A p-ADIC ANALOGUE TO A THEOREM BY J. POPKEN

Dedicated to the memory of Hanna Neumann

K. MAHLER

(Received 27 April 1972)

Communicated by M. F. Newman

Abstract

It is proved that if

$$f = \sum_{h=0}^{\infty} f_h z^h$$

is a formal power series with algebraic *p*-adic coefficients which satisfies an algebraic differential equation, then a constant $\gamma_4 > 0$ and a constant integer $h_1 \ge 0$ exist such that

either $f_h = 0$ or $|f_h|_p \ge \exp^{-\gamma_4 h (\log h)^2}$ for $h \ge h_1$.

1

In his Ph.D. thesis, Jan Popken (1935) proved the following important result.

THEOREM: Let

$$f = \sum_{h=0}^{\infty} f_h z^h$$

be a formal power series with real or complex algebraic coefficients which satisfies an algebraic differential equation. Then a positive constant c exists such that, for all sufficiently large suffixes h,

either
$$f_h = 0$$
 or $|f_h| \ge e^{-ch(\log h)^2}$.

An analogous theorem for formal power series with p-adic coefficients will be established in the present paper. Its proof is based on results from two recent papers of mine, [1] and [2].

Popken's theorem can be proved quite similarly, and this proof would be slightly shorter than the original one.

176

Denote by Ω an arbitrary field of characteristic 0. If the formal power series

$$f = \sum_{h=0}^{\infty} f_h z^h$$

with coefficients f_h in Ω satisfies an algebraic differential equation which has likewise coefficients in Ω , then it is known that f also satisfies such an algebraic differential equation with *rational integral* coefficients (Ritt and Gourin 1927; paper 2). Moreover, it evidently may be assumed that this differential equation does not explicitly involve the indeterminate z and therefore is of the form

(1)
$$F((w)) \equiv F(w, w', \dots, w^{(m)}) \equiv \sum_{(\kappa)} p_{(\kappa)} w^{(\kappa_1)} \cdots w^{(\kappa_N)} = 0.$$

Here *m* and *n* are two fixed positive integers; *N* depends on (κ) and assumes only the values $0, 1, 2, \dots, n$; $(\kappa) = (\kappa_1, \dots, \kappa_N)$ runs over finitely many systems of ntegers where

(2)
$$0 \leq \kappa_1 \leq m, \dots, 0 \leq \kappa_N \leq m; \kappa_1 \leq \kappa_2 \leq \dots \leq \kappa_N;$$

and the coefficients $p_{(\kappa)}$ are rational integers distinct from 0. There is at most one system (κ) for which N = 0. This improper system will be denoted by (ω), and to it there corresponds the constant term $p_{(\omega)}$ on the right-hand side of (1).

3

On differentiating the equation (1) h times and then putting w = f and z = 0, we obtain by paper [1] the infinite system of equations

(3)
$$\sum_{(\kappa)} \sum_{[\lambda]} p_{(\kappa)} \frac{(\kappa_1 + \lambda_1)!}{\lambda_1!} \cdots \frac{(\kappa_N + \lambda_N)!}{\lambda_N!} f_{\kappa_1 + \lambda_1} \cdots f_{\kappa_N + \lambda_N} = 0 \qquad (h = 1, 2, 3, \cdots)$$

for the coefficients f_h of f. Here in the second sum $[\lambda] = [\lambda_1, \dots, \lambda_N]$ runs over all systems of N integers satisfying

$$\lambda_1 \geq 0, \dots, \lambda_N \geq 0, \ \lambda_1 + \dots + \lambda_N = h,$$

N being the same number of terms as in the system (κ).

As was proved in detail in paper [1], it can be deduced from (3) that there exist

(a) a polynomial $A(h) \neq 0$ in h with rational integral coefficients;

(b) a polynomial $\phi_h(f_0, f_1, \dots, f_{h-1})$ in f_0, f_1, \dots, f_{h-1} , likewise with rational integral coefficients; and

(c) a positive integral constant h_0 , such that

K. Mahler

(4)
$$A(h) \neq 0 \text{ and } A(h)f_h = \phi_h(f_0, f_1, \dots, f_{h-1}) \text{ for } h \geq h_0.$$

Here, by paper [1], the polynomial ϕ_h has the explicit form

(5)
$$\phi_h(f_0, f_1, \cdots, f_{h-1}) = \sum_{\{\nu\} \in S_h} P_{\{\nu\}, h} f_{\nu_1} \cdots f_{\nu_N},$$

where now N assumes at most the values $1, 2, \dots, n$; where S_h is a certain finite set of systems $\{v\} = \{v_1, \dots, v_N\}$ of integers satisfying

(6)
$$0 \leq v_1 \leq h-1, \dots, 0 \leq v_N \leq h-1, v_1+\dots+v_N \leq h+c_1,$$

 c_1 being a positive constant independent of h and $\{v\}$; and where the coefficients $P_{\{v\},h}$ are rational integers which may depend on h and $\{v\}$.

It is obvious that the relations (4) remain valid if h_0 is increased. Let therefore, without loss of generality, h_0 be so large that

$$h_0 \ge c_1 + 2.$$

4

From now on assume that the coefficients f_h of f are algebraic over the rational field Q. Then, by the second relations (4), the infinite extension field

$$K = Q(f_0, f_1, f_2, \cdots)$$

of Q is identical with the finite algebraic extension

$$K = Q(f_0, f_1, \cdots, f_{h_0-1})$$

of Q and so is an algebraic number field of finite degree, D say, over Q.

This number field K can then in D distinct ways be imbedded in the complex field C, so generating the D conjugate real or complex algebraic number fields

$$K^{(1)}, \cdots, K^{(D)}$$
 say.

If a is any element of the abstract algebraic field K, denote by $a^{(j)}$, where $j=1, 2, \dots, D$, the image of a in $K^{(j)}$. As is usual, we put

$$\left|\overline{a}\right| = \max\left(\left|a^{(1)}\right|, \cdots, \left|a^{(D)}\right|\right)$$

5

By hypothesis, f satisfies the algebraic differential equation (1), and this equation has rational coefficients. It follows then that the D power series

$$f^{(j)} = \sum_{h=0}^{\infty} f_h^{(j)} z^h$$
 $(j = 1, 2, \dots, D)$

conjugate to f over K also satisfy the same differential equation (1).

179

Hence, by the main theorem of my paper [1], there exist for each j a pair of positive constants $\gamma_1^{(j)}$ and $\gamma_2^{(j)}$ such that

$$|f_{h}^{(j)}| \leq \gamma_{1}^{(j)}(h!)^{\gamma_{2}^{(j)}} \qquad \begin{bmatrix} j = 1, 2, \cdots, D\\ h = 0, 1, 2, \cdots \end{bmatrix}$$

Therefore, on putting

$$\gamma_1 = \max_{j=1,2\dots,D} \gamma_1^{(j)} \text{ and } \gamma_2 = \max_{j=1,2\dots,D} \gamma_2^{(j)},$$

our hypothesis implies the infinite sequence of inequalities

(8)
$$\overline{\left|f_{h}\right|} \leq \gamma_{1}(h!)^{\gamma_{2}} \quad (h = 0, 1, 2, \cdots).$$

6

In addition to this inequality for f_h , we require an upper estimate for the denominators, d_h say, o^c the coefficients f_h . Here d_h is a positive rational integer, by preference as small as possible, such that the product

(9)
$$g_h = d_h f_h$$
 $(h = 0, 1, 2, ...)$

is an algebraic integer in K.

An upper bound for such denominators d_h can be obtained by the following considerations which go back to Popken's thesis.

By (4), (5), and (9), g_h can be written in the explicit form

(10)
$$g_h = \sum_{\{v\} \in S_h} P_{\{v\},h} \frac{d_h}{A(h)d_{v_1}\cdots d_{v_N}} g_{v_1}\cdots g_{v_N} \quad \text{for } h \ge h_0.$$

Here, for the first h_0 denominators

$$d_0, d_1, \cdots, d_{h_0-1},$$

choose the smallest positive rational integers for which the products

$$g_0, g_1, \cdots, g_{h_0-1}$$

as defined in (9) are algebraic integers in k, and then, for each larger suffix

$$h \geq h_0$$

define d_h recursively as the smallest positive rational integer such that

(11) $A(h)d_{v_1}\cdots d_{v_N}$ is a divisor of d_h for all systems $\{v\} \in S_h$.

By complete induction on h it is then immediately obvious from (10) that also all the products g_h with $h \ge h_0$ become algebraic integers in K.

It is now convenient to split every system $\{v\}$ in S_h into two subsystems

$$\{\xi_1, \dots, \xi_X\}$$
 and $\{\zeta_1, \dots, \zeta_Y\}$

where the ξ 's are those v's which are $\leq h_0 - 1$, while the ζ 's are the v's which are $\geq h_0$. For reasons which will soon become clear, we further put

$$\eta_1 = \zeta_1 - (h_0 - 1), \eta_2 = \zeta_2 - (h_0 - 1), \dots, \eta_Y = \zeta_Y - (h_0 - 1),$$

so that η_1, \dots, η_Y are *positive* integers. With the ζ 's and η 's so defined, the system $\{v\}$ will from now on be written as

$$\{v\} = \{\xi \mid \eta\} = \{\xi_1, \dots, \xi_X \mid \eta_1, \dots, \eta_Y\}.$$

Here the numbers X and Y are such that

$$0 \leq X \leq N \leq n, \ 0 \leq Y \leq N \leq n, \ 1 \leq X + Y = N \leq n.$$

We further put

$$d(k) = d_{k+h_0-1} \qquad (k = 1, 2, 3, \cdots)$$

and define S(k) as the set of all subsystems $\{\eta\}$ to which there exists at least one system

$$\{v\}$$
 in S_{k+h_0-1} such that $\{v\} = \{\xi \mid \eta\}$.

8

If $\{v\} = \{\xi \mid \eta\}$ lies in S_{k+h_0-1} , both the factors d_{ξ_1} and the number X of these factors in the product

$$d_{\xi_1} \cdots d_{\xi_x}$$

are bounded. Hence there exists a positive integral constant d^* such that

(12)
$$d_{\xi_1} \cdots d_{\xi_k}$$
 is a divisor of d^* whenever $\{\xi \mid \eta\} \in S_{k+h_0-1}$ and $k \ge 1$.

Let us then replace A(h) by the new polynomial

(13)
$$a(k) = A(k + h_0 - 1)d^*$$

in k. Also a(k) has rational integral coefficients, and the first formula (4) implies that

(14)
$$a(k) \neq 0 \text{ for } k = 1, 2, 3, \cdots$$

In the new notation, the conditions (11) for d_h are equivalent to the conditions for d(k), as follows,

A p-adic analogue to a theorem by Popken

$$A(k+h_0-1)d_{\xi_1}\cdots d_{\xi_k}d(\eta_1)\cdots d(\eta_k) \text{ divides } d(k) \text{ for all } \{\xi \mid \eta\} \in S_{k+h_0-1}$$

and all $k \ge 1$.

Further these new conditions are certainly satisfied if

(15)
$$a(k)d(\eta_1)\cdots d(\eta_k)$$
 is a divisor of $d(k)$ for all $\{\eta\} \in S(k)$ and all $k \ge 1$,

as will from now be assumed.

We had seen that

(6)
$$0 \leq v_1 \leq h-1, \dots, 0 \leq v_N \leq h-1, v_1 + \dots + v_N \leq h+c_1$$
 if $\{v\} \in S_h$.
By the decomposition of $\{v\}$, this implies in particular that

$$0 \leq \zeta_1 \leq k + h_0 - 2, \dots, 0 \leq \zeta_Y \leq k + h_0 - 2, \zeta_1 + \dots + \zeta_Y \leq k + h_0 + c_1 - 1$$

if $\{v\} \in S_{k+h_0-1}$,

and hence that

[6]

$$1 \leq \eta_1 \leq k-1, \dots, \quad 1 \leq \eta_Y \leq k-1, \quad \eta_1 + \dots + \eta_Y \leq k+h_0 + c_1 - 1 - Y(h_0 - 1)$$

if $\{\eta\} \in S(k).$

If $Y \ge 2$, it follows then, by (7), that

(16) $1 \leq \eta_1 \leq k-1, \dots, 1 \leq \eta_Y \leq k-1, \eta_1 + \dots + \eta_Y \leq k-1$ if $\{\eta\} \in S(k)$. These inequalities evidently remain valid also if Y = 1; and they are without content if Y = 0, a case which may be excluded.

9

As usual, denote by [x] the integral part of the positive number x. Further put

(17)
$$d[k] = \prod_{j=1}^{k} \left| a(j) \right|^{\left[\frac{(n-1)k+1}{(n-1)j+1} \right]} \quad (k = 1, 2, 3, \cdots),$$

so that

$$d(1) = \left| a(1) \right|.$$

We assert that the denominator $d(k) = d_{k+h_0-1}$ of f_{k+h_0-1} may for all $k \ge 1$ be chosen as the integer

(18)
$$d(k) = d[k]$$
 $(k = 1, 2, 3, ...),$

but we do not assert that this is always the smallest possible choice of d(k).

The assertion (18) is by (15) and (16) certainly true for k = 1 because S(1) is the empty set and we may therefore take d(1) = |a(1)|. Assume next that (18)

K. Mahler

has already been established for all values of k less than some integer k^* . We shall now show that then (18) is valid also for $k = k^*$ and so is always true.

To carry out this proof, it suffices by (17) to prove that

(19)
$$\left[\frac{(n-1)\eta_1 + 1}{(n-1)j+1}\right] + \dots + \left[\frac{(n-1)\eta_Y + 1}{(n-1)j+1}\right] \leq \left[\frac{(n-1)k+1}{(n-1)j+1}\right]$$

for all integers $j \ge 1$, for all integers $k = 1, 2, \dots, k^*$, and for all systems $\{\eta\}$ in S(k). But for such values of the parameters,

$$\{(n-1)\eta_1 + 1\} + \dots + \{(n-1)\eta_Y + 1\} Y =$$

= $(n-1)(\eta_1 + \dots + \eta_Y) + Y \leq (n-1)(k-1) + Y \leq (n-1)k + 1$

because

$$Y \leq n = (n-1)+1,$$

and so the assertion (19) follows at once.

10

This proof has established that we may choose

(20)
$$d_{k+h_0-1} = d(k) = \prod_{j=1}^{k} \left| a(j) \right|^{\left[\binom{(n-1)k+1}{(n-1)j+1} \right]}$$

as an admissible denominator of the coefficients f_{k+h_0-1} if $k \ge 1$. We next determine an upper estimate for this product.

There evidently exist positive constants c_2 , c_3 , c_4 , and c_5 independent of j and k such that

$$\begin{aligned} \left| a(j) \right| &\leq c_2 j^{c_3} \qquad (j = 1, 2, 3, \cdots); \\ \frac{(n-1)k+1}{(n-1)j+1} &\leq \frac{k}{j} \text{ if } 1 \leq j \leq k \text{ and } k \geq 1; \\ \sum_{j=1}^k \frac{1}{j} &\leq c_4 + \log k; \quad \sum_{j=1}^k \frac{\log j}{j} \leq c_5 + (\log k)^2 \end{aligned}$$

It thus follows from (20) that

$$1 \leq d_{k+h_0-1} \leq \prod_{j=1}^{k} (c_2 j^{c_3})^{k/j} \leq c_2^{k(c_4+\log k)} \cdot e^{c_3 k \{c_5+(\log k)^2\}}$$

On replacing here $k + h_0 - 1$ again by h, we arrive then at the result that

There exists to the series f a positive constant γ_3 and a positive integer h_1 such that the denominator d_h of f_h satisfies the inequality

(21)
$$1 \leq d_h \leq e^{\gamma_3 h (\log h)^2} \qquad \text{for all suffixes } h \geq h_1.$$

This result certainly holds if all the coefficients f_h of f lie in the *formal* algebraic number field K of degree D over Q. It still remains valid if we imbed K in any one of the D possible ways in the complex number field C, or if we imbed K for any prime p in some finite algebraic extension of the p-adic field Q_p .

11

We apply the last remark to the case when all the coefficients f_h are algebraic *p*-adic numbers.

Denote by

[8]

$$u_h(x) = x^{\Delta} + u_{h1}x^{\Delta-1} + \dots + u_{h\Delta}$$
 $(h = 0, 1, 2, \dots)$

the irreducible polynomial with rational coefficients for which

$$u_h(f_h) = 0$$
 $(h = 0, 1, 2, \cdots);$

here Δ may depend on h. The further polynomial defined by

$$U_h(x) = \prod_{j=1}^{D} (x - f_h^{(j)}) = x^D + U_{h1} x^{D-1} + \dots + U_{hD} \qquad (h = 0, 1, 2, \dots)$$

is then a positive integral power of $u_h(x)$, and therefore also

$$U_h(f_h) = 0$$
 $(h = 0, 1, 2, \dots).$

Denote again by d_h the denominator of f_h and then put

$$V_h(x) = d_h^D \cdot U_h(x/d_h)$$
 $(h = 0, 1, 2, \dots).$

Then $V_h(x)$ has the explicit form

$$V_{h}(x) = x^{D} + V_{h1}x^{D-1} + \dots + V_{hD}$$

with rational integral coefficients. All the zeros of $V_h(x)$ are therefore algebraic integers, and hence the algebraic integer $d_h f_h$ is a divisor of V_{hD} .

Here

$$V_{hD} = (-1)^D \prod_{j=1}^D (d_h f_h^{(j)}),$$

whence, by (8) and (21),

$$\left|V_{hD}\right| \leq \left(e^{\gamma_{3}h(\log h)^{2}} \cdot \gamma_{1}(h!)^{\gamma_{2}}\right)^{D}$$
 for $h \geq h_{1}$.

This estimate implies that there exists a positive constant γ_4 independent of h such that

(22)
$$|V_{hD}| \leq e^{\gamma_4 h (\log h)^2}$$
 for $h \geq h_1$.

https://doi.org/10.1017/S1446788700014191 Published online by Cambridge University Press

Assume finally that both $h \ge h_1$ and

 $f_h \neq 0.$

Then also

$$f_{h}^{(j)} \neq 0$$
 for $j = 1, 2, \dots, D$

 $V_{\mu\nu} \neq 0$

hence

whence, by (22),

(23)
$$|V_{hD}|_p \ge e^{-\gamma_4 h (\log h)^2} \quad \text{for } h \ge h_1.$$

The algebraic integer $d_h f_h$ is also a p-adic integer, and it is a divisor of $V_{hD} \neq 0$. This implies that

 $\left\|d_{h}f_{h}\right\|_{p} \geq \left\|V_{hD}\right\|_{p}.$ (24)

Further d_h is a positive rational integer and therefore satisfies

$$(25) |d_h|_p \leq 1.$$

On combining these three inequalities (23), (24), and (25), we arrive then finally at the following analogue of Popken's theorem.

THEOREM. Let p be a fixed prime, and let

$$f = \sum_{h=0}^{\infty} f_h z^h$$

be a formal power series with p-adic algebraic coefficients which satisfies an algebraic differential equation. Then a positive constant γ_4 and a positive integer h_1 exist such that

either
$$f_h = 0$$
 or $|f_h|_p \ge e^{-\gamma_4 h (\log h)^2}$ for $h \ge h_1$.

It would have great interest to decide whether this estimate is best possible; but I rather doubt it.

References

[1] K. Mahler, Atti della Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 50 (1971) 36-49.

[2] K. Mahler, Atti della Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 50 (1971) 174-184.

[3] J. Popken, Ph. D. Thesis, N.V. Noord-Hollandsche Uitgeversmaatschappij (1935).

[4] J. F. Ritt and E. Gourie, Bull. Amer. Math. Soc., 33 (1927), 182-184.

Department of Mathematics Institute of Advanced Studies Australian National University Canberra