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DISCRETE SUBSETS OF PROXIMITY SPACES
DON A. MATTSON

The distinct Hausdorff compactifications 6X of a completely regular (Haus-
dorff) space X are in one-one correspondence with the admissible proximity
relations § on X, or alternatively, with the admissible totally bounded uniform
structures for X. (See [1], [2].) Thus, 6X is the Smirnov compactification of
(X, 8). Generalized uniform structures % for X will be described by means of
pseudometrics on X (cf. [5], [7], [13]). Let ¢ € %, where % is in the proximity
class 7(8) associated with (X, 8). Then a subset S of X is o-discrete of gauge
e>0if o(x,y) = ¢ forallx,y € S, where x & y.

In this paper we show that if (X, §) contains an infinite o-discrete subset of
positive gauge, then card (60X — X) = 2¢, where ¢ is the cardinal of the conti-
nuum. Results concerning zero-sets of 6X in §X — X and the Q-closure of
(X, 8) are also obtained.

Let vsX be the real-completion of (X, d) (see [8], [11]). Then if card (6X — X))
< 2° it follows that vsX = 6X and 7(8) contains only the unique totally
bounded uniform structure compatible with 6. Also, if vsX ## 6X, then
card (60X — v X) = 2°

In (4) we establish that if X and Y are realcomplete metric proximity spaces,
then X and Y are uniformly isomorphic if and only if their respective algebras
of bounded uniformly continuous real-valued functions are isomorphic.

2. Realcompletions and the Q-closure. Let P(X) be the collection of
real-valued proximity functions defined on (X, §) and P*(X) be the algebra of
bounded members of P(X). Recall that the realcompletion v,X of (X, §) is
the set of all points in 6X to which every member of P(X) can be extended
with real values as a p-function. Denote the Smirnov extension of f € P(X)
to X by f°. Throughout this paper the proximity and uniform structures on
the real numbers R will be those associated with the standard metric. Defini-
tions and results concerning round filters may be found in [13] and notation
and terminology for rings of continuous functions will follow that of [5].

A proximity space will be called p-pseudocompact if P(X) = P*(X). The
theory of p-systems in P(X) is developed in [10]. A realcomplete proximity
space is realcompact, but a realcompact space need not be realcomplete for
every compatible proximity (cf. [11] or Example 2.3).

ProrosiTION 2.1. 4 proximity space (X, 8) is compact if and only if (X, 6) is
realcomplete and p-pseudocompact.
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Proof. Necessity is obvious. Conversely, if # is a maximal round filter in
(X, 8), then P(X) = P*(X) implies that.% is real (see [8]). Since (X, 8) is
realcomplete, # is fixed. Thus X is compact and the proof is complete.

D. Harris in [6] has defined the Q-closure of (X, §) to be the set of all points
b in 8X with the property that whenever f € C(6X) and f(p) = 0 there exists
g € X such that f(g) = 0. Let Qs(X) denote the Q-closure of (X, §). By
Theorem F of [6], p € Qs(X) if and only if #? has the countable intersection
property, where # 7 is the unique maximal round filter in (X, 6) which con-
verges to p.

The following theorem shows that if (X, 8) is not Q-closed, then (X, %)
cannot be complete for all % ¢ =(8). In particular, (X, §) cannot be real-
complete.

THEOREM 2.2, Let % ¢ 7(8) and cardX be non-measurable. If (X, U) is
complete, then X 15 Q-closed.

The proof of Theorem 2.2 consists of showing that each maximal round
filter in (X, 6) with the countable intersection property must be a Cauchy
filter in (X, %) and is analogous to the proof that (B) implies (C) of Theorem

4.1 of [9].

The converse of Theorem 2.2 is false. If X = (0, 1) with the standard metric
proximity, then (X, ) is Q-closed but 7(8) contains only the metric uniform
structure %, and (X, %,) is not complete.

Example 2.3. Let X be the unit ball in [y, the space of square summable
real sequencesg, and let 6 be the proximity associated with the standard metric
for X. Then, as is the case for any metric proximity, P (X) is just the collection
of real-valued uniformly continuous functions. Thus, (X, 3) is p-pseudo-
compact (cf. problem 15 D of [5]). Now X is complete in its metric uniform
structure so that (X, §) is Q-closed.

If B is the proximity associated with the Stone-Cech compactification 38X
of X, then X is pseudocompact if and only if every maximal round flter in
(X, 8) has the countable intersection property. The analogous result for
p-pseudocompactness does not necessarily hold if § 5% 3, however, as is evident
from Example 2.3.

3. Cardinals of sets in X — X. We say that a pseudometric ¢ for X is
compatible with a proximity 6 if (4, B) = 0 whenever 453, where A, B are
subsets of X. If Sis a o-discrete subset of (X, ) having positive gauge, then S
is C-embedded in X. However, an example of [4] (p. 157) shows that we need
not have P(S5) = P{X)|S, where .S has the discrete proximity, and that not
every continuous pseudometric on .S can be extended to a pseudometric on X
compatible with 3.

THEOREM 3.1. [f (X, ) conteins an infinite o-discrete subspace S of positive

gauge, where o is compaiible with 8, then card (60X — X)) = 2¢
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Proof. Let 8, be the proximity for S inherited from (X, 8) so that (S, &) is
discrete. Since the gauge of Sis positive, (S, 8,) is p-homeomorphic with (N, 8),
where N denotes the natural numbers. Moreover, P*(S) = C*(S).

Since S is C*-embedded in X, P*(S) = P*(X)|S implies that Sis C*-embed-
ded in 86X, hence in ClxS. Thus ClexS = 5,5, Let & be any free maximal
round filter in (S, &,). Then.# converges to a point x of §,5 — 5. If 2¢ is the
gauge of S and if x € X, then the e-ball about x determined by ¢ contains at
most one point of S. Thus # cannot converge to x, therefore the limit points of
the free maximal round filters in (S, §;) areinéX — X. Nows, S —SCoX — X
and cardé,S = cardBN = 2°¢implies that cardéX — X = 2¢

This completes the proof.

CoroLLARY 3.2. If (X, 8) satisfies card(6X — X) < 2¢, then (X, 8) s p-
pseudocompact and vsX = 6X.

Proof. If P(X) ¢ P*(X) choose f € P(X), where f is unbounded on X.
Set o (x,y) = |f(x) — f(¥)], so that ¢, is a pseudometric for X compatible with
3. Since f is unbounded, X contains an infinite subset S which is o -discrete of
gauge 1. Theorem 3.1 now yields a contradiction. Thus (X, 8) is p-pseudo-
compact and the proof is complete.

For metric proximity spaces, the following result applies.

CoroLLARY 3.3. Let (X, d) be a metric space with associated proximity 8.
Then card (60X — X) < 2°1f and only if d 1s totally bounded.

Proof. Necessity is immediate from Theorem 3.1 and sufficiency follows from
the fact that 6X is the completion of a totally bounded, therefore separable,
metric space.

Example 3.4. The converse of Corollary 3.2 is false since the space (X, 6) of
Example 2.3 is p-pseudocompact but is a non-totally bounded metric proximity
space so that card (6X — X) = 2° Since X is separable X must be a continu-
ous image of BN, the Stone-Cech compactification of the natural numbers
(cf. 9.A. [5]). Thuscard (60X — X) = card(8X — X) = 2° Yet X is not pseudo-
compact so that any unbounded member of C(X) is a proximity function with
respect to (X, 8) but not with respect to (X, §). Thus BX # 6X. We further
observe that since the proximity class 7(3) contains the metric uniform struc-
ture which is not totally bounded, then it follows from results of Reed and
Thron (cf. Corollary 2.1.3 of [12]) that 7(8) has at least ¢ members.

CoROLLARY 3.5. If card (68X — X) < 2° then the proximity class 7 (8) contains
only the unique totally bounded uniform structure.

The following example shows that the converse of Corollary 3.5 is false.

Example 3.6. Let A = BR — (BN — N) (see [5]) and take 6 = B. If ¢ is
any continuous pseudometric for ( A, 8) which is not totally bounded, then A
contains an infinite o-discrete subset S of positive gauge. Since S must be
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C-embedded in A and A is pseudocompact, no such ¢ can exist. Thus the
proximity class 7 (8) contains only %*, the uniform structure determined by

C*(A). But BA = BRand card(BA — A) = 2°.

Unlike zero-sets of BX — X, zero-sets Z of 6X contained in X — X may
have card Z < 2¢. If X = (0, 1) with the usual metric proximity, 6X = [0, 1]
and Z = {0, 1} is a zero set of §X. Also, while the realcompactification vX of X
contains no Gs-points of vX, we note that in this example 0 and 1 are G;-points
of the realcompletion v;X = 6X of (X, §). Clearly, no zero set of 6X contained
in X — X can meet Q;(X), however.

THEOREM 3.7. If Z 1s a zero-set of X contained in 6X — vsX, then card Z = 2°.

Proof. Let Z be a zero-set of some f® € C*(5X), where Z C 6X — vsX. Let
f=fX.Wecanassume f > 0on X and set g = f~*. Then g is unbounded on X
and X contains a copy S of N on which g approaches infinity (see Corollary
1.20 [5]). Now g has a continuous extension to a function g, on 6X — Z. Thus,
for each pointx of X — Z, the neighborhood {y € 6X — Z||g:(x) — g1(»)| < 1}
of x contains only finitely many points of S. Thus, all limit points of S lie in Z.

Let p be a limit point of S. Since p € Z, p ¢ vsX and there exists b € P(X)
such that #%(p) is not real. Thus, % is not bounded on S. It follows that .S con-
tains a countably infinite subset 7" such that 7" is o;-discrete of positive gauge,
where g, is the pseudometric for X determined by %. Now 7 is p-homeomorphic
with N so that 67" is homeomorphic with BN. Since & € P(X), Clox1T = 8T
and Cl;x7T — T° € Z. Thus Z contains a copy of BN — N so thatcard Z = 2¢
and the proof is complete.

CoroOLLARY 3.8. If p 15 a Gs-point of 6X, where p € 6X — X, then
P E UaX —_ QgX

Thus no realcomplete and non-compact (X, §) can have a Smirnov compacti-
fication which satisfies the first countability axiom.

THEOREM 3.9. If (X, §) 1s not p-pseudocompact, then card (86X — v;X) = 2¢.

Proof. Let f be an unbounded member of P(X) and let ¢, be the pseudo-
metric for (X, §) determined by f. Since f is unbounded, (X, 8) contains a
countably infinite ¢ -discrete subset .S of gauge 1. Now ¢, is compatible with &
so that Cl,;xS = 6S. Let p € 6S — S. The Smirnov extension f? of f is real-
valuedonv, X, henceif p € v;X theneighborhood {x € v, X||f?(x) — fo(p)| < 1/2}
contains at most one point of S. Thus p ¢ v,X. Since card(6S — S) = 2¢and
8S — S C 6X — vsX, the proof is complete.

Example 2.3 shows that card (X — X) = 2¢can occur when X is p-pseudo-
compact so that X = v;X. We recall that the non-real maximal p-systems of
P(X) are in one-one correspondence with the points of X — v,X.
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CoroLLARY 3.10. If (X, &) is not p-pseudocompact, then P(X) contains at
least 2° non-real maximal p-systems.

Example 3.11. Let § be the standard metric proximity for R, the real numbers.
The Smirnov extension of the identity function on R has no real values at any
point of 6R — R, hence (R, §) is realcomplete. Thus card(6R — R) = 2°and
P(R) contains 2° non-real maximal p-systems. Let A = {n|n € N} and B =
{n — 1/n|n € N}. Then Clgz4d M ClgzB = @ but Cl;z4 M Cl;zB # @ so that
BR # 6R.

Take f € C*(X) and let K(f) be the collection of all compactifications §X
to which f has a continuous, real-valued extension f°. Chandler and Geller have
shown in [3] that 6X is a minimal element of K(f) if and only if f®is1 — 1 on
86X — X. Moreover, the proof of Theorems 1 and 2 of [3] apply to any 6X, so
that if card 6X — X is countable, there exists f € P*(X) for which X is a
minimal element of K (f).

COROLLARY 3.12. If 6X s a minimal element in K(f), for some f € C*(X),
then (X, 8) 1s p-pseudocompact and X contains no o-discrete infinite subset of
positive gauge, for all compatible pseudometrics o on (X, 6).

The converse of Corollary 3.12 is false. For, if A = BR — (BN — N) and
8 = B, then (A, B) is (B3—) pseudocompact and contains no infinite o-discrete
subset of positive gauge for all continuous ¢ on (A, 8). But card(BA — A)
= 2°so thatno ffcanbel — 1 on BA — A.

4. A characterization of uniformly isomorphic spaces. We observe
that metric space (X, d) may be complete relative to the metric uniform
structure but the associated metric proximity space may not be realcomplete
(cf. Example 2.3). Let U*(X, d) be the algebra of bounded real-valued uni-
formly continuous functions on (X, d).

TurOREM 4.1. Let (X, d) and (Y, d1) be metric spaces where the associated
proximity spaces (X, 8) and (Y, 61) are realcomplete. Then (X, d) and (Y, d,)
are uniformly isomorphic if and only if U*(X, d) and U*(Y, d1) are isomorphic.

Proof. Necessity is immediate. Conversely, if U*(X, d) and U*(Y, d,) are
isomorphic, then P*(X) = U*(X, d) and P*(V) = U*(Y, d,) implies that
C*(6X) and C*(6,Y) are isomorphic. Thus 6X and 6§,V are homeomorphic
under a mapping ¢. But ¢ carries Gs-points of §X onto Gs-points of ;Y and
and by Corollary 3.8 no point of X — X or §;Y — Y is a Gs-point. Moreover,
each point X of the metric space (X, d) has a countable base of neighborhoods
in 8X. Hence each point of X is a Gs-point of 6X and similarly each point of V'
is a Gs-point of §; Y. Thus ¢ carries X onto V. Moreover, ¢ is a p-homeomorphism
of 6X onto 6, Y hence the restriction ¢; of ¢ to X is a p-homeomorphism of (X, §)
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onto (V, 8;). Since 6 and §, are metric proximities it follows that {; is a uniform
isomorphism of (X, §) onto (¥, &y).
This completes the proof.

Theorem 4.1 remains true if “metric” is replaced by the condition that X and
V satisfy the first countability axiom and the uniform isomorphism is taken
with respect to the unique totally bounded uniform structures in the respective
proximity classes of § and 6;.

“Realcomplete’” cannot be replaced by “‘realcompact” in Theorem 4.1. Take
X = Rand ¥V = R — {0} and let d and d, be the standard metrics for X and YV,
respectively. Then U*(X, d) is isomorphic to U*(V, d;), but X and Y are not
homeomorphic. Evidently, X and ¥ are realcompact but (¥, §;) is not real-
complete.
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