Correction to a Theorem on Total Positivity

Carl Johan Ragnarsson, Wesley Wai Suen, and David G. Wagner

Abstract

A well-known theorem states that if $f(z)$ generates a PF_{r} sequence then $1 / f(-z)$ generates a PF_{r} sequence. We give two counterexamples which show that this is not true, and give a correct version of the theorem. In the infinite limit the result is sound: if $f(z)$ generates a PF sequence then $1 / f(-z)$ generates a PF sequence.

1 The Bad News

Theorem 1.2 in Chapter 8 of Karlin's book [2] implies the following:
Theorem A Let $f(z)=1+\sum_{n=1}^{\infty} a_{n} z^{n}$ and $g(z)=1+\sum_{n=1}^{\infty} b_{n} z^{n}$ be power series with real coefficients such that $g(z)=1 / f(-z)$. For any positive integer r, the Toeplitz matrix of f is totally positive up to order r if and only if the Toeplitz matrix of g is totally positive up to order r.

The bad news is that Theorem A is false. In the limit $r \rightarrow \infty$ the result is sound, and appears in work by Schoenberg et al. in the early 1950s [1, 4, 5]. We consider the possible source of error at the end of this section, but first let us review the definitions.

For a power series $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$, the Toeplitz matrix of f is the infinite matrix $T[f]$, indexed by pairs of integers, with entries

$$
T[f]_{i j}:= \begin{cases}a_{j-i} & \text { if } j-i \geq 0 \\ 0 & \text { if } j-i<0\end{cases}
$$

An infinite matrix M is totally positive up to order r when every minor of M of order at most r is nonnegative. This condition is abbreviated TP_{r}. If M is TP_{r} for all r then M is totally positive, abbreviated TP.

The matrix $T[f]$ is TP_{1} if and only if the coefficients of $f(z)$ are nonnegative. If $T[f]$ is TP_{2} then the sequence of coefficients a_{0}, a_{1}, \ldots has no internal zeros, i.e., if $0 \leq h<i<j$ and $a_{h} a_{j} \neq 0$, then $a_{i} \neq 0$. Also, if $T[f]$ is TP_{2} then the sequence of coefficients a_{0}, a_{1}, \ldots is logarithmically concave, i.e., if $j \geq 1$ then $a_{j}^{2} \geq a_{j-1} a_{j+1}$. Nonnegativity of the remaining 2-by-2 minors of $T[f]$ follows from these two conditions. That is, the Toeplitz matrix $T[f]$ is TP_{2} if and only if the sequence of coefficients a_{0}, a_{1}, \ldots is nonnegative, has no internal zeros, and is logarithmically concave.

[^0]Our first counterexample is the polynomial $f(z)=1+4 z+3 z^{2}+z^{3}$. By the preceding paragraph, one sees easily that $T[f]$ is TP_{2}. Elementary calculation with linear recurrence relations yields

$$
g(z)=\frac{1}{1-4 z+3 z^{2}-z^{3}}=1+4 z+13 z^{2}+41 z^{3}+129 z^{4}+406 z^{5}+\cdots
$$

Since $129^{2}-41 \cdot 406=-5<0$, the Toeplitz matrix $T[g]$ is evidently not TP_{2}. Theorem A is false. With hindsight, one notices that the coefficients of $f(z)=1+$ $z+2 z^{2}$ are nonnegative, but that

$$
g(z)=\frac{1}{1-z+2 z^{2}}=1+z-z^{2}-3 z^{3}-z^{4}+5 z^{5}+\cdots
$$

has negative coefficients. Thus, $T[f]$ is TP_{1} while $T[g]$ is not TP_{1}.
The approach of Schoenberg et al. $[1,4,5]$ to the $r \rightarrow \infty$ limit of Theorem A proceeds via Jacobi's theorem on complementary minors of inverse matrices. Assume that $T[f]$ is TP, and let M be a k-by- k submatrix of $T[g]$. Then M is contained in a suitably large n-by- n principal submatrix B of $T[g]$ supported on consecutive rows and columns. Let A be the corresponding principal submatrix of $T[f]$. Multiplying every row and column of B with even index by -1 , we obtain a matrix B^{\prime} such that $A B^{\prime}=I$. Both A and B^{\prime} have determinant one. Let N be the $(n-k)$-by- $(n-k)$ submatrix of A supported on rows and columns complementary to those supporting M in B. Application of Jacobi's theorem and careful accounting for signs shows that $\operatorname{det}(M)=\operatorname{det}(N)$. Since $T[f]$ is assumed to be TP, this shows that $T[g]$ is TP.

This argument breaks down if $T[f]$ is merely assumed to be TP_{r} since the value of n required above can be strictly larger than $r+k$, in which case we lose control over the sign of the $(n-k)$-by- $(n-k)$ minor $\operatorname{det}(N)$ of $T[f]$. This seems to be the problem in [2].

2 The Good News

The good news is that Theorem A can be fixed.
To do this we need a few facts about symmetric functions; see Macdonald [3] for details. The ring Λ of symmetric functions consists of all formal power series of bounded degree in independent commuting indeterminates x_{1}, x_{2}, \ldots that are invariant under all permutations of the indeterminates. In particular, for $n \geq 1$ the n-th elementary symmetric function is

$$
e_{n}:=\sum_{1 \leq i_{1}<i_{2}<\cdots<i_{n}} x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}
$$

and the n-th complete symmetric function is

$$
h_{n}:=\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{n}} x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}
$$

Let $E(t):=1+\sum_{n=1}^{\infty} e_{n} t^{n}$ and $H(t):=1+\sum_{n=1}^{\infty} h_{n} t^{n}$ be the generating series for these sequences. Formally, e_{1}, e_{2}, \ldots and h_{1}, h_{2}, \ldots can be regarded as indeterminates that are algebraically independent over the field \mathbb{O}) of rational numbers, except for the single relation $E(t)=H(-t)^{-1}$. By means of this relation one can determine each e_{n} as a polyomial in the h_{n} 's, and conversely. The indeterminates $\left\{h_{n}\right\}$ remain algebraically independent over $\left(\mathbb{O}\right.$, as do the indeterminates $\left\{e_{n}\right\}$. The ring Λ is a polynomial ring with coefficients in \mathbb{O}) over either set of indeterminates $\left\{h_{n}\right\}$ or $\left\{e_{n}\right\}$.

Since the indeterminates $\left\{h_{n}\right\}$ are algebraically independent and generate Λ, a homomorphism $\varphi: \Lambda \rightarrow R$ from Λ to another ring R is determined by its sequence of values $\left\{\varphi\left(h_{n}\right)\right\}$. For our application we only need this fact when $R=\mathbb{R}$ is the real field. A real power series $f(z)=1+\sum_{n=1}^{\infty} a_{n} z^{n}$ determines such a homomorphism $\varphi_{f}: \Lambda \rightarrow \mathbb{R}$ by $\varphi_{f}\left(h_{n}\right):=a_{n}$. Notice that if $g(z)=1+\sum_{n=1}^{\infty} b_{n} z^{n}$ is such that $g(z)=1 / f(-z)$ then $\varphi_{f}\left(e_{n}\right)=b_{n}$ and $\varphi_{g}\left(e_{n}\right)=a_{n}$.

The set of all integer partitions, partially ordered by inclusion of Ferrers diagrams, is called Young's lattice and denoted by y. For $\mu \leq \lambda$ in y there is a symmetric function $s_{\lambda / \mu}$ called a skew Schur function. Every skew Schur function can be indexed by a pair of partitions in y such that:
(i) $\mu \leq \lambda$,
(ii) μ has strictly fewer parts than λ,
(iii) the largest part of μ is strictly smaller than the largest part of λ.

We will denote this relation by $\mu \prec \lambda$ in y. The formulae we need are the JacobiTrudy formula and its dual form:

$$
s_{\lambda^{\prime} / \mu^{\prime}}=\operatorname{det}\left(e_{\lambda_{i}-i+j-\mu_{j}}\right) \quad \text { and } \quad s_{\lambda / \mu}=\operatorname{det}\left(h_{\lambda_{i}-i+j-\mu_{j}}\right)
$$

The order of these determinants is the number of parts of λ, and if j exceeds the number of parts of μ, then $\mu_{j}:=0$. The notation λ^{\prime} denotes the partition conjugate to λ. If $f(z)$ and $g(z)$ are real power series such that $g(z)=1 / f(-z)$, then

$$
\varphi_{f}\left(s_{\lambda / \mu}\right)=\varphi_{g}\left(s_{\lambda^{\prime} / \mu^{\prime}}\right) \quad \text { and } \quad \varphi_{g}\left(s_{\lambda / \mu}\right)=\varphi_{f}\left(s_{\lambda^{\prime} / \mu^{\prime}}\right)
$$

Consider the submatrix M of $T[f]$ supported on rows $\left\{i_{1}<i_{2}<\cdots<i_{r}\right\}$ and columns $\left\{j_{1}<j_{2}<\cdots<j_{r}\right\}$. If $j_{k}<i_{k}$ for any $1 \leq k \leq r$ then $\operatorname{det}(M)=0$, so we may assume that $j_{k} \geq i_{k}$ for all $1 \leq k \leq r$. If $j_{1}=i_{1}$ or $j_{r}=i_{r}$ then $\operatorname{det}(M)$ reduces by Laplace expansion to a smaller minor of $T[f]$. Thus we may assume as well that $j_{1}>i_{1}$ and $j_{r}>i_{r}$. A minor satisfying all these conditions is called an essential minor of $T[f]$. It is clear that $T[f]$ is TP_{r} if and only if every essential minor of $T[f]$ of order at most r is nonnegative.

Every essential minor of $T[f]$ has the form $\varphi_{f}\left(s_{\lambda / \mu}\right)=\operatorname{det}\left(a_{\lambda_{i}-i+j-\mu_{j}}\right)$ for some $\mu \prec \lambda$ in y. To see this, let $\operatorname{det}(M)$ be an essential minor of $T[f]$ supported on rows $\left\{i_{1}<i_{2}<\cdots<i_{r}\right\}$ and columns $\left\{j_{1}<j_{2}<\cdots<j_{r}\right\}$. For each $1 \leq k \leq r$ let $\lambda_{k}:=j_{r}-i_{k}+k-r$. The inequalities $\lambda_{1} \geq \cdots \geq \lambda_{r}>0$ are easily seen, so that λ is an integer partition with r parts. For each $1 \leq k \leq r$ let $\mu_{k}:=j_{r}-j_{k}+k-r$. One can check that μ is an integer partition with at most $r-1$ parts, that $\mu \prec \lambda$ in \mathcal{y}, and that $\operatorname{det}(M)=\operatorname{det}\left(a_{\lambda_{i}-i+j-\mu_{j}}\right)$. This construction can be reversed, so that every
$\varphi_{f}\left(s_{\lambda / \mu}\right)$ is an essential minor of $T[f]$. In this way the skew Schur functions can be regarded as generic essential Toeplitz minors.

The order of the minor $\varphi_{f}\left(s_{\lambda / \mu}\right)$ of $T[f]$ is the number of parts of λ. This implies the following: (i) the Toeplitz matrix $T[f]$ is TP_{r} if and only if $\varphi_{f}\left(s_{\lambda / \mu}\right) \geq 0$ for all $\mu \prec \lambda$ in y for which λ has at most r parts. Similarly, (ii) the Toeplitz matrix $T[g]$ is TP_{r} if and only if $\varphi_{g}\left(s_{\lambda / \mu}\right) \geq 0$ for all $\mu \prec \lambda$ in y for which λ has at most r parts. If $g(z)=1 / f(-z)$ then, since $\varphi_{g}\left(s_{\lambda / \mu}\right)=\varphi_{f}\left(s_{\lambda^{\prime} / \mu^{\prime}}\right)$, condition (ii) is equivalent to: (iii) the Toeplitz matrix $T[g]$ is TP_{r} if and only if $\varphi_{f}\left(s_{\lambda^{\prime} / \mu^{\prime}}\right) \geq 0$ for all $\mu \prec \lambda$ in y for which λ has at most r parts. Or, in other words, (iv) the Toeplitz matrix $T[g]$ is TP_{r} if and only if $\varphi_{f}\left(s_{\lambda / \mu}\right) \geq 0$ for all $\mu \prec \lambda$ in y for which λ has largest part at most r. Comparing (i) and (iv) we see that the two conditions in Theorem A are closely related, but not equivalent.

Interpreting $\varphi_{f}\left(s_{\lambda / \mu}\right)$ as a minor of $T[f]$, bounding the number of parts of λ corresponds to bounding the order of the minor. What corresponds to bounding the largest part of λ ? For the submatrix M of $T[f]$ supported on rows $\left\{i_{1}<i_{2}<\right.$ $\left.\cdots<i_{r}\right\}$ and columns $\left\{j_{1}<j_{2}<\cdots<j_{r}\right\}$, define the level of M to be $\ell:=$ $j_{r}-i_{1}+1-r$. The level of a minor of $T[f]$ is the level of the submatrix of which it is the determinant. The Toeplitz matrix $T[f]$ is totally positive up to level ℓ when every minor of $T[f]$ of level at most ℓ is nonnegative. This condition is abbreviated $\mathrm{TP}_{\ell}^{\prime}$. If $T[f]$ is $\mathrm{TP}_{\ell}^{\prime}$ for all ℓ then $T[f]$ is totally positive, TP.
Theorem B Let $f(z)=1+\sum_{n=1}^{\infty} a_{n} z^{n}$ and $g(z)=1+\sum_{n=1}^{\infty} b_{n} z^{n}$ be power series with real coefficients such that $g(z)=1 / f(-z)$. For any positive integer $r, T[f]$ is totally positive up to level r if and only if $T[g]$ is totally positive up to order r.

Notice that in the limit as $r \rightarrow \infty$ we get the equivalence: $T[f]$ is TP if and only if $T[g]$ is TP. This is the most important consequence of Theorem A in the literature, and it is a huge relief that it survives.

References

[1] M. Aissen, I. J. Schoenberg, and A. Whitney, On the generating functions of totally positive sequences. Proc. Nat. Acad. Sci. U.S.A. 37(1952), 303-307.
[2] S. Karlin, Total Positivity, I. Stanford University Press, Stanford, CA, 1968.
[3] I. G. Macdonald, Symmetric Functions and Hall Polynomials. Second edition. Oxford University Press, Oxford, 1995.
[4] I. J. Schoenberg, On smoothing operations and their generating functions. Bull. Amer. Math. Soc. 59(1953), 199-230.
[5] On the zeros of the generating functions of multiply positive sequences and functions. Ann. of Math. 62(1955), 447-471.

Pålsjövägen 16
SE-22363 Lund
Sweden
e-mail: cjr@gongames.com

Department of Combinatorics and Optimization
University of Waterloo
Waterloo, ON
N2L 3G1
e-mail: wwsuen@math.uwaterloo.ca dgwagner@math.uwaterloo.ca

[^0]: Received by the editors July 14, 2004.
 Research supported by the Natural Sciences and Engineering Research Council of Canada under operating grant OGP0105392.

 AMS subject classification: 15A48, 15A45, 15A57, 05 E05.
 Keywords: Total positivity, Toeplitz matrix, Pólya frequency sequence, skew Schur function.
 (C)Canadian Mathematical Society 2006.

