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Abstract. The Earth with a rigid core and a rigid mantle is considered and a recovering force is 
assumed between the constituents. 

The equations of motion in canonical form are derived in terms of the Andoyer's variables. Apply
ing the perturbation theory, the phenomenon of the polar motion is investigated. 

The polar motion obtained with this model is a circular motion of the rotational axis on the mantle's 
surface with its radius gradually changing. 

The Earth is assumed to consist of a rigid core and a rigid mantle. It is further assumed 
that there exists an equilibrium configuration between the core and the mantle and, 
when the two constituents deviate from this state, a torque proportional to the devia
tion occurs; i.e. if we denote the deviation by A<x and the resultant torque by N9 

N = a-Act. 

The potential energy is given by 

U =ia(Aoc)2. 

In the equilibrium state the principal axes of inertia of the core and the mantle need 
not necessarily coincide with each other. Let the core have principal moments of 
inertia Al9 Bx and Cl9 and the mantle A2, B2 and C 2 (But we confine our discussion 
to the case in which Al — Bl and A2 = B2)\ then the C 2-axis may be assumed to deviate 
by an angle y from the C r a x i s towards t h e v ^ - a x i s in the state of equilibrium (Figure 1). 
With this assumption the potential is approximately expressed as 

U = i(r{3 — (cosA1A2 + c o s C 1 C 2 ) c o s 7 — c o s J ^ i ^ — 

— (cos AlC2 — cosA^t) s iny} . 

Since y is considered small, we can write cosy = 1 and siny = y. 
We write the Hamiltonian of the system in terms of Andoyer's canonical variables. 

They are (Ll9 Gl9 Hl9 ll9 gl9 hx) for the core and ( L 2 , Gl9 H29 /2, g29 h2) for the mantle. 
The Hamiltonian is written 

f " 2 ^ W - ai)-±.ii + J L W - oD-^-Ll — U — V, 

where V is the potential of the Moon and the Sun. 
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The diurnal terms are first removed by the method of canonical transformation. 
Hence the new Hamiltonian is 

F* = 1 (L\ - G\) - ~ L\ + - (L\ - G2

2) - - L\ 
2At

 V 1 1 J 2CX 2Al

 V 2 2 ) 2C2

 2 
V* + 

4 L ' 
+ -- (cos h! + cos h! cos rt cos r2 + sin r x sin r2) x 

x + cos S i ) (1 + cos.y 2 )cos(J ' + g') + s i n ^ sin.s 2 cos# '} + 

+ 2 (cos h! sin r x sin r 2 + cos rx cos r 2 ) x 

x ( s i n ^ s in^ 2 co s / ' 4- c o s ^ c o s s 2 ) + 

^ A ( . . h + h-g' i' + g' 
+ 4y sin ^ sin cos 

. h + h+g' V + g' 
— sin s2 sin cos 

2 2 
where /' = / i - / 2 , g' = g\-gi, h' = hl-h29 cos r f = and c o s ^ = ( / = 1 , 2). 
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We now introduce new pairs of conjugate variables = — Gt and ^. = / . ( /= 1, 2), 
which represent the polar motion most directly. The other variables are Gi9 l t H t 

and A|(i= 1, 2). By the term 'polar motion' , the motion of each rotational axis relative 
to each corresponding pole of the figure is meant. It should be noticed, however, that 
the observable polar motion is that for the mantle. Then it is seen that the behaviors 
of xt and yt are almost independent of those of the other variables. That is, the polar 
motions hardly depend on the motions of the angular momentum vectors. (These 
vectors can be considered as practically coincident with the respective rotational axes.) 
It is also seen that the external forces have no considerable effect on the xt and yt. The 
sum of the two angular momentum vectors moves in the same way as in the case of a 
rigid earth under the influence of these forces. 

The polar motions are thus given by the equations 

a 

+ 4 [iO + coss^) (1 + cos^ 2 ) + sin^j s in$ 2 c o s ^ — y2) + 

4- 4y (sins1 s inyj — s in$ 2 sin>>2)] , 

dyt dxt 

Solving these equations by numerical integration, we obtain some general results. 
(i) The rotational axes of the core and the mantle make circular motions relative 

to the respective coordinate axes fixed in the core and the mantle. 
(ii) The periods of the circular motions are different from 305 days. 

(iii) The radii of the circles in the core and the mantle both suffer a gradual periodic 
change. 

(iv) The period of this change depends on the values for a, (Cl-Al)/Cl and 
(C2-A2)/C2. 

(v) The amplitude is determined by the value of a and the initial conditions. 
(vi) The effect of y is rather curious. It makes the centers of the circular motions 

deviate from the respective poles of the figure. The aspect of the motion, however, is 
quite the same as when y=0. 
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