
10

Deep inelastic scattering

10.1 Kinematics for deep inelastic scattering

The processes that we are studying in the next few sections are shown schematically
in Fig. 10.1. An initial neutrino with energy E hits a proton, producing a final state
of a muon with energy E′ and an undetected final hadronic state.

The lepton vertex is well known. All the interesting structure is included in the
hadronic vertex. The kinematics are shown in the diagram and they involve

kµ, the four-vector of the neutrino,
k ′
µ, the four-vector of the muon,

q = k − k ′, the four-momentum transferred from leptons to hadrons,
Pµ, the four-momentum of the target nucleon,
ν = pq/M , energy transfer in the laboratory frame,
θ , the laboratory angle of the muon produced relative to the incident neutrino, and
Q2 = −q2 = −m2

µ+ 2E�k ′ (1 − cos θ ) ≈ 4E E ′ sin2 θ/2, with k ′ = √
E ′2 − m2

µ .

The above definitions hold also for electroproduction, when the initial neutrino is
replaced by an electron and the exchange particle is the photon. The discussion of
this and the following section is restricted to neutrino reactions. The cross section
for such a process in the rest frame of the proton is given by

dσ = 1

(2E)(2M)

∑∫
n
|M|2(2π )4δ4(k + p − k ′ − pn)

d3k ′

2E ′(2π )3
, (10.1)

where

pµ
n =

n∑
i=1

pµ

i ,

with the summation over all final particle configurations, each of which contains n
particles with momenta pi and i = 1, . . ., n. The integration over the phase space
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96 Deep inelastic scattering

Figure 10.1. Inelastic neutrino–nucleon scattering, together with the coordinate
system used in decomposing the leptonic current.

of final-state particles and the summation over the configurations is given by

∑∫
n
. . . =

∑
n

∫ n∏
i=1

[
d3 pi

2Ei (2π )3

]
. . .

Later on we shall specify the final state to be a single quark, with the product
reduced to a single phase-space factor.

The matrix element is

M = G√
2

ū(k ′)γµ(1 − γ5)u(k)〈pn|Jµ|p〉. (10.2)

We write the leptonic current as

j lept
µ = ū(k ′)γµ(1 − γ5)u(k). (10.3)

Neglecting the muon mass, the current is evaluated by multiplying it by a simple
factor (Bjorken and Paschos, 1970):

j lept
µ =

∑
s,s ′

ū(k ′, s ′)γµ(1 − γ5)u(k, s)
ū(k, s)γ0(1 − γ5)u(k ′, s ′)
ū(k, s)γ0(1 − γ5)u(k ′, s ′)

. (10.4)

The factor of unity is introduced in order to change the numerator into a trace;
the summation over spins does not change the lepton current because (1 − γ5) is a
chirality-projection operator, so the extra states introduced by

∑
s,s ′ contribute zero:

j lept
µ = 2 Tr

[
γµ(1 − γ5)k/ γ0 k ′/

]
{2 Tr[γ0(1 − γ5)k ′/ γ0 k/]}1/2

= 8
(
kµE ′ + k ′

µE − gµo k · k ′ + iεµoαβkαk ′β)
4
√

E E ′ cos θ/2
. (10.5)
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10.1 Kinematics for deep inelastic scattering 97

Similarly, we calculate the square of the denominator, which produces a trace.
Using current conservation, we can eliminate one of the components in jµ and

expand the current in terms of three orthonormal polarization vectors whose spatial
components lie along the axes shown in Fig. 10.1; the z-axis lies along q. This
decomposition simplifies considerably in the high-energy limit ν � 2M ≈ 2 GeV;
Q2 � ν2, which is all we consider in this chapter. An alternative way would be
to square the leptonic current and compute the leptonic tensor. The method is
straightforward and the interested student can use it in order to reproduce some of
the formulas in Sections 10.2 and 10.3. Here we find the method convenient for
introducing helicity cross sections.

The three polarization vectors below correspond to the angular-momentum state
|J = 1, m〉 with helicities m = 0, 1, and −1, respectively:

εS
µ = 1[

Q2
]1/2 (qz, 0, 0, q0) ≈ ν[

Q2
]1/2

(
1 + Q2

2ν2
, 0, 0, 1

)
,

εR
µ = 1√

2
(0, 1, i, 0), (10.6)

εL
µ = 1√

2
(0, 1, −i, 0).

They satisfy the conditions ε2
S = +1, |εL;R|2 = −1, and εS,L,R · q = 0. In the high-

energy approximation the current, evaluated in the laboratory frame, becomes

j

µ ≈ 4

(E E ′Q2)1/2

ν

[
εS
µ +

(
E ′

2E

)1
2

εR
µ +

(
E

2E ′

)1
2

εL
µ

]
. (10.7)

The only change in j lept
µ on going over to antineutrino-induced processes is the

interchange R ↔ L.
The integration over the phase space of the muon can be carried out,

d3k ′

2E ′(2π )3
= E ′ dE ′ d�

2(2π )3
.

In addition, we can transform to an invariant phase-space element,

dσ

dQ2 dν
= π

E E ′
dσ

d� dE ′ ,

arriving at

dσ

dQ2 dν
= G2

2π2

E ′

E

Q2

ν

(
1

(2ν)(2M)

∑∫
n
|〈n| j̃µ Jµ|p〉|2(2π )4δ4(pn − p − q)

)
.

(10.8)
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98 Deep inelastic scattering

Here

j̃ lept
µ = εS

µ +
(

E ′

2E

)1
2

εR
µ +

(
E

2E ′

)1
2

εL
µ.

It is evident now that the amplitude 〈n| j̃µ Jµ|p〉 is the sum of three helicity am-
plitudes: scalar (AS), right-handed (AR), and left-handed (AL). The cross section
is the sum of three helicity cross sections and three interference terms. When we
average over the azimuthal angles of the hadrons produced, the three interference
terms average to zero, as indicated by the following argument.

Let � be a fixed set of final-state hadron momenta that are measured. Let �′ = R�

be the set of momenta obtained by rigid rotation of � about �q (the z-axis) by the
angle φ. We kept the neutrino and muon momenta fixed and rotated the hadronic
system. This is equivalent to keeping the hadrons fixed and rotating the neutrino–
muon plane in the opposite direction. Under this rotation the only change in the
cross section is to replace j̃ lept

µ as follows:

j̃ lept
µ = εS

µ +
√

E ′

2E
εR
µeiφ +

√
E

2E ′ εL
µe−iφ. (10.9)

The rotation is equivalent to a rotation of the two polarization vectors �εR,L around the
z-axis. �εS, which is parallel to �q, does not change. Accordingly, only the interference
terms 2
(AS A∗

Reiφ), 2
(AS A∗
Le−iφ), and 2
(AR A∗

Le2iφ) change. They produce
terms linear in cos(φ) and sin(φ). By averaging over the azimuthal orientations
of the final hardons, i.e. integrating over φ from 0 to 2π , the interference terms
are made to vanish. Should one wish to isolate the interference terms, then it is
necessary to construct appropriate moments over the angle φ.

To sum up, � denotes a set of hadronic momenta in the final state, whose angles
relative to each other are kept fixed; the rigid rotation around �q has been averaged,
i.e. integrated out. In this manner only helicity cross sections survive.

We define the helicity cross sections for absorption of the “virtual” W nucleon
into final hadronic states by

σ (λ)(ν, Q2) = 1

(2ν)(2M)

∫
|〈n|ελ

µ · Jµ(0)|p〉|2(2π )4δ(4)(p′ − p − q)
d3 p′

2E p′(2π )3
.

(10.10)

Here we have assumed that there is only one particle in the final hadronic state.
When there are many particles produced, the phase space is replaced by a product
of phase-space factors. These cross sections depend only on ν and Q2. The final
formula reads

dσ

dQ2 dν
= G2

4π2

E ′

E

Q2

ν

(
2σS + E ′

E
σR + E

E ′ σL

)
. (10.11)
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10.2 Hadronic structure functions 99

The absorption cross sections are not uniquely defined; for q2 = 0 the flux factor
for the exchanged particle is 2ν. This is a convention and sometimes the factor
has been replaced by 2ν[1 − Q2/(2Mν)]. To avoid the zeros which appear for
elastic scattering, we chose the overall factor in the helicity cross sections F = 4Mν

(Eq. (10.10))
On introducing the structure function

W2(ν, Q2) = 1

2π

Q2

ν
(2σS + σR + σL) (10.12)

and the ratios

(L) = σL

2σS + σR + σL
≤ 1,

(R) = σR

2σS + σR + σL
≤ 1, (10.13)

it follows that

dσ

dQ2 dν
= G2

2π

E ′

E
W2(ν, Q2)

[
1 + ν

E ′ (L) − ν

E
(R)

]
. (10.14)

The antineutrino–nucleon cross section is obtained from (10.14) by the interchange
L ↔ R. We shall find these cross sections useful in several applications later on.

An alternative notation introduces the structure functions W1(ν, Q2), W2(ν, Q2),
and W3(ν, Q2) defined in the next section. They are related to the absorption cross
sections through (10.12) and the following:

W1(ν, Q2) = W2(ν, Q2)

(
1 + ν2

Q2

)
[(L) + (R)], (10.15)

W3(ν, Q2) = W2(ν, Q2)
2M

Q

(
1 + ν2

Q2

)1
2

[(L) − (R)]. (10.16)

In the limit ν2/Q2 � 1 they reduce to

W1(ν, Q2) = νW2(ν, Q2)
ν

Q2
[(L) + (R)], (10.17)

νW3(ν, Q2) = νW2(ν, Q2)
2Mν

Q2
[(L) − (R)]. (10.18)

10.2 Hadronic structure functions

In the previous section we introduced structure functions that describe the hadronic
vertex. Here we describe their connection with products of currents and their com-
mutators. The formalism of this section is convenient in discussing sum rules or the
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100 Deep inelastic scattering

light-cone behavior of the product of weak currents. We define the hadronic tensor
as

Wµν = (2π )3
∑

Sn

∑∫
n
〈P|J+

µ (0)|Pn〉〈Pn|Jν(0)|P〉δ(4)(pn − p − q). (10.19)

Here
∑

n

∫
sums over final states, and

∑
Sn

averages over the spins of the target
nucleon. By exponentiating the delta function and using translation invariance,

Jµ(x) = eiPx Jµ(0)e−iPx , (10.20)

one obtains

Wµν = 1

2π

∑
Sn

∫
d4x eiqx〈P|J+

µ (x)Jν(0)|P〉, (10.21)

where the unitary relation
∑

n

∫ |pn〉〈pn| ≡ 1 was used. We may change Wµν into a
commutator,

Wµν = 1

2π

∑
Sn

∫
d4x eiqx〈P|[J+

µ (x), Jν(0)
]|P〉, (10.22)

since the second term of the commutator,

1

2π

∫
d4x eiqx〈P|Jν(0)J+

µ (x)|P〉, (10.23)

vanishes. This is proven by reversing the steps and showing that (10.22) reduces to∑∫
n
〈P|Jν(0)|pn〉〈pn|J+

µ (0)|P〉δ(4)(pn − P + q) = 0, (10.24)

since in the physical process q0 = En − Mproton ≥ 0, but in Eq. (10.24) the δ-
function argument implies

q0 = P0 − p0
n = M − En < 0.

By virtue of Lorentz and gauge invariance, Wµν can be written in terms of
six scalar functions, which are better known as structure functions. In neutrino
scattering, however, only three contribute to the inelastic cross section because
the lepton current is conserved (for mµ = 0). The tensor relevant to deep inelastic
scattering is

Wµν = −gµνW1 + Pµ Pν

M2
W2 − i

εµναβ Pαqβ

2M2
W3, (10.25)

where the structure functions W1(Q2, ν) and W2(Q2, ν) arise from the product
of vector ⊗ vector currents and axial ⊗ axial currents, whereas W3(Q2, ν) is the
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10.3 Scaling and the total cross section 101

interference of an axial current ⊗ a vector current. The additional three terms are

qµqν

M2
W4 + Pµqν + Pνqµ

M2
W5 + i

Pµqν − Pνqµ

M2
W6.

Their contributions to the matrix elements and the cross section are proportional to
lepton masses and will be neglected.

10.3 Scaling and the total cross section

The structure functions are functions of ν and Q2, but at high energies both variables
are very large. It was suggested by Bjorken (1969) that, in the limit ν → ∞, Q2 →
∞, with the ratio

x = Q2

2Mν
= finite, (10.26)

the structure functions become functions of x only, i.e.

νW2,3(ν, Q2) → F2,3(x), (10.27)

MW1(ν, Q2) → F1(x). (10.28)

This was established in experiments on deep inelastic electron–proton scattering,
for which the limit is reached at relatively low values of Q2, 2Mν ≈ (1 GeV)2.
Inelastic electron–proton scattering is closely related to neutrino reactions and we
mention it later on in this section.

In the scaling limit the relations (10.18) and (10.19) reduce to

2x F1(x) = F2(x)[(L) + (R)],
x F3(x) = F2(x)[(L) − (R)].

With this notation we can rewrite the cross section in a convenient form. For vari-
ables we use x = Q2/(2Mν) and the inelasticity y = ν/E , then we substitute the
scaling functions into the cross section, Eq. (10.14), and change the phase-space
variables to arrive at

dσ

dx dy
= G2 M E

π

[
xy2 F1(x) + (1 − y)F2(x) + xy

(
1 − 1

2
y

)
F3(x)

]
,

where the structure functions depend on the process under consideration. In order
to obtain the corresponding cross section for an antineutrino-induced reaction, one
should change the sign of the F3 term and replace the structure functions with the
charge conjugate.

The main difference between electroproduction and neutrino-induced reactions
is the nature of the particle exchanged. In electroproduction the particle exchanged
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102 Deep inelastic scattering

is the photon, which has only a vector coupling

j lept
µ = ū(k ′)γµu(k). (10.29)

The vector–axial interference term is now absent and the cross sections σR and σL

are equal. Following steps similar to those of the previous section, one finds

dσ (ep)

dQ2 dν
= E ′

E

4πα2

Q4

[
W e

2 cos2

(
θ

2

)
+ 2W e

1 sin2

(
θ

2

)]
, (10.30)

where W e
1 and W e

2 are electroproduction structure functions analogous to those
introduced in Eq. (10.25). In the cross section we kept the scattering angle θ .
However, we can substitute it in terms of Q2 and the energies E and E′ and arrive at
a formula analogous to (10.14). The superscript e indicates their electromagnetic
origin. Numerous experiments have shown that the limits

νW e
2 (ν, Q2) → Fe

2 (x), (10.31)

MW e
1 (ν, Q2) → Fe

1 (x) (10.32)

are reached for relatively low values of ν and Q2. This is shown in Fig. 10.2, where
the structure function F2(x) is plotted for a range of Q2. Deviations from the scaling
law have also been established, and we return to this topic in Chapter 11. We show
next that scaling predicts σtot ∼ Eν : namely a linear rise with neutrino energy.

From (10.14) and scale invariance (10.27) we find the averaged cross section
over protons and neutrons

dσ

dν
= G2

2π

E ′

E

∫ 2Mν

∼0

dQ2

ν
νW2(ν, Q2)

(
1 + ν

E ′ (L) − ν

E
(R)

)

= G2 M

π

E ′

E

(
1 + ν

E ′ 〈L〉 − ν

E
〈R〉

) ∫ 1

0
dx

1

2

[
F2(x)p + F2(x)n

]
, (10.33)

where 〈R〉 and 〈L〉 imply that the appropriate averages of x have been taken. Then
the total cross section is

σtot = G2 M E

π

∫ 1

0
dx

1

2

[
F2(x)p + F2(x)n

]{1

2
+ 〈L〉

2
− 〈R〉

6

}
. (10.34)

The factor in the curly brackets lies between 1 and 1
3 . In particular,

1

2
+ 1

2
〈L〉 − 1

6
〈R〉 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if σR = σS = 0,

2

3
if σR = σL, σS = 0,

1

2
if σR = σL = 0,

1

3
if σL = σS = 0.

(10.35)
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10.3 Scaling and the total cross section 103

Figure 10.2. Scaling of the structure function νW e
2 = F2(x).

From (10.33) we see that a linear rise in σtot depends on the property that νW2 is
scale-invariant and the absence of a W propagator. The neutrino measurements give

σν
tot = (0.677 ± 0.014) × 10−38 cm2 Eν

GeV
.

We can also compare neutrino and antineutrino cross sections on isoscalar targets:

σ ν̄N

σνN
=

1
2 + 1

2〈R〉 − 1
6〈L〉

1
2 + 1

2〈L〉 − 1
6〈R〉 .

The ratio is bounded between 1
3 and 3. The experimental data give

σ ν̄
tot = (0.334 ± 0.008) × 10−38 cm2 Eν̄

GeV
,

with the ratio of the two slopes being 0.501 ± 0.015, which is consistent with the
above prediction and close to the lower bound.
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104 Deep inelastic scattering

10.4 The parton model

“Friends rush in where angels fear to tread.”
(R. P. Feynman, at Fermilab, 1973)

A physical interpretation of the scaling phenomenon is given by the parton model,
which considers the scattering as the incoherent sum of scattering from point-
like constituents within the proton, called partons. The point-like nature of the
constituents reproduces scaling. By studying several reactions it was possible to
deduce properties of the constituents, such as electric charge, and identify the
partons with quarks. The parton model has been applied to a wide range of high-
energy reactions, many of which will be covered in this chapter. Deep inelastic
reactions together with hadron spectroscopy supply the major evidence for the
quark substructure of matter.

Neutrino–nucleon scattering

The basic idea in the parton model is to regard the deep inelastic scattering as quasi-
free scattering from point-like constituents within the proton. This happens when the
scattering is viewed from a frame in which the proton has infinite momentum. The
neutrino–proton center-of-mass system is, at high energies, a good approximation
of such a frame. In the infinite-momentum frame, the proton is Lorentz-contracted
into a thin pancake, and the lepton scatters instantaneously. Furthermore, the proper
motion of the constituents within the proton is slowed down by time dilatation. We
estimate the interaction time and lifetime of the virtual states within the proton. In
the notation of the previous section and Fig. 10.3, the initial electron and proton
are collinear and in opposite directions:

�k = − �P,
(10.36)

k0 ≈ P0 = P.

In this frame

p · q = Mν = (q0 + qz)P, (10.37)

k · q = −Q2/2 = (q0 − qz)P, (10.38)

from which it follows that

q0 = 2Mν − Q2

4P
. (10.39)

The time of interaction is τ ≈ 1/q0, which for moderate values of x decreases as

τ = 4P

2Mν(1 − x)
. (10.40)
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10.4 The parton model 105

Figure 10.3. Kinematics for neutrino–nucleon scattering in the parton model.

We visualize the proton as composed of virtual states called partons. We denote by
x the fraction of the proton’s momentum carried by a constituent. The lifetime of
the virtual states (Feynman, 1969; Bjorken and Paschos, 1969) is

T = 1

Ex + E1−x − Ep
= 1√

(x P)2 + µ2
1 +

√
(1 − x)2 P2 + µ2

2 − √
P2 + M2

≈ 2P(
µ2

1 + P2
1⊥

)/
x + (

µ2
2 + P2

2⊥
)/

(1 − x) − M2
. (10.41)

If we now require that τ � T , then we must consider the partons, contained in
the proton, as free during the interaction. In this limit the current interacts with
just one of the constituents, leaving the rest undisturbed, thus making the im-
pulse approximation valid. The above conditions appear to be satisfied in high-
energy and large-momentum-transfer electron–nucleon scattering and in high-
energy neutrino–nucleon scattering. The model could fail for x → 0 or 1, for
which the expansion in (10.39) is no longer justified. The reader may have noticed
that we use x with two meanings: the first one is Bjorken’s variable x defined in
Eq. (10.26) and the second is the fraction of the proton’s momentum. This was done
on purpose because the two variables are the same.

The cross section of a proton is the incoherent sum of cross sections of the indi-
vidual constituents. We denote by dσi (x)/(dQ2 dν) the cross section of a neutrino
on a parton of type i , which carries a fraction x of the proton’s momentum,

pµ

i ≈ x Pµ. (10.42)
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106 Deep inelastic scattering

We denote by fi (x) the probability of finding the i th constituent carrying a fraction
x of the proton’s momentum. Then the cross section is

dσ

dQ2 dν
=

∑
i

∫ 1

0

dσi (x)

dQ2 dν
fi (x)dx . (10.43)

The summation here is over all types of constituents within the proton and the
integral is over the momentum fraction x . Thus the complicated hadronic structure is
reduced to the incoherent scattering from point-like constituents times the structure
functions fi (x).

The point cross sections have already been derived in Section 8.3. For neutrino–
parton scattering

dσ

dQ2 d(pi q/mi )
= G2

π
δ

(
pi q

mi
− Q2

2mi

)
(10.44)

or

dσ

dQ2 d(pi q)
= G2

π
δ

(
pi q − Q2

2

)
. (10.45)

For neutrino–antiparton scattering

dσ

dQ2 d(pi q)
= G2

π

(
1 − pi q

pi kµ

)2

δ

(
pi q − Q2

2

)
, (10.46)

with kµ the four-momentum of the neutrino.
The proton is built from two up quarks and one down quark, which constitute

the valence quarks and give the proton its quantum numbers. In addition, there is
in the proton a cloud of quark–antiquark pairs produced by the radiation of gluons
and their subsequent conversion into pairs. The number of the pairs is infinite, but
their momentum distributions have not been calculated explicitly. We denote the
probability of finding an up quark carrying a fraction x of the proton’s momentum by
u(x). Similarly, we denote by d(x) the probability of finding a down quark carrying
a fraction x of the proton’s momentum. The cloud of quark–antiquark pairs of any
flavor necessitates the introduction of additional quark distribution functions. For
instance, ū(x) and d̄(x) correspond to up and down antiquarks. Similarly, there are
distributions s(x), s̄(x), c(x), c̄(x), . . . for strange, charm, and other flavors.

When we substitute pµ

i = x Pµ into (10.44) we obtain the point cross section

dσi

dQ2 dν
= G2

π
Mxδ

(
x Mν − Q2

2

)
. (10.47)
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Finally, on substituting the point cross sections in (10.42) and integrating over x ,
we arrive at the neutrino–proton scattering

dσνp

dQ2 dν
= G2

π

x

ν

[
d(x) + ū(x)

(
1 − ν

E

)2
]
. (10.48)

Here we omit the contribution from the strange and heavier quarks and their
antiparticles. In the case of antineutrino–proton scattering we obtain

dσ ν̄p

dQ2 dν
= G2

π

x

ν

[
d̄(x) + u(x)

(
1 − ν

E

)2
]
. (10.49)

It is now evident that the momentum fraction x = Q2/(2Mν) is indeed the Bjorken
scaling variable.

The general case with many families of quarks can be easily written down. The
contribution from a quark q(x) and an antiquark q̄(x) is

dσνN

dx dy
= G2

π
2M Ex

[
q(x) + (1 − y)2q̄(x)

]
, (10.50)

provided that the quark under consideration is allowed by charge conservation.
Similarly, the antineutrino–nucleon cross section is

dσ ν̄N

dx dy
= G2

π
2M Ex

[
(1 − y)2q(x) + q̄(x)

]
. (10.51)

These relations are used to determine the antiquark content of the proton. For
instance, the antineutrino–nucleon cross section at y = 1 measures q̄. The total cross
sections are also easily derived. They grow linearly with neutrino or antineutrino
energy.

Finally the ratio of the total cross sections for an isoscalar target, such as
deuterium or oxygen, is

σ ν̄d

σνd
=

∫ 1
0 dx x

[
1
3 (u + d) + (ū + d̄)

]
∫ 1

0 dx x
[
(u + d) + 1

3 (ū + d̄)
] . (10.52)

Taking the experimental ratio of the cross sections to be approximately 0.50, we
arrive at the conclusion that the integrated antiquark contribution is approximately
20% of the quark contribution.

We close this section with a few remarks. We derived the general formulas
for neutrino- and antineutrino-induced reactions using helicity cross sections. We
have also shown explicitly that they are related to the structure functions. The
formalism can be carried over to electroproduction, for which similar formulas
hold. We also emphasized that high-energy neutrino reactions are closely related
to electroproduction in the deep inelastic region.
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p
p1

fq(x)
pq = xp1

pq̄ = yp2

fq̄(x)p p2

l−

l+

Figure 10.4. The Drell–Yan process.

Both reactions were analyzed in terms of the parton model, assuming that the
constituents of protons are the quarks (Bjorken and Paschos, 1969). This will be
further developed in the next two chapters, where the quark-parton content of
hadrons becomes more evident.

10.5 The Drell–Yan process

The production of a massive photon or of a W± in hadron–hadron collisions and
its subsequent decay has been successfully analyzed in terms of the parton model.
The reactions (Drell and Yan, 1970)

p + p → γ + · · · → µ+µ− + X, (10.53)

p̄ + p → W + · · · → e−ν̄ + X (10.54)

are known as Drell–Yan processes. Together with deep inelastic scattering and
electron–positron annihilation, these processes play an important role in determin-
ing the structure functions and in testing the parton model, including QCD correc-
tions. The Drell–Yan process was especially important in formulating a strategy for
seeking and discovering the W bosons.

To calculate the cross section corresponding to Fig. 10.4, we begin with the
parton subprocess,

σ (q̄q → �+�−) = 4πα2

3Q2
e2

q . (10.55)

In order to embed it in the hadronic process, we rewrite it as a differential cross
section, dσ/dQ2, for the production of a lepton pair with invariantmass

√
Q2,
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where

Q2 = ŝ = (pq + pq̄)2, (10.56)

dσ̂

dQ2
= 4πα2

3Q2
e2

qδ(Q2 − ŝ). (10.57)

We envisage each hadron of momentum P being made up of partons carrying
a longitudinal momentum x P . We make the idealization that the partons carry
negligible transverse momentum. When the mass of the produced pair is very large,
the cross section is the incoherent sum of the elementary subprocesses. In this case a
quark of type q from one hadron annihilates with an antiquark of the same type from
the other hadron. The probability of finding the quark with fractional momentum
x is given by fq(x) and that for the antiquark by fq̄(y). The hadronic cross section
can now be obtained (Drell and Yan, 1970):

dσ

dQ2
(pp → 
+
−X) =

−−−∑
q

e2
q

∫
dx

∫
dy fq(x) fq̄(y)

dσ̂

dQ2
, (10.58)

where the sum is over all possible qq̄ pairs that can be formed from the constituents
of the colliding protons and the average is over the number of initial qq̄ states. This
gives in the end an overall factor of 1

3 .
The q and q̄ carry the fractions x and y of the proton momenta and the invariant

mass becomes

ŝ = (xp1 + yp2)2 ≈ xys, (10.59)

with s ≈ 2p1 · p2. The cross section now takes the form

dσ

dQ2
= 4

9

πα2

Q2

∫
dx

∫
dy fq(x) fq̄ (y)δ(Q2 − xys). (10.60)

After integration over y, we obtain the final result

dσ

dQ2
= 4πα2

9Q2s

∫ 1

Q2/s

dx

x
fq(x) fq̄

(
Q2

xs

)
. (10.61)

To lowest order (without gluon emission) we expect a scaling result: the last integral
depends on the ratio τ = Q2/s. The scaling is satisfied but the overall rate is
modified by QCD corrections, which involve gluons. In this case the corrections
are substantial and the reader should consult specialized articles for more details.

In addition to the quarks, the proton contains also gluons, i.e. vector mesons
that mediate the strong interactions. This requires that for each hadron we must
introduce a gluon distribution function: g(x) . In several processes gluons play an
important role. For instance, the production of Higgses in high-energy colliders
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proceeds through the fusion of two gluons,

g + g → H → ZZ, (10.62)

with g denoting gluons and the Higgs decaying to two lighter particles (in this case
Z bosons). The hadronic reaction can be analyzed as a Drell–Yan process with the
quarks of the intermediate states replaced by gluons.

Let us consider the process

p + p → H + hadrons → Z Z + hadrons (10.63)

and denote by σ0(gg → H → ZZ) the point cross section for the production of two
Z bosons. The gluon distribution function for protons has been measured in DESY
experiments to be large at small values of x . The cross section for the production
of Z pairs through two gluons with moments xp1 and yp2, respectively, is given by

dσ0

dQ2
= σ0(Q2)δ(Q2 − xys). (10.64)

The cross section for the proton–proton collision is

dσ

dQ2
=

∫
σ0(Q2)

s

dx

x
g(x)g

(
Q2

xs

)
. (10.65)

One usually takes the gluon structure functions from electron–proton-scattering
experiments and extrapolates them to regions of small x and large Q2 by means
of the renormalization-group equations. In addition to the corrected structure func-
tions, the calculations must include corrections to the gluon–Higgs-boson coupling
induced again by virtual gluons.

Problems for Chapter 10

1. Show that Eq. (10.5) is determined up to an overall phase.
2. Determine the behaviour of εR,L

µ under rotations around the z-axis.

This can be done easily if you split εR,L
µ into ε(x)

µ = (0, 1, 0, 0) and ε
(y)
µ = (0, 0, 1, 0).

3. Prove Eq. (10.7) with the following Ansatz: j lept
µ = aεS

µ + bεR
µ + cεL

µ.

Determine a, b, and c using kµ = (E, kx , 0, kz), qµ = (ν, 0, 0, qz), and momentum
conservation. Apply the high-energy limit ν � 2M and Q2 � ν2 in order to obtain
Eq. (10.7).

4. Derive Eq. (10.22) starting from Eq. (10.19).
5. In order to prove Eq. (10.30) rewrite j lept

µ as

j lept
µ = 1

2
ū′γµ(1 + γ5 + 1 − γ5)u

and follow steps similar to those in the case of neutrino–hadron scattering.
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6. Check the individual steps leading to Eq. (10.34).
7. Carry out the various steps leading to Eqs. (10.47) and (10.48).
8. Calculate the helicity cross section for a left-handed W scattered on quarks and show

that it reproduces the result in Eq. (8.45).
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