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Peng Gao and Liangyi Zhao

Abstract

In this paper, we prove some one level density results for the low-lying zeros of families of
L-functions. More specifically, the families under consideration are that of L-functions
of holomorphic Hecke eigenforms of level 1 and weight k twisted with quadratic Dirichlet
characters and that of cubic and quartic Dirichlet L-functions.

1. Introduction

The density conjecture of Katz and Sarnak suggests that the distribution of zeros near the central
point of a family of L-functions is the same as that of eigenvalues near 1 of a corresponding
classical compact group. This has been confirmed for many families of L-functions, such as
different types of Dirichlet L-functions [Gao, HR03, Mil08, OS99, Rub01], L-functions with
characters of the ideal class group of the imaginary quadratic field Q(

√
−D) [FI03], automorphic

L-functions [DM09, HM07, ILS00, RR, Roy01], elliptic curve L-functions [BZ08, Bru92, Hea04,
Mil04, You05], symmetric powers of GL(2) L-functions [DM06, Gul05b] and a family of GL(4)
and GL(6) L-functions [DM06]. The literature in this direction is too numerous to be completely
listed here. In this paper, we prove some one level density results for the low-lying zeros of
families of L-functions of holomorphic Hecke eigenforms of level 1 and weight k twisted with
quadratic Dirichlet characters and those of families of cubic and quartic Dirichlet L-functions.

Let χ be a primitive Dirichlet character and denote the non-trivial zeros of the Dirichlet
L-function L(s, χ) by 1

2 + iγχ,j . Without assuming the generalized Riemann hypothesis (GRH),
we order them as

· · ·6 <γχ,−2 6 <γχ,−1 < 0 6 <γχ,1 6 <γχ,2 6 · · · . (1.1)

For any primitive Dirichlet character χ of conductor q of size X, we set

γ̃χ,j =
γχ,j
2π

log X

and define for an even Schwartz class function φ,

S(χ, φ) =
∑
j

φ(γ̃χ,j). (1.2)

In [OS99], Özluk and Snyder studied the family of quadratic Dirichlet L-functions. Consider
the family of Dirichlet L-functions of the form L(χ8d, s) for d odd and square-free with
X 6 d6 2X, where χ8d = (8d

· ) is the Kronecker symbol. Let D(X) denote the set of such d.
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It is easy to see, as noted in [Gao], that

#D(X)∼ 4X
π2

.

Assuming the GRH for this family, it follows from the result of Özluk and Snyder [OS99] that
for WUSp(x) = 1− (sin(2πx)/2πx) we have

1
#D(X)

∑
d∈D(X)

S(χ8d, φ)∼
∫

R
φ(x)WUSp(x) dx (1.3)

as X →∞ provided that the support of φ̂, the Fourier transform of φ, is contained in the interval
(−2, 2). The expression on the left-hand side of (1.3) is known as the one level density of the
low-lying zeros for this family of L-functions under consideration.

The kernel of the integral WUSp in (1.3) is the same function which occurs on the random
matrix theory side, when studying the eigenvalues of unitary symplectic matrices. This shows
that the family of quadratic Dirichlet L-functions is a symplectic family. In [Rub01], Rubinstein
studied all the n-level densities of the low-lying zeros of the families of quadratic twists of
L-functions attached to a self-contragredient automorphic cuspidal representation, as well as
the family of quadratic Dirichlet L-functions. He showed that they converge to the symplectic
densities for test functions φ(x1, . . . , xn) whose Fourier transforms φ̂(u1, . . . , un) have their
supports contained in the set {

(u1, . . . , un) ∈ Rn :
n∑
i=1

|ui|< 1
}
.

The result of Rubinstein does not assume the GRH. In [Gao], assuming the truth of the
GRH, the first-named author extended Rubinstein’s result [Rub01] and showed that it holds
for φ̂(u1, . . . , un) with support in the set{

(u1, . . . , un) ∈ Rn :
n∑
i=1

|ui|< 2
}
.

In this paper, we consider a few other families of L-functions. First, let f be a fixed
holomorphic Hecke eigenform of level 1 and weight k. For =(z)> 0 we have a Fourier expansion
of f ,

f(z) =
∞∑
n=1

af (n)n(k−1)/2e(nz),

where the coefficients af (n) are real and normalized with af (1) = 1 and satisfy the Ramanujan–
Petersson bound

|a(n)|6 d(n),
with d(n) being the divisor function. Let χ be a primitive Dirichlet character of conductor q.
The L-function of the twist of f by χ is given by

L(f × χ, s) =
∞∑
n=1

af (n)χ(n)
ns

=
∏
p

(
1−

af (p)χ(p)
ps

+
χ(p2)
p2s

)−1

(1.4)

for <(s)> 1. This L-function continues to an entire function and satisfies the functional equation(
q

2π

)s
Γ
(
k

2
+ s

)
L

(
f,

1
2

+ s

)
= ıχ

(
q

2π

)−s
Γ
(
k

2
− s
)
L

(
f × χ, 1

2
− s
)
,

2
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where ıχ = ikτ(χ)2/q and τ(χ) is the Gauss sum associated to χ (thus |ıχ|= 1); cf. [IK04,
Proposition 14.20]. See [Iwa97, IK04] for detailed discussions of Hecke eigenforms.

For a fixed f , we consider the family of quadratic twists of L-functions L(f × χ8d, s) for d
odd and square-free with X 6 d6 2X. For this family, Rubinstein [Rub01] has shown that the
n-level densities of the low-lying zeros converge to the orthogonal densities for test functions
φ(x1, . . . , xn) whose Fourier transforms φ̂(u1, . . . , un) are supported in the set{

(u1, . . . , un) ∈ Rn :
n∑
i=1

|ui|<
1
2

}
.

More precisely, we denote the zeros of L(f × χ8d, s) by 1
2 + iγf,8d,j , and order them in a manner

similar to (1.1). Let γ̃f,8d,j = γf,8d,j2 log X/(2π) and define, for an even Schwartz function φ,

D(d, f, φ) =
∑
j

φ(γ̃f,8d,j).

We set

WSO+(x) = 1 +
sin(2πx)

2πx
, WSO−(x) = δ(x) + 1− sin(2πx)

2πx
and

WO(x) = 1
2(WSO+(x) +WSO−(x)),

where δ0(x) is the Dirac distribution at x= 0. Note that the three orthogonal densities are
indistinguishable for test functions whose Fourier transforms are supported in (−1, 1). The result
of Rubinstein asserts that

1
#D(X)

∑
d∈D(X)

D(d, f, φ)∼
∫

R
φ(x)

(
1 +

sin(2πx)
2πx

)
dx

as X →∞ provided that φ̂ is supported on the interval (−1/2, 1/2). This shows that the family
L(f × χ8d, s) has orthogonal symmetry.

In this paper, we improve the above-mentioned result of Rubinstein by doubling the size of
the allowable support of the Fourier transform of the test function in the case of the one level
density. For technical reasons, we consider the average over the family by a smooth weight.
Let ΦX(t) be a non-negative smooth function supported on (1, 2), satisfying ΦX(t) = 1 for
t ∈ (1 + 1/U, 2− 1/U) with U = log X and such that Φ(j)

X (t)�j U
j for all integers j > 0. Our

result is the following theorem.

Theorem 1.1. Suppose that the GRH is true. Let f be a fixed holomorphic Hecke eigenform of
level 1 and weight k. Let φ(x) be an even Schwartz function whose Fourier transform φ̂(u) has
compact support in (−1, 1). Then we have

lim
X→+∞

1
#D(X)

∑
d∈D(X)

ΦX

(
d

X

)
D(d, f, φ) =

∫
R
φ(x)

(
1 +

sin(2πx)
2πx

)
dx. (1.5)

We shall describe briefly the proof of Theorem 1.1 in this paragraph. Using a modified version
of the explicit formula, Lemma 2.2, D(d, f, φ) in (1.5), a sum over the zeros of the L-function
under consideration, is converted into a sum over primes and prime powers. The most important
among these will be the sums over primes (the one appearing in (2.3)) and prime squares, after
showing that the contributions of the higher prime powers are negligible. The sum involving
prime squares can be easily handled. Thus far, each of the sums can be disposed of for each

3
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individual L-function in question, without appealing to the additional averaging over d in (1.5).
However, this additional sum over the family is needed in the treatment of the more difficult sum
involving primes, (2.3). Following a method of Soundararajan [Sou00], after detecting the square-
free condition of d using the Möbius function and applying the Poisson summation formula to the
sum over d, we are led to consider sums involving quadratic Gauss sums, which is further split
into pieces according to the size of the relevant parameters. The GRH is needed to estimate a
component of these sums. Other estimates are quoted from [Mil08] to give the final estimate for
the sum in (2.3). Theorem 1.1 follows after combining all estimates.

We note that the one level density of the low-lying zeros of the family of quadratic twists of
Hecke L-functions evaluated in Theorem 1.1 is insufficient to determine which of the orthogonal
symmetry types, SO(even), O or SO(odd), is attached to each family, due to the small support
restriction on the Fourier transforms of test functions. However, as shown in [DM06, Mil04],
the two level density allows one to distinguish between the three orthogonal symmetries for
test functions whose Fourier transforms have arbitrarily small support. In fact, it follows from
Rubinstein’s result on the two level density of this family ([Rub01, Lemma 7] and also the formula
on the top of p. 179 in [Rub01]) that the symmetry type attached to the family of quadratic
twists of L-functions L(f × χ8d, s) for d odd and square-free with X 6 d6 2X is SO(even).

In addition, we consider the one level density of the low-lying zeros of the families of cubic
and quartic Dirichlet L-functions in this paper.

For a primitive cubic Dirichlet character χ of conductor q coprime to 3, it is shown in [BY10]
that q must be square-free and a product of primes congruent to 1 modulo 3. It follows that
χ is a product of primitive cubic characters modulo the prime divisors of q and for each prime
divisor p of q there are exactly two primitive characters with conductor p, each being the square
(also the complex conjugate) of the other.

We shall prove the following theorem.

Theorem 1.2. Let f(x) be an even Schwartz function whose Fourier transform f̂(u) has
compact support in (−3/7, 3/7); then

lim
X→+∞

1
#C(X)

∑
X6q62X

∑∗

χ(mod q)
χ3=χ0

S(χ, f) =
∫

R
f(x) dx.

Here the ‘∗’ on the sum over χ means that the sum is restricted to primitive characters and C(X)
denotes the set of primitive cubic characters of conductor q not divisible by 3 and X 6 q 6 2X.

We point out here that Theorem 1.2 is analogous to a result of Güloğlu [Gul05a] and that his
result depends on the GRH while Theorem 1.2 does not. Güloğlu [Gul05a] studied the one level
density of the low-lying zeros of a family of Hecke L-functions associated with the cubic symbols
χc = ( ·c)3 with c square-free and congruent to 1 modulo 9, which are regarded as primitive ray
class characters of the ray class group h(c). We recall here that, for any c, the ray class group h(c)

is defined to be I(c)/P(c), where I(c) = {A ∈ I, (A, (c)) = 1} and P(c) = {(a) ∈ P, a≡ 1 (mod c)},
with I and P denoting the group of fractional ideals in K = Q(ω) and the subgroup of principal
ideals, respectively. Here ω = exp(2πi/3). The Hecke L-function associated with χc is defined for
<(s)> 1 by

L(s, χc) =
∑

06=A⊂OK

χc(A)(N(A))−s,

4

https://doi.org/10.1112/S0010437X10004914 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10004914


One level density of low-lying zeros of families of L-functions

where A runs over all non-zero integral ideals in K and N(A) is the norm of A. As shown
by E. Hecke [Hec20], L(s, χc) admits analytic continuation to an entire function and satisfies
a functional equation. We refer the reader to [Gul05a, Luo04] for a more detailed discussion of
these Hecke characters and L-functions. We denote non-trivial zeros of L(s, χc) by 1

2 + iγχc,j and
order them in a fashion similar to (1.1). Let C(9)(X) stand for the set of χc with c square-free,
congruent to 1 modulo 9 and X 6N(c) 6 2X. We define S(χc, f) similarly to S(χ, φ) in (1.2).

For the family of Hecke L-functions considered by Güloğlu [Gul05a], we can apply our
approach to Theorem 1.2 to obtain the following result without assuming the GRH.

Theorem 1.3. Let f(x) be an even Schwartz function whose Fourier transform f̂(u) has
compact support in (−3/5, 3/5); then

lim
X→+∞

1
#C(9)(X)

∑∗

c≡1(mod 9)
X6N(c)62X

S(χc, f) =
∫

R
f(x) dx.

Here the ‘∗’ on the sum over c means that the sum is restricted to square-free elements c of Z[ω].

The support obtained under the GRH by Güloğlu [Gul05a] is (−31/30, 31/30) in place of
(−3/5, 3/5) in our unconditional Theorem 1.3. In addition, the Güloğlu’s result is a smoothed
version of one level density and depends on other results that require this smoothness. We also
note that, as ∫

R
f(x) dx=

∫
R
f(x)WU (x) dx withWU (x) = 1,

Theorems 1.2 and 1.3 show that the family of cubic Dirichlet L-functions as well as the family
of Hecke L-functions associated with cubic symbols are unitary families, an observation made
in [Gul05a].

Analogous to Theorem 1.2, we also study the one level density of the low-lying zeros of the
family of quartic Dirichlet L-functions. We have the following theorem.

Theorem 1.4. Let f(x) be an even Schwartz function whose Fourier transform f̂(u) has
compact support in (−3/7, 3/7); then

lim
X→+∞

1
#Q(X)

∑
X6q62X

∑∗

χ(mod q)
χ4=χ0,χ2 6=χ0

S(χ, f) =
∫

R
f(x) dx.

Here the ‘∗’ on the sum over χ means that the sum is restricted to primitive characters and Q(X)
denotes the set of primitive complex quartic characters with odd conductor q and X 6 q 6 2X.

The proofs of Theorems 1.2–1.4 are similar. Therefore, we describe briefly here only the proof
of Theorem 1.2. Similar to the proof of Theorem 1.1, we first convert the sum over zeros of the
L-functions under consideration into sums over primes using the relevant versions of the explicit
formula. This leads us to consider sums involving the cubic or quartic symbols over primes and
prime squares. These are then rewritten as sums involving Hecke characters with new summation
conditions. The summation conditions are handled using Möbius inversion and the final estimates
are obtained using a Pólya–Vinogradov-type bound for these Hecke characters, see Lemma 4.1.

1.5 Notation
The following notation and conventions are used throughout the paper.

(i) e(z) = exp(2πiz) = e2πiz.
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(ii) f =O(g) or f � g means |f |6 cg for some unspecified positive constant c.

(iii) For x ∈ R, ‖x‖= minn∈Z |x− n| denotes the distance between x and the closest integer.

2. Preliminaries

2.1 The explicit formula
Our approach in this paper relies on the following explicit formula, which essentially converts
the sum over zeros of an L-function to the sum over primes.

Lemma 2.2. Let f(x) be an even Schwartz function whose Fourier transform f̂(u) is compactly
supported. Then, for any primitive Dirichlet character χ, we have

S(χ, f) =
∫ ∞
−∞

f(t) dt− 1
log X

∑
p

log p
√
p
f̂

(
log p
log X

)
(χ(p) + χ(p))

− 1
log X

∑
p

log p
p

f̂

(
2 log p
log X

)
(χ(p2) + χ(p2)) +O

(
1

log X

)
. (2.1)

Proof. We combine [RS96, (2.16)], the fact that f(x) is rapidly decreasing and the Stirling
formula, which gives that Γ′/Γ(s) = log s+O(1/|s|), uniformly for |arg s|6 π − δ, |s|> 1 to
replace the Γ′/Γ-terms in [RS96, (2.16)] by O(1/log X). Moreover, the terms n= pk for k > 3, p
prime, in the sum on the right-hand side of [RS96, (2.16)] contribute

�
∑
pk,k>3

log p
pk/2

� 1.

The lemma follows from these observations. 2

Similarly, we have [Gul05a, Lemma 4.1].

Lemma 2.3. Let f(x) be an even Schwartz function whose Fourier transform f̂(u) has compact
support. Then, for any square-free c≡ 1(mod 9) of Z[ω], we have

S(χc, f) =
∫ ∞
−∞

f(t) dt− 1
log X

∑
p

log N(p)√
N(p)

f̂

(
log N(p)

log X

)
(χc(p) + χc(p))

− 1
log X

∑
p

log N(p)
N(p)

f̂

(
2 log N(p)

log X

)
(χc(p2) + χc(p

2)) +O

(
1

log X

)
,

where p runs over all non-zero integral ideals in Q(ω).

For <(s)> 1, we can rewrite the Euler product (1.4) of L(f × χ8d, s) as

L(f × χ8d, s) =
∏
p

(
1−

αf (p)χ8d(p)
ps

)−1(
1−

α−1
f (p)χ8d(p)

ps

)−1

,

with αf (p) + α−1
f (p) = af (p). Similar to Lemma 2.2, we have the following lemma.

Lemma 2.4. Let φ(x) be an even Schwartz function whose Fourier transform φ̂(u) is compactly
supported. Then, for d ∈D(X), we have

D(d, f, φ) =
∫ ∞
−∞

φ(t) dt+
1
2

∫ ∞
−∞

φ̂(u) du− S(f, d, X; φ̂) +O

(
log log 3X

log X

)
, (2.2)

6
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with the implicit constant depending on φ and

S(f, d, X; φ̂) =
1

log X

∑
p

af (p) log p
√
p

(
8d
p

)
φ̂

(
log p

2 log X

)
. (2.3)

Proof. We use [RS96, (2.16)] again here and identify cπ(n) in [RS96, (2.16)] as Λ(n)χ8d(n)af (n)
with af (pk) = αkf (p) + α−kf (p) in our case. By Deligne’s proof [Del74] of the Weil conjecture, we
know that |αf (p)|= 1 so that the terms n= pk for k > 3, p prime, in the sum on the right-hand
side of [RS96, (2.16)] contribute O(1). Moreover, note that∑

p|8d

log p
p
� log log 3X.

Thus the terms n= p2 in the sum on the right-hand side of [RS96, (2.16)] contribute

1
log X

∑
p

af (p2) log p
p

φ̂

(
log p
log X

)
+O

(
log log 3X

log X

)
.

Recall that

af (p2) = a2
f (p)− 2 (2.4)

and it follows from [RS96, Proposition 2.3] that∑
p6x

a2
f (p) log2 p

p
=

log2 x

2
+O(log x). (2.5)

Note also that we have Mertens’ formula [Dav00, p. 57],∑
p6x

log p
p

= log x+O(1). (2.6)

Combining (2.4)–(2.6), we deduce that∑
p6x

af (p2) log2 p

p
=− log2 x

2
+O(log x).

From the above and partial summation, we get that

1
log X

∑
p

af (p2) log p
p

φ̂

(
log p
log X

)
= − 1

log X

∫ ∞
1

φ̂

(
log t
log X

)
dt

t
+O

(
log log X

log X

)
= −1

2

∫ ∞
−∞

φ̂(t) dt+O

(
log log X

log X

)
.

The assertion of the lemma follows from this easily. 2

2.5 Poisson summation
We now fix f and X and henceforth write Φ(t) in place of ΦX(t). We shall focus on finding the
asymptotic expression of (with n> 1)

S(X, Y ; φ̂, f, Φ) :=
∑

gcd(d,2)=1

µ2(d)
∑
p6Y

af (p) log p
√
p

(
8d
p

)
φ̂

(
log p

2 log X

)
Φ
(
d

X

)
,

7
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where φ̂(u) is smooth and has its support contained in the interval (−1 + ε, 1− ε) for any ε > 0.
To emphasize this condition, here and throughout, we shall set Y =X2−2ε and write the condition
p6 Y explicitly.

Let Z > 1 be a real parameter to be chosen later and write µ2(d) =MZ(d) +RZ(d) where

MZ(d) =
∑
l2|d
l6Z

µ(l) and RZ(d) =
∑
l2|d
l>Z

µ(l).

Define

SM (X, Y ; φ̂, f, Φ) =
∑

gcd(d,2)=1

MZ(d)
∑
p6Y

af (p) log p
√
p

(
8d
p

)
φ̂

(
log p

2 log X

)
Φ
(
d

X

)
and

SR(X, Y ; φ̂, f, Φ) =
∑

gcd(d,2)=1

RZ(d)
∑
p6Y

af (p) log p
√
p

(
8d
p

)
φ̂

(
log p

2 log X

)
Φ
(
d

X

)
,

so that S(X, Y ; φ̂, f, Φ) = SM (X, Y ; φ̂, f, Φ) + SR(X, Y ; φ̂, f, Φ).

Using standard techniques (see (3.3)), we can show that by choosing Z appropriately that
SR(X, Y ; φ̂, f, Φ) is small. Hence the main term arises only from SM (X, Y ; φ̂, f, Φ). We write it
as

SM (X, Y ; φ̂, f, Φ) =
∑
p6Y

af (p) log p
√
p

(
8
p

)
φ̂

(
log p

2 log X

)( ∑
gcd(d,2)=1

MZ(d)
(
d

p

)
Φ
(
d

X

))
. (2.7)

We now evaluate the inner sum above following a method of Soundararajan in [Sou00] by
applying the Poisson summation formula to the sum over d. For all odd integers k and all
integers m, we introduce the Gauss-type sums

τm(k) :=
∑

a (mod k)

(
a

k

)
e

(
am

k

)
=:
(

1 + i

2
+
(
−1
k

)
1− i

2

)
Gm(k).

We quote [Sou00, Lemma 2.3] which determines Gm(k).

Lemma 2.6. If (k1, k2) = 1 then Gm(k1k2) =Gm(k1)Gm(k2). Suppose that pa is the largest
power of p dividing m (put a=∞ if m= 0). Then for b> 1 we have

Gm(pb) =



0 if b6 a is odd,
φ(pb) if b6 a is even,
−pa if b= a+ 1 is even,(
m/pa

p

)
pa
√
p if b= a+ 1 is odd,

0 if b> a+ 2.

For a Schwartz function F , we define

F̃ (ξ) =
1 + i

2
F̂ (ξ) +

1− i
2

F̂ (−ξ) =
∫ ∞
−∞

(cos(2πξx) + sin(2πξx))F (x) dx. (2.8)

We quote [Sou00, Lemma 2.6] which determines the inner sum in (2.7).
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Lemma 2.7. Let Φ be a non-negative, smooth function supported in (1, 2). For any odd integer k,∑
gcd(d,2)=1

MZ(d)
(
d

k

)
Φ
(
d

X

)
=
X

2k

(
2
k

) ∑
α6Z

gcd(α,2k)=1

µ(α)
α2

∑
m

(−1)mGm(k)Φ̃
(
mX

2α2k

)
,

where Φ̃ is as defined in (2.8).

Note that, for any non-negative integer l,

Φ̃(l)(ξ)� 1, |ξ|< 1.

Also note, via integration by parts,

Φ̃(ξ) =
−1
2πξ

(∫ 1+1/U

1
+
∫ 2

2−1/U

)
Φ′(x)(sin(2πξx)− cos(2πξx)) dx� 1

|ξ|
.

Similarly, one can show that, for any l > 0, j > 1,

Φ̃(l)(ξ)� U j−1

|ξ|j
.

2.8 Primitive cubic and quartic Dirichlet characters

The classification of all the primitive cubic characters of conductor q coprime to 3 is given in
[BY10]. It is shown there that every such character is of the form m→ (m/n)3 for some n ∈ Z[ω],
with n≡ 1 (mod 3), n square-free and not divisible by any rational primes, N(n) = q. Here the
symbol ( ·n)3 is the cubic residue symbol in the ring Z[ω]. For a prime π ∈ Z[ω] with N(π) 6= 3,
the cubic character is defined for a ∈ Z[ω], gcd(a, π) = 1 by (a/π)3 ≡ a(N(π)−1)/3 (mod π), with
(a/π)3 ∈ {1, ω, ω2}. When π|a, set (a/π)3 = 0. One then extends the cubic character to composite
n with gcd(N(n), 3) = 1 multiplicatively.

Similarly, one can give a classification of all the primitive complex quartic characters of
conductor q coprime to 2. Every such character is of the form m→ (m/n)4 for some n ∈ Z[i],
with n≡ 1 (mod (1 + i)3), n square-free and not divisible by any rational primes and N(n) = q.
Here the symbol ( ·n)4 is the quartic residue symbol in the ring Z[i]. For a prime π ∈ Z[i] with
N(π) 6= 2, the quartic character is defined for a ∈ Z[i], gcd(a, π) = 1 by (a/π)4 ≡ a(N(π)−1)/4

(mod π), with (a/π)4 ∈ {±1,±i}. When π|a, (a/π)4 is defined to be zero. Then the quartic
character can be extended to composite n with gcd(N(n), 2) = 1 multiplicatively. Note that, in
Z[i], every ideal coprime to 2 has a unique generator congruent to 1 modulo (1 + i)3.

3. Proof of Theorem 1.1

Note that, as X →∞, ∑
d∈D(X)

Φ
(
d

X

)
∼#D(X).

Moreover, as φ̂ is supported in (−1, 1), we have∫ ∞
−∞

φ(t) dt+
1
2

∫ ∞
−∞

φ̂(u) du=
∫ ∞
−∞

φ(t)
(

1 +
sin(2πt)

2πt

)
dt.
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Theorem 1.1 thus follows from (2.2), provided that we show, for any Schwartz function φ with
φ̂ supported in (−1, 1),

lim
X→∞

S(X, Y ; φ̂, f, Φ)
X log X

= 0. (3.1)

As

S(X, Y ; φ̂, f, Φ) = SM (X, Y ; φ̂, f, Φ) + SR(X, Y ; φ̂, f, Φ),

the remainder of this section is therefore devoted to the evaluation of SR(X, Y ; φ̂, f, Φ) and
SM (X, Y ; φ̂, f, Φ).

3.1 Estimation of SR(X, Y ; φ̂, f, Φ)
In this section, we estimate SR(X, Y ; φ̂, f, Φ). We first seek a bound for

E(Y ; χ, φ̂, f) :=
∑
p6Y

af (p) log p
√
p

χ(p)φ̂
(

log p
2 log X

)
,

for any non-principal quadratic character χ with modulus q and Y 6X2−2ε. For this we need
the following result which follows from [IK04, Theorem 5.15].

Lemma 3.2. Suppose that the GRH is true. For any Dirichlet character χ with modulus q, we
have, for x> 1, ∑

p6x

af (p)χ(p) log p� x1/2 log2(qx).

It follows from the above lemma and partial summation that

E(Y ; χ, φ̂, f)� log3(qX). (3.2)

Now, on writing d= l2m, we obtain

SR(X, Y ; φ̂, f, Φ) =
∑
l>Z

gcd(l,2)=1

µ(l)
∑

gcd(m,2)=1

Φ
(
l2m

X

)
E(Y ; χ8l2m, φ̂, f)

�
∑
l>Z

∑
X/l26m62X/l2

log3(X)� X log3 X

Z
. (3.3)

3.3 Estimation of SM(X, Y ; φ̂, f, Φ)
Applying Lemma 2.7 to the inner sum of (2.7), we see that the sum in SM (X, Y ; φ̂, f, Φ)
corresponding to the contribution of m= 0 is zero, as it follows directly from the definition
that G0(k) = ϕ(k) if k is a square and G0(k) = 0 otherwise.

Now, the sums in SM (X, Y ; φ̂, f, Φ) corresponding to the contribution ofm 6= 0 can be written
as XR/2, where

R=
∑
p6Y

gcd(2,p)=1

af (p) log p
p

φ̂

(
log p

2 log X

) ∑
α6Z

gcd(α,2p)=1

µ(α)
α2

∞∑
m=−∞
m6=0

(
m

p

)
(−1)mΦ̃

(
mX

2α2p

)
.

We recast the condition gcd(p, 2α) = 1 as χ4α2(p) and use estimation (3.2) to deduce by partial
summation (note that we will take Z to be smaller than some power of X so that log α� log X)

10

https://doi.org/10.1112/S0010437X10004914 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X10004914


One level density of low-lying zeros of families of L-functions

that ∑
p6Y

gcd(2α,p)=1

af (p) log p
p

φ̂

(
log p

2 log X

)
Φ̃
(
mX

2α2p

)(
m

p

)
=
∫ Y

1

1√
V

Φ̃
(
mX

2α2V

)
dE(V ; χ4α2m, φ̂, f)

� log3(X(|m|+ 2))
(

1√
Y

∣∣∣∣Φ̃( mX

2α2Y

)∣∣∣∣+
∫ Y

1

1
V 3/2

∣∣∣∣Φ̃( mX

2α2V

)∣∣∣∣ dV
+
∫ Y

1

X

α2V 5/2

∣∣∣∣mΦ̃′
(
mX

2α2V

)∣∣∣∣ dV ).
Hence we have

R�
∑
α6Z

1
α2

(R1 +R2 +R3),

where

R1 =
1√
Y

∑
m6=0

log3(X(|m|+ 2))
∣∣∣∣Φ̃( mX

2α2Y

)∣∣∣∣,
R2 =

∫ Y

1

1
V 3/2

∑
m6=0

log3(X(|m|+ 2))
∣∣∣∣Φ̃( mX

2α2V

)∣∣∣∣ dV
and

R3 =
∫ Y

1

X

α2V 5/2

∑
m6=0

log3(X(|m|+ 2))
∣∣∣∣mΦ̃′

(
mX

2α2V

)∣∣∣∣ dV.
We now gather the estimates in [Mil08, Appendix C] for R1, R2 and R3 (but be aware that

the sum over p in [Mil08] does not exist in our situation here):

R1 +R2�
Uα2
√
Y log7 X

X
and R3�

Uα2
√
Y log7 X

X
+
U2α4Y 3/2 log7 X

X2008
. (3.4)

Some of the estimates quoted above from [Mil08] have their origins in [Gao]. The estimates
from [Mil08] would suffice for our purpose, but the improved estimates from [Gao] for R1 +R2

are neater to use here. Combining these estimates in (3.4), we obtain

R� UZ
√
Y log7 X

X
.

Thus we conclude that the contribution of m 6= 0 is bounded by

UZ
√
Y log7 X. (3.5)

3.4 Conclusion

We now combine the bounds (3.3), (3.5) and take Y =X2−2ε, Z = log3 X (recall that U = log X)
with any fixed ε > 0 to obtain

S(X, Y ; φ̂, f, Φ)� X log3 X

Z
+ UZ

√
Y log7 X = o(X log X),

which implies (3.1) and this completes the proof of Theorem 1.1.
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4. Proof of Theorem 1.2

Let Nd(X) be the number of primitive cubic characters of conductor q 6X with gcd(q, d) = 1.
It is shown in [DFK04] that Nd(X)∼ c(d)X as X →∞ for some constant c(d). It follows from
this that #C(X)∼ cX for some constant c as X →∞. Combining this with (2.1), we see that,
in order to establish Theorem 1.2, it suffices to show that, for any Schwartz function f with f̂
supported in (−3/7, 3/7),

lim
X→∞

1
X log X

∑
p

log p
√
p
f̂

(
log p
log X

) ∑
X6q62X

∑∗

χ(mod q)
χ3=χ0

(χ(p) + χ(p)) = 0 (4.1)

and

lim
X→∞

1
X log X

∑
p

2 log p
p

f̂

(
2 log p
log X

) ∑
X6q62X

∑∗

χ(mod q)
χ3=χ0

(χ(p2) + χ(p2)) = 0. (4.2)

As both χ and χ̄ are primitive cubic characters, it is enough to consider the two limits for χ
only. The term p= 3 in each sum above is O(X). Hence we may assume p 6= 3 in the sums above
and we apply the Cauchy–Schwarz inequality to see that∑

p6=3

log p
√
p
f̂

(
log p
log X

) ∑
X6q62X

∑∗

χ(mod q)
χ3=χ0

χ(p)

�
( ∑
p6X1/5

log2 p

p

)1/2( ∑
36=p6X1/5

∣∣∣∣ ∑
X6q62X

∑∗

χ(mod q)
χ3=χ0

χ(p)
∣∣∣∣2)1/2

(4.3)

and ∑
p6=3

log p
p

f̂

(
2 log p
log X

) ∑
X6q62X

∑∗

χ(mod q)
χ3=χ0

χ(p2)

�
( ∑
p6X1/5

log2 p

p2

)1/2( ∑
36=p6X1/5

∣∣∣∣ ∑
X6q62X

∑∗

χ(mod q)
χ3=χ0

χ(p2)
∣∣∣∣2)1/2

. (4.4)

It is easy to see that ∑
p6X1/5

log2 p

p
� log2 X and

∑
p6X1/5

log2 p

p2
� 1.

Moreover, note that, for a primitive cubic character χ, χ(p2) = χ̄(p) which implies that the values
of the sums on the right-hand sides of (4.3) and (4.4) are the same. Hence, it remains to estimate

∑
36=p6Y

∣∣∣∣ ∑
X6q62X

∑∗

χ(mod q)
χ3=χ0

χ(p)
∣∣∣∣2. (4.5)
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Here, Y is a parameter independent of X. From our discussion in § 2.8, we can recast (4.5) in
terms of the cubic residue symbol as∑

36=p6Y

∣∣∣∣ ∑′

N(n)∈I(X)
n≡1 (mod 3)

(
p

n

)
3

∣∣∣∣2,
where the inner sum runs over square-free elements n of Z[ω] that have no rational prime divisor
and I(Z) henceforth denotes the dyadic interval

I(Z) := [Z, 2Z]

for any real number Z. We now regard (p· )3 as a ray class group character ξ on h(3p) where we
define ξ((n)) = (p/n)3. Now we remove the condition that n has no rational prime divisor by
using Möbius inversion (note that one can uniquely express any n ∈ Z[ω] as n= n1n2, where
n1 ∈ N, and n2 has no rational prime divisor), obtaining∑′

N(n)∈I(X)
n≡1 (mod 3)

(
p

n

)
3

=
∑

d∈Z,d262X
d≡1 (mod 3)
gcd(d,p)=1

µN(|d|)
∑′′

N(n)∈I(X/d2)
n≡1 (mod 3)

(
p

n

)
3

,

where the double prime indicates that nd is square-free (viewed as an element of Z[ω]). Here
µN is the usual Möbius function defined on N. Note as d and p are coprime rational integers, it
follows from the corollary to [IR90, Proposition 9.3.4] that (p/d)3 = 1.

Since d is automatically square-free (as an element of Z[ω]), nd being square-free simply
means that n is square-free and gcd(n, d) = 1. Now use Möbius inversion again (writing µω for
the Möbius function on Z[ω]) to detect the condition that n is square-free, getting∑′

X6N(n)62X
n≡1 (mod 3)

(
p

n

)
3

=
∑

d∈Z,d262X
d≡1 (mod 3)
gcd(d,p)=1

µN(|d|)
∑

N(l)262X/d2

gcd(l,d)=1
l≡1 (mod 3)

µω(l)
(
p

l2

)
3

∑
N(n)∈I(X/(N(l)d)2)

gcd(n,d)=1
n≡1 (mod 3)

(
p

n

)
3

. (4.6)

Here we changed variables via n= l2n′ and fixed l up to a unit by the condition l ≡ 1 (mod 3)
(note that in Z[ω], every ideal coprime to 3 has a unique generator congruent to 1 modulo 3).

We now apply a further Möbius inversion to remove the condition gcd(n, d) = 1 to get∑
N(n)∈I(X/(N(l)d)2)

gcd(n,d)=1
n≡1 (mod 3)

(
p

n

)
3

=
∑
e|d

e≡1 (mod 3)

µω(e)
(
p

e

)
3

∑
N(n)∈I(X/N(e)N2(l)d2)

n≡1 (mod 3)

(
p

n

)
3

. (4.7)

Now we need the following lemma, which establishes a Pólya–Vinogradov-type inequality for the
cubic symbols.

Lemma 4.1. Let p 6= 3 be a rational prime. Then we have∑
N(n)6X

n≡1 (mod 3)

(
p

n

)
3

�X1/3p2/3 log2 p, (4.8)

where the sum runs over elements n ∈ Z[ω].
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Proof. As we mentioned above, we regard (p· )3 as a ray class group character ξ on h(3p) so that
we can recast the sum in (4.8) as ∑

N(n)6X
n≡1 (mod 3)

(
p

n

)
3

=
∑

N(I)6X
gcd(I,3)=1

ξ(I), (4.9)

where the sum above runs over non-zero integral ideals I ∈ Z[ω]. It is easy to see that ξ is induced
by a primitive character of conductor (ap) for some a|3. Therefore, the condition gcd(I, 3) = 1
imposed on the sum on the right-hand side of (4.9) implies that the said sum remains unchanged
if ξ is replaced by ξ∗ (say), the primitive character that induces ξ. We may therefore assume
without loss of generality that ξ is primitive and we further use Möbius inversion to detect the
condition gcd(I, 3) = 1 in the second sum in (4.9) while noting that the only ideals dividing 3
are (1), (1− ω) and (3) to get∑

N(n)6X
n≡1 (mod 3)

(
p

n

)
3

=
∑

N(I)6X
gcd(I,3)=1

ξ(I) =
∑

h=1,1−ω,3
µω(h)ξ(h)

∑
N(I)6X/N(h)

ξ(I).

Now we quote a result of Landau [Lan18] (see also [Sun72, Theorem 2]), which states that,
for an algebraic number field K of degree n> 2, for ξ any primitive ideal character of K with
conductor f, and k = |N(f) · dK | with dK being the discriminant of K, we have, for X > 1,∑

N(I)6X

ξ(I) 6 k1/(n+1) logn(k) ·X(n−1)/(n+1),

where I runs over integral ideas of K.

We now identify K = Q(ω) with n= 2 and k = 3ap2, where a= 1, 3 or 9, to see that the sum
on the right-hand side of (4.9) is

O(X1/3p2/3 log2 p).

This now completes the proof of the lemma. 2

Applying Lemma 4.1, we can majorize the left-hand side expression in (4.7) as∑
N(n)∈I(X/(N(l)d)2)

gcd(n,d)=1
n≡1 (mod 3)

(
p

n

)
3

� X1/3p2/3 log2 p

(N(l)d)2/3
∑
e|d

1√
N(e)

� X1/3p2/3 log2 p

(N(l))2/3d2/3−2ε
, (4.10)

for any ε > 0. The last bound follows since we have #{e ∈ Z[ω] : e|d}�N(d)ε. From (4.10) and
(4.6), we have ∑′

N(n)∈I(X)
n≡1 (mod 3)

(
p

n

)
3

�X1/3p2/3 log2 p
∑
d∈N
d262X

1
d2/3−2ε

∑
N(l)262X/d2

l≡1 (mod 3)

1
(N(l))2/3

.

Note that it follows from [Sun72, Theorem 2] that∑
N(l)6X

l≡1 (mod 3)

1�X.
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We then deduce by partial summation that∑
N(l)262X/d2

l≡1 (mod 3)

1
(N(l))2/3

�
(X
d2

)1/6
.

Therefore ∑′

N(n)∈I(X)
n≡1 (mod 3)

(
p

n

)
3

�X1/2p2/3 log2 p
∑
d∈N
d262X

1
d1−2ε

�X1/2+3εp2/3 log2 p.

Hence, we obtain∑
36=p6Y

∣∣∣∣ ∑′

N(n)∈I(X)
n≡1 (mod 3)

(
p

n

)
3

∣∣∣∣2�X1+6ε
∑
p6Y

p4/3 log4 p�X1+6εY 7/3 log3 Y.

Applying the above bound in the estimations (4.3) and (4.4), we find that (4.1) and (4.2) hold
so long as Y 7/6 6X1/2−7ε/2 and, as ε is arbitrary, the proof of Theorem 1.2 is completed.

5. Proof of Theorems 1.3 and 1.4

The proofs of both Theorems 1.3 and 1.4 are similar to that of Theorem 1.2 so we shall skip
most of the details. For the proof of Theorem 1.3, one can show, similar to the proof of [Gul05a,
Lemma 4.2], that

#C(9)(X)∼ c′X asX →∞

for some constant c′. Recall that C(9) denotes the set of cubic symbols χc = ( ·c)3 with c square-free,
congruent to 1 modulo 9 and X 6N(c) 6 2X. We then proceed as in the proof of Theorem 1.2
to see that it suffices to show, for any fixed ε > 0, we have∑

p
36=N(p )6Y

∣∣∣∣ ∑∗

N(c)∈I(X)
c≡1 (mod 9)

(
p

c

)
3

∣∣∣∣2�X1+εY 5/3 log3 Y, (5.1)

where Y is a parameter independent of X. We now regard (p
· )3 as a ray class group character

ξ on h(3)p where we set ξ((c)) = (p/c)3. Using the ray class characters on h(3)p to detect the
condition c≡ 1 (mod 9) in the inner sum on the left-hand side of (5.1), we get∑∗

N(c)∈I(X)
c≡1 (mod 9)

(
p

c

)
3

=
1

#h(9)

∑
ψ (mod 9)

∑∗

N(c)∈I(X)
c≡1 (mod 3)

ψ((c))ξ((c)).

The estimation in (5.1) follows, after using Möbius inversion to detect the condition that c
is square-free, from the following estimation:∑

N(c)6X
c≡l (mod 9)

ψ((c))ξ((c))�X1/3N(p)1/3 log2 N(p)
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where l ≡ 1 (mod 3) ∈ Z[ω]. One more application of the ray class characters on h(9) shows that
the above estimation follows from∑

N(I)6X
gcd(I,3)=1

ψ(I)ψ′(I)ξ(I)�X1/3N(p)1/3 log2 N(p), (5.2)

where the sum above runs over non-zero integral ideals I ∈ Z[ω]. The character ψψ′ξ can be
viewed as a ray class group character on h(9)p and our definition of ξ implies that it is induced
from a primitive character on h(a)p with a|9. Consequently, as the condition gcd(I, 3) = 1 is
imposed on the summation in (5.2), the value of this sum remains unaltered if ψψ′ξ is replaced
by the primitive character that induces it. We may therefore without loss of generality assume
that ψψ′ξ is primitive and an application of the Möbius inversion function as in the proof of
Lemma 4.1 allows us to obtain the desired bound in (5.2).

For the proof of Theorem 1.4, one can show, following the approach in [DFK04], that

#Q(X)∼ dX asX →∞

for some constant d as X →∞. The rest of the proof goes in a similar fashion to that of
Theorem 1.2.

6. Notes

We remark here that it is conceivable that results along the lines of Theorems 1.2–1.4 can be
proved using a simpler approach involving mean-value estimates for sums of characters of a fixed
order. This method was used in [Mil08]. The afore-mentioned mean-value estimate for quadratic
character sums is due to Jutila [Jut81, Lemma 5], but the analogous results for characters of
orders higher than two which would be needed here do not seem to be available. Moreover, if
good mean-value estimates can be obtained for cubic and quartic characters, one would expect
that the support of f̂ in Theorems 1.2–1.4 can be significantly widened.

It would also be interesting to consider the one level density of low-lying zeros of families of
Dirichlet L-functions for characters of orders larger than 4. However, the relation between higher
order residue symbols and nth order primitive Dirichlet characters would be more difficult to
describe.
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