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Abstract

The classical notion of a two-dimensional developable surface in Euclidean three-space is extended to the
case of arbitrary dimension and codimension. A collection of characteristic properties is presented. The
theorems are stated with the minimal possible integer smoothness. The main tool of the investigation is
Cartan's moving frame method.
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1. Classical developable surfaces and terminology

In this paper by a surface is meant a submanifold in Euclidean space considered
locally, that is, in a neighbourhood of a point.

In classical differential geometry a developable surface F2 c £3 is a surface which
can be isometrically 'developed' onto the plane, that is, there exists a bending of F2

onto E2 [HC, Section 30]. Such surfaces possess a rich collection of properties.
Namely, a developable surface

(1) has vanishing Gaussian curvature;
(2) is a ruled surface whose tangent plane is stable along the rulings (generators)

(following Euler such a surface is called a torse);
(3) is an envelope of a 1-parameter family of planes;
(4) allows isometric bendings such that all rectilinear rulings remain straight lines

(the original bending onto the plane can be obtained in this way).

© 1999 Australian Mathematical Society 0263-6115/99 $A2.00 + 0.00

388

https://doi.org/10.1017/S1446788700036685 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700036685


[2] Developable surfaces in Euclidean space 389

It is remarkable that each of these properties is characteristic (with some stipulations,
however). The precise statement of the equivalence of (1) and (2) is in [HW1, Theo-
rems 4, 5; HW2, Theorems 13-15; HN, pp. 916-920]. The rest of the equivalences
can be found in [Spl, pp. 205-213, 262, 349-367]. Besides that there is

THEOREM 0 (The classical classification theorem [Spl, p. 353]). An analytic con-
nected developable surface F2 c E3 is either a plane, cylinder, cone, or the tangent
developable of some curve.

The tangent developable of a curve y C E3 is the surface consisting of the points
of the tangent lines to y. In order to avoid the nuisance noticed by Spivak [Spl, p.
353] (the surface can be made up of two tangent developables joined together along a
line belonging to neither) it is sufficient to allow y to be a curve from the projective
point of view, that is, y can pass through a point at infinity (the line mentioned above
is just the tangent to y at the point at infinity). It is worth noting that this condition is
quite natural, for the class of developable surfaces is projectively invariant.

This paper aims to single out a class of many-dimensional surfaces most fully
inheriting the properties of the classical developable surfaces F2 c E3. Evidently,
the same definition without any difficulty is transferred to the case of hypersurfaces:
a hypersurface Fl c El+l allowing a development (isometry) onto /-dimensional
plane

(1) has the flat metric (vanishing sectional curvature);
(2) is an (Z — l)-ruled surface (for every point there exists an (/ — 1)- dimensional

plane lying on the surface and passing through this point), and the tangent plane
to the surface is stable along the rulings;

(3) is an envelope of a 1-parameter family of /-planes;
(4) allows isometric bendings which keep the rectilinear rulings.

And again, these properties are characteristic (to a certain extent).
However, with increase in the codimension, the same definition appears to be

meaningless: the surfaces isometric to the plane still possess the flat metric, yet the
ruling structure is lost (see the Clifford torus in Section 4). Therefore, in addition, one
has to enforce the linear structure (or another useful property). Thus, a developable
surface (from our point of view) is an (/ — l)-ruled surface, possessing the flat metric.
In this paper, however, we prefer to introduce another, more traditional definition
which uses the nullity space of the second fundamental form of the surface. Naturally,
this definition is equivalent to the one just given (Theorem 2) as well as to several
others (Theorems 1-5). Besides, it worth noting that for our developable surfaces
there exists a classification theorem quite similar to the classical one [Ul].

Before going into precise definitions and statements, we have to linger a little over
one long-lasting delusion regarding the term 'developable surfaces'. The matter is
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that for many decades various authors have been studying one and the same object,
rarely suspecting that it had been already named and much had been known about it.
This object is a many-dimensional generalisation of a torse, that is, a &-ruled surface
Fl c E" with tangent plane stable along the ^-rulings. (These surfaces appear to
be of interest in many places; in particular, they and only they provide the complete
bending hypersurfaces F' C El+l [DG]; in this situation the dimension of the rulings
is k = I — 2.) So, these surfaces are also-known-as:

(1) surfaces of constant rank (Yanenko [Yal], Akivis [A], Dajczer and Gromoll
[DG]);

(2) tangentially degenerate surfaces (Ryzhkov [R], Akivis and Ryzhkov [AR]);
(3) k-developable surfaces (Shefel' [Sh], Toponogov and Shefel' [TSh], Fischer and

Wu [FW], Wu [W]);
(4) strongly k-parabolic surfaces (Borisenko [B]);
(5) surfaces of constant relative nullity index (the majority of English authors begin-

ning with Chern and Kuiper [CK]).

It seems no one has thought of naming such a surface a k-torse (the idea sounds not
so bad!). In this paper I will use the term surface of constant nullity, which is short
for the name given by Chern and Kuiper.

The origin of the term 'surfaces of constant rank' is quite explainable due to the
following simple fact: the relative nullity index equals v if and only if the rank of
the Gauss map Fl —>• G(l, n) equals I — v (the nullity space A is the kernel of the
differential of the Gauss map); the precise definitions are given in the next section.
It seems 'surfaces of constant rank' were introduced by Yanenko in 1949 [Yal] (in
the non-trivial case of codimension greater than 1; for hypersurfaces the Gauss map
is rather simple and the term 'constant rank' was in use already in the end of the last
century).

The term 'tangentially degenerate surface' appeals to the special ruling structure of
the surface (&-torse).

However, the name 'it-developable surface' (for a surface of constant nullity it) is
totally inappropriate for the following simple reason: a surface Fl C E'+p of constant
nullity k, as a rule, possesses essentially non- flat metric (when k < / — 1) and
therefore an isometry of such a surface onto the plane is out of question. Let us recall:
'a development of one surface on another is the very classical name of an isometry'
[Spl, p. 212], hence 'developable' means the existence of an isometry between the
surface and the plane.

This delusion is rather widespread—we only observe that [TSh] is a paper in
Encyclopaedia of Mathematics. The cause of the delusion can be traced: it is generated
by a certain confusion reigning in the majority of the modern textbooks regarding the
classical developable surfaces F2 C £3. Originally, many years ago they used both
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torses and developable surfaces, which are defined differently, but appear to be almost
(but not entirely!) the same. Gradually the term 'torse' was forced out (Encyclopaedia
of Mathematics regards them to be identical: same entry for both). Moreover, the
authors seeking simplicity began to define developable surfaces as 'ruled surfaces
with tangent plane constant along the rulings'. Such a definition, apart from being
inconsistent with the word used, led to the above stated erroneous generalisation for
the many-dimensional case. Besides that, it produced absurdities like 'a surface of
vanishing curvature which is not developable', that is, 'a surface of vanishing curvature
which is not isometric to the plane' (locally!), for more details see [U2].

To conclude the terminological discussion we observe that developable surfaces
concerned in this paper are /-dimensional surfaces of constant nullity / — 1, or surfaces
of constant rank 1.

2. Main definition

The relative nullity index v of a surface F' c E" at a point Q is the dimension of
the nullity space

A = [x e TQFl I A(JC, •) = 0},

where A is the vector-valued second fundamental form A: TQFl x TQFl —>• TQF1;
here TQFl and TQF1 are the tangent and normal spaces to F1 at Q [CK].

We call a surface Fl C E" a developable surface if for every point Q € Fl the
relative nullity index satisfies v = I — 1. In other words, for any Q e F' one can
choose an orthonormal frame {e,}, in the tangent space TQF1 such that An ^ 0, but
all the other vectors Ay are zero (here Ay =

REMARK. Quite often it seems reasonable to allow a developable surface to have
not only points with v = I — 1, but also planar points (v = /). The presence of planar
points, however, may destroy the rulings and drastically reduce the smoothness of the
surface [U2]. For this reason we prefer initially to consider the developable surfaces
without planar points and in Section 6 briefly discuss what happens with each theorem
if the planar points are taken into consideration.

3. Developable surfaces as ruled surfaces

A surface F' c E" is a k-ruled surface if it is made up of it-planes in such a way
that for every point of the surface there is the unique it-plane passing through this
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point and belonging to the surface; these planes are called the rectilinear rulings of
F'. A it-ruled surface has a standard parametrization:

r(ul ul) = p(uk+\ . . . , « ' ) + £ «' • a,(u

the (/ — &)-dimensional surface p(uk+\ . . . , « ' ) is a directrix of F ' ; the linear hull
span ( a i , . . . , a*) gives the direction of a ruling. Henceforth we will use Einstein's
summation convention, so that the above equation turns into r = p + u'aj.

THEOREM I.AC2 smooth surface Fl C E" is a developable surface if and only if
Fl is (I — l)-ruled (but not l-ruled anywhere, that is, without planar points) and the
tangent planes are stable along the rulings.

The essential part of Theorem 1 (the necessity) is a particular case of a well- known
fact (a surface Fl c E" of constant nullity k is &-ruled and the tangent planes are
stable along the rulings) which has been proved in many places. The final version
with the lowest possible integer smoothness—C2 was accomplished by Hartman [H,
Lemma 3.1]. We give a simpler proof for a C surface adapting one from [Ya2]. Our
proof can also be refined to the C2 version [U3].

It should be also mentioned here, that the Hartman's result allows a generalisation
for Riemannian manifolds: the A>nullity distribution is integrable and has totally
geodesic leaves; see [KN, Note 16, pp. 347-349].

REMARK. The theorem states that a C2 smooth developable surface F' c E"
possesses a standard parametrization for ruled surfaces. Such a parametrization is C1

smooth [HW2, Theorem 14 for F2 c E"; H, p. 97 for F' C £"], but might be not
C2 smooth; more precisely, p can be chosen C2, but at ^ C2 in the general situation
[HW2, Theorem 15]; see also [U2] for a detailed discussion.

Theorem 1 has the following simple corollary.

THEOREM 2. A C2 smooth surface F' c E" is a developable surface if and only if
Fl is (I — I)-ruled (without planar points) and its metric is flat.

PROOF OF THEOREM 1 (sufficiency). Given a C2 smooth (/ - l)-ruled surface F' c
E", one can choose a C2 smooth orthonormal frame {eA}" such that spante,)!"1 gives
the direction of the ruling, and span{ea}"+1 gives TLFl. Then the radius vector of F'
can be written as

(1) r(ul,...,u') = p(u') + uiei(u
l) (1 < i < / - 1),
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where we can assume without loss of generality p = eh

Then the values of the second fundamental form satisfy AtJi = 0 (1 < i, j < I — 1).
On the other hand the condition of the tangent plane being stable along the rulings
implies Au = 0 (1 < i < / - 1):

(2) de,tTF'}cTF' ^ { ' = !^ ' e a !=^ (\l\j<-l<~n
[0 = (deieh ea)=Aa

n \l + l<a<n

(here (•, •) is the scalar product in E" and dei denotes the derivative in the direction of
e,). The final condition Au ^ 0 is implied by the absence of planar points. •

PROOF OF THEOREM 1 (necessity). Let F1 be a C4 developable surface.
Step 1. Construction of a C2-smooth orthonormal frame, satisfying the con-

dition of the definition of a developable surface. As F' is C4 smooth, the tangent
bundle TF' is C3 smooth. On F' one can choose a C3 smooth orthonormal frame [eA}"
with {£,}', c TF'. Let ea be an arbitrary non- trivial normal (Aa ^ 0). The projection
of the second fundamental form onto this normal A" = {A, ett): TQF' x TQFl -*• IR
becomes a real-valued bilinear symmetric form. There is the selfadjoint Weingarten
operator A: TQFl -> TQF' associated with Aa and acting by defining A(e) to be the
unique vector satisfying: (A(e),x) = Aa{e,x) for all x e TQFl (here (•, •) is the
scalar product in TQFl). Since the relative nullity index v is I — 1, the image A(TQFl)
has dimension 1. Choosing at every point Q e F' a unit vector et in A{TQF') one
obtains a C2 smooth vector field on TF' {TF1 is C3 smooth; A, A", A are C2 smooth).
Now one can construct the required C2 smooth orthonormal frame {e,}', in TF' (by ro-
tation of the initial {£,}p for instance). For this frame A y = Aa = 0(1 < i,j < I—I),
A,, / 0.

Expanding the differentials of the frame by the frame itself

the definition of a developable surface becomes equivalent to the following equations
on the mixed forms h":

ih" = A", -a/ = 0 , , , , , ,
(4) P _ H t ( 1 < I < / - 1 , 1 < J < 1 , l + l<ot<n),

where the co' are the dual forms for the orthonormal frame et.
Step 2. The surface F* is (/ - l)-ruled. We intend to prove that the distribution

A = spanfe,},"1 is integrable and its leaves are totally geodesic in the ambient space
E", that is, are planes.
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Let us demonstrate that the integrability of A can be analytically expressed as

(5) r!/ = r,'. d < u < / - i ) .

and the leaves of A are totally geodesic if and only if

(6) r £ = 0 ( l < i , ; < / - l ) ,

where the F* are the coefficients in the expansion of the connection forms r/r by the
forms co:

(7) ti = rk
u(oi ( i < u , * < / ) .

Due to Frobenius' theorem the integrability of A = spanfe,},"1 is tantamount to
[ei, ej] = deiej - d^d e A (1 < ij <l- 1), or

{{defy - dejeit e,) = 0 1 < ij < I - 1

\(detej - dej ehea)-Q l+l <a < n.

The first equation can be written as Vjte) = V^C*/). which with the expansion (7)
gives (5). The second equation is valid automatically since the nullity distribution A
lies in the integrable distribution TF1 (or, what is the same, as the second fundamental
form is a symmetric bilinear form).

The leaves of A are totally geodesic if and only if they are autoparallel [Spl, p.
35], that is, deej € A (1 < i,j < I — 1). This condition splits into two equations.
The first one (deiej, ea) = 0 is valid automatically since (de,e,, ea) = A"(ef) = 0 from
(4). The second equation (de.ej,ei) = 0 leads to (6): 0 = [deeh e,) = fjiet) = Fj,..

Since (6) implies (5) one only needs to obtain (6) in order to complete Step 2.
These equations are a part of the Codazzi-Mainardi equations for F' c E". Indeed,
the Codazzi-Mainardi equations [Sp2, p. 63] are

Considering them for 1 < i < I — 1 and using (4), one has 0 = h\ A ^f = A°,w' A ty\,
whence with (7) 0 = (J A i/r? = Ticof A co*, which gives exactly (6).

Step 3. The tangent planes are stable along the rulings. From (4) A:J = An = 0
(1 < i, j < I — 1). Using (2) one obtains the statement required. •

PROOF OF THEOREM 2. This theorem reduces to the previous one due to the fol-
lowing fact: for an (/ — l)-ruled surface Fl c E" the condition of the tangent planes
being stable along the rulings is equivalent to the flatness of the metric. Indeed, given
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an (/ — l)-ruled surface (1), one has Atj = prTxFi(r/,) = 0 (1 < i,j < I — 1). Then
the tangent planes are stable if and only if A,-/ = 0 ( 1 < i < I — 1) (see (2)). The
surface has the flat metric if and only if 0 = Run = A;, • An — (An)2 = —(An)2

(1 < i < I — 1) (all other components of the curvature tensor already vanish due to
Ay = 0). •

4. Developable surfaces as surfaces of point codimension 1

For a surface Fl C E" the first normal space of a point Q € F' is the orthogonal
complement in TQF1 to all 'trivial' normals, that is, normals f, such that (A, £) = 0 ,
where A is the image of the second fundamental form [Sp3, p. 361]. Or, equivalently,
the first normal space is the linear hull of the image of the second fundamental
form span{Im A}. The dimension of the first normal space will be called the point
codimension of the surface F' at the point Q (notation: coding F'(Q)).

THEOREM 3. A C2 smooth surface is a developable surface if and only if its metric
is flat and the point codimension is 1 everywhere.

The assumption on the point codimension is crucial as is shown by the following
example.

The Clifford torus: This is the direct product of two circles 51 x S1 C £"*. Its
parametric equation is

r = (cos u, sin u, cos v, sin v).

Choosing the normals so that n\ = (cos u, sin u, 0,0), n2 — (0, 0, cos v, sin v) the
matrices of the second fundamental form are

the Gaussian curvature vanishes, the metric is flat; the surface is not even ruled (it is
complete, compact);

codimp F2 = 2 everywhere.

COROLLARY. Any C2 smooth hypersurface F' C El+1 without planar points pos-
sessing flat metric is a developable surface.

Certainly, this result is not new and we produce it only for the sake of completeness
of the picture.
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PROOF OF THEOREM 3 (necessity). Due to the definition of a developable surface
the point codimension of a developable surface equals 1 at every point, since there is
only one non- trivial normal An. The flatness of the metric follows from the Gauss
equation. •

PROOF OF THEOREM 3 (sufficiency). At a point Q the second fundamental form A
can be reduced to the diagonal form with respect to the unique non- trivial normal. The
condition of the metric flatness implies that the product of any two diagonal elements
vanishes, whence all these elements are zero, except maybe one. The last one is not
zero as coding F'( Q) > 0. Therefore, v = I - 1. •

The next theorem shows that a surface of point codimension 1 is either a hyper-
surface or a developable surface. Or, in other words, for a surface F1 c E" with
non-flat metric the condition codimp F

l = 1 implies the existence of some E'+1 c E"
containing the surface: Fl C El+1 C E". For a rigorous statement one needs the
following definition.

By the local codimension codim^ F'(Q) of a surface F' at a point Q we mean the
difference between the dimension of the minimal Euclidean space, containing some
neighbourhood of Q, and the dimension of the surface itself.

It is clear that

coding F ' ( 0 < codimloc F'(Q).

THEOREM 4. If for all points Q of a C2 smooth surface Fl c E"

1 = codimp F\Q) < codimloc Fl{Q),

then Fl is a developable surface.

This theorem, in contradistinction to the previous and the subsequent ones, is not
quite a characteristic property of a developable surface. But it can be easily made
such by the following reformulation: a C2 smooth surface F' C E", which is not a
local hypersurface (that is, the local codimension > 1), is a developable surface if and
only if for every point Q codimp F'( Q) = 1.

REMARK. This theorem was stated by Segre [Se] for an analytic F2 c E", although
there is a gap in the proof. Adapting Segre's proof one can decrease the requirements
on smoothness to C2. We prefer to present here a short proof, employing the moving
frame method, which requires C4 smoothness.

PROOF OF THEOREM 4. As F' c E" is C4 smooth one can introduce on F' a C2

orthonormal frame {eA}" such that spanfe,}, = TFl, and e/+1 is the unique non-trivial
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normal. There is the expansion (3) for this frame. The condition of triviality of the
other normals is

(8) A?=0, (1 <i<l, / + 2 < / 3 < n ) .

The condition codim^ F' > 1 means that there exists fi € {/ + 2 , . . . , n} such that
the torsion form jfcf+, ^ 0. Without loss of generality one can assume

(9) k\X\ jt 0.

The Codazzi-Mainardi equation for h\+2 (1 < i < I) with (8) and (9) gives

do) o = dh1;2 + hf2 A fi + c2 Ah° = K\X2 Ah\+1

(1 < i,j <l, l + l <a <n).

Rotating the frame {e,}' one can achieve K[+2 = k • co', where k ^ 0 is a real-
valued function on F'. For the new frame the equation (10) turns into h't

+l A wl = 0
(1 < i < I), that is, h\+l = A{f W, A1^ = 0 (1 < i < /, 1 < j < I - 1). Since the
matrix A'+1 is symmetric, A •+' = A^1 = 0 (1 < i < I - 1). Therefore, for the new
frame

h\+l = 0 (1 < i < / - 1), h\+l = A'^co1,

which precisely corresponds to the definition of a developable surface. D

5. Developable surfaces as affinely stable immersions of the flat metric

A surface F' C E" is called an affinely stable immersion of the flat metric, if for
any affine transformation g of E" the new surface g(Fl) has flat metric.

The notion of a 'G-stable immersion' for different classes of metrics and for
different groups G was introduced in [Sh] and developed in [BSh].

THEOREM 5. A C2 smooth surface without planar points is a developable surface
if and only if it is an affinely stable immersion of the flat metric.

PROOF OF THEOREM 5 (necessity). From Theorem 1 a developable surface Fl is
(Z - l)-ruled with tangent planes stable along the rulings. Both of these properties
are invariant under affine (and even projective) transformations. The easiest way to
show this is by stating the stability condition as follows: the plane tangent to Fl at Q
is tangent to F' at an arbitrary point of the (Z — l)-dimensional ruling passing through
Q. Therefore, a developable surface Fl under an affine transformation g becomes
a developable surface g(F'). And since any developable surface possesses the flat
metric (Theorem 3), a developable surface is an affinely stable immersion of the flat
metric. •
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PROOF OF THEOREM 5 (sufficiency). Let F1 be an affinely stable immersion of the
flat metric. Let us introduce in the ambient space E" a Cartesian coordinate system.
Subjecting F' to an affine transformation we will simultaneously subject the coordinate
system to the same transformation. Then the radius vector of Fl is unaffected, and
only the scalar product between the basis vectors of the coordinate system changes.
From this point of view the affine stability of Fl can be conveyed as follows: for
an arbitrary choice of the scalar product in the ambient R", the induced metric of Fl

given by the Gauss equation, is flat.
We intend to show that this condition implies the strong degeneracy of the second

fundamental form of Fl: its relative nullity index is / — 1. For our purpose it is
sufficient to keep the freedom of choice of the scalar product only inside TQF1, while
TQ Fl can be considered as a fixed space; then the images of the second fundamental
form Aij will be fixed vectors in TQF1 (in the general case they are the orthogonal
projections of the unmoving vectors rtj € W onto the moving space TQF'). The
final stage of the proof can be stated as the following algebraic lemma for U — TQF',
V=TQ

LFl. D

LEMMA. Let U, V be finite-dimensional linear spaces (V with a scalar product
{;-))and

A: £/x U -+ V

be a non-vanishing symmetric bilinear map such that

(11) K(x,y) = (A(x,x),A(y,y)) - {A(x, y), A(x, y)) = 0

for any choice of scalar product in V. Then the codimension of the nullity space of A
in Uisl.

PROOF OF LEMMA. The major part of the proof is in showing that the image of A
is 1- dimensional (codimp F'(Q) = 1). Then Theorem 3 completes the proof.

Step 1. Construction of a directing vector in Im A. Since A ^ 0, there exists
x € U such that A(x, •) ^ 0. Then A(x,x) ^ 0. Indeed, A(x,x) = 0 implies
A(JC, •) = 0 from the Gauss equation (11). Therefore, we can take A(x,x) as the
required directing vector in Im A.

Step 2. For all v e U and for x fixed above A(x, y) \\ A(x, x). We assume
dim V > 3 (for dim V = 1 there is nothing to prove and for dim V — 2 the following
argument can be used with a3 = /J3 = 0). Let us take three linear independent vectors
{ei}] in V, whose linear hull contains the set A(x, x), A(x, y), A(y, y) and such that
ei = A(x,x). Then

A(x, x) — e\,
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A(x, y) = axex + a2e2 + a3e3,

From (11)

0 = K(x,y) = ex-(Pxex + p2e2 + fte3) - («i«i + «2e2 + a3e3)
2

= (Pi - («i)2)«i • «i - (oLtfe2 • e2 - (a3)
2e3 • e3

+ (p2 - 2axa2)ex • e2 + (P3 - 2axa3)ex • e3 - 2a2u3e2 • e3.

Since this equality must be preserved under an arbitrary choice of the scalar product,
all the coefficients of e> • ej vanish, which gives Pi — (a^)2 = a2 = a3 = p2 = p3 = 0,
that is, A(x, y) || e\ = A(x,x).

Step 3. For all y, z e U A(y, z) || A(x, x). Suppose A(y, z) is not parallel to
A(x, x). Let ei = A(x, x), e2 = A(y,z). Then A(x,y) = aeuA(x,z) = Pex. From
(11)

0 = K(x,y + z)

= K(x, y) + K(x, z) + 2[A(x,x) • A(y, z) - A(x, y) -A(x, z)]

= 2[ex • e2 - aPex • ex].

This equality can not be valid for an arbitrary choice of the scalar product. This
contradicts the assumption A(y, z) § A(x, x). •

6. Planar points

In this section we will consider developable surfaces with planar points, which
consist of both points of rank 1 (the relative nullity index v = / — 1) and planar points
(of rank 0, or v = I).

The geometric structure of such surfaces is quite different. A developable surface
with planar points F' C E" is no longer properly (I — 1)- ruled: it is glued together
from pieces of (/ — 1)-ruled developable surfaces without planar points and pieces of
/-dimensional planes. There is a pleasant feature, however: if a point Q e Fl has rank
1, then there exists a unique (Z — l)-dimensional ruling (with stable tangent plane)
passing through Q and all the points of this ruling have rank 1 as well [H, Lemma
3.1]. Therefore, the gluing together of plane and ruled pieces is always made along
(/ — l)-rulings. Theorem 1 can be reformulated as follows:

THEOREM 1'. A C2 smooth surface F' C E" is a developable surface with planar
points if and only if F1 is (I — \)-ruled in the sense described below and the tangent
planes are stable along the rulings.
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Here, by an (/ — 1) -ruled surface we mean the natural foliation of the non-flat pieces
and the possibility of foliation of the plane pieces. Therefore, in the definition of a
(/ — l)-ruled surface we have to drop the condition of uniqueness of the (/ — l)-ruling
passing through any point.

The sufficiency part of the theorem can be proved nearly without changes. In
the necessity part, however, there occurs the following difficulty: in attempting to
construct a 'good' frame (Step 1), the smoothness of this frame will be C° and not
higher in the general situation—even for any increase (up to C°°) of the smoothness
of the initial Fl. In other words, the direction of the rulings (even if it is well-defined)
might be not C1 smooth. This phenomenon has been scrutinized in [U2]. Because of
it the rest of the proof (Step 2 and Step 3) becomes unusable. This obstacle can be
avoided by synthetic means: if there are no planar points in the infinitesimal vicinity
of the point investigated, then the direction of the ruling is C2 smooth and one can use
the previous proof; if there are planar points in the infinitesimal vicinity of the point,
the required stability of the tangent planes can be obtained by means of continuity
from the obvious stability of the tangent planes of the plane pieces.

The other theorems can be reformulated as follows:

THEOREM 2'. A C2 smooth surface Fl c E" is a developable surface with planar
points if and only if F1 is (I — Y)-ruled (in the new sense) and its metric is flat.

THEOREM 3'. A C2 smooth surface is a developable surface with planar points if
and only if its metric is flat and the point codimension is at most 1 everywhere.

COROLLARY'. Any C2 smooth hypersurface F1 c E1+l possessing flat metric is a
developable surface with planar points.

THEOREM 4'. If for all points Qofa C2 smooth surf ace F1 C En the point codimen-
sion satisfies codimp F'(Q) < 1 and codim^ F'(Q) > 1, then F' is a developable
surface with planar points.

THEOREM 5'. A C2 smooth surface is a developable surface with planar points if
and only if it is an affinely stable immersion of the flat metric.

The proofs of the theorems go through practically without changes: one merely
needs to consider the planar and non-planar parts separately.
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