A p-ADIC ANALOGUE TO A THEOREM BY J. POPKEN

Dedicated to the memory of Hanna Neumann

K. MAHLER

(Received 27 April 1972)

Communicated by M. F. Newman

Abstract

It is proved that if $$
f=\sum_{h=0}^{\infty} f_{h} z^{h}
$$

is a formal power series with algebraic p-adic coefficients which satisfies an algebraic differential equation, then a constant $\gamma_{4}>0$ and a constant integer $h_{1} \geqq 0$ exist such that

$$
\text { either } f_{h}=0 \quad \text { or } \quad\left|f_{h}\right|_{p} \geqq \exp ^{-\gamma_{4} h(\log h)^{2}} \quad \text { for } h \geqq h_{1} .
$$

1

In his Ph.D. thesis, Jan Popken (1935) proved the following important result.

Theorem: Let

$$
f=\sum_{h=0}^{\infty} f_{h} z^{h}
$$

be a formal power series with real or complex algebraic coefficients which satisfies an algebraic differential equation. Then a positive constant c exists such that, for all sufficiently large suffixes h,

$$
\text { either } f_{h}=0 \quad \text { or } \quad\left|f_{h}\right| \geqq e^{-c h(\log h)^{2}}
$$

An analogous theorem for formal power series with p-adic coefficients will be established in the present paper. Its proof is based on results from two recent papers of mine, [1] and [2].

Popken's theorem can be proved quite similarly, and this proof would be slightly shorter than the original one.

2

Denote by Ω an arbitrary field of characteristic 0 . If the formal power series

$$
f=\sum_{h=0}^{\infty} f_{h} z^{h}
$$

with coefficients f_{h} in Ω satisfies an algebraic differential equation which has likewise coefficients in Ω, then it is known that f also satisfies such an algebraic differential equation with rational integral coefficients (Ritt and Gourin 1927; paper 2). Moreover, it evidently may be assumed that this differential equation does not explicitly involve the indeterminate z and therefore is of the form

$$
\begin{equation*}
F((w)) \equiv F\left(w, w^{\prime}, \cdots, w^{(m)}\right) \equiv \sum_{(\kappa)} p_{(\kappa)} w^{\left(\kappa_{1}\right)} \cdots w^{\left(\kappa_{N}\right)}=0 \tag{1}
\end{equation*}
$$

Here m and n are two fixed positive integers; N depends on (κ) and assumes only the values $0,1,2, \cdots, n ;(\kappa)=\left(\kappa_{1}, \cdots, \kappa_{N}\right)$ runs over finitely many systems of ntegers where

$$
\begin{equation*}
0 \leqq \kappa_{1} \leqq m, \cdots, 0 \leqq \kappa_{N} \leqq m ; \kappa_{1} \leqq \kappa_{2} \leqq \cdots \leqq \kappa_{N} ; \tag{2}
\end{equation*}
$$

and the coefficients $p_{(\kappa)}$ are rational integers distinct from 0 . There is at most one system (κ) for which $N=0$. This improper system will be denoted by (ω), and to it there corresponds the constant term $p_{(\omega)}$ on the right-hand side of (1).

3

On differentiating the equation (1) h times and then putting $w=f$ and $z=0$, we obtain by paper [1] the infinite system of equations
(3) $\sum_{(\kappa)} \sum_{[\lambda]} p_{(\kappa)} \frac{\left(\kappa_{1}+\lambda_{1}\right)!}{\lambda_{1}!} \cdots \frac{\left(\kappa_{N}+\lambda_{N}\right)!}{\lambda_{N}!} f_{\kappa_{1}+\lambda_{1}} \cdots f_{\kappa_{N}+\lambda_{N}}=0 \quad(h=1,2,3, \cdots)$
for the coefficients f_{h} of f. Here in the second sum $[\lambda]=\left[\lambda_{1}, \cdots, \lambda_{N}\right]$ runs over all systems of N integers satisfying

$$
\lambda_{1} \geqq 0, \cdots, \lambda_{N} \geqq 0, \lambda_{1}+\cdots+\lambda_{N}=h,
$$

N being the same number of terms as in the system (κ).
As was proved in detail in paper [1], it can be deduced from (3) that there exist
(a) a polynomial $A(h) \not \equiv 0$ in h with rational integral coefficients;
(b) a polynomial $\phi_{h}\left(f_{0}, f_{1}, \cdots, f_{h-1}\right)$ in $f_{0}, f_{1}, \cdots, f_{h-1}$, likewise with rational integral coefficients; and
(c) a positive integral constant h_{0},
such that

$$
\begin{equation*}
A(h) \neq 0 \text { and } A(h) f_{h}=\phi_{h}\left(f_{0}, f_{1}, \cdots, f_{h-1}\right) \quad \text { for } h \geqq h_{0} . \tag{4}
\end{equation*}
$$

Here, by paper [1], the polynomial ϕ_{h} has the explicit form

$$
\begin{equation*}
\phi_{h}\left(f_{0}, f_{1}, \cdots, f_{h-1}\right)=\sum_{\{v\} \in S_{h}} P_{\{v\rangle, h} f_{v_{1}} \cdots f_{v_{N}}, \tag{5}
\end{equation*}
$$

where now N assumes at most the values $1,2, \cdots, n$; where S_{h} is a certain finite set of systems $\{v\}=\left\{v_{1}, \cdots, v_{N}\right\}$ of integers satisfying

$$
\begin{equation*}
0 \leqq v_{1} \leqq h-1, \cdots, 0 \leqq v_{N} \leqq h-1, v_{1}+\cdots+v_{N} \leqq h+c_{1}, \tag{6}
\end{equation*}
$$

c_{1} being a positive constant independent of h and $\{v\}$; and where the coefficients $P_{\{v, h}$ are rational integers which may depend on h and $\{v\}$.

It is obvious that the relations (4) remain valid if h_{0} is increased. Let therefore, without loss of generality, h_{0} be so large that

$$
\begin{equation*}
h_{0} \geqq c_{1}+2 . \tag{7}
\end{equation*}
$$

4

From now on assume that the coefficients f_{h} of f are algebraic over the rational fie.d \boldsymbol{Q}. Then, by the second relations (4), the infinite extension field

$$
K=\boldsymbol{Q}\left(f_{0}, f_{1}, f_{2}, \cdots\right)
$$

of Q is identical with the finite algebraic extension

$$
K=\boldsymbol{Q}\left(f_{0}, f_{1}, \cdots, f_{h_{0}-1}\right)
$$

of \boldsymbol{Q} and so is an algebraic number field of finite degree, D say, over \boldsymbol{Q}.
This number field K can then in D distinct ways be imbedded in the complex field \boldsymbol{C}, so generating the D conjugate real or complex algebraic number fields

$$
K^{(1)}, \cdots, K^{(D)}
$$

say.
If a is any element of the abstract algebraic field K, denote by $a^{(j)}$, where $j=1,2, \cdots, D$, the image of a in $K^{(j)}$. As is usual, we put

$$
|\bar{a}|=\max \left(\left|a^{(1)}\right|, \cdots,\left|a^{(D)}\right|\right) .
$$

5

By hypothesis, f satisfies the algebraic differential equation (1), and this equation has rational coefficients. It follows then that the D power series

$$
f^{(j)}=\sum_{h=0}^{\infty} f_{h}^{(j)} z^{h} \quad(j=1,2, \cdots, D)
$$

conjugate to f over K also satisfy the same differential equation (1).

Hence, by the main theorem of my paper [1], there exist for each j a pair of positive constants $\gamma_{1}^{(j)}$ and $\gamma_{2}^{(j)}$ such that

$$
\left|f_{h}^{(j)}\right| \leqq \gamma_{1}^{(j)}(h!)^{\gamma_{2}^{(\prime)}} \quad\left[\begin{array}{l}
j=1,2, \cdots, D \\
h=0,1,2, \cdots
\end{array}\right]
$$

Therefore, on putting

$$
\gamma_{1}=\max _{j=1,2 \cdots, D} \gamma_{1}^{(j)} \text { and } \gamma_{2}=\max _{j=12 \cdots D} \gamma_{2}^{(j)}
$$

our hypothesis implies the infinite sequence of inequalities

$$
\begin{equation*}
\overline{\left|f_{h}\right|} \leqq \gamma_{1}(h!)^{\gamma_{2}} \quad(h=0,1,2, \cdots) \tag{8}
\end{equation*}
$$

6

In addition to this inequality for $\overline{f_{h} \mid}$, we require an upper estimate for the denominators, d_{h} say, of the coe.ficients f_{h}. Here d_{h} is a positive rational integer, by preference as small as possible, such that the product

$$
\begin{equation*}
g_{h}=d_{h} f_{h} \quad(h=0,1,2, \cdots) \tag{9}
\end{equation*}
$$

is an algebraic integer in K.
An upper bound for such denominators d_{h} can be obtained by the following considerations which go back to Popken's thesis.

By (4), (5), and (9), g_{h} can be written in the explicit form

$$
\begin{equation*}
g_{h}=\sum_{\{v\} \in S_{h}} P_{\{v\}, h} \frac{d_{h}}{A(h) d_{v_{1}} \cdots d_{v_{v}}} g_{v_{1}} \cdots g_{v_{N}} \quad \text { for } h \geqq h_{0} \tag{10}
\end{equation*}
$$

Here, for the first h_{0} denominators

$$
d_{0}, d_{1}, \cdots, d_{h_{0}-1}
$$

choose the smallest positive rational integers for which the products

$$
g_{0}, g_{1}, \cdots, g_{h_{0}-1}
$$

as defined in (9) are algebraic integers in k, and then, for each larger suffix

$$
h \geqq h_{0}
$$

define d_{h} recursive.y as the smallest positive rational integer such that

$$
\begin{equation*}
A(h) d_{v_{1}} \cdots d_{v_{N}} \text { is a divisor of } d_{h} \text { for all systems }\{v\} \in S_{h} . \tag{11}
\end{equation*}
$$

By complete induction on h it is then immediately obvious from (10) that also all the products g_{h} with $h \geqq h_{0}$ become algebraic integers in K.

It is now convenient to split every system $\{v\}$ in S_{h} into two subsystems

$$
\left\{\xi_{1}, \cdots, \xi_{X}\right\} \text { and }\left\{\zeta_{1}, \cdots, \zeta_{Y}\right\}
$$

where the ξ 's are those v 's which are $\leqq h_{0}-1$, while the ζ 's are the v 's which are $\geqq h_{0}$. For reasons which will soon become clear, we further put

$$
\eta_{1}=\zeta_{1}-\left(h_{0}-1\right), \eta_{2}=\zeta_{2}-\left(h_{0}-1\right), \cdots, \eta_{Y}=\zeta_{Y}-\left(h_{0}-1\right)
$$

so that $\eta_{1}, \cdots, \eta_{Y}$ are positive integers. With the ξ 's and η 's so defined, the system $\{v\}$ will from now on be written as

$$
\{v\}=\{\xi \mid \eta\}=\left\{\xi_{1}, \cdots, \xi_{X} \mid \eta_{1}, \cdots, \eta_{Y}\right\}
$$

Here the numbers X and Y are such that

$$
0 \leqq X \leqq N \leqq n, 0 \leqq Y \leqq N \leqq n, 1 \leqq X+Y=N \leqq n
$$

We further put

$$
d(k)=d_{k+h_{0}-1} \quad(k=1,2,3, \cdots)
$$

and define $S(k)$ as the set of all subsystems $\{\eta\}$ to which there exists at least one system

$$
\{v\} \text { in } S_{k+h_{0}-1} \text { such that }\{v\}=\{\xi \mid \eta\}
$$

8

If $\{v\}=\{\xi \mid \eta\}$ lies in $S_{k+h_{0}-1}$, both the factors $d_{\xi_{i}}$ and the number X of these factors in the product

$$
d_{\xi_{1}} \cdots d_{\xi_{X}}
$$

are bounded. Hence there exists a positive integral constant d^{*} such that

$$
\begin{equation*}
d_{\xi_{1}} \cdots d_{\xi_{x}} \text { is a divisor of } d^{*} \text { whenever }\{\xi \mid \eta\} \in S_{k+h_{0}-1} \text { and } k \geqq 1 \tag{12}
\end{equation*}
$$

Let us then replace $A(h)$ by the new polynomial

$$
\begin{equation*}
a(k)=A\left(k+h_{0}-1\right) d^{*} \tag{13}
\end{equation*}
$$

in k. Also $a(k)$ has rational integral coefficients, and the first formula (4) implies that

$$
\begin{equation*}
a(k) \neq 0 \text { for } k=1,2,3, \cdots \tag{14}
\end{equation*}
$$

In the new notation, the conditions (11) for d_{h} are equivalent to the conditions for $d(k)$, as follows,
$A\left(k+h_{0}-1\right) d_{\xi_{1}} \cdots d_{\xi x} d\left(\eta_{1}\right) \cdots d\left(\eta_{Y}\right)$ divides $d(k)$ for all $\{\xi \mid \eta\} \in S_{k+h_{0}-1}$
and all $k \geqq 1$.
Further these new conditions are certainly satisfied if
(15) $a(k) d\left(\eta_{1}\right) \cdots d\left(\eta_{Y}\right)$ is a divisor of $d(k)$ for all $\{\eta\} \in S(k)$ and all $k \geqq 1$,
as will from now be assumed.
We had seen that

$$
\begin{equation*}
0 \leqq v_{1} \leqq h-1, \cdots, 0 \leqq v_{N} \leqq h-1, v_{1}+\cdots+v_{N} \leqq h+c_{1} \text { if }\{v\} \in S_{h} . \tag{6}
\end{equation*}
$$

By the decomposition of $\{v\}$, this implies in particular that

$$
\begin{array}{r}
0 \leqq \zeta_{1} \leqq k+h_{0}-2, \cdots, 0 \leqq \zeta_{Y} \leqq k+h_{0}-2, \zeta_{1}+\cdots+\zeta_{Y} \leqq k+h_{0}+c_{1}-1 \\
\text { if }\{v\} \in S_{k+h_{0}-1},
\end{array}
$$

and hence that
$1 \leqq \eta_{1} \leqq k-1, \cdots, \quad 1 \leqq \eta_{Y} \leqq k-1, \quad \eta_{1}+\cdots+\eta_{Y} \leqq k+h_{0}+c_{1}-1-Y\left(h_{0}-1\right)$

$$
\text { if }\{\eta\} \in S(k)
$$

If $Y \geqq 2$, it follows then, by (7), that

$$
\begin{equation*}
1 \leqq \eta_{1} \leqq k-1, \cdots, 1 \leqq \eta_{Y} \leqq k-1, \eta_{1}+\cdots+\eta_{Y} \leqq k-1 \text { if }\{\eta\} \in S(k) \tag{16}
\end{equation*}
$$

These inequalities evidently remain valid also if $Y=1$; and they are without content if $Y=0$, a case which may be excluded.

9

As usual, denote by $[x]$ the integral part of the positive number x. Further put

$$
\begin{equation*}
d[k]=\prod_{j=1}^{k}|a(j)|^{\left[\frac{(n-1) k+1}{(n-1) j+1}\right]} \quad(k=1,2,3, \cdots) \tag{17}
\end{equation*}
$$

so that

$$
d(1)=|a(1)|
$$

We assert that the denominator $d(k)=d_{k+h_{0}-1}$ of $f_{k+h_{0}-1}$ may for all $k \geqq 1$ be chosen as the integer

$$
\begin{equation*}
d(k)=d[k] \quad(k=1,2,3, \cdots) \tag{18}
\end{equation*}
$$

but we do not assert that this is always the smallest possible choice of $d(k)$.
The assertion (18) is by (15) and (16) certainly true for $k=1$ because $S(1)$ is the empty set and we may therefore take $d(1)=|a(1)|$. Assume next that (18)
has already been established for all values of k less than some integer k^{*}. We shall now show that then (18) is valid also for $k=k^{*}$ and so is always true.

To carry out this proof, it suffices by (17) to prove that

$$
\begin{equation*}
\left[\frac{(n-1) \eta_{1}+1}{(n-1) j+1}\right]+\cdots+\left[\frac{(n-1) \eta_{Y}+1}{(n-1) j+1}\right] \leqq\left[\frac{(n-1) k+1}{(n-1) j+1}\right] \tag{19}
\end{equation*}
$$

for all integers $j \geqq 1$, for all integers $k=1,2, \cdots, k^{*}$, and for all systems $\{\eta\}$ in $S(k)$. But for such values of the parameters,

$$
\begin{aligned}
& \left\{(n-1) \eta_{1}+1\right\}+\cdots+\left\{(n-1) \eta_{Y}+1\right\} Y= \\
& \quad=(n-1)\left(\eta_{1}+\cdots+\eta_{Y}\right)+Y \leqq(n-1)(k-1)+Y \leqq(n-1) k+1
\end{aligned}
$$

because

$$
Y \leqq n=(n-1)+1
$$

and so the assertion (19) follows at once.

10

This proof has established that we may choose

$$
d_{k+h_{0}-1}=d(k)=\prod_{j=1}^{k}|a(j)|^{\left[\begin{array}{l}
(n-1) k+1 \tag{20}\\
(n-1) j+1
\end{array}\right]}
$$

as an admissible denominator of the coefficients $f_{k+h_{0}-1}$ if $k \geqq 1$. We next determine an upper estimate for this product.

There evidently exist positive constants c_{2}, c_{3}, c_{4}, and c_{5} independent of j and k such that

$$
\begin{gathered}
|a(j)| \leqq c_{2} j^{c_{3}} \quad(j=1,2,3, \cdots) \\
\frac{(n-1) k+1}{(n-1) j+1} \leqq \frac{k}{j} \text { if } 1 \leqq j \leqq k \text { and } k \leqq 1 \\
\sum_{j=1}^{k} \frac{1}{j} \leqq c_{4}+\log k ; \quad \sum_{j=1}^{k} \frac{\log j}{j} \leqq c_{5}+(\log k)^{2} .
\end{gathered}
$$

It thus follows from (20) that

$$
1 \leqq d_{k+h_{0}-1} \leqq \prod_{j=1}^{k}\left(\left.c_{2}\right|^{c_{3}}\right)^{k / j} \leqq c_{2}^{k\left(c_{4}+\log k\right)} \cdot e^{c_{3} k\left\{c_{5}+(\log k)^{2}\right\}}
$$

On replacing here $k+h_{0}-1$ again by h, we arrive then at the result that
There exists to the series f a positive constant γ_{3} and a positive integer h_{1} such that the denominator d_{k} of f_{h} satisfies the inequality

$$
\begin{equation*}
1 \leqq d_{h} \leqq e^{\gamma_{3} h(\log h)^{2}} \quad \text { for all suffixes } h \geqq h_{1} \tag{21}
\end{equation*}
$$

This result certainly holds if all the coefficients f_{h} of f lie in the formal algebraic number field K of degree D over Q. It still remains valid if we imbed K in any one of the D possible ways in the complex number field C, or if we imbed K for any prime p in some finite algebraic extension of the p-adic field Q_{p}.

11

We apply the last remark to the case when all the coefficients f_{h} are algebraic p-adic numbers.

Denote by

$$
u_{h}(x)=x^{\Delta}+u_{h 1} x^{\Delta-1}+\cdots+u_{h \Delta} \quad(h=0,1,2, \cdots)
$$

the irreducible polynomial with rational coefficients for which

$$
u_{h}\left(f_{h}\right)=0 \quad(h=0,1,2, \cdots) ;
$$

here Δ may depend on h. The further polynomial defined by

$$
U_{h}(x)=\prod_{j=1}^{D}\left(x-f_{h}^{(j)}\right)=x^{D}+U_{h 1} x^{D-1}+\cdots+U_{h D} \quad(h=0,1,2, \cdots)
$$

is then a positive integral power of $u_{h}(x)$, and therefore also

$$
U_{h}\left(f_{h}\right)=0 \quad(h=0,1,2, \cdots)
$$

Denote again by d_{h} the denominator of f_{h} and then put

$$
V_{h}(x)=d_{h}^{D} \cdot U_{h}\left(x / d_{h}\right) \quad(h=0,1,2, \cdots)
$$

Then $V_{h}(x)$ has the explicit form

$$
V_{h}(x)=x^{D}+V_{h 1} x^{D-1}+\cdots+V_{h D}
$$

with rational integral coefficients. All the zeros of $V_{h}(x)$ are therefore algebraic integers, and hence the algebraic integer $d_{h} f_{h}$ is a divisor of $V_{h D}$.

Here

$$
V_{h D}=(-1)^{D} \prod_{j=1}^{D}\left(d_{h} f_{h}^{(j)}\right)
$$

whence, by (8) and (21),

$$
\left|V_{h D}\right| \leqq\left(e^{\gamma 3 h(\log h)^{2}} \cdot \gamma_{1}(h!)^{\gamma_{2}}\right)^{D} \quad \text { for } h \geqq h_{1}
$$

This estimate implies that there exists a positive constant γ_{4} independent of h such that

$$
\begin{equation*}
\left|V_{h D}\right| \leqq e^{\gamma_{4} h(\log h)^{2}} \quad \text { for } h \geqq h_{1} \tag{22}
\end{equation*}
$$

Assume finally that both $h \geqq h_{1}$ and

$$
f_{h} \neq 0
$$

Then also

$$
f_{h}^{(j)} \neq 0 \text { for } j=1,2, \cdots, D
$$

hence

$$
V_{h D} \neq 0
$$

whence, by (22),

$$
\begin{equation*}
\left|V_{h D}\right|_{p} \geqq e^{-\gamma_{a} h(\log h)^{2}} \quad \text { for } h \geqq h_{1} \tag{23}
\end{equation*}
$$

The algebraic integer $d_{h} f_{h}$ is also a p-adic integer, and it is a divisor of $V_{h D} \neq 0$. This implies that

$$
\begin{equation*}
\left|d_{h} f_{h}\right|_{p} \geqq\left|V_{h D}\right|_{p} \tag{24}
\end{equation*}
$$

Further d_{h} is a positive rational integer and therefore satisfies

$$
\begin{equation*}
\left|d_{h}\right|_{p} \leqq 1 \tag{25}
\end{equation*}
$$

On combining these three inequalities (23), (24), and (25), we arrive then finally at the following analogue of Popken's theorem.

Theorem. Let p be a fixed prime, and let

$$
f=\sum_{h=0}^{\infty} f_{h} z^{h}
$$

be a formal power series with p-adic algebraic coefficients which satisfies an algebraic differential equation. Then a positive constant γ_{4} and a positive integer h_{1} exist such that

$$
\text { either } f_{h}=0 \text { or }\left|f_{h}\right|_{p} \geqq e^{-\gamma_{4} h(\log h)^{2}} \quad \text { for } h \geqq h_{1}
$$

It would have great interest to decide whether this estimate is best possible; but I rather doubt it.

References

[1] K. Mahler, Atti della Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 50 (1971) 36-49.
[2] K. Mahler, Atti della Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 50 (1971) 174-184.
[3] J. Popken, Ph. D. Thesis, N.V. Noord-Hollandsche Uitgeversmaatschappij (1935).
[4] J. F. Ritt and E. Gourie, Bull. Amer. Math. Soc., 33 (1927), 182-184.
Department of Mathematics
Institute of Advanced Studies
Australian National University
Canberra

