑛2 (𝐽 ′)
Mat𝑛2×𝑛1 (𝐼 ′) Mat𝑛2×𝑛2 (𝑅′)

)
for suitable ideals 𝐼 ′, 𝐽 ′ of 𝑅′. The reduction modulo 𝔪′ of the right-hand side arises from the nonsplit
extension 𝜌 of 𝜌2 by 𝜌1 so that we must have 𝐽 ′ = 𝑅′, and 𝐼 ′ ⊂ 𝔪′.

If 𝐼 ′ is nonzero, then after passing from the regular local ring 𝑅′ to its fraction field, say 𝐸 ′, we obtain
Mat𝑛×𝑛 (𝐸 ′) as the image of the linearization map, and by the theorem of Burnside the corresponding
representation is absolutely irreducible. If on the other hand 𝐼 ′ = 0, then 𝜌′ is reducible and we apply
Proposition 3.4.6 and the discussion preceding it. It follows that dim(𝑅univ

𝜌1⊂𝜌)red = 𝑑 (𝑛2 − 𝑛1𝑛2) + 1
and that the induced map of reduced rings 𝑅′ → (𝑅univ

𝜌1⊂𝜌)red is an isomorphism. This contradicts
dim 𝑅′ = 𝑑𝑛2 + 1 found above, and so the case 𝐼 ′ = 0 cannot occur. �

Proof (Second proof of Theorem 5.2.1). Let 𝑈 = (𝑋
univ
𝐷 )irr be the open locus of irreducible points on

𝑋
univ
𝐷 . We need to show that the closure of U is the whole space. By the reduction steps given in the

first two paragraphs of the first proof of Theorem 5.2.1 on page 68, it suffices to show that all points
𝑥 ∈ 𝑋

univ
𝐷 of dimension 1 such that 𝐷𝑥 = 𝐷1 + 𝐷2 with 𝐷𝑖 irreducible nonspecial and 𝐷2 ≠ 𝐷1 ( 𝑗) for

𝑗 ∈ {0,±1} lie in the closure of U. This follows from Proposition 5.3.3. �

5.4. A dimension bound for the special locus

As before, we denote by 𝐷 : 𝐺𝐾 → F a residual pseudocharacter on 𝐺𝐾 , and we let n be its di-
mension. Theorem 5.2.1 of the previous subsection provided part of an inductive procedure to prove
the equidimensionality of 𝑋

univ
𝐾,𝐷 for the dimension [𝐾 : Q𝑝] · 𝑛2 + 1. It remains to be proved that

(𝑋
univ
𝐾,𝐷)n-spcl ⊂ (𝑋

univ
𝐾,𝐷)irr is Zariski dense. In this subsection, we shall prove the following result.

Theorem 5.4.1. Let 𝑛 ≥ 2 be an integer. Suppose that for all pseudocharacters 𝐷 ′ : 𝐺𝐾 ′ → F on 𝐺𝐾

of dimension 𝑛′ < 𝑛 with 𝐾 ′ a p-adic field the Krull dimension of the space 𝑋
univ
𝐾 ′,𝐷

′ is bounded by
[𝐾 ′ : Q𝑝] (𝑛′)2 + 1, Then for all n-dimensional pseudocharacters 𝐷 : 𝐺𝐾 → F on 𝐺𝐾 one has:

(a) The Zariski closure of (𝑋
univ
𝐾,𝐷)spcl has dimension at most 1

2 [𝐾 : Q𝑝]𝑛2 + 1.
(b) (𝑋

univ
𝐾,𝐷)n-spcl ⊂ (𝑋

univ
𝐾,𝐷)irr is Zariski dense.

Before giving the proof, we need the following auxiliary result.
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Lemma 5.4.2. Let 𝑅𝐺,F,𝐷 → 𝐴 be a surjective homomorphism such that A is a domain with field of
fractions K, and set 𝐷𝐴 := 𝐷univ

𝐷
⊗𝑅𝐺,F,𝐷

𝐴. Let 𝐻 ⊂ 𝐺 be an open normal subgroup and suppose the
following hold:
(i) 𝐷 |𝐻 is split over F and condition Φ𝐷𝐻

is satisfied.
(ii) 𝐷K := 𝐷𝐴 ⊗𝐴 K is irreducible and 𝜌 := 𝜌𝐷K⊗Kalg is induced from H.

Then there exist a domain 𝐴′ ∈ Â𝑟F that contains A and is finite over A, and a continuous irreducible
pseudocharacter 𝐷 ′ : 𝐴′ [𝐻] → 𝐴′ that is residually equal to a direct summand 𝐷 ′ of 𝐷𝐻 such that the
following hold:
(a) Ind𝐺𝐻𝐷

′ = 𝐷𝐴 ⊗𝐴 𝐴′

(b) The homomorphism 𝑅
𝐻,F,𝐷

′ → 𝐴′ that results from 𝐷 ′ is surjective.

In particular, dim 𝐴 = dim 𝐴′ ≤ dim 𝑅
𝐻,F,𝐷

′ .

Proof. Note first by Lemma 2.1.4(b) and (f) that 𝜌 = Ind𝐺𝐻 𝜌
′ for some irreducible representation

𝜌′ : 𝐻 → GL𝑛′ (Kalg) such that the representations (𝜌′)𝑔, 𝑔 ∈ 𝐺/𝐻, are pairwise nonisomorphic, and
that Res𝐺𝐻 𝜌 =

⊕
𝑔∈𝐺/𝐻 (𝜌′)𝑔. Hence, 𝐷K |𝐻 is multiplicity free so that we can apply Proposition 4.8.6

to it.
By what we just observed, conjugation by 𝐺/𝐻 acts simply transitively on the continuous pseu-

docharacters 𝐷 ′𝑖 from Proposition 4.8.6, and so the 𝐴𝑖 from Proposition 4.8.6 are independent of i.
Define 𝐴′ as any of the 𝐴𝑖 , and let 𝐷 ′ : 𝐴′[𝐻] → 𝐴′ be that pseudocharacter 𝐷 ′𝑖 for which 𝐷 ′𝑖 ⊗𝐴′ Kalg

is the pseudocharacter attached to 𝜌′. Then Ind𝐺𝐻𝐷
′ ⊗𝐴′ Kalg = 𝐷𝐴 ⊗𝐴 Kalg. Now, Ind𝐺𝐻𝐷

′ is defined
over 𝐴′ and A is the minimal field of definition of 𝐷𝐴 by Corollary 4.7.13. Hence, A is contained in 𝐴′.
By Proposition 4.8.6 it is then clear that 𝐴′ is finite integral over A and lies in Â𝑟F, and moreover that
⊕𝑔∈𝐺/𝐻 (𝐷 ′)𝑔 = 𝐷 for 𝐷 ′ := 𝐷 ′ ⊗𝐴′ 𝜅(𝐴′). Part (a) is now clear.

It is also clear that 𝐷 ′ is a deformation of 𝐷 ′. Since 𝐴′ ∈ Â𝑟F, we have a corresponding homomorph-
ism 𝑅

𝐻,F,𝐷
′ → 𝐴′, and the latter must be surjective by Corollary 4.7.13 since 𝐴′ is the ring of definition

of 𝐷 ′. Now, by Lemma A.1.2 we have dim 𝐴′ = dim 𝐴, and the inequality dim 𝐴′ ≤ dim 𝑅
𝐻,F,𝐷

′ is
trivial. �

Proof of Theorem 5.4.1. By Lemma 3.2.6, by possibly enlarging F, we may assume that 𝐷 is split over
F. Since the number of Galois extensions 𝐾 ′ of K of degree p is finite, we may, by the same reasoning,
also assume that 𝐷 |𝐺′𝐾 is split for any such 𝐾 ′ and for 𝐾 ′ = 𝐾 (𝜁𝑝). It is also clear that Mazur’s condition
Φ𝑝 holds over any such 𝐾 ′ and hence Φ𝐷 |𝐺𝐾′

holds.

To prove (a), let 𝜂 be any generic point of (𝑋
univ
𝐷 )spcl. Let

𝜑 : 𝑅𝐾,F,𝐷 → 𝐴

be the corresponding surjective ring homomorphism so that 𝜂 = Ker(𝜑). Because 𝐷𝜂 is irreducible,
𝜌 := 𝜌𝐷𝜂 ⊗𝜅 (𝜂) 𝜅 (𝜂)alg is defined. Since 𝜂 is special, there exists a Galois extension 𝐾 ′ of K such that
either 𝐾 ′ = 𝐾 (𝜁𝑝) or 𝐾 ′ has degree p over K and such that 𝜌 is induced from 𝐺𝐾 ′ . From Lemma 5.4.2,
we deduce

dim 𝐴 ≤ dim 𝑅
𝐾 ′,F,𝐷

′ = [𝐾 ′ : Q𝑝] (𝑛/[𝐾 ′ : 𝐾])2 + 1 =
1

[𝐾 ′ : 𝐾]
(
[𝐾 : Q𝑝]𝑛2) + 1.

As the schemes Spec 𝐴 cover (𝑋
univ
𝐾,𝐷)spcl and as [𝐾 ′ : 𝐾] ≥ 2, the proof of (a) is complete.

To prove (b), we argue by contradiction and assume that there exists an open subset 𝑉 ⊂ 𝑋
univ
𝐾,𝐷 that

is entirely contained in (𝑋
univ
𝐾,𝐷)spcl. Then dim𝑉 ≤ 1

2 [𝐾 : Q𝑝]𝑛2 + 1 by (b), for 𝑉 the Zariski closure
of V. Let x be any dimension 1 point of V, and let 𝜌 : 𝐺𝐾 → GL𝑛 (𝐿) be an absolutely irreducible
representation over a local field L containing 𝜅(𝑥) such that 𝐷𝜌 = 𝐷𝑥 ⊗𝜅 (𝑥) 𝐿. Let 𝑅univ

𝜌 be the universal
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ring for deformations of 𝜌 to A𝑟𝐿 . Then Ô𝑉 ,𝑥 [[𝑇]] � 𝑅univ
𝜌 by Corollary 4.8.8 and Lemma 3.3.5. On

the other hand, dim 𝑅univ
𝜌 ≥ [𝐾 : Q𝑝]𝑛2 + 1 by a standard argument using Theorem 3.4.1. It follows that

1
2
[𝐾 : Q𝑝]𝑛2 + 1 + 1 ≥ [𝐾 : Q𝑝]𝑛2 + 1,

and hence 2 ≥ [𝐾 : Q𝑝]𝑛2, which implies 𝑛 = 1. But then x cannot be induced, and hence not special,
and we reach a contradiction. �

5.5. Main results

Let K be a p-adic field, let 𝐷:𝐺𝐾 → F be a residual pseudocharacter on 𝐺𝐾 , and set 𝑛 :=dim𝐷.

Theorem 5.5.1 (Theorem 1]. The following assertions hold:

(a) 𝑋
univ
𝐷 is equidimensional of dimension [𝐾 : Q𝑝]𝑛2 + 1.

(b) (𝑋
univ
𝐷 )n-spcl ⊂ 𝑋

univ
𝐷 is open and Zariski dense.

(c) If 𝜁𝑝 ∉ 𝐾 , then (𝑋
univ
𝐷 )n-spcl is regular.

(d) If 𝜁𝑝 ∈ 𝐾 , then (𝑋
univ
𝐷 )

n-spcl
red is regular, and (𝑋

univ
𝐷 )reg is empty.

Proof. Part (a) follows from Corollary 3.4.3, Theorem 5.2.1 and Theorem 5.4.1 by induction on dim 𝐷
and [𝐾 : Q𝑝]. The same results also prove (b). Parts (c) and (d) follow from Lemma 5.1.6; the last part
of (d) uses Corollary 3.4.3(a). �

Lemma 5.5.2. One has the following estimates:

(a) If 𝑛 > 1, then

dim(𝑋
univ
𝐷 )red = dim 𝑋

univ
𝐷 − 2[𝐾 : Q𝑝] (𝑛 − 1) + 1,

and in particular dim(𝑋
univ
𝐷 )red ≤ dim 𝑋

univ
𝐷 − 2 unless 𝑛 = 2 and 𝐾 = Q𝑝 . In the latter case

dim(𝑋
univ
𝐷 )red = dim 𝑋

univ
𝐷 − 1.

(b) dim(𝑋
univ
𝐷 )spcl ≤ dim 𝑋

univ
𝐷 − 2.

Proof. Since (𝑋
univ
𝐷 )spcl is empty for 𝑛 = 1, because nontrivially induced representations have dimension

at least 2, Part (b) is immediate from Theorem 5.4.1. For Part (a), we may assume that 𝐷 is split by
Lemma 5.2.6. Then (𝑋

univ
𝐷 )red ⊂

⋃
𝐷1⊕𝐷2=𝐷

𝜄𝐷1 ,𝐷2
(𝑋

univ
𝐷1 ,𝐷2), and now Theorem 5.5.1(a) yields

dim(𝑋
univ
𝐷 )red = max

𝑛1+𝑛2=𝑛
𝑛1 ,𝑛2>0

dim 𝑋𝑛1 + dim 𝑋𝑛2 = max
𝑛1+𝑛2=𝑛
𝑛1 ,𝑛2>0

𝑑 (𝑛2
1 + 𝑛

2
2) + 2 = 𝑑 ((𝑛 − 1)2 + 1) + 2.

The wanted estimate in (a) is immediate. For the remaining assertion note that (𝑋
univ
𝐷 )red is empty when

𝑛 = 1. �

Corollary 5.5.3. Suppose that 𝜁𝑝 ∉ 𝐾 and that (𝑋
univ
𝐷 )spcl is nonempty so that 𝑒 := [𝐾 ′ : 𝐾] divides n,

for 𝐾 ′ = 𝐾 (𝜁𝑝). Then the Zariski closure of (𝑋
univ
𝐷 )spcl has dimension 1

𝑒 [𝐾 : Q𝑝]𝑛2 + 1.

Proof. Let 𝔭 ∈ Spec 𝑅univ
𝐷 be a generic point of (𝑋

univ
𝐷 )spcl, let 𝐴 = Spec 𝑅univ

𝐷 /𝔭 with fraction field K
and let 𝐷𝐴 be the corresponding pseudocharacter. Then Spec 𝐴 contains a dense subset of dimension 1
points at which 𝐷𝐴 is irreducible and special. But then 𝐷𝐴 ⊗𝐴Kmust be irreducible and it also must be
special, that is, it is invariant under twisting by the mod p cyclotomic character 𝜒 : Gal(𝐾 ′/𝐾) → F×𝑝 .
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LetK′ ⊃ K be a finite extension over which there is an absolutely irreducible representation 𝜌 : 𝐺𝐾 →
GL𝑛 (K′) such that 𝐷𝐴 ⊗𝐴 K′ = 𝐷𝜌, and so that 𝜌 � 𝜌 ⊗ 𝜒. Then by Theorem 2.2.1 we have 𝑒 |𝑛 and
after possibly enlarging K′ there exists an absolutely irreducible representation 𝜌′ : 𝐺𝐾 ′ → GL𝑛′ (K′)
with 𝑛′ = 𝑛/𝑒 such that Ind𝐺𝐾

𝐺𝐾′
𝜌′ � 𝜌. Moreover, letting 𝐷 ′ = 𝐷𝜌′ , the pseudocharacters (𝐷 ′)𝑔,

𝑔 ∈ 𝐺𝐾 /𝐺𝐾 ′ are pairwise nonisomorphic and Res𝐺𝐾′
𝐺𝐾

𝐷 = ⊕𝑔∈𝐺𝐾 /𝐺𝐾′ (𝐷 ′)𝑔. In particular, Res𝐺𝐾′
𝐺𝐾

𝐷

is multiplicity free. Moreover, (𝐷𝐴)|𝐺𝐾′ is a continuous pseudodeformation of 𝐷 |𝐺𝐾′ , and so it arises
from a map 𝑅

univ
𝐾 ′,𝐷 → 𝐴 in Â𝑟F.

We deduce from Proposition 4.8.6 (and its proof) that after possibly enlarging K′ again there is a
continuous pseudocharacter 𝐷 ′𝐴′ : 𝐺𝐾 ′ → 𝐴′ on 𝐺𝐾 for 𝐴′ the integral closure of A in K′ and with
𝐷 ′𝐴′ ⊗𝐴′ K

′ = 𝐷𝜌′ , and moreover 𝐴′ lies in Â𝑟F′ for a finite extension F′ of F. Letting 𝐷
′
= 𝐷 ′𝐴′

(mod 𝔪𝐴′ ), there is a map 𝛼′ : 𝑅univ
𝐾 ′,𝐷

′ → 𝐴′ in Â𝑟F′ inducing 𝐷 ′𝐴′ . Moreover, the pseudocharacters
(𝐷 ′𝐴′ )

𝑔, 𝑔 ∈ 𝐺𝐾 /𝐺𝐾 ′ are pairwise distinct.
Let 𝔮 be a generic point of 𝑅univ

𝐾 ′,𝐷
′ that lies in the kernel of 𝛼′, let 𝐵 = 𝑅

univ
𝐾 ′,𝐷

′/𝔮 with quotient field L,
and let 𝐷 ′𝐵 be the associated pseudocharacter. Then 𝐷𝐵 ⊗𝐵 𝐿 is irreducible and the pseudocharacters
(𝐷 ′𝐵)

𝑔, 𝑔 ∈ 𝐺𝐾 /𝐺𝐾 ′ are pairwise distinct. Then by Theorem 4.6.7, 𝐷𝐵 = Ind𝐺𝐾

𝐺𝐾′
𝐷 ′𝐵 : 𝐵[𝐺] → 𝐵 is

a continuous pseudodeformation of Ind𝐺𝐾

𝐺𝐾′
𝐷
′
= 𝐷 ⊗F F′ such that 𝐷𝐵 ⊗𝐵 Quot(𝐵) is irreducible and

special (invariant by the twist with 𝜒). In particular, 𝐷𝐵 arises from a homomorphism 𝛼 : 𝑅univ
𝐾,𝐷⊗FF′ → 𝐵

and the point Ker𝛼 of 𝑋
univ
F′,𝐷⊗FF′ must be special. By our construction we have a commutative diagram

𝐵
���

����

𝑅
univ
𝐾,𝐷⊗FF′

��������

������
�� 𝐴′,

𝐴F′

��������

���
�
�

where we write 𝐴F′ for the F′ subalgebra of 𝐴′ generated by F′ and A, and initially without the dashed
arrow. We deduce that Ker𝛼 is also the kernel of the map to 𝐴F′, and so the dashed arrow exists and is
injective (by the definition of A). But then restricting the corresponding pseudocharacters to 𝐺𝐾 ′ , one
deduces that the maps from 𝑅

univ
𝐾,𝐷

′ to B and to a finite extension of 𝐴F have the same kernel, and so B
and 𝐴′, and hence A must have the same dimension. But dim 𝐵 = 1

𝑒 [𝐾 : Q𝑝]𝑛2 + 1 by Theorem 5.5.1,
and this concludes the proof. �

Lemma 5.5.4. Let 𝜅 be a local or a finite field. Suppose 𝑝 > 2. Let 𝐷𝑖 : 𝐺Q𝑝 → 𝜅, 𝑖 = 1, 2, be continuous
pseudocharacters on 𝐺Q𝑝 of dimension 1, and let 𝐷 = 𝐷1 ⊕ 𝐷2. Then

(a) If 𝐷1 ≠ 𝐷2 (𝑚) for 𝑚 ∈ {0,±1}, then
(1) there exists a unique nontrivial extension 𝜌 : 𝐺Q𝑝 → GL2 (𝜅) of 𝐷2 by 𝐷1,
(2) the natural map 𝑅

univ
𝐷 → 𝑅

univ
𝜌 is an isomorphism,

(3) and both rings are formally smooth over 𝜅 of dimension 5.
(b) If 𝐷1 = 𝐷2 (𝑚) for some 𝑚 ∈ {±1}, then 𝑅

univ
𝐷 is not regular.

(c) If 𝐷1 = 𝐷2, then 𝑅
univ
𝐷 is regular.

Proof. The idea for (a) stems from the proof of [Che11, Corollary 4.4] and goes back to Kisin. We
regard the 𝐷𝑖 exchangeably as pseudocharacters or as representations because they are of dimension
1. Lemma 5.1.7(a) guarantees the existence of 𝜌 as in (1). Since 𝐷1 ∉ {𝐷2, 𝐷2 (±1)}, Theorem 3.4.1
yields dim Ext1𝐺Q𝑝

(𝐷𝑖 , 𝐷 𝑗 ) = 1 for 𝑖 ≠ 𝑗 , and this implies the uniqueness of 𝜌 up to isomorphism.

Note that once (2) is proved, Part (3) follows from Lemma 5.1.7(c). To see (2), let 𝑋𝜌 := Spec 𝑅
univ
𝜌 ,

𝑋𝐷 := 𝑅
univ
𝐷 for 𝐷 := 𝐷1 ⊕ 𝐷2, write 𝜑 for the map in Part (1), and denote by

d 𝜑 : t𝑋𝜌 ,𝜌 → t𝑋𝐷 ,𝐷
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the induced map on tangent spaces. By the formula in Lemma 5.1.7(c), the kernel of d𝜑 is zero. Because
𝑝 > 2, we also have dim Ext1𝐺Q𝑝

(𝐷𝑖 , 𝐷𝑖) = 2 for 𝑖 = 1, 2. Consider now the following exact sequence
from [Bel12, Theorem 2] with 𝜌𝑖 = 𝐷𝑖

0−→
⊕
𝑖=1,2

Ext1𝐺𝐾
(𝜌𝑖 , 𝜌𝑖)−→ dim t𝑋𝐷 ,𝐷 ⊗𝜅 (𝑥) 𝐿 (36)

−→Ext1𝐺𝐾
(𝜌1, 𝜌2) ⊗ Ext1𝐺𝐾

(𝜌2, 𝜌1)
ℎ−→
⊕
𝑖=1,2

Ext2𝐺𝐾
(𝜌𝑖 , 𝜌𝑖).

It implies dim t𝑋𝐷 ,𝐷 ≤ 5. Hence, d𝜑 must be an isomorphism and dim t𝑋𝐷 ,𝐷 = 5. This implies that 𝜑
must be surjective, and hence an isomorphism since the target is formally smooth over 𝜅.

To prove (b), note that we have Ext2(𝜌𝑖 , 𝜌𝑖) = 0 and Ext1(𝜌𝑖 , 𝜌𝑖) is of dimension 1, while
Ext1(𝜌𝑖 , 𝜌𝑖 (𝑚)) is 2 for 𝑚 = 1 and 1 for 𝑚 = −1. Hence, diagram (36) yields dim𝜅 t𝑋𝐷 ,𝐷 = 6. However,
dim 𝑋𝐷 = 5 by Theorem 5.5.1, and hence 𝑅 univ

𝐷 is not regular.
Finally, we show (c). Because 𝑝 > 2, we may apply [Che11, Théorème 3.1] in exactly the same way,

as done in [Che11, Lemme 2.5]: Using that the mod p reduction of𝐺ab
Q𝑝

is isomorphic to (Z/𝑝)2, one has
dim𝜅 Hom(𝐺Q𝑝 , 𝜅) = 2, dim𝜅 Sym(𝐺Q𝑝 , 𝜅) = 3 and dim𝜅 Alt(𝐺Q𝑝 , 𝜅) = 0, and hence dim𝜅 t𝑋𝐷 ,𝐷 = 5.
We now conclude using dim 𝑋𝐷 = 5 by Theorem 5.5.1. �

We now characterize the singular locus when 𝜁𝑝 ∉ 𝐾 .

Theorem 5.5.5 (Theorem 2, [Che11, Théorème 2.3]). If 𝜁𝑝 ∉ 𝐾 , then the following hold:

(a) The closure of 𝑋1 := (𝑋
univ
𝐷 )spcl in 𝑋

univ
𝐷 lies in (𝑋

univ
𝐷 )sing.

(b) If 𝑛 > 2 or [𝐾 : Q𝑝] > 1, then 𝑋2 := (𝑋
univ
𝐷 )red ⊂ (𝑋

univ
𝐷 )sing.

(c) If 𝑛 = 2, 𝐾 = Q𝑝 , and 𝑥 ∈ 𝑋2 corresponds to a pair (𝐷1, 𝐷2) of one-dimensional pseudocharacters,
then 𝑥 ∈ (𝑋

univ
𝐷 )sing if and only if 𝐷2 = 𝐷1 (𝑚) for 𝑚 ∈ {±1}.

Proof. We know from Proposition 4.7.11 that 𝑅
univ
𝐷 is a complete Noetherian local ring so that by

Lemma A.1.1(a), (𝑋
univ
𝐷 )sing is closed in 𝑋

univ
𝐷 . Observe that if 𝑋𝑖 ≠ ∅, then its Zariski closure 𝑋 𝑖 has

dimension at least 2: for 𝑋2, this is clear from Lemma 5.5.2(a), for 𝑋1 from Corollary 5.5.3. Hence,
Proposition A.1.11 shows that the points of 𝑋𝑖 of dimension 1 are dense in 𝑋𝑖 .

To prove (a), let 𝑥 ∈ 𝑋1 be of dimension 1. A standard computation of tangent spaces as in the proof
of Lemma 5.1.7(c) shows dim𝐻1 (𝐺𝐾 , ad𝜌𝑥 ) = 𝑑𝑛2 + 2, while dim 𝑅univ

𝜌𝑥
= 𝑑𝑛2 + 1. It follows from

Lemma 3.3.5 that x is not regular on 𝑋
univ
𝐷 .

For the proof of (b), we assume without loss of generality that 𝐷 is split. Then (𝑋
univ
𝐷 )red is the

image of the maps 𝜄𝐷1 ,𝐷2
from (32) for all 𝐷1, 𝐷2 such that 𝐷 = 𝐷1 ⊕ 𝐷2. Fix such a pair, and

let 𝑛𝑖 be the dimension of 𝐷𝑖 . Because of Theorem 5.5.1 it suffices to consider pairs 𝑥 = (𝑥1, 𝑥2)
with 𝑥𝑖 ∈ (𝑋

univ
𝐷𝑖
)n-spcl; and we may also assume that 𝐷𝑥1 is distinct from the finitely many 𝐷𝑥2 (𝑚),

𝑚 ∈ {1, . . . , 𝑝−1}. We compute the tangent space dimension of 𝑅
univ
𝐷𝑥

this time, using (36) from [Bel12,
Theorem A] which also holds for 𝜌𝑥𝑖 in place of 𝜌𝑖 . We conclude as in the proof of [Che11, Lemme
2.4]: dim𝐿 𝐻

1 (𝐺𝐾 , ad𝜌𝑥𝑖
) ≥ 1+𝑑𝑛2

𝑖 , dim𝐿 Ext1𝐺𝐾
(𝜌𝑥𝑖 , 𝜌𝑥3−𝑖 ) = 𝑑𝑛1𝑛2, and the second extension groups

vanish since the 𝐷𝑥𝑖 satisfy 𝐷𝑥𝑖 ≠ 𝐷𝑥𝑖 (1). Hence,

t
Spec 𝑅

univ
𝐷𝑥

= 𝑑 (𝑛2
1 + 𝑛

2
2) + 2 + 𝑑2𝑛2

1𝑛
2
2 ≥ 𝑑𝑛2 + 1 + (𝑑𝑛1𝑛2 − 1)2.

This dimension is strictly larger than 𝑑𝑛2 + 1, unless 𝑑𝑛1𝑛2 = 1, that is, 𝑛1 = 𝑛2 = 1 and 𝐾 = Q𝑝 .
However, dim 𝑅

univ
𝐷𝑥

= 𝑑𝑛2 + 1 by Lemma 3.3.5 and Theorem 5.5.1, and it follows that x cannot be
regular, proving (b).
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Concerning (c), note that if 𝑥 = (𝐷1, 𝐷2) is any point of dimension at most 1, then the assertion
follows from Lemma 5.5.4. Since such points are Zariski dense in the closure of any point of dimension
at least 2, the assertion in (c) follows in general. �

Remark 5.5.6. Note that Theorem 5.5.5 reproves a result of Paškūnas, namely [Paš13, Proposition
B.17]: suppose that 𝑛 = 2, 𝑝 > 2, 𝐾 = Q𝑝 , and 𝐷 : 𝐺Q𝑝 → F is a direct sum 𝐷1 ⊕ 𝐷2 of one-
dimensional characters 𝐷𝑖 sucht that 𝐷2 ≠ 𝐷1 (𝑚) for 𝑚 = 0,±1. Then 𝑅

univ
𝐷 � F𝑞 [[𝑋1, . . . , 𝑋5]].

Theorem 5.5.7 (Theorem 3). The ring 𝑅
univ
𝐷,red satisfies Serre’s condition (𝑅2), unless 𝑛 = 2, 𝐾 = Q2

and 𝐷 is trivial.

Proof. By Theorem 5.5.1 and Lemma 5.1.6, the subset (𝑋
univ
𝐷,red)n-spcl is regular, open and Zariski dense

in 𝑋
univ
𝐷,red. Thus, Lemma 5.5.2 implies the theorem unless 𝑛 = 2 and 𝐾 = Q𝑝 . Also, if 𝐷 is irreducible,

then so is any lift, and so (𝑋
univ
𝐷,red)red is empty. Now, again we conclude by Lemma 5.5.2. Suppose from

now on that 𝐾 = Q𝑝 and 𝐷 = 𝐷1 ⊕ 𝐷2 for one-dimensional pseudocharacters 𝐷𝑖 : 𝐺Q𝑝 → F on 𝐺Q𝑝 ,
and suppose now also 𝑝 > 2 which was excluded in this case.

The locus of 𝑥 ∈ 𝑋2 := (𝑋
univ
𝐷 )red corresponding to a pair (𝐷1, 𝐷2) of one-dimensional pseudochar-

acters such that 𝐷2 = 𝐷1 (𝑚) for 𝑚 ∈ {±1}, can be realized as the image of 𝑋
univ
𝐷1 . Hence, it has

dimension at most 2 because of Corollary 3.4.3. Outside this, locus points are smooth by Theorem 5.5.5
(and the density of points of dimension 1). It follows that (𝑋

univ
𝐷 )red,sing has dimension at most 2 which

is less than 5 − 2 = 3 so that then 𝑋
univ
𝐷 satisfies (𝑅2), also. �

A. Appendix. Auxiliary results on rings, algebras and representations

In this appendix, we collect some results used in various parts of this work. We also prove some minor
facts that could not be found directly in the literature.

A.1. Commutative algebra

Complete local rings, integral extensions and regularity
A domain B with quotient fieldK is said to satisfy N-2 if for any finite field extension L ofK, the integral
closure of B in L is a finite over B. A ring A is called a Nagata ring if A is Noetherian and for every
prime ideal 𝔭 of A the ring 𝐴/𝔭 satisfies N-2; see [Sta18, §032E].

Lemma A.1.1. If A is complete Noetherian local ring, then the following hold:

(a) A is a Nagata ring, and hence the set of regular points of Spec 𝐴 is open in Spec 𝐴.
(b) If A is a domain with fraction field K and perfect residue field, then [K : K𝑝] < ∞.

Proof. Part (a) is [Sta18, §032W] combined with [Gro65, Théorème (6.12.7)]. Part (b) is proved in
[Hoc07, Proposition (d), (g)]. �

Lemma A.1.2 [Mat80, 13.C, Theorem 20]. If B is a domain and if 𝐵′ ⊂ 𝐵 is a subring such that B if
finite over 𝐵′, then dim 𝐵 = dim 𝐵′.

Recall that for a prime 𝔭 of A, the height of 𝔭 is defined as ht𝔭 = dim 𝑅𝔭.

Definition A.1.3. A commutative ring A is said to satisfy (Serre’s) condition (𝑅𝑖), if A is regular in
codimension at most i, that is, if the local ring 𝐴𝔭 is regular for every prime 𝔭 of height ≤ 𝑖.
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Density of points of dimension one
The next series of results stems from [Gro66, §10.1–10.5], except in one case where we give a direct
reference. Let X be a topological space. It is called Noetherian if every descending chain of closed
subsets becomes stationary. It is called irreducible if it is not the union of two proper closed subsets.
If X is Noetherian, a subset is called constructible if it is a finite union of locally closed subsets of X,
that is, of subsets that are the intersection of an open and a closed subset of X. The closure of a subset
𝑍 ⊂ 𝑋 is denoted by 𝑍 . For a subset Z of X, its dimension dim 𝑍 ∈ N ∪ {∞} is the maximal length n of
a chain 𝑌0 � 𝑌1 � . . . � 𝑌𝑛 ⊂ 𝑍 of irreducible closed subsets 𝑌𝑖 in X.

Definition A.1.4. A subset 𝑋0 of X is called very dense in X if every nonempty locally closed subset
𝑍 ⊂ 𝑋 satisfies 𝑍 ∩ 𝑋0 ≠ ∅.

If 𝑋0 is very dense in X, it is clearly dense in X.

Lemma A.1.5. If 𝑋0 is very dense in X, then 𝑋0 ∩ 𝑍 is very dense in Z and dense in 𝑍 for any locally
closed set Z in X.

Proposition A.1.6. For a subset 𝑋0 of X, the following conditions are equivalent:

(a) 𝑋0 is very dense in X;
(b) Under 𝑋 ′ ↦→ 𝑋0 ∩ 𝑋 ′, the open subsets in X are in bijection to those in 𝑋0.
(c) Under 𝑋 ′ ↦→ 𝑋0 ∩ 𝑋 ′, the closed subsets in X are in bijection to those in 𝑋0.

In the following, we set 𝑋≤1 := {𝑥 ∈ 𝑋 : dim 𝑥 ≤ 1}. Since the union of finitely many irreducible
subsets of dimension at most i has dimension at most i, we find:

Lemma A.1.7. If 𝑈 ⊂ 𝑋 satisfies dim𝑈 ≥ 2, then no finite subset of 𝑈≤1 is dense in U.

An important source for very dense subset of schemes comes from the following result:

Lemma A.1.8 [Mat80, (33.F) Lemma 5]. Let 𝑋 = Spec 𝐴 for a Noetherian ring A. Then the set 𝑋≤1 is
very dense in X.

From Lemma A.1.8 and Lemma A.1.5, one deduces:

Corollary A.1.9. Let 𝑋 = Spec 𝐴 for a Noetherian ring A, and let 𝑍 ⊂ 𝑋 be constructible. Then 𝑋≤1∩𝑍
is very dense in Z and dense in 𝑍 .

Definition A.1.10. The space X is called Jacobson if {𝑥 ∈ 𝑋 : dim 𝑥 = 0} is very dense in X.

A scheme is called Jacobson if the underlying topological space is Jacobson; a ring A is called
Jacobson if the scheme Spec 𝐴 is Jacobson. For us, the following result is of importance:

Proposition A.1.11. For a Noetherian local ring with A maximal ideal 𝔪𝐴, the scheme Spec 𝐴\{𝔪𝐴}
is Jacobson.

Besides our reference to [Gro66], Proposition A.1.11 can also be found in [Sta18, 02IM]

Étale morphisms and étale neighborhoods
We recall some terminology and a result on étale morphisms to be used in Section 5.

Definition A.1.12 [Sta18, §00U0 and Definition 02GI].

(a) A ring map 𝐴→ 𝐵 is called étale if it is a smooth ring map of relative dimension zero.
(b) A morphism 𝑓 : 𝑋 → 𝑌 of schemes is called étale at 𝑥 ∈ 𝑋 if there is an affine open neighborhood

Spec(𝐵) = 𝑈 ⊂ 𝑋 of x and an affine open Spec(𝐴) = 𝑉 ⊂ 𝑌 with 𝑓 (𝑈) ⊂ 𝑉 so that the
corresponding ring map 𝐴→ 𝐵 is étale. We say that f is étale if it is étale at each point 𝑥 ∈ 𝑋 .

Definition A.1.13 [Sta18, Definition 03PO]. Let X be a scheme.

(a) A geometric point of X is a morphism 𝑥 : Spec 𝑘 → 𝑋 , where k is an algebraically closed field.
(b) One says that 𝑥 is lies over 𝑥 ∈ 𝑋 to indicate that x is the image of 𝑥.
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(c) An étale neighborhood (𝑈, 𝑢, 𝜑) of a geometric point 𝑥 ∈ 𝑋 is a commutative diagram

𝑈

𝜑

��
Spec𝑘 𝑥 ��

�̄�

�����������
𝑋,

where 𝜑 is an étale morphism of schemes and 𝑢 is a geometric point of U.

Lemma A.1.14. Let 𝜑 : 𝑈 → 𝑋 be an étale morphism between schemes U and X. Let u be a point of U
and denote by x its image 𝜑(𝑢). Consider the local homomorphism 𝜑𝑢 : O𝑋,𝑥 → O𝑈,𝑢 induced from
𝜑. Then

(a) The completion 𝜑𝑢 : Ô𝑋,𝑥 → Ô𝑈,𝑢 of 𝜑𝑢 is finite étale; its degree is equal to [𝜅(𝑢) : 𝜅(𝑥)].
(b) The ring Ô𝑋,𝑥 is regular if and only if Ô𝑈,𝑢 is regular, and in this case both have the same dimension.

Proof. Part (a) is [Sta18, Lemma 039M] and the remark following it. For Part (b), note that by étaleness
the tangent spaces at the closed point have the same dimension, and by finite étaleness the ring Ô𝑈,𝑢 is
free of finite rank over Ô𝑋,𝑥 and hence they have the same dimension. From this, (b) follows easily. �

A.2. Finite-dimensional algebras and modules

Let K be a field. We gather some results, mostly from [CR62], on not necessarily commutative K-
algebras 𝑆 and modules M over them, assuming that either the algebra or the module have finite K-
dimension. Our intended applications are to 𝑆 = K[𝐺] for a possibly infinite group G, or to G-modules
of finite K-dimension; note that if G is profinite, K is a topological field and M is a K[𝐺]-module of
finite K-dimension with a continuous G-action, then all G-subquotients of M carry a continuous action.
So we need not worry about continuity in the following.

Let first 𝑆 be a K-algebra of finite K-dimension. In this case, the sum of all nilpotent left ideals of
𝑆 is a two-sided ideal of 𝑆, the radical of 𝑆 and denoted Rad(𝑆), see [CR62, §24]. It is the maximal
nilpotent two-sided ideal of 𝑆. The radical is zero if and only if 𝑆 is semisimple; in this case, 𝑆 is the
product of simple K-algebras (of finite K-dimension). If K′ is any field extension of K, then

Rad(𝑆) ⊗K K′ ⊂ Rad(𝑆 ⊗K K′). (37)

Definition A.2.1. We call a K-algebra 𝑆 of finite K–dimension absolutely semisimple if 𝑆 ⊗K Kalg is
semisimple.

Remark A.2.2. Suppose that 𝑆 is absolutely semisimple. Then by the containment (37) it is semisimple.
By the theorem of Artin–Wedderburn, the algebra 𝑆 ⊗K Kalg is a product of matrix algebras over Kalg.
From this one deduces, by repeated application of the inclusion (37), that 𝑆 ⊗K K′ is semisimple for any
field extension K′ of K. Suppose now that 𝑆 is only semisimple. By considering simple factors 𝐷𝑖 of 𝑆,
one shows that 𝑆 is absolutely semisimple if and only if the center of each 𝐷𝑖 is separable over K.

Lemma A.2.3. Let 𝑆 aK-algebra of finiteK-dimension, and write 𝑆′ for 𝑆⊗KK′ and any field extension
K′ of K.

(a) There exists a finite extension K′ of K such that 𝑆′/Rad(𝑆′) is absolutely semisimple.
(b) If 𝑆/Rad(𝑆) is absolutely semisimple over K, then there exists an extension K′ of K with [K′ : K] ≤
(dimK 𝑆)! such that 𝑆′/Rad(𝑆′) is a product of matrix algebras over K′.

(c) If K is finite, and if we write 𝑆/Rad(𝑆) �
∏

𝑖 Mat𝑑𝑖×𝑑𝑖 (K𝑖) for 𝑑𝑖 ≥ 1 and K𝑖 finite over K, then we
may find K′ as in (b) so that [K′ : K] divides

∏
𝑖 [K𝑖 : K].

Proof. For (a) note first that for 𝑆alg := 𝑆 ⊗K Kalg the ring 𝑆alg/Rad(𝑆alg) is semisimple and trivially
absolutely semisimple. Let K′ be a finite extension of K over which 𝑆′ := 𝑆 ⊗K K′ contains a sub-K′
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vector space I with 𝐼 ⊗K′Kalg = Rad(𝑆alg). Considering I inside Rad(𝑆alg), it follows that I is a nilpotent
ideal of 𝑆′ so that 𝐼 ⊂ Rad(𝑆′). But then using the inclusion (37) and the faithful flatness of K′ → Kalg,
it is straightforward to see that 𝐼 = Rad(𝑆′) and that 𝑆′/𝐼 is absolutely simple.

To prove (b), note first that we may replace 𝑆 by 𝑆/Rad(𝑆), again by the inclusion (37) so that we
may assume that 𝑆 is absolutely semisimple. Write 𝑆 as a product of division algebras 𝐷𝑖 , for i in a
finite index set I, and write K𝑖 for the center of 𝐷𝑖 and let 𝑑𝑖 ∈ N be such that 𝑑2

𝑖 = dimK𝑖 𝐷𝑖 . We
consider all finite field extensions of K as subfields of a fixed algebraic closure Kalg of K. Let K′ ⊂ Kalg

be the join of the normal hull of all K𝑖 . By Remark A.2.2, K′ is separable over K and for each i we have
K𝑖 ⊗K K′ � (K′)𝑚𝑖 for 𝑚𝑖 = [K𝑖 : K]. Note also that [K′ : K] ≤

∏
𝑖∈𝐼 𝑚𝑖!. Let E𝑖 ⊂ 𝐷𝑖 be a maximal

subfield over K𝑖 so that 𝐷𝑖 ⊗K𝑖 E𝑖 � Mat𝑑𝑖×𝑑𝑖 (E𝑖). Let E′ ⊃ Kalg be the join of K′ and the fields E𝑖 ,
𝑖 ∈ 𝐼. Then

𝑆 ⊗K E′ �
∏
𝑖∈𝐼
(𝐷𝑖 ⊗K𝑖 (K𝑖 ⊗K K′) ⊗K′ E′) �

∏
𝑖∈𝐼
(𝐷𝑖 ⊗K𝑖 E

′)𝑚𝑖
E′ ⊃E𝑖
�
∏
𝑖∈𝐼
(Mat𝑑𝑖×𝑑𝑖 (E′))𝑚𝑖 . (38)

Hence, E′ is a field as in (a). Moreover, [E′ : K] ≤
∏

𝑖∈𝐼 (𝑑𝑖 · 𝑚𝑖!) ≤
∏

𝑖∈𝐼 (𝑑𝑖 · [K𝑖 : K])!. Since∑
𝑖∈𝐼 (𝑑𝑖 [K𝑖 : K]) ≤

∑
𝑖∈𝐼 𝑑

2
𝑖 · 𝑚𝑖 = 𝑛, using that multinomials are integers, we deduce [E′ : K] ≤ 𝑛!,

and this proves (b).
To see (c) note that each K𝑖 is normal over K and for each degree there is a unique extension of K

of that degree in a fixed choice Kalg. Hence, in the proof of (b) we find [K′ : K] ≤ lcm𝑖∈𝐼 [K𝑖 : K].
Moreover, overK𝑖 the ring 𝐷𝑖 is already split, and so we can takeE′ = K′. The assertion now is clear. �

Remark A.2.4.

(a) Note that the hypothesis in Lemma A.2.3(b) holds whenever K is perfect.
(b) A version of Lemma A.2.3(a) only under algebraicity hypotheses for 𝑆 over K can be found in

[Che14, Lemma 2.14].
(c) It is possible to give effective bounds in Lemma A.2.3(b) also without any separability hypotheses.

But the proof is longer and we do not need the result.

Let now 𝑆 be any K-algebra, not necessarily of finite K-dimension. Let M be an 𝑆-module of finite
K-dimension. If M is semisimple, the representation 𝑀 ⊗K Kalg need in general not be semisimple over
𝑆alg := 𝑆 ⊗K Kalg.8

Definition A.2.5. We call M absolutely semisimple, if 𝑀 ⊗K Kalg is semisimple as an 𝑆alg-module.
We call M absolutely completely reducible if it is semisimple and all its irreducible summands are

absolutely irreducible.

Remark A.2.6. If M is absolutely completely reducible, it is clearly absolutely semisimple. If M is
absolutely semisimple, it is absolutely completely reducible if and only if for each irreducible summand
N of M the natural map K → End𝑆 (𝑁) is an isomorphism, see [CR62, 29.13]; the latter condition is
equivalent to End𝑆 (𝑀) being a product of matrix algebras over K.

For the following note, that if N is a second 𝑆-modulo of finite K-dimension and K′ is any field
extension of K, then by [CR62, 29.2] one has

Hom𝑆 (𝑀, 𝑁) ⊗K K′ � Hom𝑆⊗KK′ (𝑀 ⊗K K′, 𝑁 ⊗K K′). (39)

Lemma A.2.7. Suppose M is absolutely semisimple. Then the following hold:

(a) The K-algebra End𝑆 (𝑀) is absolutely semisimple.
(b) If K′ ⊃ K is an extension such that End𝑆 (𝑀) ⊗K K′ is a product of matrix algebras, then 𝑀 ⊗K K′

is absolutely completely reducible.

8If 𝑆 is a purely inseparable finite field extension of K and 𝑀 = 𝑆, then 𝑆 ⊗K 𝑆 is not semisimple.
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Proof. To prove (a) it suffices to assume that M is irreducible. Then 𝐷 := End𝑆 (𝑀) is a skew field of
finite dimension over K. By the isomorphism (39), we have

𝐷 ⊗K Kalg � End𝑆⊗KKalg (𝑀 ⊗K Kalg).

By hypothesis, 𝑀 ⊗K Kalg is semisimple over 𝑆 ⊗K Kalg. By Remark A.2.6, 𝐷 ⊗K Kalg is then a product
of matrix algebras over Kalg. This proves (a). Part (b) is immediate from the isomorphism (39) since it
implies K′ � End𝑆⊗KK′ (𝑁) for every irreducible summand of 𝑀 ⊗K K′. �

Remark A.2.7. For K′ as in Lemma A.2.7(b), one can bound [K′ : K] by ((dimK 𝑀)2)! using Lemma
A.2.3(b).

A.3. Absolutely irreducible mod p representations of the absolute Galois group of a p-adic field

This subsection gives the proof of the classification of irreducible finite-dimensional representations of
𝐺𝐾 for a p-adic field K over a finite field of characteristic p, and some complements.

We begin with some preparations and reminders: Recall the classification of tame characters of the
inertia group 𝐼𝐾 of 𝐺𝐾 from [Ser72]: Let m denote some natural number. Let 𝑘alg be the residue field
of 𝐾alg and set 𝑞 := |𝑘 |. Let in the following 𝜎 ∈ 𝐺𝐾 be any element that maps to Frobenius in 𝐺𝑘 .
Let 𝐾nr ⊂ 𝐾 t ⊂ 𝐾alg denote the maximal unramified and maximal tamely ramified extensions of K,
respectively. Denote by 𝐾𝑚 ⊂ 𝐾nr the unique extension of K of degree m and by 𝑘𝑚 ⊂ 𝑘alg its residue
field. If 𝜛 is a fixed choice of uniformizer of K and 𝐾 𝑡

𝑚 = 𝐾nr ( 𝑞𝑚−1√𝜛), then 𝐾 t = lim−→𝑚∈N≥1
𝐾 𝑡
𝑚. The

characters

𝜔𝑚 : 𝐼t :=Gal(𝐾 t/𝐾nr) → Gal(𝐾 𝑡
𝑚/𝐾nr) ∼→ 𝜇𝑞𝑚−1 (𝐾nr) � 𝜇𝑞𝑚−1 (𝑘alg)= 𝑘×𝑚, 𝜎 ↦→

𝜎( 𝑞𝑚−1√𝜛)
𝑞𝑚−1√𝜛

,

form an inverse system, 𝐼t � lim←−−{𝑘
×
𝑚 :𝑚 ∈N} is pro-cyclic and 𝐼 𝑝t = 𝐼t; see [Ser72, Propositions 1 and 2].

A continuous character 𝜔 : 𝐼t → (𝑘alg)× is called of level m (with respect to k) if m is the smallest
integer such that 𝜔 factors as 𝜔 = 𝜑 ◦ 𝜔𝑚 for some homomorphism 𝜑 : 𝑘×𝑚 → (F

alg
𝑝 )×; since 𝐼t is

procyclic this is equivalent to 𝜔 having order a divisor of 𝑞𝑚 − 1 with m minimal; in particular, the
number of such characters is finite. For any 𝑚 ≥ 1, let P𝑚 := Hom𝑘 (𝑘𝑚, Falg

𝑝 ), and set 𝜔𝑚,𝜏 := 𝜏 ◦ 𝜔𝑚

for 𝜏 ∈ P𝑚. For any 𝜏 ∈ P𝑚 we have P𝑚 = {𝜏𝑞𝑖 | 𝑖 = 0, . . . , 𝑚 − 1}. Moreover, 𝜎 ∈ 𝐺𝐾 as fixed above
satisfies 𝜎𝜏𝜎−1 = 𝜏𝑞 .

If𝜔 is of level dividing m, it can be written as𝜔 = 𝜔𝑟
𝑚,𝜏 for any 𝜏 ∈ P𝑚 and some 𝑟 ∈ {1, . . . , 𝑞𝑚−2}

(that depends on 𝜏). Call 𝑟 ∈ {1, 2, . . . , 𝑞𝑚 − 2}primitive for m (and q) if there is no proper divisor d
of m such that r is a multiple of (𝑞𝑚 − 1)/(𝑞𝑑 − 1); equivalently, r is primitive, if its base q expansion
𝑟 = [𝑒𝑚−1𝑒𝑛−2 . . . 𝑒1𝑒0]𝑞 , with digits 𝑒 𝑗 ∈ {0, . . . , 𝑞−1}, is preserved under no cyclic digit permutation
but the identity. Then the level m is minimal for 𝜔 = 𝜔𝑟

𝑚,𝜏 if and only if r is primitive for m. In the latter
case, the orbit of 𝜔 under conjugation by 𝜎 has exact length m.

To extend 𝜔𝑚,𝜏 to 𝐺𝐾𝑚 , recall that the local Artin map is an isomorphism 𝐾×𝑚
∼−→ 𝐺ab

𝐾𝑚
that maps

O×𝐾𝑚
to the inertia subgroup of 𝐺ab

𝐾𝑚
; the latter surjects onto 𝐼t/(𝐼t)𝑞

𝑚−1. The choice of 𝜛 gives an
isomorphism 𝐾×𝑚 � Ẑ ×O×𝐾𝑚

; it induces a homomorphism pr2 : 𝐺𝐾𝑚 → 𝐼t/(𝐼t)𝑞
𝑚−1. We define

�̂�𝑚,𝜏 : 𝐺𝐾𝑚

pr2−→ 𝐼t/(𝐼t)𝑞
𝑚−1 𝜔𝑚−→ 𝑘×𝑚

𝜏−→ (𝑘alg)×.

Finally, for 𝜆 ∈ (𝑘alg)× and a finite extension field 𝐾 ′ ⊃ 𝐾 , we write 𝜇𝐾 ′,𝜆 : 𝐺𝐾 ′ → (𝑘alg)× for the
unramified character of 𝐺𝐾 ′ that sends a Frobenius automorphism to 𝜆−1 ∈ 𝑘alg.

The following is the main result of this subsection.
Lemma A.3.1 (Berger, Muller). Let 𝜌 : 𝐺𝐾 → GL𝑛 (𝑘alg) be an n-dimensional irreducible continuous
representation. Let F ⊂ 𝑘alg be a finite field that contains 𝑘𝑛. Then the following hold:
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(a) There exists 𝜆 ∈ (𝑘alg)×, 𝜏 ∈ P𝑛 and a primitive number 𝑟 ∈ {1, 2, . . . , 𝑞𝑛 − 2} such that

𝜌 � 𝜇𝐾,𝜆 ⊗ Ind𝐺𝐾

𝐺𝐾𝑛
!𝜔𝑛,𝜏

𝑟 .

(b) �̄� can be defined over F if and only if 𝜆𝑛 ∈ F.

In particular, given n there are only finitely many isomorphism classes of absolutely irreducible repre-
sentations 𝐺𝐾 → GL𝑛 (F).

Proof. The proof of (a) is essentially that of [Ber10, Corollary 2.1.5] for 𝐾 = Q𝑝 as extended in [Mul13,
Proposition 2.1.1] to any K. We give a complete proof of (a), since it also serves to prove (b). Note that
the last assertion is immediate from (a) and (b).

To prove (a), let 𝜌 : 𝐺𝐾 → GL𝑛 (Falg) be irreducible. Then the wild ramification subgroup 𝑃𝐾 of
𝐺𝐾 acts trivially via �̄�: the group 𝑃𝐾 is normal in 𝐺𝐾 and a pro-p subgroup. If its action on (Falg)𝑛
was not trivial, then the invariants ((Falg)𝑛)𝑃𝐾 would be a nontrivial proper subrepresentation of 𝐺𝐾 .
But this is impossible, since �̄� is irreducible.

We deduce that the restriction �̄� |𝐼𝐾 factors via 𝐼t, and hence is a direct sum of one-dimensional
continuous characters of 𝐼t. Fix one such character 𝜔 and write 𝜔 = 𝜔𝑟

𝑚,𝜏 for m the level of 𝜔, some
𝜏 ∈ P𝑚 and 𝑟 ∈ {1, . . . , 𝑞𝑚 − 2} primitive, and let 𝜔 := 𝜔𝑟

𝑚,𝜏 . It follows that 0 ≠ ( �̄� |𝐺𝐾𝑚
⊗ 𝜔−1)𝐼𝐾 ,

and hence we can find 𝜆′ ∈ (𝑘alg)× such that �̄�𝐾𝑚 ,𝜆′ ⊗ 𝜔 is a subrepresentation of �̄� |𝐺𝐾𝑚
. Let 𝜆 ∈ 𝑘alg

be such that 𝜆𝑚 = 𝜆′ so that �̄�𝐾𝑚 ,𝜆′ = �̄�𝐾,𝜆 |𝐺𝐾𝑚
. Then by Frobenius reciprocity

Ind𝐺𝐾

𝐺𝐾𝑚
(𝜔 ⊗ �̄�𝐾𝑚 ,𝜆′ ) �

(
Ind𝐺𝐾

𝐺𝐾𝑚
𝜔
)
⊗ �̄�𝐾,𝜆

admits a nonzero homomorphism to the irreducible representation �̄�. By the primitivity of r, the orbit
of 𝜔 under conjugation by 𝜎 has length 𝑚 = [𝐺𝐾 : 𝐺𝐾𝑚 ], and it follows that Ind𝐺𝐾

𝐺𝐾𝑚
𝜔 is irreducible

by the criterion of Mackey, see Lemma 2.1.4(e). This yields the isomorphism

𝜌 �
(
Ind𝐺𝐾

𝐺𝐾𝑚
𝜔𝑟
𝑚,𝜏

)
⊗ 𝜇𝐾,𝜆,

and moreover that 𝑚 = 𝑛, proving (a).
For (b), assume first that �̄� is defined over F. From our definitions and our hypothesis on |F| is it

clear that �̄�′ := Ind𝐺𝐾

𝐺𝐾𝑚
𝜔𝑟
𝑚,𝜏 is defined over 𝑘𝑛 ⊂ F. It follows that det�̄�′(𝜎), det�̄�(𝜎) ∈ F×. Since

det�̄�(𝜎) = 𝜆𝑛 · det�̄�′(𝜎), we deduce 𝜆𝑛 ∈ F. For the converse, let 𝜆 ∈ (Falg
𝑝 )× satisfy 𝜆𝑛 ∈ F. From

Lemma 4.6.6, one deduces that the characteristic polynomial of any 𝜎 ∈ 𝐺𝐾 acting via �̄� lies in
F[𝑡]. It follows from the triviality of the Brauer group of a finite field and [CR62, Section 70] that the
representation �̄� can be defined over F. �

A.4. A variant of a result of Vaccarino

In Theorem A.4.4 of this subsection, we prove a variant of the main theorem of Vaccarino from [Vac09]
for group rings of free groups instead of free associative algebras. We use this result in the construction
of induction for general pseudocharacters in Theorem 4.6.7.

Let us first introduce some notation. For a set 𝑋 , let FM(𝑋) be the free monoid over 𝑋 and let FG(𝑋)
be the free group over 𝑋; we regard FM(𝑋) as a submonoid of FG(𝑋). We define Z{𝑋} := Z[FM(𝑋)]
as the monoid ring of FM(𝑋) over Z; in other words, Z{𝑋} is the free associative Z-algebra in the
indeterminates 𝑥 ∈ 𝑋 . We also define Z{𝑋±} := Z[FG(𝑋)] as the group ring of FG(𝑋) over Z and note
thatZ{𝑋} is a subring ofZ{𝑋±} via the inclusion FM(𝑋) ⊂ FG(𝑋). Let further 𝐹𝑋 (𝑛) be the polynomial
ring Z[𝜉𝑥,𝑖, 𝑗 : 𝑥 ∈ 𝑋, 1 ≤ 𝑖, 𝑗 ≤ 𝑛] in indeterminates 𝜉𝑥,𝑖, 𝑗 , that is, the commutative ring of matrix
coefficients of generic 𝑛 × 𝑛-matrices over 𝑋 . Then one has the natural generic matrices representation

𝜌𝑋 : Z{𝑋} −→Mat𝑛×𝑛 (𝐹𝑋 (𝑛)), 𝑥 ↦→ 𝜉𝑥 := (𝜉𝑥,𝑖, 𝑗 )1≤𝑖, 𝑗≤𝑛.
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Let 𝐸𝑋 (𝑛) ⊂ 𝐹𝑋 (𝑛) be the subring generated by the coefficients of the characteristic polynomials of
the matrices 𝜌𝑋 (𝑤), 𝑤 ∈ FM(𝑋). The associated degree n pseudocharacter 𝐷𝜌𝑋 , cf. Definition 4.1.4,
factors through a unique 𝐸𝑋 (𝑛)-valued pseudocharacter

𝐷𝑋 := 𝐷𝜌𝑋 : Z{𝑋} −→ 𝐸𝑋 (𝑛),

as follows for instance from [Che14, Corollary 1.14] using Amitsur’s formula.
Let 𝐷𝑢

𝑋 : Z{𝑋} → 𝑅univ
Z{𝑋 },𝑛 be the universal n-dimensional pseudocharacter of Z{𝑋} from Propo-

sition 4.2.1 so that one has a unique homomorphism 𝛼𝑋 : 𝑅univ
Z{𝑋 },𝑛 → 𝐸𝑋 (𝑛) in CA𝑙𝑔Z with

𝛼𝑋 ◦ 𝐷𝑢
𝑋 = 𝐷𝑋 . The following result is an important theorem of Vaccarino.

Theorem A.4.1 (Vaccarino; [Vac09, Theorem 28]). The map 𝛼𝑋 : 𝑅univ
Z{𝑋 },𝑛 → 𝐸𝑋 (𝑛) is an isomorph-

ism, and in particular 𝑅univ
Z{𝑋 },𝑛 is a domain and a free Z-module.

In the remainder of this section, we shall extend the pseudocharacter 𝐷𝑋 : Z[FM(𝑋)] → 𝐸𝑋 (𝑛) to
an explicit pseudocharacter 𝐷𝑋± : FG(𝑋) → 𝐸𝑋± (𝑛) on FG(𝑋) and prove that the extension has again
a universal property. The following lemma provides some required auxiliary results.

Lemma A.4.2. Let G be a group and let 𝑀 ⊂ 𝐺 be a submonoid that is also a generating set of G (as
a group). Let A be in CA𝑙𝑔Z. Then the following hold:

(a) If 𝐷 : 𝐴[𝑀] → 𝐴 is a pseudocharacter of degree n and if 𝑚 ∈ 𝑀 is an element such that
Λ𝐷,𝑛 (𝑚) ∈ 𝐴×, then the class of m is a unit of 𝐴[𝑀]/CH(𝐷) and its inverse is the class of

𝑞𝐷,𝑚 := Λ𝐷,𝑛 (𝑚)−1 ·
𝑛−1∑
𝑖=0
(−1)𝑛−1−𝑖Λ𝐷,𝑖 (𝑚) 𝑚𝑛−𝑖−1.

(b) Let 𝐷, 𝐷 ′ : 𝐴[𝐺] → 𝐴 be pseudocharacters of degree n. Then we have:
(1) The canonical map 𝐴[𝑀] → 𝐴[𝐺]/CH(𝐷) is surjective.
(2) If 𝐵 ⊂ 𝐴 is a subring such that 𝐷 (𝐵[𝑀]) ⊂ 𝐵 and Λ𝐷,𝑛 (𝑀) ⊂ 𝐵×, then 𝐷 (𝐵[𝐺]) ⊂ 𝐵.
(3) If 𝐷 |𝐴[𝑀 ] = 𝐷 ′

𝐴[𝑀 ] , then 𝐷 = 𝐷 ′.

Proof. For (a), simply note that the Cayley–Hamilton identity 𝜒𝐷 (𝑚, 𝑡) |𝑡=𝑚 = 0 holds in the ring
𝐴[𝑀]/CH(𝐷). Because 1 − 𝑚 · 𝑞𝐷,𝑚 = (−1)𝑛Λ𝐷,𝑛 (𝑚)−1 · 𝜒𝐷 (𝑚, 𝑡) |𝑡=𝑚, Part (a) follows.

To see (b)(1), it suffices to show that the class of any 𝑔 ∈ 𝐺 in 𝐴[𝐺]/CH(𝐷) lies in the image of
𝐴[𝑀]. Because M generates G, we can write 𝑔 = 𝑚𝜀1

1 ·𝑚
𝜀2
2 · . . . ·𝑚

𝜀𝑟
𝑟 for suitable 𝑚1, . . . , 𝑚𝑟 ∈ 𝑀 and

𝜀1, . . . , 𝜀𝑟 ∈ {±1}. Note that Λ𝐷,𝑛 (𝑚𝑖) ∈ 𝐴× as observed before Definition 4.1.5. So in the formula
for g we can by (a), whenever 𝜀𝑖 = −1, replace the occurring 𝑚−1

𝑖 by 𝑞𝐷,𝑚𝑖 ∈ 𝐴[𝑀], and this shows
𝑔 ∈ 𝐴[𝑀] + CH(𝐷).

We turn to (b)(2). As we assume Λ𝐷,𝑛 (𝑀) ⊂ 𝐵×, the argument in the previous paragraph now shows
that 𝐵[𝐺] ⊂ 𝐵[𝑀] +CH(𝐷). By the further hypothesis 𝐷 (𝐵[𝑀]) ⊂ 𝐵 we deduce that all characteristic
polynomial coefficients of any 𝑔 ∈ 𝐺 lie in B, and Part (b)(2) now follows from Proposition 4.1.10
quoted from [Che14].

Finally, we prove (b)(3). Let us go back to the argument for (b)(1). It replaces an element x of 𝐴[𝐺]
by using the Cayley–Hamilton identity by an element 𝑥 ′ in 𝐴[𝑀] in such a way that in the replacement,
which used 𝑞𝐷,𝑚 from (a), only values involving 𝐷 |𝐴[𝑀 ] were used. It follows that the construction of
𝑥 ′ from x is the same whether we use 𝐷 or 𝐷 ′ since we assume 𝐷 |𝐴[𝑀 ] = 𝐷 ′ |𝐴[𝑀 ] . Therefore, we have
𝐷 (𝑥) = 𝐷 (𝑥 ′) = 𝐷 ′(𝑥 ′) = 𝐷 (𝑥) for all 𝑥 ∈ 𝐴[𝐺], and we are done. �

Let us now turn to the construction of 𝜌𝑋± and its properties. To extend 𝜌𝑋 to FG(𝑋), we wish to
invert 𝜉𝑥 ∈ Mat𝑑×𝑑 (𝐹𝑋 (𝑛)), and so we need det(𝜉𝑥) to be a unit; observe that det(𝜉𝑥) is a coefficient
of the characteristic polynomial of 𝜌𝑋 (𝑥) and hence lies in 𝐸𝑋 (𝑛). We define the subrings 𝐹𝑋± (𝑛) =
𝐹𝑋 (𝑛) [det(𝜉𝑥)−1 : 𝑥 ∈ 𝑋] and 𝐸𝑋± (𝑛) = 𝐸𝑋 (𝑛) [det(𝜉𝑥)−1 : 𝑥 ∈ 𝑋] of the fraction field of the integral
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domain 𝐹𝑋 (𝑛) by adjoining the inverses of det(𝜉𝑥) for all 𝑥 ∈ 𝑋 to 𝐹𝑋 (𝑛) and to 𝐸𝑋 (𝑛), respectively.
It is now clear that the representation 𝜌𝑋 has a canonical extension to a representation

𝜌𝑋± : Z{𝑋±} −→Mat𝑛×𝑛
(
𝐹𝑋± (𝑛)

)
, 𝑥 ↦−→ 𝜉𝑥 .

Proposition A.4.3. The pseudocharacter

𝐷𝑋± := 𝐷𝜌𝑋± : Z{𝑋±} → 𝐹𝑋± (𝑛)

associated to 𝜌𝑋± takes values in 𝐸𝑋± (𝑛) ⊂ 𝐹𝑋± (𝑛), and 𝐸𝑋± (𝑛) is the minimal such ring.

Proof. Let 𝑀 = FM(𝑋) ⊂ 𝐺 = FG(𝑋), 𝐵 = 𝐸𝑋± (𝑛) ⊂ 𝐴 = 𝐹𝑋± (𝑛) and 𝐷 = 𝐷𝑋± so that 𝐷 |𝐵 [𝑀 ] =
𝐷𝑋 ⊗𝐸𝑋 (𝑛) 𝐸𝑋± (𝑛). Since 𝐷𝑋 is defined over 𝐸𝑋 (𝑛) we have 𝐷 (𝐵[𝑀]) ⊂ 𝐵, and by definition of
𝐸𝑋± (𝑛) we have Λ𝐷𝑋 ,𝑛 (𝑋) ⊂ 𝐵× and hence by multiplicativity of 𝐷 also Λ𝐷𝑋 ,𝑛 (𝑀) ⊂ 𝐵×. The first
assertion on 𝐷𝑋± now follows by applying Lemma A.4.2(b)(2).

The minimality of 𝐸𝑋± (𝑛) is straightforward: By Theorem A.4.1, the target ring has to contain
𝐸𝑋 (𝑛), but it also has to contain the elements 𝐷𝑋± (𝑥−1) = det(𝜉𝑥)−1 for all 𝑥 ∈ 𝑋 . �

From now on, we regard 𝐷𝑋± as a pseudocharacter

𝐷𝑋± : Z{𝑋±} → 𝐸𝑋± (𝑛).

Let 𝐷𝑢
𝑋± : Z{𝑋±} → 𝑅univ

Z{𝑋± },𝑛 be the universal n-dimensional pseudocharacter from Proposition 4.2.1.
By the universal property of 𝑅univ

Z{𝑋± },𝑛, there is a unique homomorphism

𝛼𝑋± : 𝑅univ
Z{𝑋± },𝑛 → 𝐸𝑋± (𝑛),

such that 𝐷𝑋± = 𝛼𝑋± ◦𝐷𝑢
𝑋± . The following variant of Theorem A.4.1 is the main result in this subsection.

Theorem A.4.4. The map 𝛼𝑋± is an isomorphism, and in particular:

(a) 𝑅univ
Z{𝑋± },𝑛 is a domain and a free Z-module.

(b) The pseudocharacter 𝐷𝑢
𝑋± is associated to the genuine representation 𝜌𝑋± of FG(𝑋).

Proof. We directly prove that the pair (𝐸𝑋± (𝑛), 𝐷𝑋±) has the universal property of the pair
(𝑅univ
Z{𝑋± },𝑛, 𝐷

𝑢
𝑋±). So let 𝐷± : 𝐴[FG(𝑋)] → 𝐴 be a pseudocharacter of degree n. Its restriction

𝐷 := 𝐷±|𝐴[FM(𝑋 ) ] is an A-valued pseudocharacter on FM(𝑋). Hence, by the universal property of
𝐸𝑋 (𝑛) from Theorem A.4.1 there is a unique homomorphism 𝛼 : 𝐸𝑋 (𝑛) → 𝐴 such that 𝐷 = 𝛼 ◦ 𝐷𝑋 .

Now, Λ𝐷± ,𝑛 (𝑔) ∈ 𝐴× for all 𝑔 ∈ FG(𝑋) as noted above Definition 4.1.5. So for 𝑥 ∈ 𝑋 the image
of det(𝜉𝑥) = Λ𝐷𝑋 ,𝑛 (𝑥) under 𝛼 is the unit Λ𝐷± ,𝑛 (𝑥) ∈ 𝐴×. Therefore, 𝛼 has a unique extension
𝛼± : 𝐸𝑋± (𝑛) → 𝐴. Let 𝐷 ′ be the A-valued degree n pseudocharacter 𝛼± ◦ 𝐷𝑋± on FG(𝑋).

By construction, 𝐷 ′ and 𝐷± agree when restricted to 𝐴[FM(𝑋)]. From Lemma A.4.2(b)(3) we
conclude that 𝐷 ′ = 𝐷±, that is, that 𝐷± = 𝛼± ◦ 𝐷𝑋± , and this shows the existence of an 𝛼± as required
for the universal property of (𝐸𝑋± (𝑛), 𝐷𝑋±). The uniqueness of 𝛼± is clear, because its restriction to
𝐸𝑋 (𝑛), that is, the map 𝛼, is unique, and the extension from 𝛼 to 𝛼± is also unique. �
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[BIP21] G. Böckle, A. Iyengar and V. Paškūnas, ‘On local Galois deformation rings’, accepted by Forum of Mathematics, Pi

(2023).
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