Genet. Res., Camb. (2011), 93, pp. 221-232.
doi:10.1017/S0016672311000115

© Cambridge University Press 2011 221

Mapping Mendelian traits in asexual progeny using changes
in marker allele frequency

SAYANTHAN LOGESWARAN! aAnD NICK H. BARTON??
! Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
2IST Austria, Am Campus 1, Klosterneuburg 3400, Austria

(Received 12 March 2010 and in revised form 9 February 2011)

Summary

Linkage between markers and genes that affect a phenotype of interest may be determined by examining
differences in marker allele frequency in the extreme progeny of a cross between two inbred lines. This strategy is
usually employed when pooling is used to reduce genotyping costs. When the cross progeny are asexual, the
extreme progeny may be selected by multiple generations of asexual reproduction and selection. We analyse this
method of measuring phenotype in asexual progeny and examine the changes in marker allele frequency due to
selection over many generations. Stochasticity in marker frequency in the selected population arises due to the
finite initial population size. We derive the distribution of marker frequency as a result of selection at a single
major locus, and show that in order to avoid spurious changes in marker allele frequency in the selected

population, the initial population size should be in the low to mid hundreds.

Introduction

Methods to map alleles responsible for variation in
a particular trait rely on detecting linkage between
known marker alleles and the trait (Sax, 1923 ; Thoday,
1961). In experimental crosses, linkage is inferred from
statistical correlations between marker and phenotype
in the progeny of a cross between two inbred lines
that differ in trait value (Broman, 2001). In order to
achieve reasonable power in detecting linkage, large
numbers of cross progeny need to be genotyped and
phenotyped. Consequently, this procedure can be very
time consuming and expensive. Selective genotyping
(Lander & Botstein, 1989 ; Darvasi & Soller, 1992) re-
duces time and costs by only analysing cross progeny
with extreme phenotype, as these individuals provide
the most linkage information. When analysing only
the extreme progeny, one can use changes in marker
allele frequency in the selected group to infer linkage
(Lebowitz et al., 1987). Markers that are linked to
alleles that influence the trait should change in fre-
quency in the selected group, whereas the frequency
of unlinked markers should remain unchanged.
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This strategy of using change in marker allele
frequency to detect linkage is usually employed when
DNA pooling is used. Rather than individually
genotyping each progeny in the selected group, DNA
is pooled from all individuals in the group and marker
frequencies are estimated from the intensities of
marker bands (or similar signals) in the pooled
DNA. This further reduces time and costs. This
method is often referred to as bulk segregant analysis
(Michelmore et al., 1991) or selective DNA pooling
(Darvasi & Soller, 1994).

The other main occasion when marker frequencies
are used to detect linkage is in artificial selection ex-
periments, where two lines are divergently selected
(Keightley & Bulfield, 1993; Nuzhdin et al., 1998,
2007). This strategy is used for quantitative traits,
where the aim is to have many generations of sexual
reproduction and selection, so that much greater
phenotypic variation is produced than is present in
an F, or backcross population. The more extreme
phenotypes generated result in larger differences in
marker allele frequencies between the two lines,
making it easier to detect linkage. Furthermore, an
added advantage of this method is that the increased
number of recombination events (due to the several
generations of sexual reproduction) may result in
greater mapping resolution.
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In all these methods that use change in allele
frequency to detect linkage, one must measure the
phenotype of the progeny in the F,/backcross popu-
lation or in each generation in an artificial selection
experiment to pick out the tails of the phenotypic dis-
tribution. In most studies, the cross progeny are sex-
ual and the phenotype is measured in standard ways.
However, when the cross progeny are asexual one can
use selection to measure the phenotype. Artificially
selecting the asexual cross progeny over many gen-
erations is equivalent to picking out the tail of the
phenotypic distribution of sexual progeny in a single
generation. The longer one selects the asexual pro-
geny (and the larger the initial population), the more
extreme the tail of the phenotypic distribution that is
selected. This method has recently been used in gene
mapping studies in microbes.

One such method is array-assisted bulk segregant
analysis (Brauer et al., 2006), which has been used
to map traits in yeast. Here, yeast strains differing in
genetic background and trait value are crossed. The
resulting asexual progenies are individually measured
by selecting for the trait over a number of generations.
A group of the selected individuals is then pooled
to detect linkage. In this particular method, the allele
frequencies are estimated by hybridizing the pooled
DNA to a microarray.

When using this strategy in asexual cross progeny,
one could also measure the phenotype directly within
a pool of recombinant progeny. That is, rather than
individually selecting each asexual recombinant
and then pooling, one could pool the cross progeny
together at the start and then select for the trait directly
on this pooled progeny. The selected pool is then
used to detect linkage. An example of this strategy
is Linkage Group Selection (Culleton et al., 2005;
Martinelli et al., 2005), which has been used to map
genes in malaria parasites. Here, once again malaria
parasites with differing genetic background and
trait value are crossed. The resulting asexual cross
progenies are pooled and selected for the trait for
many generations. Linkage is then determined by
estimating changes in marker allele frequency from
the selected pool. Similar strategies have been used in
studies of yeast (Segre et al., 2006; Ehrenreich et al.,
2010).

When using this method in asexual progeny, it
is important to ensure that the changes in marker
allele frequency in the selected pool are due to linkage
to a selected allele and not just a result of random
drift. Previous models (Lebowitz et al., 1987; Kim &
Stephan, 1999) that have dealt with changes in marker
allele frequency in gene mapping experiments, have
focused on artificial selection experiments in sexual
progeny and examined changes in marker frequency as
a result of several generations of sexual reproduction
and selection. In this paper, however, we provide the
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basic theoretical framework for the strategy of picking
out the extreme individuals in pooled asexual progeny
by selecting for the trait over many generations. We
concentrate on Mendelian traits and derive the dis-
tribution of marker frequency in a selected pool as
a result of selection at just a single major locus. We
show from this how large the initial population size
should be in order to avoid spurious changes in marker
allele frequency.

Theory
Model

A cross is made between two haploid lines that differ
in trait value. This cross results in N haploid recom-
binant progenies each containing a random assortment
of marker alleles from the parental lines, with each
marker having an expected frequency of 0-5. We will
concentrate on the simplest situation of a binary trait
where the variation in phenotype between the two lines
is due to just one major locus. A fitness advantage is
assigned to the recombinants that contain the positive
allele (i.e. the allele that increases the value of the
trait), and so the initial population consists of two
fitness classes. This recombinant population is then
selected for the trait over many generations. As this
population is asexual, no further recombination takes
place during this multi-generation selection phase. It
is assumed that selection is applied for long enough so
that only recombinants originating from the fitter
class remain in the final population. Therefore, the
positive allele should be fixed in the selected popu-
lation, and because there is only one round of re-
combination, markers in a large region around the
selected locus should also be at a higher frequency.
The frequencies of markers in all other regions of the
genome are expected to remain unchanged. So, from
this model, we are interested in analysing the fre-
quency of all markers in the selected population, and
the stochasticity that arises in this frequency due to
finite population size.

Deterministic expectation

If selection is continued until the fitter class of recom-
binants fix in the population, then the selected allele
will be at frequency 1. The expected frequency of all
other markers in the selected population would be
equal to the probability that the marker in question
was on the same genotype as the selected allele in
the initial population. For the positive markers (fitter
parental markers), this probability would simply be
1 —r, and for the negative markers (less fit parental
markers) it would be just r, where r is the probability
of recombination between the selected allele and the
marker in question.
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Fig. 1. (a) Each line represents the typical marker composition of a single recombinant with a selected allele at position 4
on the genome represented by a circle. The black parts represent the fitter parental markers (positive markers) and the grey
parts represent the less fit parental markers (negative markers). (b) Plot of the positive marker frequency in the selected
population when there is just a single recombinant (the first genome in (@)) in the initial population. (¢) The black and grey
curves show two replicates of the positive marker frequencies in the selected population when all ten recombinants from
the first graph are present in the initial population. It can be seen that the two replicates do not give the same frequencies.
This reflects the random number of descendants each recombinant left in each replicate. (d) This shows the frequency of
the positive markers in the selected population when there are 100 recombinants with the positive allele in the initial
population. In (b), (¢) and (d) the dotted curve represents the deterministic expectation for the positive marker frequency,
which is 1 —r, where r is calculated from the Haldane map function r=1/2 (1 —e~2¥), and x is the map distance between

the marker and selected locus.

Stochastic distribution

With an infinite number of recombinants, the marker
frequency will approach the deterministic expectation,
but finite numbers will lead to variation around this
expectation. In the extreme, suppose there was just
one recombinant with the positive allele in the initial
population. The typical marker composition of this re-
combinant will look like one of those given in Fig. 1a.
As this single recombinant is the fittest in the initial
population, selection (if applied for long enough) will
pick out only its descendants. Therefore, all recom-
binants in the selected population will have exactly
the same marker composition. Hence, the final marker
frequencies will look like those in Fig. 15, where a
marker is either fixed or not present at all. With
more than one initial recombinant with the positive
allele present in the initial population, there will be
initially much more diversity in the marker compo-
sition, but this diversity may not be reflected in the
final population. For example, suppose there were
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10 initial recombinants with the positive allele, each
with a different marker composition. Again, selection
will pick out only the descendants originating from
these 10 initial recombinants. However, the number
of descendants that each recombinant actually leaves
may be highly random. One may leave no descendants
in the final population, while another may leave hun-
dreds. Consequently, some markers will be over rep-
resented in the selected population, which can be seen
from Fig. 1 cresultsin a very random pattern of marker
frequency. This randomness is reduced by increasing
the number of recombinants with the positive allele in
the initial population. This results in a more balanced
representation of all markers in the selected popu-
lation. It can be seen from Fig. 1d that with this in-
crease in the number of recombinants with the positive
allele in the initial population, the marker frequencies
approach the deterministic expectation, enabling
much easier identification of the selected locus.

So, in order to evaluate how much stochasticity in
the marker frequency would be expected for a certain
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initial population size, we will next derive the distri-
bution of the marker frequency in the selected popu-
lation. From this, it is possible to calculate how large
the initial population size needs to be in order to avoid
spurious changes in marker frequency, and also work
out the probability of getting false positives when we
do have large stochasticity in frequency.

Branching process

To derive the distribution of marker frequency, the
distribution of the number of descendants originating
from a single recombinant needs to be obtained. This
can be modelled as a branching process. That is, at
each generation each selected recombinant leaves a
number of offspring &, with mean u and variance o>
This process can be modelled by the probability gen-
erating function f(z) =Y P.z*, where Py is the prob-
ability that £=k. This represents the offspring
distribution of a single recombinant for a single gen-
eration. This can be extended to get the offspring
distribution after ¢ generations by ¢ iterations of f{z).
That is, f(z) =f(f( ...(f(2)) ...)). So, if we let X denote
the number of descendants originating from a single
recombinant after ¢ generations, we have that X has
distribution f,(z). Obtaining probabilities from f(z),
however, can be computationally intensive, so instead
just the moments of X will be outlined. From the
properties of generating functions we have that the
mean E(X) and variance Var (X) of the number of de-
scendants originating from a single recombinant after
t generations is given by (1) and (2) (Jagers, 1975):

E(X)=u', M
Var(X)=o’u' "' (u' = DHu—1)"" (2)
Moments

Using (1) and (2) it is possible to obtain the mean,
variance and covariance of the number of copies of
each marker in the selected population. Consider an
initial population of size N and a single marker m. Let
S, be the number of copies of that marker in the
selected population. We have that S, = ZL oXi» where
n is a random variable representing the initial number
of recombinants that had marker m. Expressions for
the moments of S, are derived in the Appendix. Now,
let F,,,=S,,/S, be the frequency of marker m, where S,
is the total number of recombinants in the selected
population. Obtaining exact expressions for the mo-
ments of F,, in the selected population is mathemat-
ically difficult, so approximations will be used instead.
These approximations are given by (3)—~(5). They are
derived from the moments of S,, and S, (derivation
detailed in the Appendix). In (3) and (4), P, is the
probability that marker m is on the fittest genotype
(P,,=r if m is a negative marker and P,,=1—r
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if m is a positive marker). In (5), Cov (F,,, F,,,) refers
to the covariance in frequency between two markers
my and m,, and P, ,, is the probability that both
markers m, and m, are on the fittest genotype.

E(En):Pma (3)
B B Var (X) l
Var(F,,)=2P,(1-P,) (1 + 7E(/\QZ ) v’ 4)
B B Var (X) 1
COV(leaFm2)_2(Pmlmz Pmlpmz)(1+ E(X)Z ) N
(5)

Diffusion approximation

Although expressions for the moments of the number
of copies of a marker and moments for the frequency
of a marker have been obtained, in order to obtain
a tractable expression for the distribution of these,
we need to use a diffusion approximation. Diffusion
theory predicts (Feller, 1951) that starting with n, re-
combinants, after a long time, given that they survive,
the numbers will increase as ngxe’’, where 0 <x<wisa
measure of the acceleration relative to the expectation
nee’’, and its distribution is given by

2e 20 sl (4ngs/X)
(62’105 _ 1)ﬁ ?

where I;(x) is the modified Bessel function and
s=log(u). For small nys, eqn (6) approximates to an
exponential distribution. So, as an approximation we
can try and use an exponential distribution for the
distribution of numbers from a single recombinant.
The expected value A~! for the exponential distri-
bution would be the expected x of a single recom-
binant given that its descendants have survived in the
selected population. We have that the probability of
survival Pg=1-£,0), and thus A ~!'= Pg!. So, there-
fore we get (7) as an approximation for the distri-
bution of x

P (x)= (6)

p(x)=Pge ", (7

It should be noted, however, that as (7) is an ap-
proximation derived from the diffusion result, which
itself is an approximation of the general branching
process, it is not expected that it will work well in all
situations. Figure 2 shows the goodness of fit of (6)
and (7) for simulated data. It can be seen that both
work well for weak selection but decline in goodness
of fit for strong selection. So, in the following section,
we will use (7) to derive the distribution of marker
frequency for situations when fitness is not too high,
but as we shall show later, for large fitness we can in
most cases use a normal approximation for the
distribution of frequency using the moment calcula-
tions (3)—(5).
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Fig. 2. Distribution of the relative numbers from a single recombinant given that its descendants have survived in the
selected population. The diffusion curve represents (6) with parameters n,=1 and s=1og(u), and the exponential curve
represents (7). The number of generations of growth were 1={20, 10, 10} for u={1-2, 2, 3}. The offspring distribution per

generation was Poisson.

Distribution of marker frequency

We will assume that the distribution of the number
of descendants from a single recombinant, given that
its descendants have survived in the selected popu-
lation, is an exponential distribution with expectation
E(X)P5!. Now consider an initial population of size
N and a single positive marker m™* a recombination
rate r away from the selected locus. We have that the
number of copies of m™ in the selected population is
given by St = Zf‘: oXi» where each X; is exponentially
distributed and rn, is a binomially distributed random
variable with expectation E(n;)=1/2NPg(1—r).
Thus, S,," is distributed as ' (n;, E(X)Ps™ 1), where T
represents a Gamma distribution (i.e. a sum of expo-
nential distributions). So, the frequency of m™ in the
selected population would be defined as S,,*/
(S, +S,,7), where S,,” is the number of negative
markers at that locus in the selected population,
which has distribution T' (n,, E(X)Ps™ '), where
E(ny)=1/2NPgr. Hence, the distribution of marker
frequency is a Beta distribution B(n,, n,). Averaging
over n; and n,, we get (8) as the probability density
function for a positive marker frequency u, where p; =
1/2Pg(1—r) and p,=1/2Pgr.

N N N! N!
f)= 2 L N =t (N —np)
x (1 —=p)V ", (1 —py)V " (8)
I'(ny +ny)

ot 70"
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It should be noted that as the Beta distribution is
only defined for ny,n,>0, f(u) does not take into ac-
count the case where there are zero copies of a partic-
ular marker at the locus (i.e. n;=0 or ny,=0). This
results in the density function f{u) excluding the
probability that a marker is fixed or lost in the selected
population. Therefore, the true density function is
given by f(u)+P(u=0)+P(u=1), where P(u=0)
is the probability that the marker is lost, and P(u=1)
is the probability that the marker is fixed. If we
again focus on a positive marker m™, we have that
P(u=1)=(1—(1—=p)™)(1 —p)", where (1 —(1—py)")
is the probability that at least one recombinant
with marker m™ survives in the selected population,
and (1—p,)" is the probability that no recombinants
with the negative marker at that locus survives
in the selected population. Similarly, P(u=0)=
(I —=(1=po)M)(1 —p)". It should be noted that the in-
clusion of these two probabilities is only really needed
in the cases where the initial population size is very
small or when a marker is extremely close to the
selected locus, as the probability of a marker being
fixed or lost in other situations is negligible.

Figure 3 illustrates the goodness of fit of this ap-
proximation for various different parameters. We
see, as expected, eqn (8) works well for small fitness
but goodness of fit declines as fitness gets larger.
For large fitness, however, assuming N is not too
small, we can approximate the distribution of fre-
quency by using a normal distribution with mean
and variance given by (3) and (4). It can be seen from
Fig. 3¢,d that the normal distribution provides a
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Fig. 3. Distribution of frequency for unlinked markers for a small initial population size of N=15 and a larger initial
population size of N=100. For each of the initial population sizes, the distribution of frequency is plotted for small fitness
u=1-2 and large fitness u =3. The black curve represents (8), while the grey curve in (c) and (d) is a normal approximation
using (3) and (4). The number of generations of selection was 20 for small fitness and 10 for large fitness. The offspring

distribution was Poisson.

good approximation when the initial population is
not too small.

Effective initial population size

Using the moment calculations it is possible to work
out how large the initial population size N should be in
order to avoid spurious changes in marker frequency.
As seen in Fig. 1 the larger N is, the less is the variation
in frequency in the selected population. However, it
can also be seen from Fig. 3 that even though the
same initial population size can be present in two ex-
periments, the distribution of marker frequency can
be very different. In Fig. 3a, b, both simulations show
large variation in frequency due to having only a
small initial population size of N=15. Figure 3a,
however, shows far more variation than Fig. 3. This
discrepancy is due to the variation in the number of
descendants each initial recombinant leaves in the
selected population. The majority of this variation in
the number of descendants can be attributed towards
the differences in the probability of survival of the
initial recombinants in the two examples. That is, not
all of the 15 recombinants in the initial population
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have survived and left descendants in the selected
population. Only a certain portion of the initial popu-
lation has actually contributed towards the final fre-
quency. This subset of the initial population that
actually leaves descendants in the selected population
is what we will refer to as the effective initial popu-
lation size N*. Since, it is assumed in this model that
only the fittest genotype remains in the selected
population, this effective initial population size N*
can be defined as the initial proportion of recom-
binants within this fitter class that leave descendants
in the selected population. As a result, N* is a bi-
nomially distributed random variable with E(N*)=
0-5NPg.

The larger N* is, the less the variation in marker
frequency. For instance, in Fig. 3a, the probability of
survival Pg=0-32, and hence E(N*)=2-38, while in
Fig. 3b Ps=0-94 and E(N*)=7-05. So, although both
examples started off with 15 unique recombinant
genotypes, on average only about two unique geno-
types are represented in the selected population in one
example, whereas on average seven unique genotypes
are represented in the selected population in the other.
So, this reduction in the effective initial population
size led to a lot more variation in frequency in the
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Fig. 4. The variance in frequency in the selected
population for unlinked markers. The variance was
calculated from 2 P,,,(1—P,,) (u>+0>—u) (N (u—1) u) !
(i.e. limit of (4) as t—x), where P,,=0-5 and u={1-2,
1-5, 3}. The offspring distribution used was a Poisson
distribution and thus o®>=u.

example in Fig. 3a. The same explanation is respon-
sible for the differences in marker distribution in
Fig. 3¢,d. Hence, when determining how large the
initial population size N should be, one needs to take
into account the probability of survival. In general,
when the mean offspring per generation is small, the
probability of survival would be quite low and a much
larger N would be needed to ensure enough genotypes
survive in the selected population. This can be seen in
Fig. 4. It plots the variance in frequency in the selected
population (using (4)) against N for various different
fitnesses. It can be seen that, as expected, for small N
there is a lot more variation, and for small fitness the
variance is even larger due to the smaller N*. It can
also be seen that having an initial population size at
least in the mid hundreds ensures only small variation
in marker frequency in the selected population.

False positives

To get an idea of how this variation in marker fre-
quency affects the mapping ability, we can calculate
the number of false positives we would get, when we
try to identify markers linked to the selected locus. For
instance, suppose we wanted to do an initial genome
scan to see which chromosome the selected allele lies
on. The deterministic expectation predicts that the
closer a particular marker is to the selected locus the
more extreme the frequency of that marker becomes.
Hence, identifying the marker with the highest (posi-
tive markers) or lowest (negative markers) frequency
should reveal, at a minimum, which chromosome the
selected allele lies on. Finite population sizes, how-
ever, may lead to more extreme marker frequency on
other chromosomes. So, for various initial population
sizes, what is the probability that the most extreme
marker frequency is the marker that is linked to the
selected locus?
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If we look at the positive markers we are interested
in finding the maximum marker frequency. In this
case, we can define a false positive as a marker in
unlinked regions that has a frequency greater than the
marker that is closest to the selected locus. Hence, we
need to evaluate P(upun <Uiinked), wWhere uyy is the
maximum frequency in unlinked (or null) regions, and
Uinkea 18 the frequency of the marker closest to the
selected locus. To evaluate this probability, we will
assume that we have ¢ chromosomes of equal length /
Morgans, and assume each chromosome has a total of
7 markers at equally spaced intervals d=//(t—1). For
simplicity, we will also assume that the selected allele
is positioned in the middle of two markers resulting in
the distance between the closest marker and the
selected allele being d/2. Now, in order to evaluate
the distributions for u,,; and ujnreq, We will use the
normal approximations using moment calculations
(3)—(5). So, let fy(uiinkea) be the normal approxi-
mation for the probability density of u;,1eq, and let
P(ujinked = 1) be the probability that u;,eq 1s fixed in
the selected population. For u,,, the distribution of
the maximum frequency from the set of markers in
unlinked regions is needed. We need to use a multi-
variate normal distribution for this probability as the
frequencies of markers on the same chromosome can
be correlated. So, for any given value of wunkeq, SAY
Ulinked*>, an approximate probability that the maxi-
mum frequency in unlinked regions is less than
Ulinkea™> 18 given by P (unun < thinkea™) = Fomvn (@),
where Fepmyn(u) is the cumulative multivariate nor-
mal distribution, and u is a vector of length 7 with all
elements equal to ujnkeq™®. Integrating over all possible
values of ujjnkeq, We get (9) as an approximation for
the probability of not getting a false positive.

1
P (upy < thinked) = / Femvn (W)™ y (tiinked) Qttinked
0
+ P (tinked = 1)- )

Figure 5 shows how well (9) works against simu-
lation results. The solid curves are the theoretical
results using (9) and the dashed curves are the corre-
sponding results from simulations. The curves plot
the probability of getting a false positive for increas-
ing effective initial population size. In the example,
there are ¢=20 chromosomes each of length /=1
Morgan. The false-positive probabilities were calcu-
lated when there were 7=3 and 7=5 markers per
chromosome. It can be seen that the approximation
(9) slightly overestimates the number of false positives.
This is mainly due to the normal approximation for
Uinked- That is, the closer a marker is to the selected
locus, the less it follows a normal distribution. As a
result, the false-positive rate is overestimated. For
extremely small initial population sizes, eqn (9) would
not provide a good approximation for the number of
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Fig. 5. The probability of getting a false positive plotted
against the expected effective initial population size E(N¥).
The solid curves are the theoretical predictions using (9)
(i.e. 1 — P (tpun <thinkeq)) and the two dashed curves are
simulation results. The parameters that were used was
¢ =20 chromosomes each of length /=1 Morgan. The
number of markers 7 on each chromosome was 7=3 and
5. The black curves are results when 7=3 and the grey
curves are the results when 7=35. The number of
generations of selection was 10 and overall fitness of
selected allele was 3.

false positives, as the marker frequencies can no
longer be approximated by a normal distribution. In
general, however, we see from Fig. 5, that the false-
positive rate is reduced, as expected, when the vari-
ation in marker frequency is reduced with the increase
in the effective initial population size. With the smal-
ler effective initial population sizes, an increase in the
marker density is needed to reduce the number of false
positives. It should also be noted that with extremely
small initial population sizes (i.e. effective initial
population size less than 15), the probability of fix-
ation of an unlinked marker is greater than zero, and
as a result the false rate may always remain high no
matter how densely the markers are spaced.

Discussion
Mendelian traits

The aim is to locate alleles that influence a trait by
examining changes in marker allele frequency in pools
of asexual selected cross progeny. The extreme pro-
geny are selected by multiple generations of asexual
reproduction and selection. It was shown that the
ability to identify markers linked to a causative allele
depends on the variance in marker frequency in the
selected population. The larger the variation in mar-
ker frequency, the more chance there is of spurious
peaks and valleys in frequency in unlinked regions.
The amount of variation in frequency in unlinked
regions will be determined by the number of unique
recombinant genotypes present in the selected popu-
lation. The more unique recombinant genotypes
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present in the selected population, the more balanced
the representation of markers is in the selected popu-
lation, and the more likely that the marker frequency
will approach the deterministic expectation, making
identification of causative loci much easier. The
amount of unique recombinant genotypes present in
the selected population will be determined by the size
of the initial population. From Fig. 4, it was shown
that having an initial population size in the mid hun-
dreds should ensure that there is small probability of
spurious changes in marker frequency in unlinked
regions.

However, the ease of detection will also depend on
the marker density. A simple way to identify the gen-
eral location of the selected locus would be to identify
the marker with the most extreme frequency. In this
case, having a very dense map of markers will ensure
that a marker is close enough to the selected locus, so
that its frequency is the most extreme in the genome,
making identification of the location of the selected
locus easier. How dense the markers need to be to
achieve this will mainly be determined by the effective
initial population size, and also by the length and
number of chromosomes. From the example in Fig. 5,
it was shown that relatively few markers are needed
per chromosome to achieve a low false-positive rate,
as long as the effective initial population size is not too
small.

Maximum likelihood estimator

A more statistical approach to identify the location of
selected loci may also be employed using the model
developed in this paper. For example, a maximum
likelihood approach using a standard interval map-
ping technique (Lander & Botstein, 1989) can be used
to identify markers linked to selected alleles that have
been fixed in the population. That is, similar to interval
mapping, two markers at a time would be analysed on
each chromosome. For each pair of markers that
are analysed, a log likelihood ratio A =log(Ly/LA)=
log (Ly)—log(Ls) would be calculated. L, is the
likelihood under the hypotheses that a single selected
allele is fixed somewhere between the two markers,
and L, is likelihood under the null hypothesis that no
selected allele exists between the two markers.
Assuming that the effective initial population size is
not extremely small, a bivariate normal distribution
using moments (3)—(5) can be used for the likelihood
functions for both Lyand L. Apart from the location
parameter of the fixed selected allele (which is em-
bedded in the recombination probabilities in (3)—(5)),
there is one unknown parameter in both Ly and Lx
whose value needs to be estimated from the data. This
is the constant V'=2(1+ \g‘(r)(()? % from the moments
(4) and (5). A maximum likelihood estimator for V, v,
can be obtained by solving dlog(Lya)/dV=0 for V.
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Fig. 6. (a) Plot of the negative marker frequency

(marker every 5 cM) in a single replicate where there is a
selected allele fixed at position 1, and the effective initial
population size N*=20. (b) The grey curve is a plot of the
corresponding log likelihood ratios and the black line is
the significance level. To calculate the log likelihood ratios,
the genome was split into overlapping intervals of 10 cM,
where the overlap was 5 cM. For each interval, the

log likelihood ratio was calculated using the two markers
that define the interval. The unknown parameter ¥ in the
log likelihood functions was estimated by using all markers
and assuming they are all unlinked, and then solving

dlog (L)/dV=0 for V. The significance levels were
obtained by permutation analysis of simulated data from
a null region. The simulated data were obtained by
directly simulating frequencies from a multivariate

normal with parameter V.

Once V has been obtained the log likelihood ratio A
can be calculated at various positions along a chromo-
some. Significance levels for these log likelihood ratios
can be obtained by permutation analysis (Churchill
& Doerge, 1994) by using simulated data from a
multivariate normal with parameter V. Figure 6 shows
a simple example of this. Figure 6a plots the negative
marker frequency in a single replicate where there is
a selected allele fixed at position 1 and the effective
initial population size N*=20. Figure 65 plots the
corresponding log likelihood ratios and significance
level. It can be seen that the likelihood model cor-
rectly identifies the general location of the selected
allele.
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Quantitative traits

So, overall it can be seen that this selection technique
in asexual cross progeny is a relatively efficient method
for mapping simple Mendelian traits. However, for
more complex traits, the situation is not as straight-
forward. If we apply the current technique to quanti-
tative traits, we see firstly that the current strategy of
letting the experiment run until a genotype fixes
would not be the most efficient. This is because the
longer one selects, the more stochasticity we would see
in marker frequency in unlinked regions. For example,
suppose 7 loci influence the trait. There now could be
a possible 2”7 genotypes in the initial haploid popu-
lation. As selection is applied, the less fit genotypes
are lost, and the genotypic composition of the popu-
lation becomes increasingly biased towards the upper
tail of the fitness distribution. However, if # is large,
these genotypes in the upper tail may only have been
at small numbers in the initial population. As a result,
the effective initial population size may become very
small as selection is applied, leading to large stochas-
ticity in marker frequency in unlinked regions.

An example of this is shown in Fig. 7. It shows the
marker frequencies at various generations of selec-
tion, when there are five unlinked selected loci, one
large effect locus and four small effect loci, and a
relatively large initial population size of 200. The bar
charts in Fig. 7 represent the genotypic composition
of the population at that particular generation. With
five unlinked selected loci, there are 2°=32 possible
genotypes, with each genotype having a probability
275=0-03125 of being produced at meiosis. So, in the
bar charts in Fig. 7, each bar represents one of these
32 genotypes, with bar number 1 representing the least
fit genotype and bar number 32 representing the fittest
possible genotype. In the initial cross, it can be seen
that most genotypes are equally represented in the
population and markers frequencies are, as expected,
around 0-5. After 10 generations of selection, it can be
seen that most genotypes are still present in the
population, but the frequency of the genotypes in the
upper half of the fitness distribution have increased.
These genotypes in the upper half of the fitness dis-
tribution all have the large effect allele, and conse-
quently it can be seen that the frequencies of markers
around the large effect locus have increased. The fre-
quencies of all other markers remain roughly the
same. After 30 generations of selection it can be seen
that the fitter genotypes are now starting to establish
in the population, which results in an increase in fre-
quency of the smaller effect alleles. It can also be seen
that a lot of the genotypes in the lower half of the
fitness distribution are at insignificant numbers or no
longer present in the population. This results in a de-
crease in the effective initial population size. That is,
after 30 generations of selection, the number of
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Fig. 7. The marker frequencies and the genotypic composition of the population at various generations of selection when
there are multiple selected loci are shown. There are a total of five selected alleles at positions {2, 4, 6, 8, 10} (shown by the

filled circles) with selection coefficients {0-2, 0-05, 0-01, 0-03,

0-04}. With five selected alleles there are 32 possible

genotypes. The bar charts show the proportion of each of these 32 genotypes in the population at that particular
generation. Genotype number 1 refers to the least fit genotype (relative fitness of 1) and genotype 32 refers to the fittest
possible genotype (relative fitness of 1:36). The initial population size was 200.

unique recombinant genotypes in the population has
been reduced from 200 to 92. This results in slightly
more variation in frequency in unlinked regions. After
100 generations of selection, there are only six fitness
classes present in the population, with the fittest
(genotype 32) being the only one in substantial num-
bers, which results in the frequency of all the selected
alleles nearing fixation. However, with so few fitness
classes remaining in the population, the effective
initial population size has become very small. There
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are now only 27 unique recombinant genotypes in the
population, with the vast majority of the population
originating from just six unique recombinant geno-
types. Consequently, many markers in unlinked re-
gions are also at very low or high frequency.

So, we see that, in any one replicate, if selection
is continued on for a very long time, it may be very
difficult to identify which of these peaks and valleys in
marker frequency are truly selected alleles and which
are null regions, due to the very low effective initial
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population size. In order to avoid this, much larger
initial population sizes would be needed so that en-
ough numbers of the fitter genotypes are produced
at meiosis. However, as # gets larger the population
sizes that are needed may become prohibitively large.
Also, with large # the fitness differences between the
various genotypes will become quite small, and thus
letting the experiment run until a genotype fixes
would most likely be infeasible, as it would take an
extremely long time for any one genotype to fix. Hence,
both these reasons suggest that for quantitative traits,
finding an optimal time to run the experiment in order
to get the maximum amount of information from the
changes in marker frequency is necessary.
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Appendix

Moments of the number of copies of a marker m
in the selected population

Consider an initial population of size N and a single
marker m. Let S, be the number of copies of that
marker in the selected population. We have that
S, =Z:.1:0X ;» where n is a random variable represent-
ing the initial number of recombinants that had mar-
ker m. As we are assuming in the model that only the
fitter class of recombinants survive in the selected
population, we have that n is a binomially distributed
random variable with expectation E(n)=0-5NP,,,
where P,, is the probability that marker m is on the
fittest genotype (P,,=r if m is a negative marker
and P,,=1—r if m is a positive marker). Therefore,
we have that the expected number of copies of a
marker m, E(S,,), and variance Var(S,,,) in the selected
population is given by (A.1) and (A.2).

E(S,)=E(E(Sy|n)=EmE(X), (A.D)

Var (Sm) = E(Var (Sm |n)) + Var (E(Sm |n))

N (A.2)

=FE(n)Var(X)+ Var(n)E(X)".

Given two markers m,; and m,, the covariance,

Cov(S,,S,), between the number of copies of each

marker in the selected population is given by (A.3),

where P, ,, is the probability that both markers m,
and m, are on the fittest genotype.

COV(Smls sz) :NE(X)Z (0'5P1n1n12 _0'25Pm1sz)

+0-5NVar (X)P,,, ., - (A.3)

https://doi.org/10.1017/S0016672311000115 Published online by Cambridge University Press

231

Moments of the frequency of a marker m in the
selected population

Obtaining exact expressions for the moments of
marker frequency in the selected population is math-
ematically difficult, so approximations will be used
instead. Let F,,,=S,,/S; be the frequency of marker m,
where S, is the total number of recombinants in the
selected population. If we expand F,,, as a Taylor series,
we get (A.4) and (A.5) as an approximation for the
mean and variance in marker frequency in the selected
population. To derive the covariance in frequency,
Cov (lea E”g) = E(leETIg) - E(le)E(sz)a we expand
Fo Froy = (S, Siy) / (S,)? as a Taylor series and get
(A.6) as an approximation for the covariance in fre-
quency between markers m; and m,.

E(S,)  Var(S)E(S,) Cov(S,,S)
EE S s EGS)y  ES)y
(A.4)
Var(F, )zVar(Sm) E(S,,)*Var(S,)
T E(S)? E(S)* A.S)
2E(S,,)Cov(S,,, S, (
- ES)
Cov(F,  F )QJJE(S,,,I)E(S,,?Z) Cov(Sy,» S,)
E(S)? E(S,)?
2E(S,,,)Cov(S,,,S)
- E(S)?
2E(S,,)Cov(S,,, S) (A.6)
N E(S)
3E(S,,)E(S,,)Var(S,)
E(S)!

- E(le)E(FmQ)-

Since we are assuming in our model that only
recombinants from the fittest class survive in the
selected population, we can make some simplifica-
tions to the above calculations. Given only one fitness
class survives we have that E(S,,)=P,,E(S,) and
Cov(S,,,S;)=P, Var(S,), where E(S,) and Var(S,)
can be calculated using (A.1) and (A.2), where n now
is a binomial random variable with expectation 0-5N.
Substituting these into (A.4), (A.5) and (A.6) we get
(A.7) as the expectation of frequency, which is just the
same as the deterministic expectation, and (A.8) and
(A.9) as the variance and covariance in frequency.

E(En)ZPms (A7)
op Var(\ I
Var(F,)=2P,(1 Pm)(l+ Q0 ) N (A.8)
_ _ Var(X) l
COV(le, sz)_z(Pmlmz P;anmz)(l + E(X)2 ) N
(A.9)
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