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Subspaces of de Branges Spaces Generated
by Majorants

Anton Baranov and Harald Woracek

Abstract. For a given de Branges space H(E) we investigate de Branges subspaces defined in terms of

majorants on the real axis. If ω is a nonnegative function on R, we consider the subspace

Rω(E) = ClosH(E)

˘

F ∈ H(E) : there exists C > 0 : |E−1F| ≤ Cω on R
¯

.

We show that Rω(E) is a de Branges subspace and describe all subspaces of this form. Moreover, we

give a criterion for the existence of positive minimal majorants.

1 Introduction

The theory of Hilbert spaces of entire functions introduced by L. de Branges is an im-

portant branch of modern analysis. It is an intriguing example for a fruitful interplay

of function theory and operator theory, which has deep applications in mathematical
physics, namely in differential operators and scattering theory.

One of the striking features of a de Branges space is the structure of its de Branges

subspaces (that is, subspaces which are themselves de Branges spaces) revealed by
de Branges’ Ordering Theorem. This theorem states, roughly speaking, that, for a

given space, the set of all its de Branges subspaces “with the same real zeros” is to-
tally ordered with respect to set-theoretic inclusion. However, given an individual

de Branges space, there is no explicit way to determine the chain of its de Branges

subspaces.
In a recent series of papers V. Havin and J. Mashreghi introduced the notion of

admissible majorants for shift-coinvariant (model) subspaces of the Hardy space

H2(C
+). Since de Branges spaces are, essentially, particular model subspaces of

the Hardy space, this notion is applicable. Of course, due to the rich structure of

de Branges spaces, much more specific results than in the general setting can be ex-
pected.

It is the aim of our present work to show that admissible majorants give rise to

de Branges subspaces and to study the structure of these subspaces. Our main results
are a description of all subspaces which are induced by admissible majorants and a

criterion for the existence of minimal majorants which are separated from zero.

As already indicated in the above abstract, an admissible majorant defines a
de Branges subspace by means of a restriction on the growth along the real axis. It

is an interesting observation that this concept is complementary to imposing growth
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conditions off the real axis. In a recent paper de Branges subspaces were defined by
means of restriction on mean type [KW2]. We will see that the subspaces defined

by majorants cannot be described by mean type conditions. Hence these two meth-
ods can, in conjunction, lead to a description of the whole chain of subspaces of a

de Branges space. An elaboration of this idea will be subject of future work.

Let us describe the organization and content of this paper. In Section 2, we provide
the necessary preliminaries concerning de Branges spaces and admissible majorants.

Section 3 is devoted to the study of subspaces induced by majorants by means of

Definition 3.1 and Proposition 3.2. The main result in this context is the character-
ization of those subspaces which can be realized in this way, given in Theorem 3.4

and Proposition 3.9. As corollaries we obtain a couple of conditions for density of
“small” functions in a given de Branges space. Moreover, we give some rather general

examples to illustrate these results. In Section 4 we turn to a thorough investigation

of minimal majorants. Our main result is Theorem 4.2 where we relate minimal ma-
jorants to one-dimensional subspaces. In combination with Theorem 3.4 this leads

to a characterization of existence of minimal majorants separated from zero (see The-

orem 4.9). This result is closely related to the recent work in [BH].

2 Preliminaries

An entire function E is said to belong to the Hermite-Biehler class HB, if it satisfies

|E(z̄)| < |E(z)|, z ∈ C
+. Sometimes in the literature it is only required that |E(z̄)| ≤

|E(z)|. This, however, is no essential gain in generality. Throughout this paper we

will, for any function F, denote by F# the function F#(z) := F(z̄).

Definition 2.1 If E ∈ HB, the de Branges space H(E) is defined as the set of all
entire functions F which have the property that E−1F, E−1F# ∈ H2(C

+). This space

will be endowed with the norm

‖F‖E :=
( ∫

R

∣
∣
∣
∣

F(t)

E(t)

∣
∣
∣
∣

2

dt
) 1/2

, F ∈ H(E).

It is shown in [deB, Theorem 21] that H(E) is a Hilbert space with respect to the

norm ‖ · ‖E.

Remark 2.2. The definition of H(E) given above can be reformulated. In fact,

an entire function F belongs to H(E) if and only if E−1F, E−1F# ∈ N(C
+),

mt E−1F, mt E−1F# ≤ 0, and E−1F|R ∈ L2(R).

Here N(C
+) denotes the set of all functions of bounded type in C

+, and mt f

denotes the mean type of a function f ∈ N(C
+), i.e.,

mt f := lim sup
y→+∞

y−1 log | f (i y)|,

see e.g., [RR]. In fact, this is the original definition given in [deB].

It is an important feature that de Branges spaces can be characterized axiomati-
cally (see [deB, Problem 50, Theorem 23]). Let H be a nonzero Hilbert space whose

elements are entire functions. Then H is equal to a space H(E) including equality of

norms if and only if H satisfies the following:

https://doi.org/10.4153/CJM-2009-026-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-026-2


Subspaces of de Branges Spaces Generated by Majorants 505

(deB1) for every v ∈ C the point evaluation functional χv : F 7→ F(v) is continuous
on H;

(deB2) if F ∈ H, then also F# ∈ H, and we have ‖F#‖ = ‖F‖, F ∈ H;
(deB3) if F ∈ H and z0 ∈ C \ R with F(z0) = 0, then also

z − z0

z − z0
F(z) ∈ H, and

∥
∥
∥

z − z0

z − z0
F(z)

∥
∥
∥ = ‖F‖.

Remark 2.3. If a Hilbert space H which satisfies (deB1)–(deB3) is given, the function

E ∈ HB which realizes H as H(E) is not unique. In fact, if E1, E2 ∈ HB, then
H(E1) = H(E2), including equality of norms, if and only if (A2, B2) = (A1, B1)U ,

where Ak =
1
2
(Ek +E#

k), Bk =
i
2
(Ek−E#

k), k = 1, 2, and where U is a 2×2-matrix with
real entries and determinant 1. This result is contained in [deB]; an explicit proof can

be found in [KW1, Corollary 6.2].

For an entire function G, let d(G) : C → N be the map which assigns to a point
v its multiplicity as a zero of G. For a de Branges space H we put d(H)(v) :=

minF∈H d(F)(v). Then for any E ∈ HB with H = H(E) we have d(H(E))(t) =

d(E)(t), t ∈ R (see [deB, Problem 45]). Note that by (deB3) we always have

d(H)|C\R = 0.

Remark 2.4. Let v ∈ R and F ∈ H(E) with F(v) = 0 be given. If d(F)(v) > d(E)(v),
then (z − v)−1F(z) ∈ H(E) see [deB, Problem 45].

By (deB1), a de Branges space H is a reproducing kernel Hilbert space of entire
functions. This means that there exists a (unique) function K(v, z), entire in z and

in v̄, such that for every fixed v ∈ C, we have K(v, · ) ∈ H and (F, K(v, · )) = F(v),

F ∈ H. If H is realized as H(E) with some E ∈ HB, the reproducing kernel of H can
be written explicitly in terms of E. In fact, we have

K(v, z) =
E(z)E(v) − E#(z)E(v̄)

2πi(v̄ − z)
,

(see [deB, Theorem 19]).

Definition 2.5 A subset L of a de Branges space H is called a deB-subspace if it is
itself, with the norm inherited from H, a de Branges space. We shall denote the set

of all deB-subspaces of a given space H by Sub(H).

In view of the above axiomatic characterization of de Branges spaces, a subset L of

H is a deB-subspace if and only if

(Sub1) L is a closed linear subspace of H;
(Sub2) if F ∈ L, then also F# ∈ L;

(Sub3) if F ∈ L and z0 ∈ C \ R with F(z0) = 0, then also z−z0

z−z0
F(z) ∈ L.

Those deB-subspaces L of a given de Branges space H with

(SubZ) d(L) = d(H)

are of particular importance. The set of all such deB-subspaces will be denoted by

Subs(H). Note that, if H and L are written as H(E) and H(E1), respectively, with

some E, E1 ∈ HB, then the validity of (SubZ) just means that d(E1)|R = d(E)|R.
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One of the deepest and most fundamental results in the theory of de Branges
spaces is the so-called de Branges’ Ordering Theorem (see [deB, Theorem 35]).

Theorem 2.6 (de Branges’ Ordering Theorem) Let H be a de Branges space and let

d : R → N ∪ {0} be given. Then the set {L ∈ Sub(H) : d(L) = d} is totally ordered

with respect to set-theoretic inclusion.

Example 2.7. An important example of a de Branges space is the classical Paley–

Wiener space PWa, a > 0. It can be defined as the space of all entire functions of
exponential type at most a, whose restrictions to the real axis belong to L2(R). The

norm in the space PWa is given by the usual L2-norm, ‖F‖2 :=
∫

R
|F(t)|2dt , F ∈ PWa.

It is a consequence of a theorem of M. G. Krein (see [RR, Examples/Addenda 2, p.
134]), that PWa = H(e−iaz). The chain Subs(PWa) is given as

Subs(PWa) =
{

PWb : 0 < b ≤ a
}

.

The name of the space PWa originates in the Paley–Wiener theorem, by which PWa

is the Fourier image of L2(−a, a).

Example 2.8. More general examples of de Branges spaces occur in the theory of

canonical (or Hamiltonian) systems of differential equations (see e.g., [deB, Theo-
rems 37 and 38], [GK, HSW]). Let H be a 2 × 2-matrix valued function defined

for t ∈ [0, l], such that H(t) is real and nonnegative, the entries of H(t) belong to
L1([0, l]) and H(t) does not vanish on any nonempty interval. We call an interval

(α, β) ⊆ [0, l] H-indivisible if for some ϕ ∈ R and some scalar function h(t) we

have H(t) = h(t)(cos ϕ, sin ϕ)T(cos ϕ, sin ϕ), t ∈ (α, β) a.e.

Let W (t, z) be the (unique) solution of the initial value problem

∂

∂t
W (t, z)

(
0 −1
1 0

)

= zW (t, z)H(t), t ∈ [0, l], W (0, z) = I.

Put (At(z), Bt(z)) := (1, 0)W (t, z), t ∈ [0, l], and Et(z) := At(z) − iBt(z). Then

Et ∈ HB, t ∈ (0, l], and E0 = 1. If 0 < s ≤ t ≤ l, then H(Es) ⊆ H(Et) and the set-
theoretic inclusion map is contractive. If s is not an inner point of an H-indivisible

interval, it is actually isometric. Moreover, we have

Subs(H(El)) =
{

H(Et ) : t not an inner point of H-indivisible interval
}

.

Paley–Wiener spaces can be realized in this way. In fact, if H(t) = I, t ∈ [0, l], then

Et(z) = e−itz .

Remark 2.9. If E ∈ HB, then ΘE := E−1E# is an inner function in C
+. The map-

ping F 7→ E−1F is an isometric isomorphism of H(E) onto the model subspace

KΘE
:= H2(C

+)⊖ΘEH2(C
+) (see e.g., [HM1, Theorem 2.10]). Therefore, de Branges

spaces are in a sense particular cases of model subspaces. However, de Branges spaces

have many special properties, which have no analogs in the general theory of model

subspaces, the first of which is the ordered structure of their subspaces.
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Definition 2.10 Let E ∈ HB. A nonnegative function ω on the real axis R is said
to be an admissible majorant for the space H(E), if there exists a nonzero function

F ∈ H(E) such that |E(x)−1F(x)| ≤ ω(x), x ∈ R. The set of all admissible majorants
for H(E) is denoted by Adm(E).

Remark 2.11. If E1, E2 ∈ HB generate the same space, i.e., H(E1) = H(E2) including

equality of norms, then Adm(E1) = Adm(E2). This follows from an elementary
estimate using Remark 2.3.

Since for every F ∈ H(E), we have E−1F ∈ H2(C
+), a necessary condition for a

function ω to be an admissible majorant for H(E) is the convergence of the logarith-

mic integral

(2.1)

∫

R

log− ω(x)

1 + x2
dx < ∞.

The description of admissible majorants for the Paley–Wiener spaces PWa =

H(e−iaz) is a classical problem of harmonic analysis. By what we just said, any admis-

sible majorant for a space PWa must satisfy (2.1). The fact that this obvious, neces-
sary condition is in many cases also sufficient is the content of the famous Beurling–

Malliavin Multiplier Theorem (see [BM]).

Theorem 2.12 (Beurling–Malliavin Multiplier Theorem) Let ω be a positive func-

tion on R satisfying (2.1), and assume that the function log ω is Lipschitz on R. Then ω
is an admissible majorant for every space PWa, a > 0.

This is one of the deepest results of harmonic analysis, and several different proofs
of it are known (see e.g., [HJ, MNH, K]). It is referred to as Multiplier Theorem since

it means that for any a > 0 there exists a nonzero multiplier f ∈ PWa such that

f ω−1 ∈ L∞(R).
Admissible majorants for general de Branges spaces (and even in a more general

setting of the model subspaces of the Hardy class) were studied for the first time

by Havin and Mashreghi in [HM1, HM2], where a complete parametrization of the
class Adm(E) is found and a number of conditions sufficient for admissibility are

obtained. Further applications of this approach may be found in [BH, BBH] and in
[MNH] where a new and essentially simpler proof of the Beurling–Malliavin theorem

is given.

All cited papers are concerned with existence of an individual function majorized
by a given ω. A novel feature of this paper is that we study the whole class of functions

majorized by ω, which may be quite large.

Definition 2.13 Let E ∈ HB. We say that an admissible majorant ω for H(E) is
separated from zero if each point x ∈ R has a neighbourhood U (x) ⊆ R such that

inf{ω(t) : t ∈ U (x)} > 0. The set of all admissible majorants for H(E) that are
separated from zero will be denoted by Adm+(E).

Example 2.14. Examples of admissible majorants can be obtained from elements of

H(E). For F ∈ H(E) \ {0}, consider the function ωF(x) := |E(x)−1F(x)|, x ∈ R.
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Then, by definition, |E(x)−1F(x)| ≤ ωF(x), and hence ωF is an admissible majorant
for H(E). Clearly, in this situation, we have ωF ∈ Adm+(E) if and only if d(F)|R =

d(E)|R.

3 Subspaces Generated by Majorants

Throughout this paper we will use the following notation. We write f . g if there

exists a positive constant C such that f ≤ Cg for all admissible values of variables.

Moreover, we write f ≍ g if f . g and g . f .

The relation . is reflexive and transitive, hence it induces an order on equivalence
classes of functions modulo the equivalence relation ≍. In particular, given E ∈ HB,

we obtain an order on the set Adm(E)/≍ as well as on Adm+(E)/≍. Clearly, if ω ∈
Adm(E), or ω ∈ Adm+(E), and ω1 ≍ ω, then also ω1 ∈ Adm(E), or ω1 ∈ Adm+(E),
respectively.

Admissible majorants give rise to deB-subspaces of H(E).

Definition 3.1 For E ∈ HB and ω ∈ Adm(E) define

Rω(E) :=
{

F ∈ H(E) : |E(x)−1F(x)| . ω(x), x ∈ R
}

,

and Rω(E) := ClosH(E) Rω(E).

Proposition 3.2 Let E ∈ HB and let ω ∈ Adm(E). Then the space Rω(E) is a

deB-subspace of H(E). The assignment R : ω 7→ Rω(E) defines a monotone map

of Adm(E)/≍ into Sub(H(E)). Moreover, ω ∈ Adm+(E) if and only if Rω(E) ∈
Subs(H(E)).

Proof By its definition Rω(E) is a closed linear subspace of H(E). Clearly, Rω(E) is

invariant under the map F 7→ F#. Since this map is continuous with respect to the

norm of H(E), (Sub2) follows.

Let F ∈ Rω(E) and v ∈ C \R with F(v) = 0 be given. Then also z−v̄
z−v

F(z) ∈ Rω(E),
i.e. Rω(E) ∩ ker χv, where χv is the point evaluation functional at v, is mapped into

Rω(E) by the map Φ : F(z) 7→ z−v̄
z−v

F(z). Note that, in particular, one can always find

an element G ∈ Rω(E) with G(v) = 1.

Since Φ maps ker χv isometrically and, thus, continuously into H(E), it follows
that

Φ
(

ClosH(E)(Rω(E) ∩ ker χv)
)
⊆ ClosH(E) Rω(E) = Rω(E).

Let F ∈ Rω(E)∩ kerχv, and choose Fn ∈ Rω(E) such that Fn → F. Moreover, choose
G ∈ Rω(E) with G(v) = 1. Since Fn(v) → F(v) = 0, we have Fn − Fn(v)G → F.

Hence Rω(E) ∩ ker χv ⊆ ClosH(E)(Rω(E) ∩ ker χv), and (Sub3) follows.

If ω1, ω2 ∈ Adm(E), ω1 . ω2, then, clearly, Rω1
(E) ⊆ Rω2

(E) and, therefore,

Rω1
(E) ⊆ Rω2

(E). It follows that Rω(E) depends only on the equivalence class ω/≍
and is monotone.

We come to the proof of the last assertion. Let ω ∈ Adm(E). Assume first that

Rω(E) ∈ Subs(H(E)) and let t ∈ R be given. Choose F ∈ Rω(E) with d(F)(t) =

d(E)(t). Then, by continuity, there exists δ > 0 and a compact neighbourhood U (t)

https://doi.org/10.4153/CJM-2009-026-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-026-2


Subspaces of de Branges Spaces Generated by Majorants 509

of t such that |E(x)−1F(x)| ≥ δ, x ∈ U (t). Choose a sequence Gn ∈ Rω(E) such
that Gn → F in the norm of H(E). Then Gn also converges to F locally uniformly.

Since d(Gn)(x) ≥ d(E)(x) for all n ∈ N and x ∈ R, by the Maximium Modulus
Principle, E−1Gn → E−1F locally uniformly on C \ {v ∈ C

− : E(v) = 0}. Hence

there exists n ∈ N such that |E(x)−1Gn(x)| ≥ δ/2, x ∈ U (t). Let C > 0 be such

that |E(x)−1Gn(x)| ≤ Cω(x), x ∈ R, then infx∈U (t) ω(x) ≥ δ
2C

> 0. It follows that
ω ∈ Adm+(E).

Conversely, assume that ω ∈ Adm+(E). Let t ∈ R be given and choose

F ∈ Rω(E) \ {0}. Put n := d(F)(t) − d(E)(t), then n ∈ N ∪ {0}, the function
(z − t)−nF(z) belongs to H(E), and d((z − t)−nF(z))(t) = d(E)(t). Let U (t) be

a compact neighbourhood of t such that infx∈U (t) ω(x) > 0. Then, by continuity,
[(x − t)nE(x)]−1F(x) is bounded on U (t). Thus

|[(x − t)nE(x)]−1F(x)| . ω(x), x ∈ U (t).

Since 1
|x−t| is bounded for x 6∈ U (t), clearly,

|[(x − t)nE(x)]−1F(x)| . |E(x)−1F(x)| . ω(x), x 6∈ U (t).

Hence F(z)
(z−t)n ∈ Rω(E), and it follows that Rω(E) ∈ Subs(E).

Remark 3.3. Taking the closure ClosH(E) in the definition of Rω(E) is actually nec-

essary in order to obtain de Branges subspaces. Although the linear space Rω(E)

always satisfies (Sub2) and (Sub3), it will, in general, not be closed. In fact, if one
assumes that ω ∈ L2(R), then the linear space Rω(E) is not closed unless it is finite-

dimensional. This is seen by an application of a theorem of Grothendieck with the

probability measure

dµ(x) :=
ω2(x)

∫

R
ω2(t)dt

dx

(see [R, Theorem 5.2]). The assumption ω ∈ L2(R) is not too restrictive; for ex-

ample, it is met by every admissible majorant of the form ωF , F ∈ H(E) \ {0} (see

Example 2.14).

In the next theorem we characterize the deB-subspaces of a given space H(E)

which are of the form Rω(E). This is the first main result of this paper.

Theorem 3.4 Let E, E1 ∈ HB be given, such that H(E1) ∈ Sub(H(E)). Then

H(E1) ∈ R(Adm(E)) if and only if mt E1

E
= 0.

Remark 3.5. The mean type condition in this theorem does not depend on the choice

of E and E1. In fact, by Remark 2.3, if H(E1) = H(E2) with equality of norms, then

mt E1

E2
= mt E2

E1
= 0.

In the proof of Theorem 3.4 we will use a class of deB-subspaces defined by a
growth condition (see [KW2]). If H(E) is a de Branges space and β+, β− ≤ 0, denote

by H(E)(β+,β−) the linear subspace

H(E)(β+,β−) :=
{

F ∈ H(E) : mt
F

E
≤ β+, mt

F#

E
≤ β−

}
.
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Then the space H(E)(β+,β−) is closed. Moreover, if β+ = β−, it actually belongs to
Subs(H(E)) ∪ {0} (see [KW2, Lemma 2.6, Corollary 5.2]).

Lemma 3.6 Let H(E) be a de Branges space, β < 0, and assume H(E)(β,β) 6= {0}.

Then dim
(
H(E)(β ′,β ′)

/
H(E)(β,β)

)
= ∞, β ′ ∈ (β, 0].

Proof It is enough to show that for all β with H(E)(β,β) 6= {0} and β ′ ∈ (β, 0]
we have H(E)(β,β) 6= H(E)(β ′,β ′). To see this, choose F ∈ H(E)(β,β) \ {0} and put

α := mt F
E

. Then the function G(z) := ei(α−β ′)zF(z) belongs to H(E) (see [KW2,

Lemma 2.6]), and satisfies mt G
E

= β ′. Since α ≤ β ≤ β ′, we have mt G#

E
= α−β ′ +

F#

E
≤ α − β ′ + β ≤ β ′. Hence G ∈ H(β ′,β ′) \ H(β,β).

Lemma 3.7 Let E, E1 ∈ HB, H(E1) ∈ Sub(H(E)), and β < 0 be given. Then

H(E1) ⊆ H(E)(β,β) if and only if mt E1

E
≤ β.

Proof Assume that H(E)(β,β) 6= {0}. Then [KW2, Lemma 5.5] implies that

H(E)(β,β) = H(Eβ) with Eβ ∈ HB and mt
Eβ

E
= β. Hence, if H(E1) ⊆ H(E)(β,β), we

get

mt
E1

E
= mt

E1

Eβ
︸ ︷︷ ︸

≤0

+ mt
Eβ

E
≤ β.

Conversely, if mt E1

E
≤ β, we obtain

mt
F

E
= mt

(
F

E1
· E1

E

)

= mt
F

E1
+ mt

E1

E
≤ β

for every F ∈ H(E1) \ {0}. Hence F ∈ H(E)(β,0). Since with F also F# be-

longs to H(E1), the same argument will show that F ∈ H(E)(0,β) and, therefore,
F ∈ H(E)(β,β).

Proof of Theorem 3.4 Let E, E1 ∈ HB, H(E1) ∈ Sub(H(E)), be given.

Sufficiency: Assume that mt E1

E
= 0. Since H(E1) ∈ Sub(H(E)), we have d(E1)|R ≥

d(E)|R. Define ω as

ω(x) :=
|E1(x)|

(1 + |x|)|E(x)| , x ∈ R,

then ω is a continuous and nonnegative function on R. Let v ∈ C \ R and consider

the reproducing kernel

K1(v, z) =
E1(z)E1(v) − E#

1(z)E1(v̄)

2πi(v̄ − z)

of H(E1). Then for x ∈ R we have

|K1(v, x)| =
1

2π

∣
∣
∣
∣

E1(x)E1(v) − E#
1(x)E1(v̄)

v̄ − x

∣
∣
∣
∣

≤ 1

π
max{|E1(v)|, |E1(v̄)|} · max

t∈R

1 + |t|
|t − v̄| ·

|E1(x)|
1 + |x| = Cω(x)|E(x)|,
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where

C :=
1

π
max{|E1(v)|, |E1(v̄)|}max

t∈R

1 + |t|
|t − v̄| .

Hence |E(x)−1K1(v, x)| . ω(x), E(x) 6= 0, and by continuity this inequality holds

for all x ∈ R. Hence ω ∈ Adm(E) and K1(v, · ) ∈ Rω(E). Since the linear span of
the reproducing kernels K1(v, · ), v ∈ C \ R, is dense in H(E1), we conclude that

H(E1) ⊆ R(ω).
Conversely, let F ∈ Rω(E). Then F ∈ H(E) and, by [KW2, §2], E1 ∈ H(E) +

zH(E). Thus E−1F, E−1E1 ∈ N(C
+), and it follows that E−1

1 F ∈ N(C
+). Moreover,

by our assumption that mt E1

E
= 0, we have

mt
F

E1
= mt

F

E
+ mt

E

E1
= mt

F

E
≤ 0.

Since F# also belongs to H(E) whenever F does, this argument also applies to F# and
we obtain E−1

1 F# ∈ N(C
+), mt(E−1

1 F#) ≤ 0.

Since F ∈ Rω(E), i.e., |F(x)| . ω(x)|E(x)|, x ∈ R, we have |E1(x)−1F(x)| .
(1 + |x|)−1 ∈ L2(R). It follows that F ∈ H(E1) for any F ∈ Rω(E). Thus, also

R(ω) ⊆ H(E1).

Necessity: Assume that H(E1) = R(ω) for some ω ∈ Adm(E). Let us assume on the

contrary that mt E1

E
= β < 0. Then, by Lemma 3.7, H(E1) ⊆ H(β,β). Consider the

map

Φ :

{

H(β,β), → H(E),

F(z), 7→ eiβzF(z)

(see [KW2, Lemma 2.6]). This map is isometric and, therefore, continuous. Since

Rω(E) ⊆ H(β,β) it follows that Φ(Rω(E)) ⊆ H(E). Clearly, we have |Φ(F)(x)| =

|F(x)|, x ∈ R. Thus, Φ(Rω(E)) ⊆ Rω(E) and, consequently, Φ(Rω(E)) ⊆ Rω(E).
Hence, if F ∈ Rω(E), then for every n ∈ N we have Φn(F) ∈ Rω(E) ⊆ H(E).

However,

mt
Φn(F)

E
= mt

einβzF(z)

E(z)
= −nβ + mt

F

E
.

If F 6= 0 and n is chosen sufficiently large, we have a contradiction since, due to the

inclusion Φn(F) ∈ H(E), always mt Φ
n(F)
E

≤ 0 must hold.

As a byproduct of the proof of Theorem 3.4 we obtain a result that will be of

importance in our further investigation of the structure of Adm(E):

Corollary 3.8 Let E ∈ HB and ω ∈ Adm(E). Then there exists F ∈ H(E)\ {0} such

that R(ω) = R(ωF).

Proof Choose E1 ∈ HB such that R(ω) = H(E1). Then mt E1

E
= 0, and, as we have

seen in the proof of sufficiency of Theorem 3.4,

H(E1) = R

( |E1(x)|
(1 + |x|)|E(x)|

)

.

Let K1 be the reproducing kernel of H(E1) and fix v ∈ C
+. It is easy to see that

|K1(v, x)| ≍ (1 + |x|)−1|E1(x)|, and we conclude that H(E1) = R(ωK1(v,·)).
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The deB-subspaces of highest interest are those which satisfy (SubZ), i.e., the ele-
ments of Subs(H(E)). Correspondingly, the admissible majorants of highest interest

are the elements of Adm+(E). From Theorem 3.4 we deduce a characterization of
R(Adm+(E)).

Proposition 3.9 Let E, E1 ∈ HB be such that H(E1) ∈ Sub(H(E)). Then the follow-

ing are equivalent:

(i) H(E1) ∈ R(Adm+(E));

(ii) H(E1) ∈ Subs(H(E)) and mt E1

E
= 0;

(iii) H(E1) ∈ Subs(H(E)) and H(E1) ⊇ ⋃

β<0 H(E)(β,β).

Proof Combining Theorem 3.4 and Proposition 3.2 we immediately see that (i) is
equivalent to (ii).

Assume that (iii) does not hold, i.e., there exists β < 0 with H(E)(β,β) * H(E1).
Since Subs(H(E)) ∪ {0} is totally ordered, this implies that H(E)(β,β) ⊇ H(E1). We

obtain from Lemma 3.7 that mt E1

E
≤ β, and see that (ii) does not hold.

Conversely, assume that β0 := mt E1

E
< 0. Then H(E1) ⊆ H(E)(β0,β0). Since

H(E1) 6= {0}, it follows that H(E)(β,β) ) H(E)(β0,β0), β ∈ (β0, 0].

From this result we obtain a criterion for density of a set Rω(E) in H(E). Results of

this type are of interest since density of Rω(E) means that all elements of H(E) can be

approximated by functions F satisfying |E−1F| . ω on the real axis, i.e., in a certain
sense, by “small” functions.

Corollary 3.10 Let E ∈ HB.

(i) If the linear space L0 :=
⋃

β<0 H(E)(β,β) is dense in H(E), then for every ω ∈
Adm+(E) the linear space Rω(E) is dense in H(E). Unless dim H(E) = 1, the

converse also holds.

(ii) Assume that ClosH(E) L0 = H(E) and let F0 ∈ H(E), d(F0)|R = d(E)|R. Then

the set {F ∈ H(E) : |F(x)| . |F0(x)|, x ∈ R} is dense in H(E).

Proof The asserted implication in (i) follows immediately from Proposition 3.9,

(i)⇒(iii). To prove the converse, let dim H(E) > 1 and assume that L0 is not dense
in H(E). If L0 = {0}, let L be any element of Subs(H(E)) \ {H(E)}. Note that this

set is nonempty since dim H(E) > 1. If L0 6= {0}, put L := ClosH(E) L0. Since,

clearly, L0 satisfies (Sub2), (Sub3), and (SubZ), the same argument as in Proposi-
tion 3.2 shows that L ∈ Subs(E). By Proposition 3.9, we have L = R(ω0) for some

ω0 ∈ Adm+(E). We see that Rω0
(E) is not dense in H(E).

To establish the assertion (ii), apply (i) with the majorant ωF0
.

We would like to illustrate the above statements with some examples. First let us
make explicit two extreme cases.

Example 3.11. Assume that τE := mt E#

E
< 0. Then Rω(E) = H(E) for all ω ∈

Adm+(E). Indeed, in this situation, by [KW2, Theorem 2.7(ii)], we have

ClosH(E)

⋃

β<0

H(E)(β,β) = H(E).
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This result applies, in particular, to the Paley–Wiener space PWa = H(e−iaz).

Corollary 3.12 For any ω ∈ Adm+(e−iaz) (in particular, if ω(x) = |F0(x)|, where

F0 ∈ PWa has no real zeros, or if ω : R → (0,∞) satisfies (2.1) and log ω is Lipschitz

on R) the set Rω(E) is dense in PWa.

Example 3.13. Assume that E is of zero exponential type. Then, by [KW2, Lemma

5.6], we have H(E)(β,β) = {0} for all β < 0. Hence every element L ∈ Subs(E) can

be written as L = R(ω) for some ω ∈ Adm+(E).

Next, we give an example where some, but not all, deB-subspaces can be realized

as R(ω). This example also shows that the concepts of deB-subspaces defined by
majorants on the one hand and by mean type conditions on the other, are in a way

complementary.

Example 3.14. Consider a canonical system on [0, l] with Hamiltonian H (see Exam-

ple 2.8). Then we have 1 ∈ H(Et ) + zH(Et ), t ∈ (0, l]. The function Et belongs to
N(C

+) and τ(t) := mt Et =
∫ t

0

√
det H(s)ds. Note that τ is a continuous and nonde-

creasing function on [0, l]. We obtain from Proposition 3.9 that a space H(Et ), where

t ∈ (0, l] is not an inner point of an indivisible interval, belongs to R(Adm+(El)) if
and only if τ(t) = τ(l). On the other hand, by Lemma 3.7, we have for β ≤ 0

H(El)(β,β) =

{

H(Es(β)), s(β) > 0,

{0}, otherwise,

where s(β) := sup
{

t ∈ [0, l] : τ(t) = τ(l) + β
}

.

4 Minimal Majorants

In this section we will have a closer look at the order structure of Adm(E)/≍ and
Adm+(E)/≍, respectively. It turns out that the question of existence of minimal ele-

ments is an intriguing matter.

Definition 4.1 An admissible majorant ω is said to be minimal if its equivalence

class ω/≍ is a minimal element of Adm(E)/≍. This means that for every admissible

majorant ω̃ with ω̃ . ω, we must have ω̃ ≍ ω.

Our investigation is based on the following result, which shows that minimal ad-

missible majorants correspond to one-dimensional deB-subspaces of H(E).

Theorem 4.2 Let E ∈ HB. If ω ∈ Adm(E) is minimal in Adm(E)/≍, then

dim Rω(E) = 1. Conversely, if ω ∈ Adm(E) and dim Rω(E) = 1, then there exists

ω0 ∈ Adm(E), which is minimal in Adm(E)/≍, such that Rω(E) = Rω0
(E).

Proof

Step 1. Let ω ∈ Adm(E) and assume that dim Rω(E) > 1. We show that ω is not

minimal in Adm(E)/≍.
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Since dim Rω(E) > 1, we also have dim Rω(E) > 1. Choose linearly independent
elements F1, F2 of Rω(E). Fix v ∈ C \ R and choose α1, α2 ∈ C, not both zero, such

that α1F1(v) + α2F2(v) = 0. Put

F(z) :=
α1F1(z) + α2F2(z)

z − v
.

Then F ∈ Rω(E) and does not vanish identically. Hence ωF . ω. However, we have

|E(x)−1F(x)| . (1 + |x|)−1ω(x), x ∈ R, and hence infx∈R
ωF(x)
ω(x)

= 0. Thus, ω 6. ωF.

It follows that ω is not minimal in Adm(E)/≍.

Step 2. Let F ∈ H(E) \ {0} and dim RωF
(E) = 1. Then ωF is minimal in Adm(E)/≍.

Let ω ∈ Adm(E) be given such that ω . ωF , and choose G ∈ Rω(E) \ {0}. Then
G also belongs to RωF

(E). Our assumption that dim RωF
(E) = 1 implies F = λG for

some λ ∈ C. It follows that, for some appropriate constant C > 0,

ωF(x) =

∣
∣
∣
∣

F(x)

E(x)

∣
∣
∣
∣
= |λ|

∣
∣
∣
∣

G(x)

E(x)

∣
∣
∣
∣
≤ C|λ|ω(x).

Hence ωF . ω, and we see that ωF is minimal in Adm(E)/≍.

Step 3. Let ω ∈ Adm(E) and dim Rω(E) = 1. Then for every F ∈ Rω(E) \ {0} we

have ωF . ω and Rω(E) = RωF
(E).

Fix F ∈ Rω(E) \ {0}, and consider ωF. Since Rω(E) is finite-dimensional, we have
Rω(E) = Rω(E). Thus, ωF . ω and so RωF

(E) ⊆ Rω(E). Since dim Rω(E) = 1, this

implies that dim RωF
(E) = 1, and thus, clearly, also RωF

(E) = Rω(E).

Step 4. The proof of the theorem is now easily completed. Assume that ω is minimal,

then by Step 1 we must have dim Rω(E) = 1. Assume conversely that dim Rω(E) = 1.

Choose F ∈ Rω(E) \ {0}, then, by Step 3, Rω(E) = RωF
(E) and, by Step 2, ωF is

minimal.

Remark 4.3. An analogous result is actually true in the model subspaces setting
(see [BH, Proposition 5.6]). However, in contrast to the general situation, we ob-

tain in the case of de Branges spaces a one-to-one correspondence between minimal

majorants and one-dimensional de Branges subspaces.

Corollary 4.4 Let ω ∈ Adm(E). Then ω is minimal in Adm(E)/≍ if and only if

dim Rω(E) = 1 and ω ≍ ωF for some F ∈ H(E) \ {0}. In this case ω ≍ ωF for any

F ∈ Rω(E) \ {0}.

Proof Assume that ω ∈ Adm(E) is minimal in Adm(E)/≍. By the above theorem

we have dim Rω(E) = 1. By Step 3 of its proof, for F ∈ Rω(E) \ {0}, the majorant ωF

satisfies ωF . ω. By minimality of ω, this implies ωF ≍ ω. The converse is just Step 2

of the above proof.

Remark 4.5. It should be emphasized that if ω ∈ Adm(E) has the property that

dim Rω(E) = 1, it does not necessarily follow that ω itself is minimal.
For example, let E(z) := (z + i)(z + 2i). Then H(E) = span{1, z} and we see

that ω(x) := |E(x)|−1 and ω1(x) := |E(x)|−1
√

|x| + 1 belong to Adm+(E) and that

Rω(E) = Rω1
(E) = span{1}. However, clearly, ω is essentially smaller than ω1.
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Corollary 4.6 Let E ∈ HB and assume that dim H(E) > 1. Then the set Adm(E)/≍
contains uncountably many minimal elements.

Proof Let x0 ∈ R and consider the function Sα(z) := eiαE(z) − e−iαE#(z), α ∈
[0, π). Then there exists at most one number α ∈ [0, π) such that Sα ∈ H(E).

Hence all but at most countably many real numbers t are not zeros of a function Sα

belonging to H(E). Then, by [deB, Theorem 22], for such t the space RωK(t,·)
(E) is

one-dimensional; in fact

RωK(t,·)
(E) = span{K(t, ·)}.

By Corollary 4.4, ωK(t,·) is minimal in Adm(E)/≍.
Since dim H(E) > 1, no two of the elements K(t, ·), t ∈ R, are linearly dependent.

Hence no two of the spaces RωK(t,·)
(E) coincide. Thus no two of the majorants ωK(t,·)

define the same equivalence class in Adm(E)/≍.

For admissible majorants separated from zero the situation is significantly dif-

ferent. Below we will show that the set Adm+(E)/≍ need not necessarily contain
minimal elements and give a criterion for the existence of minimal elements in

Adm+(E)/≍.

Lemma 4.7 Let ω ∈ Adm+(E) be given. Then ω/≍ is a minimal element in

Adm+(E)/≍ if and only if it is minimal in Adm(E)/≍.

Proof Let ω/≍ be a minimal element of Adm+(E)/≍ and assume that ω1 ∈ Adm(E)

is such that ω1 ≤ ω and infR ω1/ω = 0. It is elementary to see that, since ω ∈
Adm+(E), there exists a function ω2 separated from zero and such that ω1 ≤ ω2 ≤ ω,
infR ω2/ω = 0. Thus, ω2 ∈ Adm+(E), ω2 . ω, but ω2 6≍ ω, which contradicts the

minimality of ω/≍ in Adm+(E)/≍.

Lemma 4.8 Let E ∈ HB. Then the space H(E) contains a real function S with

(4.1) d(S)|R = d(E)|R and d(S)|C\R = 0,

if and only if there exists L ∈ Subs(H(E)) such that dim L = 1. In this case there exists,

up to constant real multiples, exactly one real function S ∈ H(E) which satisfies (4.1).

Proof If S = S# and (4.1) holds, then, clearly, L := span{S} satisfies (Sub1)–(Sub3)

and (SubZ). Conversely, assume that L ∈ Subs(H(E)) is one-dimensional. By (Sub2)
there exists S = S# ∈ L \ {0}. Since, for a zero v of S, the functions S(z) and S(z)

z−v

are linearly independent, it follows from (Sub3) and Remark 2.4 that S must satisfy
(4.1).

If S1, S2 are real elements of H(E) which both satisfy (4.1), then span{S1} and

span{S2} are one-dimensional elements of Subs(H(E)). Hence, by the Ordering The-
orem, span{S1} = span{S2}.

Combining Theorem 4.2 with Theorem 3.4 leads to the following.

Theorem 4.9 Let E ∈ HB. Then there exists a minimal element in Adm+(E)/≍ if

and only if the following hold:
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(i) there exists L ∈ Subs(H(E)) with dim L = 1;

(ii) for all β < 0 we have H(E)(β,β) = {0}.

In this case there exists exactly one minimal element in Adm+(E)/≍, namely ωS/≍
where S is the (up to scalar multiples unique) real element of H(E) with d(S)|R =

d(E)|R, d(S)|C\R = 0.

Proof Assume that conditions (i) and (ii) hold. Let L be the one-dimensional el-

ement of Subs(H(E)), and let S be as in Lemma 4.8. By Proposition 3.9 there ex-
ists ω ∈ Adm+(E) such that L = R(ω). By Step 3 of the proof of Theorem 4.2,

we have RωS
(E) = L, and ωS is minimal by Step 2. Since S satisfies (4.1), we have

ωS ∈ Adm+(E).

Assume that ω is a minimal element of Adm+(E)/≍. By Lemma 4.7 and Theo-

rem 4.2, we have dim Rω(E) = 1. Hence (i) holds. Moreover, by Theorem 3.4, we
must have Rω(E) ⊇ H(β,β) for all β < 0. Thus, dim H(β,β) ∈ {0, 1} for all β < 0.

If for some β < 0 we have dim H(β,β) = 1, we would have H(β,β) = H(β ′,β ′) for all
β ′ ∈ (β, 0), which contradicts Lemma 3.6.

Let ω1, ω2 be minimal elements of Adm+(E)/≍. By Lemma 4.7 and Theorem 4.2
we have dim Rω j

(E) = 1, j = 1, 2. Since Rω j
(E) ∈ Subs(H(E)), it follows that

Rω1
(E) = Rω2

(E) = span{S} where S is as in Lemma 4.8. By Corollary 4.4 we have

ω j ≍ ωS, j = 1, 2.

Remark 4.10. The present Theorem 4.9 is a (slight) generalization of a result of Havin

and Mashreghi (see [HM1] or [B, BH]), which states the following: Assume that E ∈
HB is of zero exponential type. Then there exists a positive and continuous minimal

majorant in Adm(E) if and only if 1 ∈ H(E). Moreover, in case of existence, this

majorant is given by ω = |E|−1, and any other continuous positive minimal majorant

ω1 ∈ Adm(E) satisfies ω1 ≍ |E|−1.

Note that, in the present setting, the inclusion 1 ∈ H(E) is equivalent to |E|−1 ∈
L2(R). A number of conditions sufficient for the inclusion 1 ∈ H(E) may be found
in [B, KW3].

Example 4.11. Consider a canonical system defined on [0, l] with Hamiltonian H.
Then Adm+(El) contains a minimal element if and only if for some ǫ > 0 the interval

(0, ǫ) is indivisible and det H(t) = 0, a.e. t ∈ [0, l]. In this case the minimal majorant
is given by |El(x)|−1.

In particular, for the Paley–Wiener space PWa = H(e−iaz) there are no minimal
majorants.
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1996.

[MNH] J. Mashreghi, F. Nazarov, and V. P. Havin, Beurling–Malliavin multiplier theorem: the seventh
proof. St. Petersburg Math. J. 17(2006), no. 5, 699–744.

[RR] M. Rosenblum and J. Rovnyak, Topics in Hardy classes and univalent functions. Birkhäuser
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