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M-HARMONIC FUNCTIONS WITH M-HARMONIC SQUARE

HONG OH KIM

.M-harmonic functions with .M-harmonic square are proved to be either holo-
morphic or antiholomorphic in the unit ball of complex n-space under certain
additional conditions. For example, if u and ua are .M-harmonic in the unit ball
of C and if u is continuously differentiate up to the boundary then u is either
holomorphic or antiholomorphic.

1. INTRODUCTION

It is well known and easy to prove that if u and u2 are harmonic in an open
connected region fi C C then at least one of u and u is holomorphic in Cl. The
analogue of this in the open unit ball Bn of Cn (n > 2) and with ".M-harmonic" in
place of harmonic was unexpectedly proved to be false by Ahern and Rudin in [1]. It
is not known whether the analogue for n = 2 is true or not. In this paper we prove the
analogue is true under certain additional conditions for n ^ 2. For example, if u and
u2 are .M-harmonic in the unit ball of C2 and if u is continuously differentiate up to
the boundary then u is either holomorphic or antiholomorphic.

We say that a function u is M -harmonic in Bn if

Au(z) = 0

for every z £ Bn, where A is the Moebius-invariant Laplacian:

(1)
\ J

j,k=l

This is related to the ordinary Laplacian A = ^ d2/dzjdzj as I Auj(a) = A(u o i
where <f> is an automorphism of Bn mapping the origin to a.

It is clear from (1) that all holomorphic or antiholomorphic functions are M.-
harmonic, as are the pluriharmonic ones. The pluriharmonic functions are those func-
tions that can be represented as a sum of a holomorphic function and an antiholomorphic
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function. It is an interesting fact that the pluriharmonic functions in the ball Bn are

those A4-harmonic functions that are also ordinary harmonic [3].

We recall that any .M-harmonic function u has a spherical harmonic expansion,

which converges uniformly on compact subsets of Bn,

(2) «(*)=

where hpq is a homogeneous polynomial of degree p in z and of degree q in z, and
Rpq(t) is a hypergeometric function, normalised so that Rptq(l) = 1:

See [2]. Finally, we recall the invariant Poisson kernel P(z,() is given by

[3], and the invariant Poisson integral of a function u on 5" is given by P[u](z)
= Js P(z,^)u(0)d<7(C), where da is the normalised Lebesgue measure on 5 with
da(S) = l.

2. T H E CASE n - 2

It is known in [1] that if u E C2 (£2) and Au = Aw2 = 0 then one of u and u is
holomorphic in B2. The smoothness condition u E C2(^2) is relaxed to u E C1(S2)
in the following main theorem of this paper.

THEOREM 1 . Suppose Au = Ait2 = 0 in B2 • If u is continuously differentiable

up to the boundary of Bi, then one of u and u is holomorphic in Bi.

P R O O F : Let T = z~2d/dzi — z~id/dz2 be a tangential Cauchy-Riemann operator
and R — zid/dzi + 228/dzi a radial differential operator on B2 • Then the hypothesis
Au = Au2 =± 0 implies that

(3) TTu = (r2 - l)RRu - Ru,

(4) TuTu = (r2 - l)RuRu.

Since u E C1 (B2) , (4) implies that TuTu — 0 on 5. There are two open subsets V

and W of S such that

Tu = 0 on V,

(5) Tu = 0 on W,

VUW=S.
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We fix Co G V and take ^ G Cf{V) such that <j> = 1 near Co • We set ux = (jru, and let
£/i = P[ui) be the invariant Poisson integral of ui. Then

u(z)= [ P(z,()u(()d*(O
Js

Js
(6) = U,{z) + U2(z).

We can easily check that

(?)

as z - C o - If we note that

TTU2{z) ->

RU2(z) -

= T<bu

o,
0

~<f>Tu

on 5 , we see that Tux e C ^ S ) and so TTui £ C ( 5 ) . Since ATTUi = TTAUi = 0,
we also have

(8)

as r —> 1. We write Ui(z) = 52-Rp?(|^| J^p?^) a s i n (2). An easy computation gives

(9) TTU1(z) = -'

Therefore, we have

(10) j \TTUx{rC,)\2 da(Q =

If we let r -> 1~ in (10), we get, by (8),

(11) [ {TTu^Ol2 da(C) = £ > 2 (

On the other hand, we have

RUt(z) =

CO
* \« ^ I i f l x •* x i \ •* f

p,q^0
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and so

/ {R^irOl2 dcr(C) = £ {Rvq(r
2y +9i?p,(r2)}V+2« / \hpq{Q\2 d<r{Q

Js -,q>o Js

(12) < oo.

The last inequality comes from (11). Therefore,

(13)

as r —» 1 . We can choose a sequence Tj f 1 so that RU\{r(,) —* TTui(()[a] almost
everywhere on S. We can easily see that RU\{rQ —> Rui(() near £o and so we have
TTui(£) = Ru(() near Co by continuity. We have proved that Ru = 0 on V and so
on V by continuity. Similarly, we can show Ru = 0 on W. Since RuRu = 0 on S, we
have, by orthogonality of the uP), 's,

0 =

where u = 2~2upq ' s ^e homogeneous expansion of u on 5 in L2(cr). Therefore, pq = 0
unless upq = 0. This means that u is pluriharmonic in B2 • If we write u — f + g~
where / , g are holomorphic in B2 , then

TTu =

is holomorphic in B2 and vanishes on W. Suppose W / f Then TTu = 0 on 5
and so Ru = 0 on B2 • Therefore u is antiholomorphic in B2 by a Theorem of Forelli
[3]. Similarly, we can show that u is holomorphic in B2 if V ^ <j>. This completes the
proof. u

THEOREM 2 . Suppose Au = Au2 = 0 in B2 • If u is holomorphic in one of two
variables then one of u and u is holomorphic in B2 •
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PROOF: Suppose u(zi,Z2) is holomorphic in 22 in -62- Au = Au2 = 0 implies
that

, 1 / n du2 ,2 d2u , _ d2u
(1 4) ^7^r = l2il ^7^=- + 2iz2:

du (du 2 du _ du \

We have either du/dzi = 0 or

.,„. du .
16) 7T- = \zi

oz

du . ,2 du du
\ \ 7^ + z1z2 —az2

If du/&zi = 0, then u is holomorphic in both variables, so it is holomorphic in B2 •
Suppose (16) is true. If we take d/dz\ on both sides of (16) then we have Ru = 0 by
(14). Therefore u is antiholomorphic in B^ by a theorem of Forelli [3]. This completes
the proof. U

3 . .M-HARMONIC FUNCTIONS WITH PLURIHARMONIC SQUARE

Finally we prove that any .M-harmonic function with pluriharmonic square is either
holomorphic or antiholomorphic.

THEOREM 3 . Suppose Au - Au2 = 0 in Bn. If AM2 -0, in addition, then one
of u and u is holomorphic in Bn. In other words, if M-harmonic function u has a
pluriharmonic square, then either u or u is holomorphic.

PROOF: Since u2 is pluriharmonic, it can be written as u2 = f + ~g, where / and
g are holomorphic in Bn. Hence u = (f + 5)1 , a branch, where u does not vanish.
Since

we have

Therefore
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where u does not vanish and so u does not vanish everywhere by continuity. We apply
the result of Ahem and Rudin [1, Theorem I]. If n — 2, then one of / and g is a
constant function, and so one of u and u is holomorphic. Assume n ^ 3, and suppose
that neither / nor g is a constant function. Then there exist

(i) an interger m, 2 ^ m ^ n — 1,
(ii) a utitary transformation U : Cn —» C*,

(iii) entire functions <f>: C 1 " 1 -* C and ij> : C"-m -» C, such that

Therefore we may assume

\1-Zl 1-^1/ \1-Zl 1-«1/

We claim that u2 vanishes somewhere on Bn. First we can choose C}-1^ 6 C"1"1 and
^(2) 6 Cn-m. s o t h a t ^,(^(1)) + ^(^(2)) = 0. We take a value xx with 0 < xx < 1 so

that l ^ l + |C(2)| < R = y/T=l%/y/2{l - xi) and set

Then

1 - a s i

Therefore

For fixed xi and z^2 ,̂ w2(xi,2^:1\z^2^) is holomorphic in z ^ and hence u2 takes all
values of a neighbourhood of 0. Therefore it cannot have a continuous square root
function u, which is a contradicion. This shows that either / or g must be a constant
function. That is, one of u or u is holomorphic. This completes the proof. D
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