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The Time Change Method and SDEs with
Nonnegative Drift

V. P. Kurenok

Abstract. Using the time change method we show how to construct a solution to the stochastic equa-

tion dXt = b(Xt−)dZt + a(Xt )dt with a nonnegative drift a provided there exists a solution to the

auxililary equation dLt = [a−1/αb](Lt−)dZ̄t + dt where Z, Z̄ are two symmetric stable processes

of the same index α ∈ (0, 2]. This approach allows us to prove the existence of solutions for both

stochastic equations for the values 0 < α < 1 and only measurable coefficients a and b satisfying

some conditions of boundedness. The existence proof for the auxililary equation uses the method of

integral estimates in the sense of Krylov.

1 Introduction

The use of the time change method in constructing of solutions of one-dimensional

Itô equations is well known. Usually, if the equation involves the drift term, one

has then to apply the time change method in conjunction with a particular space

transformation (drift transformation).

Here we shall use the time change method to construct a solution to the equation

(1.1) dXt = b(Xt−)dZt + a(Xt )dt, t ≥ 0, X0 = x0 ∈ R,

where Z is a symmetric stable process of index α ∈ (0, 2]. The coefficients a and b

are assumed to be only Borel measurable satisfying some boundedness conditions.

Equation (1.1) without drift (a = 0) is well studied. The case of α = 2 was treated

in detail in series of papers by H.J. Engelbert and W. Schmidt in the 1980’s. They were

able to find sufficient and necessary conditions for the existence of solutions. We refer

here, for example, to [6] and [8]. The general case with arbitrary α ∈ (0, 2] but still

with a = 0 was studied by P. Zanzotto in [19] and [20] who, in particular, generalized

the results of Engelbert and Schmidt for α ∈ (1, 2]. The main method used for SDEs

(1.1) without drift was the time change method.

Equation (1.1) with drift and α = 2 was studied by H. J. Engelbert and W. Schmidt

in [7] where they proved the existence of solutions under very general assumptions

on the coefficients a and b combining the time change method and the method of

drift transformation due to A. Zvonkin.

The case of equation (1.1) with α ∈ (1, 2) was considered in [11]. In particular, it

was shown in [11] how one can obtain a solution X to (1.1) for any α ∈ (0, 2] by the
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time change method if one has a process Y satisfying the equation

(1.2) dYt = dZ̃t + c(Yt )dt, t ≥ 0, Y0 = 0,

where c = a|b|−α with |b|−α := 1/|b|α and Z̃ is a symmetric stable process of the

same index α. In order to solve equation (1.2), we used the method of so-called

Krylov’s estimates for processes Y . The tools developed there worked only for α ∈
(1, 2) but not for the case α ≤ 1. Some results for equation (1.1) with α = 1

and measurable coefficients were obtained in [12]. To our knowledge, there are no

existence results known for equation (1.1) with α < 1 in the case of only measurable

coefficients.

The purpose of this paper is twofold. First, we suggest a method to construct

a process Y satisfying equation (1.2) applicable for all values of α ∈ (0, 2]. More

precisely, we consider the auxililary equation

(1.3) dLt = [a−1/αb](Lt−)dZ̄t + dt, t ≥ 0, L0 = 0,

where Z̄ is a symmetric stable process of the same index α and a−1/α := 1/a1/α.

Provided there is a solution L to equation (1.3), a suitable time change in the process

L will lead to a solution Y for equation (1.2). However, in order for the time change

to work, one has to require the drift coefficient a to be nonnegative. To prove the

existence of solutions to equation (1.3), we shall use the method of Krylov’s estimates

for processes L. Conceptually, to obtain the corresponding integral estimates, we

follow an idea similar to that used in [11] for processes Y and X. Second, the use of

the method based on equation (1.3) allows us to prove the existence of solutions to

equation (1.1) with α < 1 and only measurable coefficients a and b satisfying some

assumptions of boundedness.

It should be noted that the existence of solutions to equation (1.1) in the case

of 0 < α < 1 and a = 0 with measurable coefficient b was proven in [19] where

it was assumed that the coefficient b satisfied some additional assumption of local

integrability. The main novelty of the results obtained here compare with those in

[19] is the presence of the drift term a. Moreover, the handling of equation (1.1)

with drift seems to be more complicated and requires different approaches, as for

equation (1.1) in the Brownian motion case (α = 2).

The introduction would be incomplete without mentioning the results known for

equation (1.1) with b = 1 (similarly, for (1.2) with c = a). Thus, in [18] the authors

studied the solutions under some conditions different for cases 0 < α < 1, α = 1,

and 1 < α < 2. Without going into detail, we only mention that, in the case of α < 1,

the coefficient a is required to satisfy some smoothness properties. Moreover, the

method used in [18] was a purely analytical one based on properties of corresponding

Markov processes. More recently, N. Portenko [14] proved the existence of solutions

to equation (1.1) with b = 1 and α ∈ (1, 2) under the assumption |a|p ∈ L(R) for

p > 1/(α − 1) where he used his own estimates for transition probability density

function of the solution process.
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2 Preliminaries

We shall denote by D[0,∞)(R) the Skorokhod space, i.e., the set of all real valued

functions z : [0,∞) → R with right-continuous trajectories and with finite left limits

(also called cádlag functions). For simplicity, we shall write D instead of D[0,∞)(R).

We will equip D with the σ-algebra D generated by the Skorokhod topology. Under

D
n we will understand the n-dimensional Skorokhod space defined as D

n
= D ×

· · · × D with the corresponding σ-algebra Dn being the direct product of n one-

dimensional σ-algebras D.

Let (Ω,F, P) be a complete probability space carrying a process Z with Z0 = 0 and

let F = (Ft ) be a filtration on (Ω,F, P). The notation (Z, F) means that Z is adapted

to the filtration F. We call (Z, F) a symmetric stable process of index α ∈ (0, 2] if

trajectories of Z belong to D and

E
(

eiξ(Zt−Zs)|Fs

)
= e−(t−s)|ξ|α

for all t > s ≥ 0 and ξ ∈ R. If α = 2, then Z = W is a process of Brownian

motion with variance 2t . For α = 1 we have a Cauchy process with unbounded

second moment. In general, E|Zt |
β < ∞ for β < α. It is well known that the process

of Brownian motion W is the only symmetric stable process with continuous paths.

If α ∈ (0, 2), then one has the following quasi-isometrical property proven by J.

Rosinski and W. Woyczynski [17]: there exist constants cα and Cα depending on α
only such that for all t > 0

(2.1) cαE

∫ t

0

| fs|
αds ≤ sup

λ>0

λα
P

(
sup
s≤t

|

∫ s

0

fudZu| > λ
)
≤ CαE

∫ t

0

| fs|
αds.

For all 0 < α ≤ 2, Z is a Markov process and can be characterized in terms of

analytic characteristics of Markov processes. First, for any function f ∈ L∞(R) and

t ≥ 0, we can define the operator

(Pt f )(x) :=

∫

Ω

f (x + Zt )dP(ω)

where L∞(R) is the Banach space of functions f : R → R with the norm ‖ f ‖∞ =

ess sup | f (x)|. The family (Pt )t≥0 is called the family of convolution operators associ-

ated with Z. Formally, for a suitable class of functions g(x), let

(Lg)(x) = lim
t↓0

(Pt g)(x) − g(x)

t
,

which is called the infinitesimal generator of the process Z.

It is known that for α < 2

(Lg)(x) =

∫

R\{0}

[g(x + z) − g(x) − 1{|z|<1}g ′(x)z]
kα

|z|1+α
dz
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for any g ∈ C2, where C2 is the set of all bounded and twice continuously differ-

entiable functions g : R → R and kα is a suitable constant. Contrary to the case of

α ∈ (0, 2), the infinitesimal generator of a Brownian motion process (α = 2) is the

Laplacian, that is, the second derivative operator.

We note also that the use of Fourier transforms can simplify calculations when

working with the infinitesimal generator L. Let g ∈ L1(R) and

ĝ(ξ) :=

∫

R

eizξg(z)dz

be the Fourier transform of g. The following fact will be used later (cf. [11, Proposi-

tion 2.1]).

Proposition 2.1 Let L be the infinitesimal generator of a symmetric stable process Z.

Assume that g ∈ C2(R) and Lg ∈ L1(R). Then (̂Lg)(ξ) = −|ξ|αĝ(ξ).

The existence of solutions to stochastic equations (1.1)–(1.3) is understood here

in the weak sense. For instance, we say that equation (1.1) has a solution if there exist

a probability space (Ω,F, P) with a filtration F and processes X and Z on it such that

(2.2) Xt = x0 +

∫ t

0

b(Xs−)dZs +

∫ t

0

a(Xs)ds, t ≥ 0 P − a.s.,

where (Z, F) is a symmetric stable process of given index α. The definitions for equa-

tions (1.2) and (1.3) are similar.

3 The Time Change Method

Here we are going to show how to construct a solution to equation (1.1) for any

α ∈ (0, 2] using the time change method and equations (1.2) and (1.3). The method

of time change is well known in the theory of stochastic processes but also plays an

important role in many applications, including the area of mathematical finance.

There is an extensive application literature; we only mention [2,3] and the references

therein.

Recall first that a process A is called an F-time change if it is an increasing, right-

continuous process with A0 = 0 such that At is an F-stopping time for any t ≥ 0 (see

[9, Chapter 4]). Define Tt =: inf{s ≥ 0 : As > t} called the right-continuous inverse

process to A. By definition, T is an increasing process starting at zero. It is easy to see

that T is an F-adapted process if and only if A is an F-time change.

Proposition 3.1 Let α ∈ (0, 2] and assume that there exist constants δ1 > 0 and

δ2 > 0 such that δ1 ≤ |b| ≤ δ2. Then for any initial value x0 ∈ R, equation (1.1) has a

solution if and only if equation (1.2) has a solution.

Proof Suppose first that X is a solution to equation (1.1) which means that equation

(2.2) is satisfied. The integrals on the right-hand side of (2.2) are well defined and

are P-a.s. finite for all t ≥ 0. Let

At =

∫ t

0

|b|α(Xs)ds and Tt = inf{s ≥ 0 : As > t}.
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In can be easily verified that the process T satisfies the relation

Tt =

∫ t

0

|b|−α(XTs
)ds.

By definition, the process A is F-adapted so that its right-inverse process T is an

F-time change process defined for all t ≥ 0. We note that (Tt ) is a global time change1

because A∞ = limt↑∞ At = ∞. Now define Yt = XTt
, Gt = FTt

. Applying the time

change t → Tt to the semimartingale X in (2.2) (see [10, Chapter 10]) and using the

change of variables rule in Lebesgue–Stieltjes integral (see [16, Ch. 0, (4.9)]) yields

Yt = x0 +

∫ Tt

0

b(Xs−)dZs +

∫ t

0

a(Ys)dTs.

It remains to note that the process

Z̃t :=

∫ Tt

0

b(Xs−)dZs

is nothing but a symmetric stable process of the index α (see [17, Theorem 3.1]).

Hence Y is a solution to equation (1.2).

The proof of the opposite direction is a very similar one. Suppose the process Y is

a solution to equation (1.2) defined on a probability space (Ω,G, P) with a filtration

G where Z̃ is a symmetric stable process adapted to G. Define

Tt =

∫ t

0

|b|−α(Ys)ds and let Xt = YAt
,Ft = GAt

for all t ≥ 0 where A is the right inverse to T and T∞ = limt↑∞ Tt = ∞. By applying

the global time change t → At to the semimartingale Y in (1.2) we obtain

Z̃At
= Xt − x0 −

∫ t

0

a(Xs)ds.

Using simple time change arguments (cf. [5]), we can conclude that there exists a

symmetric stable process Z defined on the same probability space such that

Z̃At
=

∫ t

0

b(Xs−)dZs.

This proves that X is a solution to equation (1.1).

Proposition 3.2 In addition to the assumptions of Proposition 3.1, suppose that there

exist strictly positive constants K1 and K2 such that K1 ≤ a(x) ≤ K2 for all x ∈ R. Then

for any x0 ∈ R, equation (1.2) has a solution if and only if equation (1.3) has a solution.

1That is, Tt ∈ [0,∞) for all t ≥ 0.
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Proof Let (L, F) be a solution to equation (1.3) defined on a probability space

(Ω̄, F̄, P̄) with a filtration F̄. Set

τt :=

∫ t

0

a−1|b|α(Ls)ds

and define by τ−1 the right-inverse process to τ . It is easy to see that τ−1 is a strictly

increasing, continuous F̄-time change. Moreover, it is a global time change because

of the assumptions of the Proposition. It can be directly verified that

τ−1
t =

∫ t

0

a|b|−α(Lτ−1
s

)ds.

Now, letting Yt = Lτ−1
t

and applying the time change t → τ−1
t to the relation (1.3)

yields

Yt =

∫ τ−1
t

0

[a−1/αb](Ls−)dZ̄s + τ−1
t =

∫ τ−1
t

0

[a−1/αb](Ls−)dZ̄s +

∫ t

0

[a|b|−α](Ys)ds.

It remains to note that the first integral on the right-hand side of last relation is noth-

ing but a symmetric stable process Z̃ of the same index α (cf. [17]) proving that Y is

a solution to equation (1.2).

On the other hand, assuming that Y is a solution to equation (1.2) defined of a

probability space (Ω̃, F̃, P̃) with a filtration F̃, we let

Tt =

∫ t

0

[a|b|−α](Ys)ds

so that the right-inverse process T−1 has the form

T−1
t =

∫ t

0

[a−1|b|α](Ls)ds

where Lt := YT−1
t

.

After the time change t → T−1
t in (1.2), we obtain Lt = Z̃T−1

t
+ t . Once again, by

standard time change arguments (see [5]), there is a symmetric stable process Z̄ of

the same index α such that

Z̃T−1
t

=

∫ t

0

[a−1/αb](Lt−)dZ̄t .

Hence L satisfies equation (1.3).

Remark 3.3 In Propositions 3.1 and 3.2 we required the coefficients a and b to be

bounded from above and “away from zero”. This allowed for simple time change proofs

and lead to so-called nonexploding solutions for equations (1.1)–(1.3). Those assump-

tions on a and b could be relaxed to allow solutions to have explosions. However, in this

note we do not consider the case of exploding solutions.
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4 Some Integral Estimates

Let K be a strictly positive constant and Z be a symmetric stable process of index

0 < α < 1 defined on a probability space (Ω,F, P) with filtration F. By I we denote

the class of all F-predictable one-dimensional processes γt such that |γt |
α ≤ K.

Let C∞
0 (R) denote the class of all infinitely many times differentiable real valued

functions with compact support defined on R. For any x ∈ R, λ > 0, and any

nonnegative, measurable function f ∈ C∞
0 (R) define the value function v(x) as

v(x) = sup
γ∈I

E

∫ ∞

0

e−λs f (x + Xγ
s )ds,

where the process Xγ is given by dX
γ
t = γt dZt + dt . Then for the value function v

and the process Xγ , the Bellman principle of optimality can be formulated as follows

[13]. For any [0,∞)-valued F-stopping time τ it holds that

v(x) = sup
γ∈I

E

{∫ τ

0

e−λs f (x + Xγ
s )ds + e−λτ v(x + Xγ

τ )
}

.

Using standard arguments, one can derive from the principle above the correspond-

ing Bellman equation (γ is deterministic)

(4.1) sup
|γ|α≤K

{
|γ|αLv(x) − λv(x) + vx(x) + f (x)

}
= 0,

which holds a.e. in R.

Define A = {x : Lv(x) > 0}. Then the Bellman equation is equivalent to two

equations

(4.2)

{
KLv − λv + vx + f = 0 on A

−λv + vx + f = 0 on Ac.

Lemma 4.1 For all x ∈ R, it holds that

(4.3) v(x) ≤ N‖ f ‖2 := N
(∫

R

f 2(y)dy
) 1/2

,

where the constant N depends on K and α only.

Proof For any function h : R → R such that h ∈ L1(R) and any ε > 0, we define

h(ε)(x) =
1

ε

∫

R

h(x)q
( x − y

ε

)
dy

to be the ε-convolution of h with a smooth function q such that q ∈ C∞
0 (R) and∫

R
q(x)dx = 1.
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For ε > 0, let

f (ε) :=

{
λv(ε) − KLv(ε) − v(ε)

x on A

λv(ε) − v(ε)
x on Ac.

It follows that KLv(ε) − λv(ε) + v(ε)
x = − f + KLv(ε)

1Ac , so that

(
KLv(ε) − λv(ε) + v(ε)

x

) 2
≤ 2( f (ε))2 + 2K2

(
Lv(ε)

) 2
.

Obviously, f (ε) is square integrable and (4.2) implies that f (ε) → f as ε↓0 a.s. in R.

Now, applying Proposition 2.1, the Parseval identity, and integration by parts to

the inequality

∫

R

(
KLv(ε) − λv(ε) + v(ε)

x

) 2

dx ≤ 2

∫

R

( f (ε))2(x)dx + 2K2

∫

R

(Lv(ε))2(x)dx

yields

(4.4)

∫

R

|v̂(ε)(ξ)|2
(

[K|ξ|α + λ]2 + |ξ|2
)

dξ ≤

2

∫

R

| f̂ (ε)(ξ)|2dξ + 2K2

∫

R

|ξ|2α|v̂(ε)(ξ)|2dξ.

One sees easily that there exists a constant λ0 > 0 such that

(4.5) [K|ξ|α + λ0]2 + |ξ|2 ≥ 4K2|ξ|2α

for all ξ ∈ R.

Combining the inequalities (4.4) and (4.5), we obtain for all λ ≥ λ0

(4.6)
1

2

∫

R

|v̂(ε)(ξ)|2
(

[K|ξ|α + λ]2 + |ξ|2
)

dξ ≤ 2

∫

R

| f̂ (ε)(ξ)|2dξ.

Let

N1 :=

∫

R

dξ

[K|ξ|α + λ]2 + |ξ|2
.

Clearly, the constant N1 is finite and depends on K and α only.

Using estimate (4.6) and the inverse Fourier transform yields for all x ∈ R and

λ ≥ λ0

(
v(ε)(x)

) 2
≤

N1

4π2

∫

R

|v̂(ε)(ξ)|2
(

[K|ξ|α + λ]2 + |ξ|2
) 2

dξ ≤
N1

π2

∫

R

(
f (ε)(z)

) 2
dz.

The result follows then by taking the limit ε → 0 in the above inequality and using

the Lebesgue dominated convergence theorem.
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Now we assume that there exists a constant K > 0 such that

(4.7) [a−1|b|α](x) ≤ K for all x ∈ R,

and we are interested in L2-estimates of the form

(4.8) E

∫ ∞

0

e−λs f (x0 + Ls)ds ≤ N‖ f ‖2.

Theorem 4.2 Let L be a solution to equation (1.3) and let the assumption (4.7) hold.

Then for any x0 ∈ R, λ ≥ λ0, and any measurable function f : R → [0,∞), the

estimate (4.8) holds, where the constant N depends on K and α only.

Proof Assume first that f ∈ C∞
0 (R) so that there is a solution v to equation (4.1)

satisfying the inequality (4.3). By taking the ε-convolution on both sides of (4.1), we

obtain for all 0 ≤ r ≤ K

rLv(ε) − λv(ε) + v(ε)
x + f (ε) ≤ 0.

Therefore, for s ≥ 0, applying Itô’s formula to the expression v(ε)(x0 + Ls)e−λs,

yields

Ev(ε)(x0 + Ls)e−λs − v(ε)(x0)

= E

∫ s

0

e−λu
(

[a−1|b|α](Lu)Lv(ε) − λv(ε) + v(ε)
x

)
(x0 + Lu)du

≤ −E

∫ s

0

e−λu f (ε)(x0 + Lu)du.

By Lemma 4.1

E

∫ s

0

e−λu f (ε)(x0 + Lu)du ≤ sup
x0

v(ε)(x0) ≤ N‖ f (ε)‖2.

It remains to pass to the limit in the above inequality letting ε → 0, s → ∞ and using

Fatou’s lemma.

The inequality (4.8) can be extended in a standard way first to any function f ∈
L2(R) and then to any nonnegative, measurable function using the monotone class

theorem arguments (see, for example, [4, Theorem 20]).

Corollary 4.3 Let L be a solution to equation (1.3) and let assumption (4.7) be true.

Then for any x0 ∈ R, λ ≥ λ0, m ∈ N, t ≥ 0, and any measurable function f : R →
[0,∞), it holds that

E

∫ t∧τm(L)

0

f (x0 + Ls)ds ≤ N‖ f ‖2,m := N
(∫

[−m,m]

f 2(y)dy
) 1/2

,

where τm(L) = inf{t ≥ 0 : |x0 + Lt | > m} and the constant N depends on K, m, t, and

α only.
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5 Existence of Solutions

Here we shall first prove the existence of solutions to equation (1.3) with 0 < α < 1

using the estimates derived in the previous section. Combined with the results of

Section 3, it will allow us to formulate the corresponding results for the existence of

solutions to equation (1.1).

Theorem 5.1 Assume that 0 < α < 1 and that assumption (4.7) is satisfied. Then

for any x0 ∈ R, there exists a solution to equation (1.3).

Proof First, by assumption (4.7), there exists a sequence of functions hn, n ≥ 1,

being Lipshitz-continuous and uniformly bounded by K such that hn → [a−1/αb] as

n → ∞ pointwise and in ‖ · ‖2,m-norm for all m ∈ N. For any n = 1, 2, . . . , the

equation

(5.1) dLn
t = hn(Ln

t−)dZt + dt

has a unique strong solution (see, for example, [9, Theorem 9.1]) where the process

Z is defined on a priori fixed probability space (Ω,F, P). Our goal is to show that

the sequence of processes {Ln}, n ≥ 1 converges to a process L that satisfies equa-

tion (1.3).

Let Y n
t :=

∫ t

0
hn(Ln

s−)dZs.

We shall show that the sequence of processes Qn := (Ln,Y n, Z), n ≥ 1, is tight

in the sense of weak convergence in (D
3,D3). Due to the Aldous’ criterion [1], it is

enough to verify that

(5.2) lim
C→∞

lim sup
n→∞

P

(
sup

0≤s≤t

‖Qn
s ‖ > C

)
= 0

for all t ≥ 0 and

lim sup
n→∞

P

(
‖Qn

t∧(τ n+rn) − Qn
t∧τ n‖ > ε

)
= 0

for all t ≥ 0, ε > 0, every sequence of F-stopping times τ n, and every sequence of

real numbers rn such that rn↓0. We use ‖ ·‖ to denote the Euclidean norm of a vector.

On the other hand, for the tightness of the sequence Qn it suffices to prove the

tightness of the sequence of processes Rn where

Rn
t =

∫ t

0

|hn|
α(Ln

s )ds.

However, the sequence of processes Rn trivially satisfies the Aldous’ conditions be-

cause of the uniform boundness of the coefficients hn for all n ≥ 1.

Since the sequence {Qn} is tight, there exists a subsequence {nk}, k = 1, 2, . . . , a

probability space (Ω̄, F̄, P̄), and the process Q̄ on it with values in (D
3,D3) such that

Qnk converges weakly (in distribution) to the process Q̄ as k → ∞. For simplicity, let

{nk} = {n}.

According to the embedding principle of Skorokhod (see, e.g., [9, Theorem 2.7]),

there exists a probability space (Ω̃, F̃, P̃) and the processes Q̃ = (L̃, Ỹ , Z̃), Q̃n
=

(L̃n, Ỹ n, Z̃n), n = 1, 2, . . . , on it such that
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(i) Q̃n → Q̃ as n → ∞ P̃-a.s.

(ii) Q̃n
= Qn in distribution for all n = 1, 2, . . . .

Using standard measurability arguments [13, Chapter 2], one can prove that the pro-

cesses Z̃n, Z̃ are symmetric stable processes of the given index 0 < α < 1 with respect

to the augmented filtrations F̃
n and F̃ generated by processes Q̃n and Q̃, respectively.

Using the properties (i), (ii), and equation (5.1), one can show (cf. [13, Chapter

2]) that

L̃n
t = x0 +

∫ t

0

hn(L̃n
s−)dZ̃n

s + dt, t ≥ 0, P̃-a.s.

On the other hand, the same properties and the quasi-left continuity of the pro-

cesses Q̃n yield limn→∞ L̃n
t = L̃t P̃-a.s. Therefore, in order to show that the process

L̃ is a solution to equation (1.3), it suffices to verify that, for all t ≥ 0,

(5.3) lim
n→∞

∫ t

0

hn(L̃n
s−)dZ̃n

s =

∫ t

0

[a−1/αb](L̃s−)dZ̃s P̃- a.s.

The following fact can be proven in a similar way as Lemma 4.2 in [11].

Lemma 5.2 For any Borel measurable function f : R → [0,∞) and any t ≥ 0, there

exists a sequence mk ∈ (0,∞), k = 1, 2, . . . such that mk↑∞ as k → ∞ and it holds

that

Ẽ

∫ t∧τmk
(L̃)

0

f (L̃s)ds ≤ N‖ f ‖2,mk
,

where the constant N depends on K, α, t, and mk only.

Without loss of generality, we can assume in Lemma 5.2 that {mk} = {m}.

For (5.3) to be true, it is enough to verify that for all t ≥ 0 and ε > 0 we have

(5.4) lim
n→∞

P̃

(∣∣∣
∫ t

0

hn(L̃n
s−)sZ̃n

s −

∫ t

0

[a−1/αb](L̃s−)dZ̃s)ds
∣∣∣ > ε

)
= 0.

In order to show (5.4) we estimate for a fixed n0 ∈ N

P̃

(∣∣∣
∫ t

0

hn(L̃n
s−)sZ̃n

s −

∫ t

0

[a−1/αb](L̃s−)dZ̃s)ds
∣∣∣ > ε

)

≤ P̃

(∣∣∣
∫ t

0

hn0
(L̃n

s−)dZ̃n
s −

∫ t

0

hn0
(L̃s−)dZ̃s

∣∣∣ >
ε

3

)

+ P̃

(∣∣∣
∫ t∧τm(L̃n)

0

[hn(L̃n
s−) − hn0

(L̃n
s−)]dZ̃n

s

∣∣∣ >
ε

3

)

+ P̃

(∣∣∣
∫ t∧τm(L̃)

0

[hn0
(L̃s−) − [a−1/αb](L̃s−)]dZ̃s

∣∣∣ >
ε

3

)

+ P̃
(
τm(L̃n) < t

)
+ P̃

(
τm(L̃) < t

)

= J1
n,n0

+ J2
n,n0,m + J3

n0,m + P̃
(
τm(L̃n) < t

)
+ P̃

(
τm(L̃) < t

)
.
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By fixed n0, J1
n,n0

→ 0 as n → ∞ by Skorokhod’s Lemma about the convergence

of stochastic integrals with respect to symmetric stable processes (cf. Lemma 2.3 in

[15]). To show that J2
n,n0,m → 0 as n → ∞ and J3

n0,m → 0 as n0 → ∞, we use first the

Chebyshev’s inequality and (2.1) and then Theorem 4.2 and Lemma 5.2, respectively,

to estimate

(5.5) J2
n,n0,m ≤

3Cα

ε
N‖|hn − hn0

|α‖2,m

and

(5.6) J3
n0,m ≤

3Cα

ε
N‖|hn0

− [a−1/αb]|α‖2,m

where the constant N depends on K, α, m, and t only. Obviously,

‖|hn − [a−1/αb]|α‖2,m → 0 as n → ∞,

implying that the right-hand sides in (5.5) and (5.6) converge to 0 by letting first

n → ∞ and then n0 → ∞.

Because of the property τm(L̃n) → τm(L̃) as n → ∞ P̃-a.s.,

P̃
(
τm(L̃n) < t

)
→ P̃

(
τm(L̃) < t

)
as n → ∞

for all m ∈ N, t > 0. Therefore, the last two terms can be made arbitrarly small by

choosing large enough m for all n due to the fact that the sequence of processes L̃n

satisfies the property (5.2). This proves (5.4).

From Theorem 5.1 and Propositions 3.1 and 3.2 we obtain

Theorem 5.3 Let 0 < α < 1 and there exist strictly positive constants δ1, δ2, K1, and

K2 such that

(i) δ1 ≤ |b|(x) ≤ δ2 for all x ∈ R;

(ii) K1 ≤ a(x) ≤ K2 for all x ∈ R.

Then for any initial value x0 ∈ R, equation (1.1) has a solution.
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